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We present a new method, based on generalizations of Shiff-
man’s variational principle [Nowak 1993; 1994], for the con-
struction of minimal surfaces on Schwarzian chains in curved
space forms. The main emphasis of our approach is on the
computation of all minimal surfaces of genus zero (disks with
holes) that span a given boundary configuration—even unsta-
ble ones. For many boundary configurations we derive nu-
merical finiteness results on the number of minimal surfaces
spanning a given boundary configuration. We use graphs of
Shiffman’s function to illustrate bifurcation phenomena and the
Morse index of minimal surfaces. We also present some con-
vergence results for the numerical method.

1. INTRODUCTION

Minimal surfaces have long attracted many scien-
tists, partly because of their beauty. Nevertheless,
there still remain many open questions. For exam-
ple, only a few results are known about the num-
ber of minimal surfaces spanning a given boundary
configuration.

Nowadays soap film experiments are not the only
way to improve the understanding of problems con-
cerning minimal surfaces. It is possible to compute
minimal surfaces by numerical methods in order
to discover new surfaces and to better comprehend
known surfaces.

Many numerical methods are based on construc-
tive existence principles, derived in most cases ei-
ther from nonparametric (geometric measure the-
oretical) methods or from parametric methods. In
contrast, nonparametric methods ignore the con-
formal structure of minimal surfaces. They have
the advantage of being easily applied numerically
and of always producing geometrically regular so-
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lutions. The parametric approach, on the other
hand, allows the possibility of studying the varia-
tion of the conformal structure of minimal surfaces
and of describing the set of all minimal surfaces
with a prescribed boundary configuration. There-
fore, several results about the finiteness of solu-
tions or Morse theory can be proved by parametric
methods; see [Jost 1989] and the references there.

Nonparametric numerical methods are described
in [Brakke 1992; Chopp and Sethian 1993; Pinkall
and Polthier 1993; Hsu et al. 1992], for example.
Some of these methods allow the computation of at
least some unstable solutions. All of them succeed
in very general situations because they do not have
to respect the conformal structure of the surfaces.

Parametric numerical methods take into account
the conformal structure of the surfaces. Therefore,
most of them can treat only simply connected sur-
faces; see, for example, [Jarausch 1978; Wohlrab
1995; Tsuchiya 1987; Hutchinson 1991; Dziuk and
Hutchinson 1996; Hinze 1994]. These methods al-
low the computation of unstable solutions and in
most cases convergence proofs are available.

If M (c) is a three-dimensional space form of cur-
vature ¢, the Schwarzian chain problem in M(c) is
the following. Let I' be a Schwarzian chain, that
is, a collection of one- or two-dimensional complete
geodesic submanifolds of M (c). The problem is to
find all minimal surfaces in M (¢) whose boundary
lies in I' and that intersect the two-dimensional
segments of I' perpendicularly.

In this case it is possible to simplify the prob-
lem of finding all minimal surfaces with the given
boundary configuration by the quasi-minimal sur-
face approach. This approach was originally de-
veloped by Courant for the study of unstable disk-
type polygonal minimal surfaces (simply connected
surfaces whose boundary consists of straight lines),
and was generalized in [Nowak 1993] for partially
free boundaries M (c), under the assumption that
the surface lies in a hemisphere if ¢ > 0. The quasi-
minimal surface approach is more intricate than a
direct variational approach, but it has the advan-
tage that one has only to study a finite-dimensional
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function, the Shiffman function, for finiteness ques-
tions. This is because there is a one-to-one corre-
spondence between the critical points of the Shiff-
man function and the critical points of Dirichlet’s
integral.

We developed C software [Nowak 1994] for the
computation of minimal surfaces based on the vari-
ational principle of [Nowak 1993]. Our approach
has several advantages:

e If the boundary configuration does not consists
of too many segments, it is possible to deter-
mine all minimal surfaces of genus zero on the
given boundaries by evaluating Shiffman’s func-
tion. This gives the possibility of finding new
solutions. Figure 11 on page 310 shows a new
minimal surface in R® found using our method.

e The determination of the Morse index of a mini-
mal surface, which is normally a nontrivial prob-
lem, can be done by simply evaluating the eigen-
values of the Hessian of Shiffman’s function.

e Graphs of Shiffman’s function help illustrate bi-
furcation phenomena that might occur by de-
forming the boundary.

e In several cases one can prove numerical conver-
gence.

e Quasi-minimal surfaces can be computed very
fast. In the Euclidean case it is sufficient to
solve only one linear equation.

In Section 3 we present some examples of min-
imal surfaces computed by our method. Graphs
of the Shiffman function indicate that the class
of functions with prescribed boundary conditions
contains only few critical points of Dirichlet’s in-
tegral. We also show that the number of critical
points in a function class may change if the bound-
ary contour is deformed. We found among other
things a very simple boundary contour whose cor-
responding function class can contain two, one, or
zero critical points. It would be desirable to find a
formal proof of the finiteness results that we have
derived numerically.
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2. QUASI-MINIMAL AND MINIMAL SURFACES

Statement of the Problem

Let M(c) denote the space form of constant cur-
vature c. We work with the standard descriptions:
M(0) = R? and, for ¢ # 0,

M(c) = {X e R*: (X, X)? = 1/c},

where (a, b). is the Euclidean scalar product if ¢ is
positive and the Lorentzian scalar product defined
by —a1b; + asbs + azbs + auby if ¢ is negative.

A Schwarzian chain I is defined by I' := |J;" | [';,
where each I'; is a one- or two-dimensional com-
plete geodesic submanifold of M (c). We do not re-
quire the union to be disjoint. We propose to solve
the Schwarzian Chain Problem, which is this:

Problem A. Given a Schwarzian chain T' in M(c),
find all minimal surfaces in M(c) whose boundary
158 contained in I" and that are perpendicular to the
two-dimensional components of I

Minimal surfaces defined in the usual sense (mono-
tonicity at the one-dimensional boundary arcs and
geometrically meaningful free boundary conditions)
are clearly also solutions of the Schwarzian Chain
Problem. Therefore, it is not a restriction to con-
sider the Schwarzian Chain Problem.

Parametric Minimal Surfaces

Jost [1991] showed that any (possibly multiply con-
nected) minimal surface of genus zero M C M/(c)
with nonempty boundaries on a Schwarzian chain
I := U, T; in M(c) can be parametrized con-
formally by a map X : Q@ — M(c), where  is a
plane domain bounded by p circles, called a cir-
cular domain. X and Q can be normalized by a
three-point condition, namely, three chosen points
on one of the boundary curves of M can be made
to correspond to three given points on the outer
boundary of €2, which is taken as the unit circle. A
parametrization X :  — M of a minimal surface
M satisfies five conditions:

(i) X satisfies the boundary conditions. There ex-
ist a partition {7;}1<;<; of 9Q and an index map

I:{1,...,1} - {1,...,m} such that | J\_, 7 =
0Q, v, Nvy; = @ for i # j and X (v;) C Ty, for
1 < ¢ <[. The number [ of boundary segments
that are mapped into a given Schwarzian chain
can be greater than the number m of Schwarzian
chain segments because a surface can meet a
two-dimensional Schwarzian chain segment sev-
eral times.
(i) X is harmonic. It satisfies

Xoo 4 e(X., X)X =0

on €2, where X, = X, + ¢X, is the complex
derivative of X (u,v).

(iii) M is parametrized conformally, that is, X? =0
on €2, where

Xzz = |XU|i - |Xv|i - 2i<Xu7Xv>C'

(iv) X meets the two-dimensional Schwarzian chain
segments perpendicularly:

(v, Xp)e=0

for v € TX(z)Fl(i) and z € Yi if F[(i) is two-
dimensional; here X, denotes the derivative in
normal direction on 0f2, and T,M denotes the
tangent space of M at p € M.

(v) X is as regular as M. It satisfies

X € COQ)NCHQ\ V) N C2(Q),

where V ={3,N7;:1 <14, <1, i #j}.

Quasi-Minimal Surfaces

It can be shown by standard variational techniques
that a parametrized minimal surface that satisfies
the conditions (i)-(iv) of page 303 is a critical point
of Dirichlet’s integral defined by
1
Da(X) i= 5 [ (X +1X,J2) duds
Q

in a suitable function space. A direct variational
approach for constructing minimal surfaces there-
fore consists in the determination of critical points
of Dirichlet’s integral. In the case of disk-type
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polygonal surfaces Courant reduced this infinite-
dimensional variational problem to a finite-dimen-
sional one by the quasi-minimal surface approach,
which we will explain shortly. Shiffman later mod-
ified Courant’s approach by dropping the mono-
tonicity condition at the boundary and by defin-
ing the Schwarzian chain by means of complete
geodesic submanifolds. (The boundary curve of a
surface is allowed to overshoot at the vertices.)

Shiffman’s approach was generalized in [Nowak
1993] to the situation that we consider here. This
variational principle is the basis for our numerical
method.

Let Q be a circular domain as defined above, let
{7i}1<i<i be a partition of 02, and let V' be the set
of points 7, N¥;, with ¢ # j. Each point z € V can
be represented by

z =rpe'™ 4+ my,

with 1 <k <p,1<j<q, and 0 < 7; < 2m. Here
qr is the number of subarcs, r; is the radius and
my, is the center of the k-th circle. We introduce
the parameter

8= (T1, M1y Ty My, Ti1y - Tpg,)

and denote by €2, the corresponding circular do-
main and by v; the subarcs of the boundary par-
tition; see Figure 1, right. The set U of admissible
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(070) 715 (1_570)

parameters s is defined so that the circles do not
intersect or touch and so that a three-point condi-
tion is satisfied.

Let H*(2,R") be the Sobolev space of L*-func-
tions X : Q — R" with square integrable distribu-
tional derivatives up to the order k£ and let

k 1/2
1X o = (ZIXI?,Q> |
1=0

1/2
| X |pq = (/ |D""X|2dw) :
Q

Let I be a Schwarzian chain and I be an index map
that prescribes the boundary conditions. Shiff-
man’s function space

eI, 1,s)

is defined for s € U as the set of Y € H'(Q,)
such that Y (Q,) C M(c) almost everywhere and
Y (77) C Iy almost everywhere, for 1 <i <1.
The key in applying Shiffman’s variational prin-
ciple to the non-Euclidean case is a uniqueness re-
sult for critical points of Dirichlets’s integral in
Shiffman’s function space. Strohmer [1980] did this
for polygonal boundaries in nonpositively curved
space forms. A straightforward generalization to
positively curved space forms is not possible, since
a geodesic between two given points is not unique
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FIGURE 1. Triangulation of a simply connected and a multiply connected parameter domain.
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in this case. Therefore, we introduce the following
condition:

Condition 1. If ¢ > 0 we assume that the Schwarzian
chain T is contained in a hemisphere of M (c); that
is, there exists a vector v € R* such that (x,v) > 0
forall x € T.

The assumption implies that in the case of posi-
tively curved space forms we consider only those
minimal surfaces that are contained in a hemi-
sphere of M(c). The Schwarzian chain does not
consist of complete geodesics in this case.

To guarantee the existence and nondegeneracy
of surfaces we introduce the following condition:

Condition 2. (i) For all s € U, the function space
C(T', I, s) is nonempty and does not contain con-
tant functions.

(i) N, TTs(s) = {0}, where TM =, ¢, T,M.

C(T', I, s) is nonempty if the circles of 082, can be
mapped onto rectifiable closed curves ¢ such that
o(vf) C Iy fori=1,...,1. Condition (ii) is a ge-
ometrical assumption that means that the intersec-
tion of tangent spaces with respect to Schwarzian
chain segments is {0}.

In [Nowak 1993; 1994] we proved that a unique
critical point (a minimizer) of Dirichlet’s integral
exists in the space C(I, I, s) if Conditions 1 and 2
are satisfied. This critical point is denoted by X (s)
and is called a quasi-minimal surface.

We call D(s) := Dq_ (X(s)) the Shiffman func-
tion and C(s) := D(s) — Aq.(X(s)) the conformal
energy, where Aq(-) denotes the area functional.

To give rise to a minimal surface, the parameter
s has to be chosen in such a way that the corre-
sponding quasi-minimal surface X(s) is parame-
trized conformally; that is, X?(s) = 0 if and only
if C(s) = 0. A parameter s* with this property
is called optimal. It is well known that C(s) > 0.
Therefore, optimal parameters can be obtained by
minimizing C(s).

Until now it has not been proved that confor-
mal quasi-minimal surfaces satisfy the boundary
conditions in the usual way. The surfaces might

overshoot at the vertices. We therefore call con-
formal quasi-minimal surfaces X (s*) Shiffmanian
minimal surfaces. They can be constructed by the
following variational principle:

Problem B. Minimize Dq_(Y') subject to the condi-
tion Y € C(I', I, s), where s € U minimizes C(s).

Since parametrized solutions of Problem A that
satisfy conditions (i)-(v) of page 303 are critical
points of Dirichlet’s integral, they are also solu-
tions of Problem B. It can, however, not be guar-
anteed that solutions of Problem B are physically
meaningful; see Figure 14, left.

Remark 1. For numerical reasons sometimes it is
more convenient to use other parameter domains
than circular ones. The simply connected surfaces
of Section 3 were parametrized by a rectangle with
edge-sizes s and 1 —s, s € (0,1); see Figure 1, left.

Remark 2. Instead of defining an optimal parameter
s* by minimizing C(s), it is also possible to define
s* by VD(s*) = 0. By variations of the parameter
domain 2, one can show that this is equivalent to
X?(s*) = 0 using the formula

<VD(s),v>:—%/Q Re(X2(s) - 72)dz. (1)

Here, 7 is an inner variation of €2, depending on
v € R? (where s € R?) defined by 7 = (0/0¢)¢.|-=0
and g. : Q; = Q... is a diffeomorphism depend-
ing differentiably on . If Q; is a disk it is easy to
calculate 7. But for other domains, such as rectan-
gular or multiply connected ones, the calculation
of 7 is a difficult task. Therefore, it is easier to
minimize C(s) in numerical algorithms.

Remark 3. Another approach for the construction
of unstable minimal surfaces is to minimize Dirich-
let’s functional subject to a prescribed-volume con-
straint. The minimum of this volume-constrained
variational problem is an H-surface, where the con-
stant mean curvature H is the Lagrange parame-
ter corresponding to the volume constraint [Wente
1971].
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Under certain assumptions unstable minimal sur-
faces are stable in the volume-restricted function
space. Therefore, all minimal surfaces with given
boundary can be constructed in these cases by en-
ergy minimization methods; see [Brakke 1992], for
example.

This principle should be applicable for the con-
struction of large solutions in S®. These solutions
are not contained in a hemisphere of S®, so our
Condition 1 is violated in this case.

Stability of Minimal Surfaces

The stability of a minimal surface can be exam-
ined by determining the Morse index, which is, in
general, a nontrivial problem. In the case of disk-
type polygonal minimal surfaces Sauvigny proved
[1985b] that the Morse index of a disk-type polyg-
onal minimal surface in R" is equivalent to the
Morse index of Shiffman’s function D(s), that is
the number of negative eigenvalues of the Hessian
V2D(s). A disk-type polygonal minimal surface is
therefore unstable if and only if the Hessian V2D(s)
has at least a negative eigenvalue.

The numerical examples of Section 3 show that
Shiffman’s function in the non-Euclidean case is
similar to the Euclidean case. For example, the in-
dices of the surfaces in Figures 2 and 4 are known
in the Euclidean case and numerical evaluation of
the corresponding Shiffman functions demonstrate
that they do not change in the non-Euclidean case.
Therefore, it can be conjectured that the result of

/i
/gﬂﬂ
2]
7

A

Sauvigny can be generalized to the situation con-
sidered here. One difficulty in generalizing Sauvi-
gny’s proof is that asymptotic expansions at the
vertices of quasi-minimal surfaces are required, and
such expansions have only been derived for disk-
type polygonal Euclidean surfaces [Heinz 1979].

3. EXAMPLES

Minimal surfaces on Schwarzian chains have been
known for more than 150 years. In this section
we shall give examples to demonstrate the com-
plexity of the minimal surface problem that can
be observed already when the parameter s is one-
or two-dimensional. All graphics were computed
by the numerical method described in Section 4.
Simply connected surfaces were parametrized by a
rectangle (Figure 1, left), and multiply connected
ones by a circular domain (Figure 1, right).

Polygonal Minimal Surfaces

We begin with some polygonal examples. For disk-
type polygonal surfaces there exist some unique-
ness results, such as for boundaries with a one-
to-one projection on a planar convex curve [Radé
1930] or for extreme polygons with total curva-
ture less than 47 [Sauvigny 1985a]. For disk-type
polygonal surfaces it is also possible to compute
the Morse index of a minimal surface by simply
computing the Morse index of Shiffman’s function
[Sauvigny 1985b]. Figure 2, left, shows a polygonal
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FIGURE 2. Riemann-Schwarz surface and the corresponding Shiffman function.
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FIGURE 3. Lawson surfaces & 2, 2,1, and 111 in S3, shown in stereographic projection.

minimal surface with four vertices. The parameter
s is in this case one-dimensional since three ver-
tices are fixed. The corresponding Shiffman func-
tion, shown in Figure 2, right, indicates that the
solution is unique and stable.

For some polygonal Schwarzian chains with four
vertices and angles of the form 7 /k, for k € N, it
is possible to construct complete periodic minimal
surfaces in M (¢) by multiple reflections of one min-
imal surface patch. (The minimal surface patch
and the Shiffman function look always similar as
those of Figure 2.) With the aid of this method
Lawson [1970] constructed complete minimal sur-
faces in S? of arbitrary genus. Figure 3 shows three
such examples, the last of which is nonorientable.
The generating patches were computed by the nu-
merical method described in Section 4.

Minimal Surfaces with Free Boundaries on a
Tetrahedron

In comparison with polygonal boundaries, free or
semifree boundaries raise new problems. In the
polygonal case the function D(s) tends towards in-
finity if s — OU. Therefore, it is possible to prove
the existence of global minimizers and a mountain-
pass lemma, which guarantees the existence of an

unstable solution if two different stable solutions
exist. In the case of free boundaries the function
D(s) can be bounded on U, so it is not possible to
generalize all results from the polygonal case.

The simplest polyhedron example is a minimal
surface in a tetrahedron; see the middle panel in
Figure 4, left. The existence of such surfaces was
shown for general tetrahedra in R by Smyth [1984]
(who also proved uniqueness), for particular tetra-
hedra in S® by Karcher, Pinkall, and Sterling [Kar-
cher et al. 1988], and again for particular tetrahe-
dra in H? by Polthier [1989].

All these proofs were based on a conjugate sur-
face construction, which is more complicated in the
non-FEuclidean case. An easier and more general
proof of existence can be obtained by analyzing
Shiffman’s function, as shown in Figure 4, right.
For s — OU the function D(s) tends towards zero
because the corresponding quasi-minimal surfaces
degenerate. This was proved in [Nowak 1993; 1994]
for any tetrahedron in any space form, and it is il-
lustrated in the first of third panels of Figure 4.
It follows that D(s) has a maximum, which proves
the existence of a minimal surface.

In the cases ¢ = 0,1, —1, Shiffman’s function has
the general shape shown in Figure 4, leading to the
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FIGURE 4. Quasi-minimal surfaces in a tetrahedron in S® and Shiffman’s function.
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FIGURE 5. Left: Complete minimal surface in S® of Karcher, Pinkall, and Sterling. Right: Part of a complete
minimal surface in H? of Polthier. The surfaces are shown in conformal projection.

conjecture that the surfaces are unique and have
Morse index one. To my knowledge there are no
rigorous results on the Morse index of minimal sur-
faces with free boundaries on a polyhedron.
Figure 5 shows the complete minimal surfaces
of [Karcher et al. 1988] and [Polthier 1989]; as
in Figure 3, these images were obtained by using
the algorithm of Section 4 to construct generating
patches as in Figure 4, then reflecting the patches.

A Two-Parameter Minimal Surface in a Tetrahedron

That the minimal surfaces discovered by Smyth are
not the only ones in a tetrahedron is shown by the FIGURE 6. Minimal surface with five vertices on a

example in Figure 6, where the big tetrahedron is tetrahedron.
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FIGURE 7. Left: Quasi-minimal surfaces for the configuration of Figure 6, as s approaches OU. Right: the

corresponding Shiffman function.

symmetric with respect to a bisecting plane. The
Smyth minimal surface patch belonging to one of
the halves is reflected in the symmetry plane to
yield a minimal surface with five vertices in the
big tetrahedron. If we regard this as a Schwarzian
chain problem for a five-edged surface (with two
nonadjacent edges lying on the same plane), we
get a two-dimensional parameter s. Figure 7, right,
indicates that D(s) has a unique maximum point,
and hence that this minimal surface is unique and
has Morse index two. Figure 7 indicates also that
the corresponding quasi-minimal surfaces degener-
ate along only one parameter direction.

Nonexistence of a Minimal Surface with Several Holes

Figure 8 shows a quasi-minimal surface with three
holes on the face of a regular tetrahedron. The sur-
face was parametrized by the parameter domain of
Figure 1, right. Since the tetrahedron is symmet-
ric, the surface could also be constructed by six
reflections of a surface patch in a subtetrahedron
similar to that of Figure 6, having two orthogonal
faces.

Numerical experiments show that, as the an-
gle between the lower face and an adjacent face
of the tetrahedron in Figure 6 is increased, the
maximum point of Shiffman’s function in Figure
7 tends toward OU. It disappears if the two faces

meet orthogonally. This leads to the conjecture
that minimal surfaces with three holes similar as
in Figure 8 do not exist. Minimal surfaces with
several holes on the faces of a cube had been dis-
covered by Schwarz; see [Dierkes et al. 1992].

A New Minimal Surface and a Simple Example of
Bifurcation

The next example will show that Shiffman’s varia-
tional principle is suitable for finding new solutions
and studying bifurcation phenomena.

FIGURE 8. Quasi-minimal surface with three holes.
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FIGURE 10. Shiffman’s function for the example
shown in Figure 9.

Figure 9 shows three minimal surfaces spanning
a partly free Schwarzian chain, consisting of one
line and three planes. The corresponding Shiff-
man function appears in Figure 10; the minimum
corresponds to the first surface, which is therefore
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stable, whereas the maximum corresponds to the
second, which is unstable. The third surface in
Figure 9 is degenerate.

By reflection of these surfaces one obtains the
triply connected polygonal surfaces of Figure 11.

Conjugation of the unstable solution (Figure 9,
middle) leads to a stable one. This surface might
be computed with the conjugation algorithm in
[Pinkall and Polthier 1993]. However, this is not
the case for the (locally) stable solution of (Figure
9, left). This example demonstrates the advan-
tage of the quasi-minimal surface approach. Area-
minimizing methods would lead to the degenerate
solution, and other numerical methods that pro-
duce unstable minimal surfaces by direct approx-
imation of critical points (such as the minimiza-
tion of the squared mean curvature functional with
Brakke’s Evolver, as in [Hsu et al. 1992]) require a
priori knowledge of a good initial surface. To our

TAVAVAavyy,
iy
A7
Wy urr"«")z/
i
)

\/
AWy,

TATATAYa)

7

AVASTAVANY
PRI ATANAVAS
RN
1o 0 AVAVIAN,
<[>
~

2%
!

2
Kl

N
9y '%
0

3K

Ty
o
ﬁ Qy

FIGURE 11. Triply connected polygonal minimal surfaces.
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FIGURE 12. Shiffman’s function for deformations of the example of Figure 9.

knowledge the stable surface in Figure 9 is new. It
would be interesting to prove its existence rigor-
ously. As we will now see, the existence depends
on the geometry of the boundary configuration.
We will study deformations of the Schwarzian
chain of Figure 9 by increasing the distance a be-
tween the one-dimensional boundary piece and the
opposite plane. As we saw, the Shiffman func-
tion for the situation of Figure 9 has two critical
points (Figure 11). As a increases, these critical
points approach, coalesce, and vanish, as shown in
Figure 12. This is an example of a bifurcation,
corresponding to a soap film that tears apart if
the boundary is deformed too strongly. A similar
phenomenon occurs with annular minimal surfaces
spanning two parallel wire loops: if the loops are
moved too far apart, the surface breaks up. In
[Dierkes et al. 1992] the nonexistence of minimal
surfaces in the latter case was shown by using the
maximum principle for subharmonic functions.

Minimal Surfaces in Nonconvex Polyhedra

The existence of minimal surfaces in polyhedra has
been proved only for certain convex polyhedra [Jost
1988]. Clearly there are minimal surfaces in non-
convex polyhedra as well, such as the surface of
Figure 13, constructed by taking Smyth’s solution
in one of the three constituent tetrahedra (which
has a dihedral angle of 120°) and reflecting twice.
One imagines that nonconvex polyhedra obtained

FIGURE 13. Minimal surface in a nonconvex polyhedron.

by small deformations of the symmetric polyhe-
dron in Figure 13 also contain a minimal surface.

Overshooting Minimal Surfaces

An interesting unstable minimal surface is shown
in Figure 14, left. The corresponding Schwarzian
chain is a polygon with three straight lines and
two planes that intersect at an angle of 30°. This
example does not correspond to a physically viable
minimal surface, but two remarks can be made.
First, the edge of the surface that is constrained
to lie on I'y overshoots the intersection of the two
planes, and thus crosses I's. The I's-edge behaves
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FIGURE 14. An unphysical minimal surface and the corresponding Shiffman function.

analogously. (It is an open question whether over-
shooting at the vertices can arise in the case of
polygonal minimal surfaces; it has only been ob-
served in the case of polygonal quasi-minimal sur-
faces [Lewerenz 1980/81].)

Secondly, the physically realistic problem could
be solved by imposing additional inequality con-
straints guaranteeing that the free trace curve does
not leave the half-planes. It can be assumed that
the solution of the physically realistic problem has
weaker regularity properties than Shiffman’s vari-
ational problem. Recent investigations of S. Hilde-
brandt and F. Sauvigny suggest that the surface
might creep along the singular intersection of the
two planes. Here I would like to thank F. Sauvigny
for interesting discussions.

4. THE NUMERICAL METHOD

Discrete Variational Principle

In this section we describe the numerical method
implemented in [Nowak 1994]. In order to define
discrete solutions of Problem B (page 305) we dis-
cretized Shiffman’s function space C(T', I, s) by fi-
nite (linear triangle) elements. For this we defined
for each parameter domain a starting triangula-
tion and a refinement strategy (by partitioning in-
terior triangles into four congruent ones and lifting
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boundary nodes onto 0§);). In [Hinze 1994; Nowak
1994] it was shown that this refinement strategy
leads in the case of convex or concave boundaries
to quasi-uniform triangulations of €2; that is, the
angles of the triangles do not degenerate if the grid
size h tends to zero. Triangulations of {2,, which
are denoted by Q" were shown in Figure 1. The
corresponding set of vertices is denoted by P. The
triangulation is defined so that
Ver={y N7y i#4,1<i,j<Il}cP

The finite element space is denoted by 8"; it con-
sists of maps X € C°(Q" R") such that X|r is
linear for all triangles T of Q" where n = 3 if
¢c=0and n =4 if ¢ # 0. The discrete Shiffman
function space is denoted by

CMI, 1, s);
it consists of all Y € 8" such that
Y(z) € M(c) if z € P!
and X (z) €Ty if z € PPnAs, for 1 <i <.
The discrete version of Problem B is this:

Problem C. Minimize Do (Y) subject to the condi-
tionY € €M1, 1,s), where s € W minimizes Cy(s).

Here the discrete Dirichlet integral Dgn(Y') is de-
fined in the same manner as in the continuous case
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(although Y does not map to M(c)); C(s) is de-
fined in the same manner as C(s); and W' € U is a
neighborhood of an optimal parameter s*.

The minimization of Dqn(Y) is a nonlinear opti-
mization problem with a quadratic objective func-
tion and quadratic constraints. In [Nowak 1994]
it was proved that a solution exists and is unique
if ¢ > 0. (For ¢ < 0 the uniqueness is an open
problem.) The optimization problem is solved it-
eratively by determining the minimum of Dgqn (-)
on the tangent space of C"(T',I,s) with respect
to an approximation X,(Lk). Projecting this solu-
tion onto €"(I", I, s) one gets a better approxima-
tion X ¥, In [Nowak 1994] it was proved, using
[Spellucci 1993, Theorem 3.4.1], that this iteration
converges towards the desired solution.

It turns out that the convergence of this method
is not much slower when ¢ > 0 than when ¢ = 0.
If ¢ < 0 the convergence is slower. In this case the
discrete energy functional is not necessarily convex.
(This was shown in [Nowak 1994] by giving a vec-
tor ¥ in the tangent space of €"(T', I,s) such that
0?Dgn (X, ¥) = Dqn (V) < 0.) We assume that the
use of a conformal model of H® in R® would bring
better results in the case ¢ < 0 .

The search for optimal s was performed using
standard unconstrained optimization techniques;
see [Press et al. 1986], for example.

Convergence Results

In order to prove the convergence of discrete min-
imal surfaces defined by Problem C towards a so-
lution of problem B, it is necessary to show that
discrete quasi-minimal surfaces converge uniformly
on given subsets U’ € U. This can be done with
the aid of the following convergence result estab-
lished for disk-type polygonal surfaces in R® [Hinze
1994]:

max | X, (s) — X (s) 1m0 < C - b,

ma p>0. (4-1)

Here p1 depends on the smallest angle of the poly-
gon, and B" denotes a triangulation of the disk B;.

The result (4-1) could be obtained because the an-
alyticity of disk-type polygonal quasi-minimal sur-
faces X(z,s) on B, \ V; x U and asymptotic ex-
pansions of X(z,s) in V, were proved in [Heinz
1979]. Using (4-1) in [Nowak 1994] it was shown
for polygonal disk-type surfaces in R® (that is, for
¢ = 0) that |Cy(s) — C(8)|oso,ww — 0. This yields
sy — s* and

| Xn(s;) — X(s%) — 0.

‘17311.

For the general case (¢ # 0) we derived convergence
only for quasi-minimal surfaces:

| Xn(s) = X(s)]| o = O (4-2)

(For the sake of simplicity we assume Q" = Q.)

We give a short outline of the proof, which con-
sists of two parts.

In the first part the uniform boundedness of the
sequence { X, (s)} o in HY(2) is shown by using
a Poincaré inequality. This implies that a subse-
quence converges weakly in H*(Q2) and therefore
strongly in L?(f2) to a surface X.

In the second part of the proof it is shown that
X € €(I,1,s). Because of Rellich’s theorem, X
fulfills the boundary conditions. Therefore, it is
sufficient to show that |X|?> = 1/c almost every-
where in €; that is, that || X2 — 1|  =0.

Let w; denote the polygonal domains that are
defined by the centers of the triangles meeting in
one point p; corresponding to a triangulation of
Q, ie., Jw; = Q. The operator II, is defined by
I,z = p; for all z € w;. Therefore |X o II,|oq
is a Riemann sum of a function X and converges
towards |X|oq for h — 0. We estimate, using the

equality |Xx(s)(p:)[; = 1/c:
IX12 = 1/cly g = [IX[: = 1Xu(s)[2 0 T

< (XL = 1Xa(s)]2) o I

lo.0

[

+H{IX = X[ oI o

The right-hand side of this inequality converges to
zero, because | X, (s)|? — |X|? almost everywhere
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on () for h — 0 and because of the property of the
operator IIj.

By the lower semicontinuity of Dirichlet’s func-
tional it follows Dq(X) = Dg(X(s)) and therefore
X = X(s) by uniqueness of X(s). This implies
(4-2).

We mention that it would be highly desirable to
generalize the results of [Heinz 1979] to the non-
Euclidean situation. This would lay the foundation
of a general convergence proof.
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