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I introduce the recurrence D(n) = D(D(n�1))+D(n�1�D(n�2)),

D(1) = D(2) = 1, and study it by means of computer experi-

ments. The definition of D(n) has some similarity to that of Con-

way’s sequence defined by a(n) = a(a(n�1)) + a(n � a(n�1)),

a(1) = a(2) = 1. However, unlike the completely regular and

predictable behaviour of a(n), the D-numbers exhibit chaotic

patterns. In its statistical properties, the D-sequence shows strik-

ing similarities with Hofstadter’s Q(n)-sequence, given by Q(n) =

Q(n � Q(n�1)) + Q(n � Q(n�2)), Q(1) = Q(2) = 1. Com-

pared to the Hofstadter sequence, D shows higher structural or-

der. It is organized in well-defined “generations”, separated by

smooth and predictable regions. The article is complemented

by a study of two further recurrence relations with definitions

similar to those of the Q-numbers. There is some evidence that

the different sequences studied share a universality class.

INTRODUCTIONThe recursion relationQ(n)=Q(n�Q(n�1)) +Q(n�Q(n�2)) for n>2 ;Q(1)=Q(2)=1 ;introduced by D. R. Hofstadter [1979], is a challenge[Guy 1981, Problem E31]. Its apparently chaotic be-haviour (see Figure 1) is far from being understood.There appear to be no rigorous results about thebehaviour of Q(n).In [Pinn 1999] I reported a number of empiricalobservations on the Q-numbers. The main conclu-sions were:� The sequence shows signs of order. It is organizedin \generations", making up for a Fibonacci-typestructure on a logarithmic scale.� The variance of uctuations around n=2 growslike n�, with � = 0:88 � 0:01.� R(n) = (Q(n) � n=2)=n� has a strongly non-Gaussian probability density p�.� There is scaling: xm = R(n) � R(n �m) is dis-tributed according to �mp�(xm=�m). The rescal-ing factor �m converges exponentially fast to p2
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FIGURE 1. Graph of Q(n).for large m, i.e., �m � exp(�m=�), with a decaylength � = 3.It is an interesting question whether similar obser-vations can be made on other integer recurrences.In this paper, I introduce and study the recurrenceD(n)=D(D(n�1)) +D(n�1�D(n�2)) for n>2 ;D(1)=D(2)=1 :Its de�nition is not too di�erent from that of Con-way's sequence a(n), de�ned bya(n) = a(a(n�1)) + a(n� a(n�1)) for n > 2 ;a(1) = a(2) = 1 :The a-sequence has been investigated by Hofstadter,Conway and others at various times since about1975 [Conolly 1989; Hofstadter 1988]. Conway dis-covered many of its properties. A cash prize that heo�ered for information about its asymptotic growthwas won by Mallows [Mallows 1991]. See also [Kuboand Vakil 1996] for a detailed study of a(n).Conway's sequence has a lot of fascinating prop-erties. However, it behaves in a regular and com-pletely predictable way. In contrast, D(n) developschaotic and irregular patterns, separated by smoothand predictable regions. The latter property under-lines its close relation to the a(n) function.In Section 1, I formulate a conjecture about the\genealogy" of the D-numbers. The statements ofthe conjecture have been con�rmed with the help ofa computer for the �rst 226 terms of the sequence. Aproof is still lacking. Section 2 is about some strik-ing similarities in the behaviours of a(n) and D(n),

allowing for a kind of \marriage" of the two se-quences. Section 3 reports on empirical observationsof mainly statistical properties of D(n), like stepsize distribution, scaling properties, and frequencycounting. Section 4 complements the study of theD-sequence by empirical investigations of two fur-ther chaotic recurrences that might be called chaoticcousins of the Hofstadter sequence. It appears thatall sequences studied share various statistical prop-erties. This suggests they could belong to a commonuniversality class. Because of its clear structure theD-sequence seems to be a natural candidate for rig-orous studies of this class.
1. CONJECTURE ABOUT THE GENEALOGY OF D(n)Figure 2 shows the �rst 2048 terms of the a- and D-sequences. Both a and D are organized in \genera-tions" of increasing length and stay in some neigh-bourhood of n=2. These facts become even moreobvious when looking at 2a(n)� n and 2D(n)� n;see Figure 3.To make the \genealogy" more precise, we de�nea generation number g(n) for each n � 1 byg(n) = � 0 if n = 1,k if 2k�1 < n � 2k for n > 1.This can also be written as g(n) = dlog2 ne, wherelog2 denotes the logarithm with respect to base 2,and dxe is the smallest integer greater than or equalto x. As in [Pinn 1999], we interpret D(n) as thesum of its mother at position D(n1) and its fatherat D(n2), withn1 = D(n� 1) ;n2 = n� 1�D(n� 2) :Table 1 shows the structure of the generations andthe genealogy. An inspection of an extended versionof Table 1 suggests the following conjecture (con-�rmed with the help of a computer for k � 26):
Conjecture. For generation k, with k � 5, the follow-ing properties hold:
C1. For the �rst k�2 members the function D takesthe value 2k�2. The (k�1)th element is 2k�2+1.(The �rst k� 1 members of a generation will becalled the head.)
C2. For the last k� 2 members the function D takesthe value 2k�1. The element just before the last
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FIGURE 2. Graphs of a(n) and D(n).k � 2 members has value 2k�1 � 1. We will callthe last k � 1 members of a generation its tail.
C3. The last member of generation k�2 is simultane-ously the mother of all head members of genera-tion k and the father of the �rst head member ofgeneration k. The fathers of the remaining headmembers are (in ascending order) the membersof the head of generation k � 1.
C4. The parents of the tail members are tail mem-bers of generation k � 1.
C5. The values of D(n) lie in the range [2k�2; 2k�1].
2. MARRIAGE OF a(n) AND D(n)An interesting observation can be made when oneplots together D(n) and a(n). Figure 4 shows thefunction 2D(n)�n, together with�(2a(n)�n). Thelatter two functions nicely model the \outer" bound-
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FIGURE 3. Graphs of 2a(n)� n and 2D(n)� n.ary of the uctuating D(n) in some neighbourhoodof the generation boundaries.The close relation of a and D is also underlinedby the following experiment: Use the a-recurrence ofConway to generate the �rst k generations of num-bers. Then continue with the recursion relation ofthe D-numbers. The resulting function �k(n) is thusgiven by�k(�k(n�1)) + �k(n�1� �k(n�2)) for g(n) > k;a(n) for g(n) � k.Graphs illustrating the behaviour of 2�k(n) � nare shown in Figure 5, for k from 7 to 10. Withincreasing k the \chaotic" uctuations get reducedand the function becomes very similar to a(n). Itseems that one can in this way generate a large fam-ily of sequences with di�erent \levels of chaos".
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TABLE 1. Genealogy of the D-sequence. The head, body and tail of a generation are separated by horizontal lines.Note that tails are not de�ned for k < 5.
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FIGURE 4. Graph of 2D(n)� n and �(2a(n)� n).

3. EMPIRICAL INVESTIGATION OF STATISTICAL
PROPERTIESIn generation k, that is, for 2k�1 < n � 2k, thefunction D(n) takes values in the range 2k�2 < n �2k�1. It seems natural to plot y = D(n)=2k�1 interms of x = n� 2k�12k�1 :We have 0 < x � 1, and y � 0:5 � 1. Plots ofthis type for generations 6 to 13 are shown in Fig-ure 6. The similarity of the graphs suggests thatthere could be some statistical properties becomingindependent of k when k becomes large.
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FIGURE 5. Graphs of 2�k(n)� n, for k = 7, 8, 9, 10.
3A. Step Size StatisticsThe function inside a given generation may be con-sidered representing a random walk of 2k�1�1 steps,starting from 2k�2 and arriving at 2k�1. It is inter-esting to look at the distribution of the step sizes.Set S(n) = D(n)�D(n� 1) :The square of the variance of this quantity is givenby M(k)2 = 
S(n)2�k � 
S(n)�2k ;where h � ik denotes the average over the k-th genera-tion. Table 2 shows numerical results for log2M(k)for generations 13 to 25 and also the logarithmic ra-tios �k = log2(M(k)=M(k � 1)). The results for thelatter quantity converge to 0:88�0:01. We concludethat M(k)M(k � 1) ' 2� ;

k log2M(k) �k13 6.857 0.94915 8.683 0.91017 10.498 0.89619 12.291 0.88821 14.071 0.88822 14.961 0.89023 15.845 0.88424 16.726 0.88225 17.598 0.872
TABLE 2. VariancesM(k) and logarithmic ratios �k =log2(M(k)=M(k � 1)).with � = 0:88 � 0:01. This exponent is consistentwith the one found for the Hofstadter Q(n) [Pinn1999].Figure 7 shows a histogram p� of the variablex = S(n)=20:88 (k�1), for k = 24 and k = 25, plottedon top of each other. The two histograms matchnicely. The statistical distribution for k = 25 is
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FIGURE 6. Rescaled graphs of D(n), for generations 6 � k � 13.
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FIGURE 7. Top graph: statistical distribution of x =(D(n) �D(n�1))=20:88(k�1), in generations k = 24and k = 25. Bottom: same distribution on logarith-mic scale for k = 25.plotted on a logarithmic scale in the lower part ofthe �gure. As was the case with the distributionfunction of suitable Q-number observables, the tailscan be nicely �tted with a properly rescaled errorfunction erfc, de�ned byerfc(x) = 2p� Z 1x dt exp(�t2) :It was observed in [Pinn 1999] that the probabil-ity density pm(xm) of the rescaled di�erence xm =(Q(n)�Q(n�m))=n� was (up to a rescaling) withhigh precision identical with the distribution p� of(Q(n)� n=2)=n�, i.e.,pm(xm) = �mp�(xm=�m) : (3–1)
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FIGURE 8. The functions CD = j�2m�1:57j (full lines),CQ = j�2m�2j (dotted lines), and exp(�m=3).A similar type of scaling applies here. We de�nexm = (D(n)�D(n�m))=2�(k�1) :Note that in the present case p� is the distributionof x1. One observes validity of Equation (3{1) withvery good precision for m � 2. One can determinethe �m from the second moments,�2m = hx2mi � hxmi2hx21i � hx1i2 :They converge against �21 � 1:57. Looking atC = j�2m � �21jas function of m, we observe a striking similaritywith the corresponding function for the Hofstadtersequence; see Figure 8. The ups and downs in bothcases are very similar. The decay is approximatedby exp(�m=3).
3B. Numbers Left Out and Frequency CountingA. K. Yao [1997] has observed that the range of theQ-sequence seems to omit in�nitely many positiveintegers.The D-function maps generation k, i.e., the range[2k�1 + 1; 2k], to the interval Ik = [2k�2; 2k�1]. Weconsider the question which fraction r(M) of the2k�2 + 1 numbers in Ik are generated exactly Mtimes. It turns out that these fractions convergewith increasing k. Table 3 shows r(M), M � 6,for k = 23 and k = 24. The D-function omits some14% of all numbers. The table also shows r(M)for the sequences Q, F10, and F11. The latter two



62 Experimental Mathematics, Vol. 9 (2000), No. 1M k=23 k=24 Q F10 F11n< 221:5 n< 222 n< 2220 0:1446 0:1443 0:1358 0:1358 0:13421 0:2728 0:2722 0:2709 0:2706 0:26972 0:2615 0:2624 0:2700 0:2703 0:27093 0:1730 0:1731 0:1803 0:1804 0:18104 0:0885 0:0886 0:0900 0:0903 0:09095 0:0379 0:0380 0:0362 0:0361 0:03656 0:0143 0:0141 0:0122 0:0120 0:0122
TABLE 3. Relative frequency r(M) of numbers in Ikthat are generated by D exactly M times. The lastcolumn gives estimates for the r-ratios of the se-quences Q, F10, and F11. The latter two recurrenceswill be introduced in Section 4.sequences are close relatives of the Hofstadter se-quence and will be introduced in Section 4. Thereis a fair agreement of the ratios r(M) for all the foursequences. Figure 9 shows r(M) for M � 16 in gen-erations 23 and 24. Only a small deviation betweenthe two sets of numbers is seen for larger M .Figure 10 shows a plot of the i-th left-out numberin Ik, rescaled by a factor 2k�1. The x-variable is idivided by the length of interval Ik. The graphs arefor k = 16 and 17. The di�erence between the twocurves is already small. Of course, such graphs canalso be generated for M 6= 0. They look similar.

4. TWO COUSINS OF HOFSTADTER’S SEQUENCEIt is natural to generalize Hofstadter's recurrence(see beginning of this article) by introducing con-
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FIGURE 9. The function r(M), for k = 23 (+) andk = 24 (�).

stant shifts i and j in the arguments on the righthand side:Fij(n) = Fij(n1) + Fij(n2) for n > 2 ;Fij(1) = Fij(2) = 1 ; (4–1)with n1 = n�i�Fij(n�1) and n2 = n�j�Fij(n�2).Of course, one has to check whether the recursion(together with given initial conditions) leads to awell-de�ned sequence for all n. Ill-de�nition occursif there exists an n such that either n1 or n2 is out-side of [1; n�1]. It turns out that the recursion (4{1)is ill-de�ned except for the cases ij = 00, 01, 10,and 11, where I con�rmed consistency for n � 226.Note that F00 = Q. The sequence with ij = 01seems to have a simple regular structure, very sim-ilar to Tanny's sequence [1992]. (It might be in-teresting to compare also with the appearance ofGolomb's recursions studied in [Barbeau and Tanny1996; 1997].) The other two cousins, F10 and F11,look chaotic. A graph of the �rst 2000 elements ofF00, F10, and F11 is shown in Figure 11.
4A. Statistical PropertiesWe consider the sequences ~Fij(n) = Fij(n) � n=2.Again we study the variances M(k), de�ned byM(k)2 = 
 ~Fij(n)2�k � 
 ~Fij(n)�2k ;where h � ik denotes the average over intervals[2k�1+1; 2k]:
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FIGURE 10. The i-th left-out number in Ik, rescaledby a factor 2k�1, for k = 16 (full line) and k = 17(dotted line). The x-variable is i divided by thelength of interval Ik.
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FIGURE 11. The sequences F00 = Q, F10, and F11.

Table 4 shows the results for�k = log2(M(k)=M(k � 1));where k � 25. We estimate for � = limk!1 �k andobtain 0:88�0:01 for ij = 00 (Hofstadter sequence),0:86 � 0:01 for ij = 10, and 0:89 � 0:01 for ij =11. It seems that the exponent for F10 is smallerthan that for the other sequences. There are stilluctuations in Table 4, and we cannot strictly ruleout the possibility that the exponents of the threesequences agree.k 00 10 1113 0.849 0.852 0.86714 0.885 0.864 0.92515 0.879 0.869 0.90416 0.879 0.862 0.88317 0.870 0.863 0.89518 0.882 0.865 0.88919 0.881 0.859 0.89520 0.882 0.857 0.88621 0.882 0.859 0.89122 0.880 0.864 0.89023 0.882 0.861 0.88724 0.880 0.857 0.88425 0.876 0.851 0.878� 0.88� 0.86� 0.89�
TABLE 4. Logarithmic variance ratios �k for ~F00, ~F10,and ~F11. The � indicates �0:01, that is, an uncer-tainty of 0.01 on a 1 sigma level.Figure 12 shows the statistical distribution func-tions of the quantities ~Fij(n)=n�, where the �'s aretaken from the last line of Table 4. The binning wasdone over periods [2k�1; 2k] for the 10 and 11 se-quences. For F00 the generation structure requiresintervals [2k�1:5; 2k�0:5]. The distributions for thedi�erent k's agree nicely. The plot shows the k = 24results. The function with the highest peak belongsto ij = 00, the F11-numbers have the broadest dis-tribution. In contrast to the 00-distribution which(as the D-distribution) goes like exp(�cx2)=x forlarge x, the 10- and 11-distributions can be fairlywell approximated by Gaussians. It is an interestingquestion whether the various behaviours can be un-derstood and modelled. It seems natural to try a �twith limiting distributions of random walks. Nar-row non-Gaussian distribution can in principle begenerated by sub-di�usive random walks [Bouchaudand Georges 1990]. The observed asymptotics �
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FIGURE 12. Statistical distributions of ~Fij(n)=n�, forij = 00 (highest peak), 10, and 11 (broadest).Again we observe scaling, if we look at the distri-butions of xm = ~Fij(n�m)� ~Fij(n) :More precisely, the probability density of xm, m > 2is up to a rescaling the same as that of xm�1. Forij = 11 one can detect some small scaling violationsfor the �rst 2 values of m. The approach of the �mfactors to their asymptotic value is the same for allthree F -sequences, and very similar to that of theD-sequence. The convergence is again governed bya correlation length of 3.
4B. Correlation FunctionsFor all three F -sequences we de�ne a variable �n by�n = �+1 if F (n) � n=2,�1 else .Then we \measure" the 2-point correlatorG(m) = h�n�n�mi � h�ni2over the range [216; 224]. The results for jG(m)j areshown in Figure 13. The lower part of the �gureshows jG(m)j on a logarithmic scale, together withthe functions CQ and CD of Figure 8. The sur-prise is not only that the correlators of the threeF -sequences seem to be identical. They also have astriking similarity with the functions describing thedecay of the rescaling factors �m.
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FIGURE 13. Top: G(m) for ij = 00, 10, and 11. Thelower plot shows jG(m)j for the same three sequenceson a logarithmic scale (lower three graphs) togetherwith the functions CD and CQ of �gure 8 (upper twographs).
4C. Frequency CountingResults for the relative frequencies of numbers n oc-curring M times in the F -sequences were alreadygiven in Table 3. They agree fairly well with thosefor D and Q.
SUMMARY AND CONCLUSIONSIn this paper, a chaotic cousin of Conway's sequencewas introduced and studied empirically. Its statis-tical properties showed some intriguing similarities



Pinn: A Chaotic Cousin of Conway’s Recursive Sequence 65with the Hofstadter sequence Q and also with thetwo cousins F10 and F11:� All the four sequences studied have (to the givenprecision) the same exponent �, governing theincrease of variance with increasing n or k. (Thevalue for F10 seems to be a little bit lower, butagreement can however not be excluded.)� The probability densities obey a scaling law. Therescaling parameter follows a characteristic con-vergence, governed by a correlation length 3.� The correlation function G(m) is identical for allthree F -sequences. It also decays with correla-tion length 3, and in a way very similar to thebehaviour of the �m factors.� The relative frequencies of numbers occurring ex-actly M times in the sequence seems to be thesame for all the four sequences.The D-numbers and the three F -sequences have alot of common structure. One might say that theyshare a universality class. A precise de�nition ofsuch a class is, however, still lacking.The D-sequence is unique insofar, as it has a reg-ular generation structure with smooth interplays in-between. This could make it a candidate for studiesaiming at some rigorous results about the chaoticrecurrence relations.It is presently an open question how much one canlearn from the relation of the D-recurrence with the\solved" a-sequence. That there is some deep rela-tion is suggested by the apparent similarity of thetwo sequences in the regions between the genera-tions. The experiments with seeding the D-recur-rence with k generations of a-numbers (Section 2)could be a �rst step towards a better understandingof this relation.Whenever one observes the phenomenon of uni-versality in a model, one is tempted to look for re-alizations of the same universality class in nature.It is an interesting question whether recurrences ofthe type studied in this article represent real phys-ical processes or might be of use in the study ofsome dynamical system occurring in real life. Aphysical picture (e.g., in terms of random walks insome bizarre surrounding) could perhaps help tobetter understand some of the interesting proper-ties of these sequences.
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