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We study a family of cubic branched coverings and matings of

cubic polynomials of the form g?? f, with g = ga : z 7! z3 + a

and f = Pi for i = 1, 2, 3 or 4. We give criteria for matability

or not of critically finite ga with each Pi. The maps ga?? P1 il-

lustrate features that do not occur for matings of quadratic poly-

nomials: they never have Levy cycles but do sometimes have

Thurston obstructions.

INTRODUCTIONA mating of two polynomials is a covering of the2-sphere constructed in a certain simple way, whichgives it interesting dynamics.The precise construction is as follows. Let g and fbe two monic polynomials of the same degree, suchthat all critical points have �nite orbits. We �rstadd to C a circle of directions at in�nity, and ex-tend both g and f to this circle in the natural way.Next we sew up two copies of C along the circlesat in�nity, with opposite orientations. This givesa topological sphere. We then de�ne a branchedcovering g?? f that coincides with g on one hemi-sphere and with f on the other. If this map, or asuitable modi�cation of it, is Thurston-equivalent toa rational map (which is to say, it is equivalent toa rational map up to isotopy relative to the post-critical set and topological conjugacy), we say thatg and f are matable, and that g?? f is a mating off and g.In this paper we study matings of cubic poly-nomials g?? f that occur in A, the class of cubicbranched coverings with one double critical pointand one period-three orbit containing two simplecritical points. By a�ne conjugation one can reduceto the case where g is of the form of ga : z 7! z3 + aand f is among four speci�c cubic polynomials P1,
c
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30 Experimental Mathematics, Vol. 9 (2000), No. 1P2, P3, and P4 (Lemma 2.1). We want to study thematability of these pairs of polynomials.There exist already several necessary or su�cientconditions for two general polynomials g and f to bematable, namely by means of Thurston obstructionsand Levy cycles on one hand, and by means of thetopology of S2=�ray on the other hand, where�ray isthe equivalence relation on the sewed up sphere gen-erated by external rays of g and f . We will introducethe notion of removable Levy cycles and formulatethese various criteria.
Theorem 0.1. The four properties(a) g and f are not matable,(b) g?? f has an irreducible obstruction which is nota removable Levy cycle,(c) g?? f has a non-removable Levy cycle,(d) S2=�ray is not homeomorphic to S2can be related as follows:(a) =)`(= ' (b)* *k k(d) (= (c)where (a)`(='(b) means that (a)(=(b) if a suitablemodi�cation s(g?? f) of g?? f (see Theorem 3.12)has a hyperbolic orbifold (there are counterexamplesotherwise).Implication (c)=)(b) is trivial, and (d) =) (a) wasproved by M. Rees (see also [Shishikura 2000]). Wewill give a proof of the rest; other similar proofsexist in the literature.We �rst show how to modify a branched cover-ing in order to delete a maximal number of remov-able Levy cycles, without changing the dynamics toomuch (Theorem 3.12 and Corollary 3.13). We thenapply this technique to matings, making use of theray-equivalence relation (Proposition 3.16).For quadratic matings and cubic matings relatedto Newton maps, we also have (b)=)(c) [Tan 1992;1997]; therefore in this case the four conditions arein fact equivalent.One major objective of this work is to show that(b), (c), and (d) are not always equivalent (K. Pil-grim [1994] has found other examples of this type).More precisely, we show that (a) () (b) for a mat-ing g?? f in A and that, for ga??P1, S2=�ray is

a sphere, there is no Levy cycles and there are a-values for which ga??P1 satis�es (b) (and therefore(a)). We conjecture that ga and P1 are not matableif and only if for s = a or �a, the two external raysRgs( 726) and Rgs( 926) land at the same point. Theset of such s values form a sublimb of the connect-edness locus M3. So far we can only prove that fors in one half of the sublimb union the largest copyof M3 in the sublimb, and a = s or �s, ga and P1 arenot matable. We �nd also a values outside of thesublimb (in terms of the topological entropy of gaon its Hubbard tree) for which ga and P1 are mat-able. But we are unable to give a complete proof ofeither direction of the conjecture. It might thereforenot be a realistic conjecture.For each other choice of f , we try also to �ndconditions on a so that ga and f are matable. Twoof the four possible candidates for f , denoted byP3 and P4, are non real polynomials with star-likeHubbard trees. We shall prove that each of them ismatable with any critically �nite ga (Theorem 2.6).For ga??P2, the remaining case, we show that (c)is equivalent to the fact that the two external raysRga( 58) and Rga( 78) land at the same point (Theorem2.5). We conjecture that this last condition is aconsequence of (b), therefore the four properties (a),(b), (c), and (d) are equivalent.In order to prove these results, we study at �rstthe structure of Thurston obstructions for a generalmap in A (Theorem 2.2 and Proposition 2.3), andthen apply this to matings, using techniques aboutHubbard trees, external rays, etc.Although our results are only partial, some of thetools introduced here might be useful for the studyof other class of maps. We emphasise also thatmost phenomena about matings in A were �rst ob-served by computer experiments, and then provedor partially proved mathematically later on. Herethe computer experiments have served us as a guideto rigorous mathematical results.The paper is organized as follows: Sections 1A{1Crecall de�nitions and results. In Section 2 we intro-duce the class A and the polynomials Pi, state ourresults about structures of Thurston obstructions fora map in A and, for each i, give criteria for ga andPi to be not matable. We give also an example ofa mating in A which has a Thurston obstructionbut no Levy cycles. Section 3A contains a su�cient



Shishikura and Tan: A Family of Cubic Rational Maps and Matings of Cubic Polynomials 31condition for S2=�ray of a mating to be a sphere. InSections 3B{3H we review and develop several tech-niques for the analysis of Thurston obstructions and(removable) Levy cycles together with their applica-tions to matings. In Section 4 we prove our criteriaabout non-matability of ga and Pi for i = 2, 3, 4and show that for ga??P1, the quotient S2=�ray isa sphere. In Section 5 we establish results regard-ing Thurston obstructions for a map in A and forga??P1.In the appendix, we give interpretations of ourresults in the parameter space of rational maps inA along with several numerical observations.
1. PRELIMINARIES

1A. Thurston and Levy’s Theory on Branched Coverings

from S2 to S2All branched coverings in this paper are assumed tobe orientation-preserving and of degree greater thanone.
Definition (postcritical set). Let F : S2 ! S2 be abranched covering of degree d. Set
F = fcritical points of Fg and PF = [n>0F n(
F ):The set PF is called the postcritical set of F . Wesay that F is postcritically �nite, if PF is �nite.
Definition (equivalence between branched coverings).We say two postcritically �nite branched coveringsF andG from S2 to S2 are equivalent, and write F �G, if some topological conjugate of G is isotopic to Frel PF . More precisely, there exist two orientation-preserving homeomorphisms �1; �2 : S2 ! S2 suchthat G � �1 = �2 �F , �1 = �2 on PF , �i(PF ) = PG fori = 1; 2, and �1; �2 are isotopic relative to PF .There are some equivalent conditions for F;G tobe equivalent. First, we summarize related resultsof Thurston and Levy. For details and proofs see[Thurston 1983; Douady and Hubbard 1993].
Definition (multicurve). Let F : S2 ! S2 be a postcrit-ically �nite branched covering, with degree d � 2. Asimple closed curve in S2�PF is called peripheral ifit bounds a disc containing at most one point of PF .A multicurve � is a collection of �nitely many dis-joint nonperipheral simple closed curves in S2 � PF

such that no two curves are isotopic to each otherin S2 � PF .For a multicurve � of F , the Thurston linear trans-formation F� is a linear map from R � = fP
2� c

 jc
 2 R g to itself de�ned byF�(
) = X
0�F�1(
) 1deg(F : 
0!
) [
0]� for 
 2 �;where the sum is over all connected components 
0of F�1(
), and [
0]� denotes the curve in � isotopicto 
0 if it exists and [
0]� = 0 otherwise. We denoteby �� the leading eigenvalue of F�.A multicurve � with �� � 1 is called a Thurstonobstruction. Initially, Thurston obstructions are de-�ned for F -invariant multicurves. But the two def-initions are equivalent, as shown in Lemma 3.5 be-low.
Theorem 1.1 (Thurston). Suppose F : S2 ! S2 is apostcritically �nite branched covering . If F has noThurston obstructions then F is equivalent to a ra-tional map. The rational map is unique up to con-formal conjugacy . If F has a hyperbolic orbifold (seethe remark below) and Thurston obstructions, thenF is not equivalent to a rational map.
Remark. The notion of orbifold can be found in [Dou-ady and Hubbard 1993]. If a branched covering Fis has a non-hyperbolic orbifold, then F�1(PF ) �
F [ PF and #PF � 4.
Definition (good, degenerate and removable Levy cycles).A multicurve � = f
1; : : : ; 
ng of F is called a Levycycle if each F�1(
i+1) contains a component 
0i+1isotopic in S2 � PF to 
i and F : 
0i+1 ! 
i+1 isof degree one for i = 0; : : : ; n�1, where 
0 = 
n.We say that � is a good Levy cycle if the connectedcomponents of S2 � Sni=1 
i are B1; B2; : : : ; Bm; C,with Bi discs, and, in case n = 1, C = ? andF : 
01 ! 
1 reverses the orientation; in case n > 1,one component C 0 of F�1(C) is isotopic to C andF : C 0 ! C is of degree one. We say that � is adegenerate Levy cycle if the connected componentsof S2 �Sni=1 
i are B1; B2; : : : ; Bn; C, with Bi discs,and each F�1(Bi+1) has a component B0i+1 isotopicto Bi (rel PF ), and F : B0i+1 ! Bi+1 is of degree onefor i = 0; 1; : : : ; n�1, where B0 = Bn. We say that� is a removable Levy cycle if it is degenerate and



32 Experimental Mathematics, Vol. 9 (2000), No. 1for all j � 1 and all i, the components of F�j(Bi)are discs.Here are some known results concerning degree twomappings:
Theorem 1.2 [Levy 1985]. Suppose F is of degree 2and postcritically �nite. If it has a Thurston ob-struction then it has a Levy cycle.
Theorem 1.3 [Rees 1986; Tan 1992]. Suppose F is ofdegree 2 and postcritically �nite. If it has a non-removable Levy cycle then it has a good Levy cycle.We will see in this work many counterexamples ofTheorem 1.2 for higher-degree mappings. In fact weare going to construct a family of cubic branchedcoverings which have nested obstructions (see de�-nition below) but no Levy cycles. A counterexampleof Theorem 1.3 can be easily found.We will see in Section 3E that each removableLevy cycle can be literally `removed' by modifyingthe map. On the other hand, one can not always re-move simultaneously two such cycles if they are notdisjoint. The following result, which will be madeprecise and proved in Section 3E, gives the condi-tion under which one can remove all the Levy cyclesand get a rational map:
Definition (irreducible obstruction). We say that a mul-ticurve � is an irreducible obstruction if the matrixF� is irreducible with �(�) � 1.
Theorem and definition (weak equivalence). We say thatF is weakly equivalent to a rational map if all irre-ducible obstructions of F are removable Levy cyclessmaller or equal to an element of �0(F ) (see Section3E for de�nition). In this case a suitable modi�ca-tion of F is equivalent to a rational map.
Definition (nested obstruction). A multicurve � for apostcritically �nite map F is a nested obstruction ifS2�� has only two disc components and �(F�) � 1.For example a Levy cycle with one or two curves isa nested obstruction.
1B. Matings of PolynomialsIn this section, we give de�nitions of matings.
Definition (formal mating). Let f and g be two monicpolynomials of degree d. Set~C = C [ f1 � e2�is j s 2 T = R=Zg:

We then extend f and g continuously to ~C by set-ting f(1 � e2�is) =1 � e2d�is;g(1 � e2�is) =1 � e2d�is:SetS2f;g = ~C f t ~C g=f(1 � e2�is; f) � (1 � e�2�is; g)g:The formal mating of f and g is de�ned to be thebranched covering f ?? g : S2f;g ! S2f;g withf ?? g = f on ~C f and f ?? g = g on ~C g:When there is no ambiguity, we write S2 instead ofS2f;g.
Definition (matability). We say that two monic post-critically �nite degree d polynomials f and g arematable if f ?? g is weakly equivalent to a rationalmap.See [Douady and Hubbard 1984] or [Carleson andGamelin 1993] for the de�nitions of the Julia set Jf ,the �lled-in Julia set Kf and the external rays of apolynomial f . Recall that if f is postcritically �nite,then Kf is connected and locally connected, and allexternal rays land at Kf . For � 2 T, let us denoteby Rf (�) the closure in ~C f of the external ray ofangle �.In S2f;g, the external rays Rf (�) and Rg(��) areconnected at the point (1 � e2�i�; f).
Definition (ray-equivalence). For x and y in ~C f , we de-�ne �f to be the equivalence relation generated byx; y 2 Rf (�) for some �. The relation �g on ~C g isde�ned similarly. In S2f;g, de�ne the ray-equivalence�ray to be the equivalence relation generated by�f on ~C f and �g on ~C g. Denote by [x] the ray-equivalence class (or for short: the ray class) ofx 2 S2.A Levy cycle for a mating is closely related to aperiodic cycle of ray classes.
Theorem 1.4 [Tan 1992]. Set F = f ?? g. EachLevy cycle � corresponds to a unique periodic cy-cle of ray classes [x0]; : : : ; [xm�1] (they are calledlimit set of �) and a �nitely connected subset Xiof [xi] for each i such that F : [xi] ! [xi+1 mod m],Xi ! Xi+1 mod m are homeomorphisms, and � isisotopic to the boundary of a tubular neighborhoodof X0 [ � � � [Xm�1. In particular ,
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1. if � is degenerate, then#[xi] \ PF � #Xi \ PF � 2;and each component of Xi is a tree;
2. if � is not degenerate, each Xi (and [xi]) containsa closed curve;
3. if � is a good , then X0 is connected , F (X0) = X0,F ([x0]) = [x0]. If #� > 1, then �1(X0) is isomor-phic to the fundamental group of the unique non-disc component of S2 � �. If #� � 2, then X0is a simple closed curve, F : X0 ! X0 reversesthe orientation and X0 contains exactly two �xedpoints of F (if F is quadratic, [x0] contains ex-actly two �xed points, even when #� > 2).
1C. M. Rees’ Theory of MatingsDenote by 
f (�) the landing point of Rf (�) on Jf .Note thatS2f;g=�ray = Kf tKg=f
f (�) � 
g(��)g:
Theorem 1.5 [Rees 1992; Shishikura 2000]. Suppose fand g are two monic postcritically �nite polynomi-als, both with degree d. If f and g are matable thenthe following two conditions are satis�ed :(i) the quotient space S2f;g=�ray is homeomorphic toS2;(ii) the quotient map[f ?? g] : S2f;g=�ray ! S2f;g=�rayis topologically conjugate to a rational map.This theorem is presented and proved in case ofd = 2 and f and g both hyperbolic polynomialsin [Rees 1992]. Shishikura gave a proof of the gen-eral case in [Shishikura 2000]. Note that a ray classof f ?? g containing at least two postcritical pointswill represent one postcritical point for the quotientmapping. This is the reason for which we haveto modify the formal mating in order to study theequivalence between a mating and a rational map.Condition (i) is a purely topological one, but thecondition (ii) involves conformal structure problems.For quadratic matings and matings related to cubicNewton methods, (i) implies also the matability ofthe polynomials [Rees 1986; Tan 1992; 1997]. Butour study in this paper will show that this is notalways true.

2. STATEMENT OF THE RESULTS AND EXAMPLES

2A. The Class A and Related MatingsWe are mainly interested in a special class A of cubicbranched coverings and related matings.
Notation. We denote by A the set of cubic branchedcoverings F satisfying: F has a double critical pointw and a period-three cycle x 7! y 7! z 7! x contain-ing two simple critical points x and y. Denote by athe critical value F (w).We want to study matings in A. It turns out thatthey all have a simple form, as indicated in the nextlemma. First note that cubic polynomials with adouble critical point are always of the form ga : z 7!z3 + a. Next, there are exactly four pairs of moniccubic polynomials P1, ~P1, P2, ~P2, P3, ~P3, P4, ~P4for which there is a 3-periodic orbit containing twosimple critical points, with ~Pi(t) = �Pi(�t) for allt 2 C . Denote by x; y the two simple critical pointswith orbit x 7! y 7! z 7! x. We choose P1 to be amonic real cubic polynomial with x; y; z real and y <x < z. These properties determine P1 uniquely upto translation by a real vector. We choose P2 to bea monic cubic polynomial for which the imaginaryaxis iR is preserved, x; y; z 2 iR and iz < iy < ix.For P2, the �xed point �0 2 [y; z] has external angles18 ; 38 .An e�cient way to describe a polynomial is by itsHubbard tree. According to Douady and Hubbard,each postcritically �nite monic polynomial g has aforward invariant Hubbard tree, which is the convexhull of Pg in Kg [Douady and Hubbard 1984; 1985;Poirier 1993]. The Hubbard tree of P1; : : : ; P4 aregiven in Figure 1.
Lemma 2.1. The matings in A are exactly maps ofthe form g?? f , with g = ga : z3 + a and f 2fPi; ~Pi; i = 1; 2; 3; 4g. Moreover each mating is topo-logically conjugate to ga?? f , for some value a andf 2 fP1; P2; P3; P4g.y x zP1 zyx P2 � zy x P3 � yz x P4

FIGURE 1. The Hubbard trees of P1, P2, P3, P4.
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Proof. Clearly the branched coverings of the formga??Pi and ga?? ~Pi belong to A. On the otherhand, if a mating g?? f is in A, one of the polynomi-als, say, f , must have a 3-periodic orbit containingtwo simple critical points, and the other polynomial,g, must have a double critical point. So g is of theform z3 + a and f is among Pi and ~Pi. We noticealso that ga?? ~Pi is conjugate to g�a??Pi. �
2B. ResultsIn order to study which matings in A are equivalentto rational maps, we need to study at �rst possibleobstructions for a general map in A. Here are ourresults:
Theorem 2.2. Let � be an irreducible obstruction fora postcritically �nite map F in A. Then exactly oneof the following statements holds.
1. � is a removable Levy cycle.
2. Some preimages of � contains a good Levy cyclewith at most two elements.
3. � is a nested obstruction but not a Levy cycle,with a and y contained in one disc component ,say D+(�), of S2��, z in the other disc compo-nent D�(�) of S2 � � and x =2 D+(�) [D�(�).
Proposition 2.3. Assume that �0 is a multicurve for apostcritically �nite map F in A, such that S2��0 hasonly two disc components D+(�0) and D�(�0) witha; y 2 D+(�0), z 2 D�(�0) and x =2 D+(�0)[D�(�0).For any � a submulticurve of �0, denote by D�(�)the disc component of S2�� containing D�(�0). SetA0(�) = F�1(D+(�)).Then �0 is a Thurston obstruction if and onlyif there is a submulticurve � of �0 such that , upto isotopy , D+(�) is contained in a component ofF�1(D�(�)), A0(�) contains no curve of � and sep-arates D+(�) and D�(�), and D�(�) is separatedfrom A0(�) by a component of F�1(@A0(�)). In thiscase �� = 1 and �� = 12(1 +p5 ), where �� is theleading eigenvalue of the unweighted Thurston lineartransformation de�ned byF#;� : 
 7! X
0�F�1(
)[
0]� for 
 2 �:We now turn to results and conjectures about mat-ings. It is a case by case study. We write � �ga � ifthe two external rays for ga of angles � and � landat the same point.

Theorem 2.4. Let ga be postcritically �nite. ThenS2ga;P1=�ray is homeomorphic to S2. Moreover , ofthe following conditions, 1 and 2 are equivalent , 3implies 1 and 4, and both 1 and 4 imply 5.
1. ga and P1 are not matable.
2. ga??P1 has a nested obstruction which is not aLevy cycle.
3. For �0 the �xed point of ga with external angle 0,either �0 and ga(a) are in the same componentof Ja � fwg and g3a is renormalizable (i .e. g3a isa cubic polynomial-like mapping with connectedJulia set), or �0; ga(a) and g2a(a) are in the samecomponent of Ja � fwg.
4. Either 726 �ga 926 or 1926 �ga 1726 .
5. The topological entropy of ga on its Hubbard treeis at least log�12(1 +p5 )�.We conjecture that 1 is equivalent to 4. We considerthe above theorem as a partial proof for the direction4 =) 1 and the direction 4 (= 1. At present wedon't have a complete proof of either direction ofthe conjecture.The part 1 =) 5 relies on a recent result of Shi-shikura relating �� to the topological entropy. It iseasy to see from examples that 5 does not imply 4.In the appendix we give parametric interpreta-tions for Conditions 3 and 4.
Theorem 2.5. Let ga be postcritically �nite. Thenconditions B, C, and D are equivalent and each im-plies A.
A. ga and P2 are not matable.
B. 58 �ga 78 .
C. ga??P2 has a good Levy cycle with at most twoelements.
D. ga??P2 has a non-removable Levy cycle.We also conjecture that A and B are equivalent.
Theorem 2.6. If ga is postcritically �nite, then ga andPi are matable, for i = 3; 4.
2C. An Example of a Nested ObstructionConsider g = gc : z 7! z3 + c such that the doublecritical point w = 0 has orbit w 7! c 7! c3 + c 7! wand that the two rays Rg( 726) and Rg( 926) land at thesame point. These conditions determine c uniquely.
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c �01 � w �0g(c) �00�q q q q�����q q q qq@@@����� (((((qq�2 q�02
FIGURE 2. Extended Hubbard tree for g.Figure 2 shows an extension of the Hubbard treeof g. The points � and � are �xed points,f�; �0; �2g = g�1(�);and f�01; �00; �12g = g�1(�0). The external anglesof these points are >�� = f0g;>�� = � 18 ; 38	; >��0 = � 124 ; 1924	; >��2 = � 1124 ; 1724	;>��01=� 1972 ; 2572	; >��00=� 172 ; 6772	; >��02=�4372 ; 4972	:Figure 3 shows an extension of the Hubbard treeof P1 (see also Figure 1). Here �0, �00 and �0 are�xed points, f�0; �01; �02g = P�11 (�), f�0; �00; �02g =P�11 (�0), f�001; �000; �002g = P�11 (�00) and x�; y�; z�are the roots of basins of attraction of x; y; z, re-spectively (i.e. repelling periodic orbit of period 3on the boundary of the basins). The external anglesof these points are>��0 = f0g; >��00 = � 12	; >��01 = � 13	; >��02 = � 23	;>�x� = � 313 ; 1013	; >�y� = � 413 ; 913	; >�z� = � 113 ; 1213	;>��0 = � 14 ; 34	; >��00 = � 112 ; 1112	; >��02 = � 512 ; 712	;>��001=� 1136 ; 2536	; >��000=� 136 ; 3536	; >��002=� 1336 ; 2336	:We now construct a Thurston obstruction f�1; �2gfor F = g??P1, which is made of external rays andsome part of the equator E = f(1 � e2�is; g) j s 2T = R =Zg.

For t0; t 2 ]0; 1[, setE[t0; t] = f (1� e2�is; g) j s 2 [minft0; tg;maxft0; tg] g:For i = g; P , if two external rays Ri(�); Ri(�0)land at a common point u 2 Ki, setRi(u; �; �0) = Ri(�) [Ri(�0):Now we de�ne�1=E� 18 ; 14�[RP ��0;� 14 ;� 34�[E� 34 ; 38�[Rg��; 38 ; 18�:�1 is clearly a nonperipheral simple closed curve inS2g;P1 � PF . We will see that:
(i) F�1(�1) contains two components �2 and �3 withdeg(F : �2 ! �1) = 1; deg(F : �3 ! �1) = 2. Thecurve �2 is nonperipheral, non-isotopic to �1 anddisjoint with �1. The curve �3 is isotopic to �1 relPF .
(ii) F�1(�2) contains two components �4 and �5 withdeg(F : �4 ! �2) = 1; deg(F : �5 ! �2) = 2. �4is peripheral and �5 is isotopic to �1 rel PF .
Proof. An easy calculation shows that�2 = E� 124 ; 112� [RP ��00;� 112 ;� 1112�[E� 1112 ; 1924� [Rg��0; 1924 ; 124�;�3 = E� 38 ; 512� [RP ��02;� 512 ;� 712� [E� 712 ; 1124� [Rg��2; 1124 ; 1724� [E� 1724 ; 34� [RP ��0;� 34 ;� 14� [E� 14 ; 18� [Rg��; 18 ; 38�;�4 = E� 172 ; 136� [RP ��000;� 136 ;� 3536� [E� 3536 ; 6772� [Rg��00; 6772 ; 172�;�5 = E� 2572 ; 1336� [RP ��002;� 1336 ;� 2336� [E� 2336 ; 4372� [Rg��02; 4372 ; 4972� [E� 4972 ; 2536� [RP ��001;� 2536 ;� 1136� [E� 1136 ; 1972� [Rg��01; 1972 ; 2572�:We get (i) and (ii) from Figure 4. �q q q q q q q q q q q���� ��������q qqy x zq

q�01�02�00 y� x� z� �0�02 �002 �001 �0 �00 �000
FIGURE 3. Extended Hubbard tree for P1.
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18 14 38 12 1924 1112 124 112y x z
�1 �2c ! �

18 14 38 34y x z
�3c ! �

FIGURE 4. The curves �1, �2, and �3.Now � = f�1; �2g is a multicurve whose Thurstonlinear transformation F� : R � ! R � is given, in thebasis �1; �2, by the matrix� 12 121 0�whose leading eigenvalue �� equals 1, with eigenvec-tor � 11�. Clearly � is an irreducible obstruction butnot a removable Levy cycle. It is also a nested ob-struction. By de�nition, F is not weakly equivalentto a rational map; that is, g; P1 are not matable.
3. GENERAL ANALYSIS ON BRANCHED COVERINGS

AND MATINGSSection 3A studies the ray-equivalence of a mating.Sections 3B{3H contain useful techniques to dealwith Thurston obstructions, intersection problemsof a multicurve with a Hubbard tree, weak equiv-alence to a rational map, etc. We will see someapplications in the next section.
3A. The Quotient is a SphereA mating F = f ?? g posesses a ray-equivalence re-lation, which gives more detailed information aboutThurston obstructions and Levy cycles, such as re-sults in Theorem 1.4 and Theorem 1.5.In this section we want to analyze some propertiesof the ray-equivalence relation of a mating, and give

some conditions for S2=�ray to be a topological 2-sphere.First a general result about a Hubbard tree; for aproof, see [Tan 1997].
Proposition 3.1. For a postcritically �nite polynomialf , every point x 2 Jf with more than one externalray falls eventually into the Hubbard tree of f .We say that an equivalence relation � in a compactmetric space X is closed if the graph of � in X�Xis a closed set. This is equivalent to say that anysequences xn ! x, yn ! y such that xn � yn foreach n satisfy x � y.
Proposition 3.2. Suppose f; g are degree-d monic poly-nomials with locally connected Julia set . Set F =f ?? g. If there is K < 1 such that #[x] \ E � Kfor every x 2 S2f;g, ray-equivalence is closed .
Proof. An external ray R(�) = Rf (�)[Rg(��) � S2f;gis a connected arc. Since the Julia set of both f andg is locally connected, the rays move continuously.So, as �n ! �0 as n ! 1, we have R(�n) ! R(�0)with respect to the Hausdor� distance on the spaceof closed subsets of S2f;g.Suppose xn; yn 2 S2f;g such that xn �ray yn forall n, and xn ! x0, yn ! y0. We need to provex0 �ray y0.



Shishikura and Tan: A Family of Cubic Rational Maps and Matings of Cubic Polynomials 37For each n, there is a collection of angles �n;1, �n;2,. . . , �n;kn such thatxn 2 R(�n;1); yn 2 R(�n;kn); R(�n;i)\R(�n;i+1) 6= ?for i = 1; 2; : : : ; kn�1.By assumption, we have kn � K for each n. Tak-ing a subsequence if necessary, we may assume thatkn is a constant k for all n. By taking again subse-quences, we may assume that �n;i ! �i (as n!1)for some �i 2 T and for each i = 1; 2; : : : ; k.By the continuity of external rays R(�), we haveR(�n;i)! R(�i); as n!1;for i = 1; 2; : : : ; k. It follows that x0 2 R(�1); y0 2R(�k), and R(�i)\R(�i+1) 6= ? for i = 1; 2; : : : ; k�1.Hence k[i=1R(�i)is connected, and therefore x0 �ray y0. �
Corollary 3.3. If , moreover , no equivalence class of� separates S2f;g, then S2f;g= � is homeomorphic toS2.
Proof. This is a simple application of the Moore'stheorem [1925]: If G is a partition of S2 into com-pact, connected, nonseparating sets that gives riseto a closed equivalent relation, the quotient S2=G ishomeomorphic to S2. �
Proposition 3.4. The induced quotient map [f ?? g]from S2f;g= � to itself is again a branched covering .
Proof. Denote by V the union of the �nitely many rayclasses containing critical values of f . Then f�1(V )consists again of �nitely many ray classes and f :S2 � f�1(V ) ! S2 � V is an unbranched covering.Let y 2 �(S2 � V ) and Y a simply connected openneighborhood of y. Since � : S2�V ! �(S2�V ) isproper, ��1(Y ) is again simply connected [Douadyand Douady 1979]. Thus each connected compo-nent of f�1��1(Y ) is simply connected. So is eachconnected component of �f�1��1(Y ). This provesthat [f ?? g] is a covering of S2 minus �nitely manypoints. It extends then naturally to a branched cov-ering of S2. �

3B. Irreducible ObstructionsLet F : S2 ! S2 be a postcritically �nite branchedcovering. Recall that, for a multicurve� = f
1; : : : ; 
ng;the corresponding matrix F� = (aij) is de�ned byaij = X
02F�1(
j); 
0�
i 1deg(F : 
0 ! 
j) :See [Gantmacher 1959] for the de�nition and prop-erties of irreducible nonnegative matrices.
Definition. A multicurve � is called irreducible if F�is irreducible. � is called an irreducible obstructionif F� is irreducible and �(F�) � 1. In other words,for any (i; j) 2 f1; : : : ; kg2, k = #�, there is aninteger n, a component 
0 of F�n(
j) isotopic to
i, and for 1 � m � n, Fm(
0) is isotopic to acurve in �. Levy cycles are examples of irreducibleobstructions. A multicurve � is F -invariant, if forany 
 2 �, each connected component of F�1(
) iseither peripheral or isotopic to a curve in � rel PF .
Lemma 3.5. Any Thurston obstruction contains anirreducible obstruction. Any irreducible obstructionis isotopically contained in a F -invariant Thurstonobstruction. As a consequence, in the case that Fhas a hyperbolic orbifold , F is not equivalent to arational map if and only if F has an irreducible ob-struction.
Proof. Let � be a Thurston obstruction for F . Then� can be considered as disjoint union of submulti-curves �m such that F�m is irreducible. Moreover,�(F�) = maxmf�(F�m)g. Any �m with �(F�m) � 1is an irreducible obstruction.Now let �0 be an irreducible obstruction for F .Let �1 be the set of isotopy classes of curves inF�1(�0). Then �0 � �1 (isotopically). To show that�1 is again a multicurve we should check that twoclasses in �1 do not intersect (isotopically). Sincecurves in �0 are disjoint from each other, so arecurves in F�1(�0), so are isotopy classes in �1. Nowwe can take inductively �n to be the set of isotopyclasses of F�1(�n�1). Then �n is a multicurve con-taining �n�1. There is a n such that �n+1 = �n, i.e.�n is an F -invariant multicurve. It remains to show�(F�n) � 1. Let F�n = (aij)m�m, F�0 = (bij)k�k.We have k � m. Number curves in �n so that the



38 Experimental Mathematics, Vol. 9 (2000), No. 1�rst k ones are in �0. De�ne a new matrix (cij)m�mas follows: cij = bij if i; j � k, and cij = 0 else-where. Then aij � cij for each (i; j). By Perron-Frobenius theory on nonnegative matrices, we have�((aij)) � �((cij)) = �((bij)) = �(F�0) � 1. So �nis an F -invariant Thurston obstruction. �
3C. Disc-Components in the ComplementLet F be a postcritically �nite branched covering.Let A;B be two subsets of S2. We say that A isisotopically contained in B if there is a homeomor-phism  of S2, isotopic to the identity rel PF , suchthat  (A) � B. If there is such a  with  (A) = B,we say that A is isotopic to B.
Lemma 3.6. Let � be an irreducible multicurve for F(for example, a Levy cycle). Then(a) Each connected component of S2�F�1(�) is ex-actly a connected component of F�1(A), where Ais some connected component of S2 � �.(b) Any connected component of S2�F�1(�) is iso-topically contained in a connected component ofS2 � �.(c) Let D0 be a disc-component of F�1(D) for D acomponent of S2 � �, such that @D0 is isotopicto a curve 
i in �, then D0 is isotopic to a disc-component of S2 � � with boundary 
i. And ifthe components of F�1(D) are discs, at least oneof them must be isotopic to a disc-component ofS2 � �.
Proof. Statement (a) is due to general properties ofa branched covering.For (b), since any curve in � is isotopic to a curvein F�1(�), there is a homeomorphism  isotopic tothe identity rel PF mapping � into F�1(�). So  �1maps a component of S2�F�1(�) into a componentof S2 � �.For (c), suppose that D0 is isotopically containedin A and that A is not a disc-component of S2 � �.Since each boundary curve of A is nonperipheral,@D0 can not be isotopic to any of them. So A isa disc, @D0 is isotopic to @A and D0 is isotopic toA. Assume now that the components of F�1(D)are discs. Since at least one curve 
0 of F�1(@D) isisotopic to a curve in �, the unique disc-componentD0 of S2 � F�1(�) bounded by 
0 is isotopic to adisc-component of F . �

The following result combines work of S. Levy, M.Rees, the authors and others.
Proposition 3.7. � is a removable Levy cycle if andonly if � is an irreducible obstruction and there is adisc-component D of S2��, such that for all n, theconnected components of F�n(D) are discs. In thiscase F�1(�) contains a unique subset �0 isotopic to� such that F : �0 ! � is a homeomorphism. If � isan irreducible obstruction and each disc componentof S2 � � contains at most one critical value, then� is a removable Levy cycle.
Proof. Necessity is a consequence of the de�nition.To prove su�ciency, set 
 = @D. Given any 
j 2 �,by irreducibility, there is an integer n such that acurve 
0 in F�n(
) is isotopic to 
j . Since 
0 boundsa disc-component D0 of S2 � F�n(�), by the abovelemma, D0 is isotopic to a disc-component Dj ofS2�� bounded by 
j . Thus S2�� has at most onenon-disc-component.For simplicity, assume that #� = k > 1 (the case#� = 1 is left to the reader). Then S2 � � hasexactly k disc-components D1; : : : ;Dk, with 
i =@Di. We claim that F� = (bij), withbij = XD0 isotopic to Di;F (D0)=Dj 1deg(F : D0 ! Dj) :Let 
0 be a component of F�1(
j). It bounds aunique disc-component D0 of S2�F�1(�) such thatF (D0) = Dj . Moreover deg(F : 
0 ! 
j) = deg(F :D0 ! Dj). By the above lemma, 
0 is isotopic to 
iif and only if D0 is isotopic to Di. By de�nition ofF�, we get the claim.Now for each j, there is at most oneD0 in F�1(Dj)isotopic to Di. So the sum in bij contains at mostone term. On the other hand, for each i, there isat most one j such that bij 6= 0, because F�1(Dj)and F�1(Dj0) are isotopically disjoint whenever j 6=j0. By the irreducibility and the fact �(�) � 1, weconclude that, after a suitable numeration, bi(i+1) =1, bk1 = 1 and bij = 0 elsewhere. This proves thatF�1(�) contains a unique subset �0 satisfying theproperties in the proposition and � is a degenerateLevy cycle. Since the components of F�n(D1) arediscs for all n, � is also removable.In the last case of the proposition, take D a disc-component. Since it contains at most one critical



Shishikura and Tan: A Family of Cubic Rational Maps and Matings of Cubic Polynomials 39value, all components of F�1(D) are discs, each isisotopically contained in a component of S2 � �,therefore contains at most one critical value. Byinduction, all components of F�n(D) are discs. �From this we get again a result of M. Rees and aresult of S. Levy:
Corollary 3.8. Any irreducible obstruction of a quad-ratic branched covering contains a Levy cycle.
Proof. Let � be an irreducible obstruction for F .A quadratic map F has exactly two critical values.If some curve 
 2 � separates the two critical valuesof F , then we are in the case to apply the aboveproposition. So � must be a removable Levy cycle(by looking at the degree, we can even prove that�(�) < 1, a contradiction. So in fact this situationdoes not occur). If the two critical values of F arecontained in the same component of S2 � �, thenF�1(
) for each 
 2 � consists of two curves andeach of them is mapped by F to 
 with degree one.This implies every periodic cycle in � is a Levy cycle.�
3D. Geometric Intersection NumberLet f : S2 ! S2 be a postcritically �nite branchedcovering. We say that � is a nontrivial open arcin S2 � Pf if � = h(]0; 1[), where h : [0; 1] ! S2is a continuous mapping, injective on ]0; 1[, withh(0); h(1) 2 Pf and h(]0; 1[) \ Pf = ?, moreoverh is not homotopic to a constant map relative toits boundary values. Denote by [�] the isotopy class(rel Pf ) of �.Denote by L the set of isotopy classes of non-peripheral simple closed curves and nontrivial openarcs in S2�Pf , and by R the real linear space gener-ated by L. For [�]; [�] 2 L, we de�ne the geometricintersection number by:[�] � [�] = inff#�0 \ � 0 j �0 2 [�]; � 0 2 [�] g:Note that [�] � [�] = 0. This geometric intersectionnumber can be extended bilinearly to R� R.We de�ne a linear transformation f# : R! R byf#([�]) = X�0�f�1(�)[�0];where the sum is taken over all connected compo-nents of f�1(�), and again [�0] denotes the isotopyclass of �0, which is zero if �0 is a) a peripheral closed

curve, b) an open arc with at least one end point outof Pf , or c) an open arc isotopic to a point (rel Pf ).It is clear that f#([�]) does not depend on the choiceof the representative of [�], and (f#)n = (fn)#.Assume that a �nite subset f[
1]; : : : ; [
k]g of Ladmits a representative � = f
1; : : : ; 
kg such that
i \ 
j = ? for i 6= j. We de�ne two linear transfor-mations f� : R � ! R � and f#;� : R � ! R � byf�(
) = X
0�f�1(
) 1deg(f : 
0 ! 
) [
0]�;f#;�(
) = X
0�f�1(
)[
0]�for every 
 2 �, where [
0]� denotes the element in� isotopic to 
0 if it exists and 0 otherwise. Notethat deg(f : �0 ! �) = 1 whenever � is an arc. Wehave (f#;�)n � (fn)#;�, and (f�)n(
) � (fn)�(
),since some n-th preimage 
0 of 
 might come backto � but f(
0) =2 �.For � as above, set ~�(fn) to be the union of thosecomponents of f�n(�) that are isotopic to elementsof � (the case n = 1 being written simply ~�). If � isirreducible, each component of � is isotopic to some(not necessarily unique) component of ~�(fn).A di�erent form of the next theorem appeared inthe preprint version of this paper. The generaliza-tion given here is proved in [Pilgrim and Tan 1998].
Theorem 3.9. Let f : S2 ! S2 be a postcritically �nitebranched covering . Assume that two �nite subsets ofL admit representatives � = f
1; : : : ; 
kg and � =f�1; : : : ; �lg such that 
i\
j = �i\�j = ? for i 6= j.Assume furthermore that(0) #(� \ �) = � � �;(1) f� has neither zero row nor zero column, withleading eigenvalue at least 1;(2) ~� (� f�1(�)) has a subset ~�0 isotopic to � andf : ~�0 ! � is a homeomorphism.Then either
1. � � � = 0 and � � f�n(�) = 0, f�n(�) � � = 0 forall n � 1; or
2. � � � 6= 0 and

a. ~� is isotopic to �, ~� is isotopic to �, the map-pings f : ~� ! � and f : ~� ! � are homeo-morphisms (so ~�0 = ~�), ~�\(f�1(�)� ~�)) = ?and ~�\(f�1(�)�~�) = ?. More precisely , each



40 Experimental Mathematics, Vol. 9 (2000), No. 1component of � is isotopic to a unique compo-nent of ~�, each component of � is isotopic toa unique component of ~�, and
i. for each 
 2 �, there is exactly one com-ponent 
0 � f�1(
) such that 
0 \ ~� 6= ?,moreover , 
0 is the unique component off�1(
) isotopic to an element of �;
ii. for each � 2 �, there is exactly one com-ponent �0 of f�1(�) such that �0 \ ~� 6= ?,moreover , �0 is the unique component off�1(�) isotopic to an element of �.

b. The transformations f#;� and f#;� are transi-tive permutations of the basis vectors.
c. The above results remain true if we replace fby fn, for any n � 1 (though transitivity mayfail).
d. For any � isotopic to a component of f�n(�)for some n > 1 but not isotopic to a compo-nent of �, � � � = 0. Similarly , for any 
isotopic to a component of f�n(�) for somen > 1 but not isotopic to a component of �,� � 
 = 0.

Corollary 3.10. If � is a Levy cycle and � an irre-ducible obstruction with � �� 6= 0, then � is again aLevy cycle.
Corollary 3.11. Suppose that in a mating f ?? g, onepolynomial , say g, has a \star-like" Hubbard treeHg, that is, Hg has only one branch point � andg : Hg ! Hg is a homeomorphism. Then any irre-ducible obstruction of f ?? g is a Levy cycle, whoselimit set (according to Theorem 1.4) coincides withthe ray class [�]. Moreover , if the rays of � forma single orbit by g then either there is � such thatRf (�) [ Rg(��) links � to a �xed point of f , or [�]is a tree.
Proof. Consider Hg as a periodic cycle of isotopyclasses of arcs. For � an irreducible obstruction off ?? g, we must have � �Hg 6= 0 (otherwise � reducesto an obstruction for f). So by the above theorem� is a Levy cycle, with limit set passing throughHg. The only possibility is [�], since � is the uniquepoint of Hg in the Julia set.Denote by d the degree of f and g. By assump-tion, the map � 7! d� acts as a cyclic permuta-tion on the set ��1; : : : ;��k of external angles of�. Denote by �i the landing point of Rf (�i). If

�i = �j for some i 6= j, then by the cyclic per-mutation property and the fact that F preservesthe cyclic order at branch points of [�], we have�1 = �2 = � � � = �k and it is a �xed point of f .Assume now the �i's are pairwise distinct. Fix anindex j and � 6= �j (if any) an external angle of �j .Then the ray Rf (�) [ Rg(��) lands at a periodicpoint u 2 Jg �Hg (since Hg \Jg = f�g). The pointu has no other external rays (Proposition 3.1). So[�] is a tree. �
3E. Removing Levy CyclesLet F : S2 ! S2 be a postcritically �nite branchedcovering. We describe here how to modify F in or-der to delete simultaneously a maximal number ofremovable Levy cycles.Recall that each removable Levy cycle � with ncurves decomposes the sphere into n disc-compo-nents B1; : : : ; Bn and one extra component C (whichis not a disc unless n = 1), such that each F�1(Bj)has a component B0j isotopic to Bj�1 (mod n), withdeg(F : B0j ! Bj) = 1. Moreover for all k > 0, allcomponents of F�k(B1) are discs. Therefore for allk > 0 and j = 1; : : : ; n, all components of F�k(Bj)are discs. Set B(�) = Sj Bj .Denote by � = �(F ) the set of isotopy classes ofremovable Levy cycles for F . We de�ne a partialorder on �: we say that �1 < �2 if there are repre-sentatives �1, �2 of �1, �2 such that B(�1) � B(�2).If the geometric intersection number �1 � �2 is zerofor two elements of �, either one is smaller than theother, or there are representatives �1, �2 of �1, �2such that S2 � �1 [ �2 has exactly one non-disc-component, and #�1 +#�2 disc-components.Denote by �0 = �0(F ) the set of � 2 �, satisfy-ing that � is maximal in � and � � � = 0 for anyLevy cycle � (see Sections 3F{3H for examples andcounterexamples).Denote by Gd the set of equivalence classes of post-critically �nite branched coverings of degree d.
Theorem 3.12. There is a mapping s : Gd ! Gd withthese properties:(a) it �xes every class which contains a rational map;(b) if s([F ]) = [G], there is a bijection between thetwo sets AF = fisotopy classes of irreducible ob-structions of F not smaller than or equal to an



Shishikura and Tan: A Family of Cubic Rational Maps and Matings of Cubic Polynomials 41element of �0(F )g and AG = fisotopy classes ofirreducible obstructions of Gg;(c) �0(G) = ? for [G] 2 s(Gd) and s � s = s.
Proof. For any � 2 �0(F ), we have � � � = 0 for anyirreducible obstruction �, since by Corollary 3.10,any � with � � � 6= 0 is a Levy cycle.
I. Construction of s. We de�ne s([F ]) = [F ] if �0(F ) =?. Assume that �0 = �0(F ) 6= ?.For any � 2 �0, the set � \ PF is de�ned to beB(�) \ PF , for any � a representative of �. The set� \ PF is not empty, independent of the choice of�, and contains only periodic non-superattractingelements of PF . For �; �0 2 �0 distinct, we have(�\PF )\ (�0\PF ) = ?. Since #PF is �nite, the set�0 contains only �nitely many elements �1; : : : ; �k.
Step 1: The mapping H and the integer n. For each i,choose �i a representative of �i such that �i, �j aredisjoint for i 6= j. Denote by � = Ski=1 �i, andB = Ski=1B(�i). From the proof of Proposition 3.7,the set �0 of curves in F�1(�) homotopic to somecurve in � is isotopic to �, and F : �0 ! � is ahomeomorphism.Let 	 : S2 ! S2 be a homeomorphism isotopicto the identity rel PF , such that 	(�) = �0. SetH = F � 	. Then H is Thurston equivalent to F ,PH = PF , H(�) = �, and H : B ! B is a homeo-morphism.Note that � � H�1(�) and #H�1(�) � 2. By in-duction H�(n�1)(�) � H�n(�). There is a minimalinteger n such that(H�(n+1)(B)�H�n(B)) \ (PH [ 
H) = ?;where 
H is the set of critical points of H.
Step 2: Marking points. In each component B of Bwe mark a point y such that y has the same periodas B (such a point exists according to Brouwer's�xed point theorem), and H maps marked pointto marked point. Inductively, for j = 1; : : : ; n, wemark a point y in each component B of H�j(B) �H�(j�1)(B) such that H(y) is the marked point ofH(B).
Step 3: Modifications. We will modify the map in eachmarked disc (B; y) of H�n(B) containing a criticalpoint (such a disc is surely not periodic, that is,B =2 B). Set (B0; y0) = H((B; y)). Denoting by

D the unit disk, let ' : B ! D be an orientation-preserving homeomorphism with '(y) = 0, and like-wise '0 : B0 ! D with '0(y0) = 0. Extend theboundary mapping g = '0 �H@B �'�1 to a mapping(denoted again by g) of the whole disk by t � w 7!t � g(w), 0 � t � 1. It is a covering branched only at0, and its degree coincides with deg(H : @B ! @B0).Now we de�ne G : S2 ! S2 to be: on each discB of H�n(B) containing a critical point, set GB =('0)�1 � g � '. Elsewhere set G = H.
Step 4: Independence of [G] on the choices in the con-

struction. At �rst another choice of � in its isotopyclass and 	 will give always a mappingH in the classof F . The integer n in Step 1 remains unchanged.Next another choice of the marked orbit and themaps ', '0 will give a di�erent extension of Hj@Bfor B a component of H�n(B) containing a criticalpoint. So this gives a di�erent mapping G1. How-ever, for a circle covering h : S1 ! S1, any two ex-tensions of h in the unit disc as a branched coveringsuch that h�1(0) = 0 are topologically conjugate bya homeomorphism  : D ! D with  jS1[f0g = id.In our case, there is a homeomorphism � of thesphere, which is the identity on S2�H�n(B), map-ping the �rst choice of the marked orbit to the sec-ond one, such that ��1 � G1 � � coincides with Geverywhere, except on H�(n+1)(B) �H�n(B). Theexceptional set is a disjoint union of �nite discs awayfrom PG. So ��1 �G1 �� and G are isotopic rel PG.Thus G1 and G are Thurston equivalent.Now the mapping s : [F ]! [G] is well de�ned.
II. Properties of s. Any rational map R which is post-critically �nite has no Levy cycle [Bielefeld et al.1992], so s([R]) = [R].Next, let F;H;G;B be as above. Since PG \H�n(B) is contained in the set of marked points,curves in @H�n(B) are peripheral for G. So for� 2 AG and ~� a representative of � such that ~� \H�n(B) = ?, we have G�1j~� = H�1j~�. So ~� is againan obstruction for H and then for F . It gives riseto a uniquely determined �0 2 AF .Now let �0 2 AF , so �0 is not smaller than any ele-ment of �0(F ). There is a representative ~� of �0 suchthat ~�\B = ?. So ~� is an obstruction for H. Nowsince ~� �@B = 0, by Theorem 3.9 (with � = @B), wehave ~� � H�n(@B) = 0. Moreover ~� is not isotopi-cally contained inH�n(B). So we can choose ~� in its



42 Experimental Mathematics, Vol. 9 (2000), No. 1isotopy class such that ~� \H�n(B) = ?. In otherwords, ~� is in the identical part of H�1 and G�1.As a consequence, �(~�; G) = �(~�;H) = �(~�; F ) � 1(this shows in particular that curves in ~� are notperipheral for G). Thus ~� is an irreducible obstruc-tion for G, and gives rise to a uniquely determined� 2 AG.Finally, let ~� be a maximal removable Levy cycleof G such that ~� �� = 0 for any irreducible obstruc-tion � of G (i.e., [~�] 2 �0(G)). It is again a remov-able Levy cycle for F and gives rise to a �0 2 AF ,by the preceding paragraph. Moreover ~� � � = 0 forany irreducible obstruction � of F . By de�nition of�0(F ) and the fact that �0 =2 �0(F ), there is a re-movable Levy cycle �00 for F strictly larger than �0.This contradicts the maximality of ~� for G.As a consequence, s � s = s. �
Definition. Two branched coverings F; F 0 are weaklyequivalent if s([F ]) = s([F 0]). We say that F isweakly equivalent to a rational map R if s([F ]) =[R].
Notation. We denote by s(F ) a representative ofs([F ]).
Corollary 3.13. If all irreducible obstructions for Fare removable Levy cycles smaller than or equal toan element of �0(F ), F is weakly equivalent to arational map. On the other hand , in case that s(F )has a hyperbolic orbifold , if F is weakly equivalent toa rational map then all irreducible obstructions forF are removable Levy cycles smaller than or equalto an element of �0(F ).
Proof. Set G = s(F ). In the �rst case G has noirreducible obstructions; by Lemma 3.5 it has noThurston obstructions. Therefore by Theorem 1.1 Gis equivalent to a rational map. In the second case,G has no Thurston obstructions (Theorem 1.1). Wecan then apply part (b) of the theorem above. �We conclude this section with applications to severalproblems about matings.
3F. A Criterion for a Branched Covering to Be a MatingEvery mating is a branched covering. But manybranched coverings can not be realized as a mating,for instance with mixed critical orbits. As an exam-ple, choose a degree two branched covering with one

critical point periodic and the other falling eventu-ally into the �rst orbit. But this mixed-orbit con-dition is far from su�cient, even in degree two casethere are rational maps whose both critical pointsare periodic with disjoint orbits but which is notequivalent to a mating (see [Wittner 1986]). In factthe key point for a branched covering to be equiva-lent to a mating is that there is a curve is S2 playingisotopically the role of the equator for a mating:
Theorem 3.14 [Thurston 1983; Levy 1985; Wittner1986]. Let F be a postcritically �nite branched cov-ering of degree d. Assume that F has no degenerateLevy cycle. Then F is equivalent to the mating oftwo polynomials f; g if and only if there is a closedcurve 
 � S2 � PF such that F�1(
) = 
0 is againa single closed curve and 
0 is isotopic to 
 rel PFwith the same orientation. Moreover given such a 
the two polynomials f; g are uniquely determined .It happens also that there are several \equators"for the same branched covering. This phenomenonis called shared mating in [Wittner 1986]. Hencethe mapping f; g 7! f ?? g, from the space of pairsof monic polynomials of degree d to the space ofdegree-d branched coverings, is neither surjectivenor injective.
3G. Levy Cycles around Periodic Ray ClassesThis part intends to complete the picture of Theo-rem 1.4.
Lemma 3.15. Let F be a mating . Let [x] be a periodicray class such that [x] contains either a closed loopor at least two postcritical points. Then each bound-ary curve of a tubular neighborhood of [x] generatesa Levy cycle.
Proof. All we need to prove is that such a curve 
 isnot peripheral (the periodicity and the degree-oneproperty are guaranteed by that of [x]). But if 
were peripheral, the disc component D of S2 � [x]containing 
 would be periodic, i.e. there would bean integer k > 0 such that F�k(D) has a componentwhich coincides with D, i.e. F k(D) = D. But D\Econsists of �nitely many intervals (where E is theequator), and F k is expanding on E. SoF k(D \E) 6= D \E;which is a contradiction. �
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3H. How to Find Removable Levy Cycles in a Mating

Proposition 3.16. Let F = f ?? g be a postcritically�nite mating . The set �0(F ) consists of boundarycurves of tubular neighborhoods of periodic cyclesf[x1]; [x2]; : : : ; [xm]g of ray classes such that each[xi] contains at least two postcritical points and noray class in Sn�0 F�n([xi]) contains a closed loop.If S2=�ray is homeomorphic to S2 then F has nonon-removable Levy cycles. Moreover f and g arematable if all irreducible obstructions of F are re-movable Levy cycles. And , in case that s(F ) hasa hyperbolic orbifold , if f and g are matable thenall irreducible obstructions of F are removable Levycycles.
Proof. We will only sketch the proof here. The detailsare left to the reader.It is very easy to see that the boundary curves� of a tubular neighborhood of such a periodic cy-cle of ray classes form a removable Levy cycle. Tosee that � is maximal among removable Levy cycles,we apply Theorem 1.4. To see that � is (geometri-cally) disjoint from any other Levy cycle we applyLemma 3.15 and then Theorem 1.4. To see that ev-ery element of �0(F ) is in this form we apply againTheorem 1.4.Assume now that F has a non-removable Levy cy-cle. Then the limit set of the cycle f[x1]; : : : ; [xm]gsatis�es that for some i and some n, the set F�n([xi])contains a closed loop. So one of the ray classescontains a closed loop. Therefore S2F=�ray is nothomeomorphic to S2.Recall that by de�nition f and g are matable ifF is weakly equivalent to a rational map, that is, ifs(F ) is equivalent to a rational map.Due to Theorem 1.4 and Lemma 3.15, if all irre-ducible obstructions of F are removable Levy cycles,each of them must be smaller than or equal to anelement of �0(F ). So F is weakly equivalent to arational map, by Corollary 3.13.On the other hand, in case that s(F ) has a hyper-bolic orbifold, if F is weakly equivalent to a rationalmap then by Corollary 3.13 again all irreducible ob-structions of F are removable Levy cycles. �Now we give an example of a maximal removableLevy cycle which is not geometrically disjoint froman irreducible obstruction. Consider f to be a cubic

polynomial with one �xed critical point and the sec-ond iterate � of the other critical point �xed (so thatthe second critical point behaves like 0 for z2 � 2).Consider now F = f ?? ~f , with ~f(z) = �f(�z).Then the ray class [�] consists of two �xed rays R(0)and R(1=2). A curve around each ray is a maximalremovable Levy cycle, but intersects always a curvearound the other ray.
4. PROOF OF THE RESULTS: FIRST PARTIf F 2 A is postcritically �nite, then it is easy tocheck (by de�nition of s) that s(F ) 2 A and s(F )has a hyperbolic orbifold.
Proof of Theorem 2.6. Denote by P one of P3, P4.Then P is star-like, with � the unique branchedpoint in its Hubbard tree (see Figure 1). Denote by��1;��2;��3 the external angles of �. They form asingle orbit by � 7! 3�. According to Corollary 3.11,an irreducible obstruction for ga??P is a Levy cy-cle � with limit set [�], and, either [�] is a tree, orRga(�1), Rga(�2) and Rga(�3) all land at the samepoint in Jga which is also a �xed point of ga. Thislatter case does not occur for the following reasons:the map ga has a unique �xed point �0 having morethan one external angles, and �0 2 [a;w]. A simplecalculation shows that the set of external rays of �0 isdisjoint from either �0; 13� or � 23 ; 1�. But f�1; �2; �3gintersects both �0; 13� and � 23 ; 1�. So �0 =2 [�].As a consequence, [�] is a tree. Furthermore, byinduction each component of F�n([�]) is again atree and contains at most one critical value (thatis, a, since the other two critical values y and z donot have external rays). Therefore each componentof F n+1([�]) is a tree. Hence any irreducible ob-struction is a removable Levy cycle surrounding [�].So ga??P is weakly equivalent to a rational map(Proposition 3.16). �
Proof of Theorem 2.5. The part D =) A is provedin Proposition 3.16 for general matings (recall thats(ga??P2) has always a hyperbolic orbifold).B=)C. In this case the closed curve R( 58)[R( 78)or a tubular neighborhood of it forms a good (thusnon-removable) Levy cycle. C =)D is trivial.It remains to show D =) B. By Theorem 2.2 (tobe proved later), the map ga??P2 has a good Levycycle with at most two curves. Its limit set X0 is



44 Experimental Mathematics, Vol. 9 (2000), No. 1contained in a ray class and is a simple closed curvewith two �xed points (Theorem 1.4). Therefore � 2X0, where � is the �xed point in HP2 (see Figure 1).The two external angles of � are � 58 ;� 78 . No othertwo-periodic rays land at a point of HP2 . Similarto the proof of Corollary 3.11, one can show thateither Ra� 58� and Ra�78� land at the same point or[�] is a tree. But the latter case does not occur sinceX0 � [�]. So 58 �ga 78 , proving B. �The rest of this section is devoted to the proof of theequivalence 1 () 2 in Theorem 2.4. First we needto study in more detail the ray-equivalence relationfor ga??P1.According to Douady and Hubbard [1984], for anypostcritically �nite polynomial f withK as its �lled-in Julia set, there is a way to de�ne a (unique) regu-lar arc [u; v] � K for any pair of points in K so thatthe convex hull [u1; : : : ; ul] � K of any �nite subsetis a topologically �nite tree, and f([u1; : : : ; ul]) =[f(u1); : : : ; f(ul); f(w1); : : : ; f(wk)], where w1, . . . ,wk are the critical points of f in [u1; : : : ; ul]. TheHubbard tree is precisely the convex hull of the post-critical set.As in Section 2C, set P = P1, and for i = a; P ,denote by 
i(�) the landing point of Ri(�) on Ki.Let F = ga??P .Set Ĥa = [Ha; �0; �1; �2] with �i = 
a(i=3) andĤP = [HP ; �00; �01; �02] with �0i = 
P (i=3). These arethe extended Hubbard trees. Note that ĤP = HP [[y; �01] [ [y; �02] [ [�00; z] (see Figure 3). For i = a; P ,we have F (Hi) � Hi and F (Ĥi) � Ĥi.Note that each nontrivial ray class [u] is com-pletely determined by [u] \ (Ja t JP ). For example,the extremities of [u] are points in [u] \ (Ja t JP )having only one external angle. The other points in[u] \ (Ja t JP ) have at least two external rays. Forthis reason, we give
Definition (simple and multiple point). A point u inJa t JP � S2ga;P is a simple point if u has only oneexternal angle, and a multiple point if u has at leasttwo external angles.
Lemma 4.1. If u is multiple and u 6= w, F (u) is alsomultiple. If w =2 [u], then F : [u] ! [F (u)] is ahomeomorphism.
Proof. In u = x or y it has no external rays and [u] istrivial. If u is not a critical point of F , the mapping

F is a local homeomorphism, and F sends externalrays to external rays. So F (u) has the same numberof external angles as u. The rest follows. �
Lemma 4.2. For i = a; P , there is an integer mi suchthat for any u 2 Ji, the number of external angles#>�u is bounded by mi. Moreover mP = 2 and nopoint in HP has external angles in � 13 ; 23�.
Proof. For a multiple point u 2 JP , since all criticalpoints of P are in int(KP ), the orbit of u containsno critical points. There is k such that F k(u) 2 HP(Proposition 3.1) and F k is a homeomorphism in aneighborhood of u. So #>�u = #>�F k(u). SinceHP contains no branched points, #>�u = mP = 2.Moreover since [�01; �02] \ HP = fyg and y has noexternal rays (Figure 3), no point in HP has anglein � 13 ; 23�.It is known that there is ma such that #>�u � mafor any u 2 Ha. For a multiple point u 2 Ja, eitherthere is a unique k such that F k(u) = w or theorbit of u does not contain w and there is k suchthat F k(u) 2 Ha (Proposition 3.1). In both cases#>�u = #>�F k(u) � ma. �
Lemma 4.3. Every multiple point u in Ja has a for-ward image in [w; a].
Proof. Assume that none of the iterates of u meets w(otherwise the lemma is trivial). Iterate u enoughtimes so that the set of external angles of F n(u)meets at least two components of T � �0; 13 ; 23	.Then F n(u) 2 [�0; w] [ [�1; w] [ [�2; w]. We haveF ([�i; w]) = [�0; w] [ [w; a], for i = 0; 1; 2, and F :[�0; w] ! [�0; a] is expanding. So there is n0 � nsuch that F n0(u) 2 [w; a]. �
Proposition 4.4. Each ray class [u] for F contains atmost ma + 1 points of Ja and no closed loops.
Proof. If all points in [u]\ Ja are simple we are donesince a point in [u] \ JP has at most two externalrays.
Claim. Suppose that u is a multiple point of Ja andthat F n(u) 6= w for all n. Let �; �0 be two distinctangles of u and v = 
P (��), v0 = 
P (��0). Then atleast one of v; v0 is a simple point . A consequence ofthis is that , if there is � 2 \u with 
P (��) multiple,then 
P (��0) is simple for any �0 2 \u with �0 6= �.
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F k(v) F k(v0)13 233k�0 xy z
c ! �

FIGURE 5. No point inHP has an external angle in � 13 ; 23�.Suppose by contradiction that both v and v0 aremultiple.Note that w disconnects Ĥa into three compo-nents W0;W1;W2 with �i 2 Wi, and [w; a] � fwg isin one of W1, W2.Since F n(u) 6= w for all n, F n(u); F n(v) and F n(v0)are multiple and F n(v) 6= F n(v0) for all n. Take klarge enough such that F k(u) 2 [w; a] � fwg (seeLemma 4.3) and such that F n(u) 2 Ha and F n(v),F n(v0) 2 HP for all n � k (Proposition 3.1). Wemay assume k = 0. Now there is l � 0 minimalsuch that f3l�; 3l�0g intersects at least two com-ponents of T � f0; 13 ; 23g. In case l = 0, we haveu 2 [w; a] � fwg so u 2 [w; a] \ [�i; w] for i = 1 or2. Therefore one of the angle, say �, is in � 13 ; 23�.So �� 2 � 13 ; 23�. But v = 
P (��) is in HP . This isimpossible since no point in HP has angles in � 13 ; 23�(Lemma 4.2; see also Figure 5). In case l > 0, ifF l(u) 2 W1 [W2, then one of the angles, say 3l� isin �13 ; 23� with F l(v) 2 HP . Again this is impossible.Assume now l > 0 and F l(u) 2 W0. We will showthis does not occur. In S2ga;P , the two rays Ra(3l�)and Ra(3l�0) together with a portion of the equatorform a Jordan curve. Denote by D the disc boundedby this curve containing �0. Then F�1D has threediscs each contains one of �0; �1; �2. So the curveRa(3l�1�)[F l�1(u)[Ra(3l�1�0) together with a por-tion of the equator separates already f�0; �1; �2g.

This contradicts the fact that l is minimal. Thisends the proof of the claim.Now consider the critical value class [a]. If it isnontrivial a is eventually periodic (Misiurewicz case)and is never mapped to w.For any two distinct angles �1; �2 of a we have
P (��1) 6= 
P (��2) otherwise 
P (��1) and 
P (��1)are both multiple contradicting the above claim.Let � be an angle of a. The point 
P (��) is eithersimple or it has only one other angle ��. In thelatter case let u0 = 
a(�). Since � has the samepreperiod as �, u0 is not mapped to w under theiterates of F . If u0 is multiple, for any �0 6= � externalangle of u0, by the above claim the point 
P (�0) issimple. In any case #([a] \ Ja) � 1 +#>�a, and [a]contains no loop.An easy consequence is that #([w] \ Ja) � 1 +#>�w = 1 + 3#>�a, #([u] \ Ja) = #([w] \ Ja) ifF l(u) = w for some l � 0, and these ray classesdon't contain closed loops.Now assume [u] contains no preimage of w. Weclaim that #([u]\Ja) � 2 and [u] contains no closedloop. Again this is easy if all points in [u] \ Ja aresimple. Assume that u is a multiple point in Ja.Then by the above claim there is at most one ex-ternal angle of u, say �, such that 
P (��) is mul-tiple, and this point has at most one more angle��. Now the point u0 = 
a(�) satis�es the condi-tion of the claim. So any other angle than � of u0must lead to a simple point in JP . As a consequence[u] \ Ja = fu; u0g and [u] contains no loops. �
Corollary 4.5. Each ray class of F intersects the equa-tor E at at most ma(ma + 1) points.
Proof. Each point of [u]\Ja has at most ma externalrays and [u] \ Ja has at most ma + 1 points. �The next result is part of Theorem 2.4.
Corollary 4.6. The quotient S2ga;P=�ray is again asphere.
Proof. The previous two results put us in the situa-tion of Proposition 3.2 and Corollary 3.3. �
Proof of Theorem 2.4, part 1 () 2. We need to showthat ga and P1 are not matable if and only if ga??P1has a nested obstruction which is not a Levy cycle.The \if" part follows from Proposition 3.16. Forthe other direction, since S2ga;P=�ray is a sphere, the



46 Experimental Mathematics, Vol. 9 (2000), No. 1Levy cycles of ga??P1 are all removable (Proposi-tion 3.16). Now we can apply Theorem 2.2 (to beproved later) to conclude that ga??P1 must have anested obstruction. �
5. PROOF OF THE RESULTS: SECOND PART

Proof of Theorem 2.2. It is not di�cult from the fol-lowing argument to see that the three cases are mu-tually distinct.Recall that �(�) � 1 by assumption. We willapply repeatedly Lemma 3.6.
Step 1. Suppose there is a disc-component D of S2�� such that D\fx; y; zg = ?. Then each connectedcomponent of F�n(D) is disjoint from fx; y; zg, socontains at most one critical value. So by inductionon n all preimage components of D are discs. ByProposition 3.7, � is a removable Levy cycle.
Step 2. Suppose that there are exactly three disc-components Dx;Dy;Dz of S2 � �, with x 2 Dx;y 2 Dy; z 2 Dz. We claim that this is impossible.If a =2 Dy[Dz, each component of S2�� containsat most one critical value. By Proposition 3.7, wehave � = f
x; 
y; 
zg. But in this case �(�) < 1 (bylooking at the degree).Now assume a 2 Dz. Then F�1(Dz) is connected,containing y, but none of x; z. So F�1(Dz) is iso-topically contained in Dy. As a consequence, oneconnected component of F�1(
z) is isotopic to 
y,the other is not in �. Thus � = f
x; 
y; 
zg, and, bylooking at the degree, �(�) < 1. The case a 2 Dy issimilar.
Step 3. Suppose that there are exactly two disc-components D1;D2 with #(D1 \ fx; y; zg) = 1 and#(D2 \ fx; y; zg) = 2. We claim then � is a goodLevy cycle with at most two curves.

Proof. Set 
i = @Di. We claim at �rst that a 2 D1and D1 \ fx; y; zg � fy; zg. If not, x 2 D1 and D1contains at most one critical value. So F�1(D1) arediscs. One of them contains z, but not x; y, theothers are disjoint from fx; y; zg. Thus no curve inF�1(@D1) is isotopic to a curve in �. This contra-dicts the irreducibility.One possibility is a; z 2 D1 and x; y 2 D2. In thiscase, F�1(D2) consists of two discs one of whichis strictly contained in D2, so the other must beisotopic to D1, with degree 1. On the other hand,F�1(D1) is an annulus isotopically contained in D2.

The connected component 
0 of F�1(
1) separatingz and y is isotopic to 
2, and deg(F : 
0 ! 
1) =1. Thus � = f
1; 
2g is a Levy cycle. Let A bethe complement of D1 [ D2. Either A = ? or acomponent of F�1(A) is isotopic to A of degree 1.In any case � is a good Levy cycle with at most twocurves.The other possibility is a; y 2 D1 and x; z 2 D2.A similar analysis will show that � = f
1; 
2g with�(�) = 1=2, which is excluded by the hypothesis.
Step 4. Suppose that there are exactly two disc-components D1;D2 with#(D1 \ fx; y; zg) = #(D2 \ fx; y; zg) = 1:We claim that either a; y 2 D1 and z 2 D2 or a; z 2D1 and x 2 D2. In the latter case, some preimagesof � contain a good Levy cycle with at most twocurves.

Proof. Similarly to step 2 above, one of the twodiscs, say D1, must contain two critical values. Oneis a, the other is one of y; z. So F�1(D2) are discs.So at least one component D0 of F�1(D2) is isotopicto one of D1;D2. It can not be isotopic to D2 be-cause of the periodic cycle fx; y; zg, so it must beisotopic to D1. Thus if y 2 D1, then z 2 D2; ifz 2 D1 then x 2 D2.Suppose x 2 D2. Set 
1 = @D1 and 
2 = @D2.Complete � into an F -invariant multicurve �0, as inthe proof of Lemma 3.5. De�ne a subsetS1 = f
1g [ f
 2 �0 j 
 separates 
1 and fy; xg g(see the remark below). This set has a natural order.For any 
 2 S1, we have F�1(
) = 
� [ 
��, with[
�]�0 2 S1, [
��]�0 =2 S1, deg(F : 
� ! 
) = 1,and the mapping 
 7! [
�]�0 , S1 ! S1 is weaklydecreasing. So there is a periodic cycle of period atmost 2.
Step 5. Now assume a; y 2 D1, z 2 D2 and x =2D1 [ D2. By de�nition, � is a nested obstruction.We just need to show that it's not a Levy cycle.This is part of Proposition 2.3. �
Remark. We say that a curve 
 2 S2 separates twosets U and V if U is contained in one component ofS2 � 
 and V is contained in the other componentof S2 � 
. Recall that [�]� denotes the curve in �isotopic to �, and [�]� = 0 by convention, if no suchcurve exists.



Shishikura and Tan: A Family of Cubic Rational Maps and Matings of Cubic Polynomials 47

Proof of Proposition 2.3. Assume at �rst �(�0) � 1.Let � � �0 be an irreducible obstruction. Denoteby D�; A0 the sets D�(�); A0(�) respectively. Anapplication of Lemma 3.6 would show that, up toisotopy, D+ is a component of F�1(D�), A0 doesnot contain curves of � and separates D+ and D�.Let B� be the discs of S2�A0 containing D� (upto isotopy) respectively. Note that x 2 A0, z 2 B�,y 2 B+ and B+ [B� = F�1(S2 �D+).We decompose � into S+ t S� withS+ = f
 2 � j 
 separates fa; yg and fx; zg g;S� = f
 2 � j 
 separates fa; y; xg and fzg g:Take 
 2 �. Denote by � the component of S2 �
 containing z, and by �� the two components ofF�1(�), with deg(F : �� ! �) = 1 and deg(F :�+ ! �) = 2. Then �� are discs. Moreover,for 
� = @�� we have deg(F : 
� ! 
) = 1 anddeg(F : 
+ ! 
) = 2.For 
 2 �, if 
� is in � then it is in S�, and if 
+is in � then it is in S+. Moreover if 
 2 S�, then
� is not in �, since z =2 ��. Clearly � does notcontain a Levy cycle. Letv =X
2� c

be a positive eigenvector (i.e. every c
 is positive)of F� with the eigenvalue � = �(�). Such a positiveeigenvector exists, since by the assumption � is anirreducible multicurve. Writevi = X
2Si c

; jvij = X
2Si c
 ;where i = +;�. Using the notation above, we haveF�(v+) = X
2S+ c
 [
�]� + X
2S+ 12c
 [
+]�;F�(v�) = X
2S� 12c
 [
+]�;and X
2S+ 12c
 [
+]� + X
2S� 12c
 [
+]� = �v+;X
2S+ c
 [
�]� = �v�:

Hence 12(jv+j+ jv�j) = X
2S+ 12c
 + X
2S� 12c
� � X
2S+ c
 = �jv+j;jv+j = X
2S+ c
� � X
2S� c
 = �jv�j:
9>>>>>>>>>>>>=>>>>>>>>>>>>; (5–1)

A necessary and su�cient condition for both in-equalities to be equalities is that(�) for 
 2 S+, both 
+ and 
� are isotopic to curvesin �, and for 
 2 S�, 
+ is isotopic to a curve in �.Adding two times the �rst inequality in (5{1) tothe second, we obtain2 jv+j+ jv�j � �(2 jv+j+ jv�j):Hence � � 1. But � � 1 by assumption. It followsthat � = 1, and equalities hold in (5{1), proving (�).Applying (�) to @B+, which is a component of @A0,we conclude that (@B+)� is isotopic to a curve in �,therefore separates A0 from D�.We turn to the second half of the proposition. Let� be a submulticurve of �0 with the given properties.De�neS+ = f
 2 � j 
 separates A0(�) and D+(�)g;S� = f
 2 � j 
 separates A0(�) and D�(�)g:Then � = S+ t S�.By assumption, For 
 2 S+, we have F�1(
) =
+ [ 
�, with 
+ 2 S+, deg(F : 
+ ! 
) = 2 and
� 2 S�, deg(F : 
� ! 
) = 1.For 
 2 S�, we have F�1(
) = 
+ [ 
�, with
+ 2 S+, deg(F : 
+ ! 
) = 2 and 
� =2 �.De�ne h : R � ! R 2 by h(
) = �10� if 
 2 S+ andh(
) = �01� if 
 2 S�. De�ne G;G# : R 2 ! R 2 tobe the linear maps with matrices� 12 121 0� and � 1 11 0� ;respectively. Then one can check easily that h�F� =G � h and h � F#;� = G# � h. Set � = ��. Let v bea nonnegative nonzero eigenvector of F� for �, thatis: F�(v) = � � v. Hence � � h(v) = G(h(v)). Since hhas only nonnegative coe�cients, h(v) is also non-negative nonzero. So � is also a positive eigenvaluefor G. By looking at left eigenvectors and the fact



48 Experimental Mathematics, Vol. 9 (2000), No. 1that h is surjective every eigenvalue of G is also aneigenvalue of F�. As a consequence they have thesame leading eigenvalue, which is 1. Similarly, G#and F#;� have the same leading eigenvalue, which is12(1 +p5 ). �
Proof of Theorem 2.4, 3 =) 2. We start by introduc-ing some notation. Assume that ga is postcritically�nite. We de�ne �� = ��(a) with �� < �+ to betwo angles such that the corresponding two externalrays land at the same point b = b(a) and their unionseparates a from the rest of the critical orbit. If w isperiodic, we take b to be the unique periodic pointon the boundary of the immediate attracting basinof a which has at least two arguments and whoseperiod divides that of a. If w is strictly preperiodic,we take b a point arbitrarily close to a having twoarguments �� < �+ with the required property. Itis known that such a point b always exists, and onceb is chosen the two arguments �� < �+ are uniquelydetermined.For i = 0; 1; 2, denote by �i the point in Ja withexternal angle i=3. Let~H = g�1a [Ha; �0; �1; �2];where Ha is the Hubbard tree and [Ha; �0; �1; �2]denotes the convex hull of Ha and �i (the extendedHubbard tree).Note that w disconnects ~H into three componentsW0;W1;W2, numbered in a way such that �i 2 Wi.We have a 2 W1 [W2. Since ga??P1 and g�a??P1are conjugate by an orientation reversing homeo-morphism, one has a Thurston obstruction if andonly if the other one has. So replace ga by g�a ifnecessary, we may assume in the following a 2W1.For any z 2 [Ha; �0; �1; �2]�fag, denote by zi thepoint g�1a (z) \Wi. For b the landing point of raysof angle ��, we have bi 2 [Ha; �0; �1; �2] \Wi, fori = 0; 1; 2. Furthermore bi0 2 ~H. Also w0 2W0, andw0 is the unique point in [w; �0] which is mapped tow. We may choose b (and therefore ��) so that thebi's are not separated from w in Ja (or Ha) by anypoints in the forward orbit of a, and similarly forthe bi0's and w0. The situation is this:qr r r r rrAAAAA AAAAAq q q qq qb b1 b2 b0 b10 b20 b00�0r�2a � w w0 �0

First assume that �0; ga(a) 2W0 and g3a is renor-malizable. In particular, �, the �xed point in [a;w],is not in the postcritical set, and has external angles18 and 38 . Moreover the point �2 does not separatethe period-three orbit of the renormalized Julia set(the small Julia sets). So we can de�ne the curves�1; �2 exactly in the same way as in Section 2C. Since�1 does not meet the small Julia sets, no preimagesof it does. Therefore �3; �5 as in Section 2C are ho-motopic to �1. So �1; �2 form a nested obstruction.Now consider the case where �0; ga(a); g2a(a) 2W0. One can choose �� so that neither b10 nor b20belong to [ga(b); ga(a)].Recall from Section 2C that for P1 the pointsx�; y�; z� denote the roots of basins of attractionof x; y; z respectively, and >�y� = f 413 ; 913g, >�z� =f 113 ; 1213g (see Figure 3).In S2ga;P1 , we are going to modify the subsets
0� :=Ra(3�+) [Ra(3��) [ fga(b)g [RP1� 113�[RP1�1213� [ fz�g;
0+ :=Ra(�+)[Ra(��)[fbg[RP1� 413�[RP1� 913�[fy�gin a neighborhood of the equator, so that they be-come two Jordan curves 
� and 
+ whose homotopyclasses rel PF do not depend on the modi�cation.To do this �rst we take a closed annular neigh-borhood N of the equator of S2ga;P1 bounded by anequipotential eu of ga and an equipotential el ofP1 (here the subscripts u and l mean \upper" and\lower" boundary of N). We denote by (�; u) thepoint in eu with angle �. De�ne (�; l) similarly.We know that 3�� are two arguments of ga(b). Asga(b) 2 W0 and �2, the point in Ja with externalangle 23 , is in W2, we know that �23 ; u�, (3��; u),(3�+; u) are placed counterclockwise in eu.On the other hand, the points �13 ; l�, � 113 ; l�, � 1213 ; l�are placed clockwise in el.Note that �Ra�23�[RP1�13��\N is a vertical seg-ment connecting �23 ; u� to �13 ; l�. Now we can mod-ify 
0� \N so that it consists of two a�ne segmentsdisjoint from �Ra�23�[RP1� 13��\N and connecting(3��; u) to � 113 ; l� and (3�+; u) to � 1213 ; l� respectively.This, together with 
0��N , de�nes our Jordan curve
�. See Figure 6.Turning to the modi�cation of 
0+, we will use 
�as reference rather than Ra� 23� [ RP1� 13�, which isno longer good. The points (3��; u), (3�+; u), (��; u),



Shishikura and Tan: A Family of Cubic Rational Maps and Matings of Cubic Polynomials 49(�+; u) appear counterclockwise on eu and the points� 113 ; l�, � 1213 ; l�, � 913 ; l�, � 413 ; l� appear clockwise onel. So we can modify 
0+ \ N so that it consists oftwo a�ne segments disjoint from 
� and connecting(��; u) to � 913 ; l� and (�+; u) to � 413 ; l� respectively.This, together with 
0+�N , de�nes our Jordan curve
+. See Figure 6.By construction, 
� and 
+ are disjoint; more-over one disc component D+ in the complement of
+ contains only a and y as postcritical points, whilea disc component D� in the complement of 
� con-tains only F 2(w) and z as postcritical points. SetA0 = F�1(D+).Note that S2 �D+ is a disc and that it containsD�, the connected sets = [b; �0] [Ra(0) [RP1(0) [ [�0; y�];and a unique critical value, which is z. By lookingat components of F�1(s) one can prove easily thatb1; b2 2 @+A0 (the component of @A0 separating A0and a), the point b0 is in the other component of@A0 and D+ is homotopically contained in a com-ponent of F�1(D�). Iterating backward once morewe can show that b10; b20 are in the same componentof F�1(@+A0).Now the fact that b0; b1; b2 =2 [ga(a); �0] impliesthat A0 is essentially contained in the annulus Abounded by 
+ an 
�, and b10; b20 =2 [ga(a); �0] im-plies that the component of F�1(@+A0) containingb10 is essentially contained in A. Now de�ne � tobe the set of curves 
 such that 
 is essentially con-tained in A � A0 and is homotopic to a curve ofF�n(
�) for some n � 0. By Proposition 2.3, � is anested obstruction and not a Levy cycle. �q q q qq qAAA@@@
�q q� 23 ; u� (3��; u)(3�+; u) � 23 ; u�� 13 ; l� � 113 ; l� � 1213 ; l� � 13 ; l�q q q(3��; u)q q q� 113 ; l�(3��; u) (3�+; u)� 113 ; l� � 1213 ; l�qHHHHHH(��; u) q� 913 ; l�qPPPPPPPPP
+(�+; u) q� 413 ; l�
FIGURE 6. Modi�cations in N .

Proof of Theorem 2.4, 4 =) 5. There is a polynomial gcfor which w is three-periodic and ��(c) = 726 ; 926 . ItsHubbard tree is the segment [c; g(c)] in Figure 2 andthe entropy is log�12(1 +p5 )�. By monotonicity ofentropies (see [Douady 1995], for example), any gawith 726 �ga 926 will have an entropy on its Hubbardtree at least log� 12(1 +p5 )�. �
Proof of Theorem 2.4, 2 =) 5. We will need the fol-lowing (unpublished) result of M. Shishikura: Let �be a Thurston obstruction for a mating F = g?? f .Then �� � ehtop(Hg): (5–2)where htop(Hg) denotes the topological entropy ofthe map g : Hg ! Hg.Now let F = ga??P1 and �0 be a nested ob-struction. By Proposition 2.3, �0 contains a sub-obstruction � with �� = 12(1 +p5 ). Put this into(5{2) we get ehtop(Hg) � 12(1 +p5 );which is Condition 5 of the theorem. �
Proof of Theorem 2.4, 3 =) 4. Assume a 2 W1 (other-wise consider g�a). If ga(a) 2W0 and g3a is renormal-izable, the small Julia set containing a has a �xedpoint (for g3a) in [a;w] with external angles 726 ; 926 .If ga(a); g2a(a) 2 W0, then w0 2 [a; ga(a)]. Since gamaps each segment in the sequence[�0; w0]! [�;w]! [�; a]! [�; ga(a)]homeomorphically onto the next (Figure 5), andsince [�; ga(a)] contains [�0; w0], there is a 3-periodicpoint z in [�0; w0]. An easy calculation shows thatg2a(z) has external angles 726 ; 926 . �
APPENDIX: MATINGS SEEN IN PARAMETER SPACE
AND SOME NUMERICAL OBSERVATIONSThe rational maps in A form, up to M�obius trans-formation, a one-parameter family given by:Ft(z) = (3t� 2)z3 � (t4 � 3t2 + 5t� 2)(3z � 2)(3t� 2)z3 � t3(3z � 2)= 1� (t� 1)3(t+ 2)(3z � 2)(3t� 2)z3 � t3(3z � 2) ;with the parameter t 2 C �f�2; 23 ; 1g. Here 0;1; 1; tcorrespond to w; x; y; z; in other words, 0 is a free



50 Experimental Mathematics, Vol. 9 (2000), No. 1double critical point,1 and 1 are two simple criticalpoints, with orbit 1 7! 1 7! t 7! 1.Figure 7 shows the t-plane in the window �5 �Re t � 5, �5 � Im t � 5, and then again undermagni�cation near the point t = �2.We �rst describe several major hyperbolic compo-nents. The unique unbounded light grey componentconsists of t-values such that 0 is in the immediate
basin of1 for Ft. The central dark grey componentG consists of t values such that 0 is in the immedi-ate basin of t for Ft. The largest black component Bsymmetric with respect to R represents t values suchthat 0 is in the immediate basin of 1 for Ft. Notethat 0 2 G and the degenerate parameter t = 1 isin B. (In the zoom-in of Figure 8 the set G touchesthe left edge and B touches the right edge.)

FIGURE 7. The family fFtg. On the top left is the region �5 � Re t � 5, �5 � Im t � 5. The remaining paneszoom in at �2 with increasingly greater magni�cations. In each case, white pixels represent values of t for whichthe orbit fFnt (0)g is not attracted by the orbit of 1. We color a t-value light grey, dark grey, or black if F 3pt (0),F 3p+1t (0), F 3p+2t (0), respectively, is contained in the basin of 1, for some integer p � 0.
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FIGURE 8. The family fFtg near the point 23 .There are four \simplest" (but not always largest)white components, de�ned as follows.There are four distinguished t-values for which 0is �xed under Ft. They are the solutions of t4 �3t2 + 5t � 2 = 0. Two of them, denoted t1; t2 witht1 < t2, are real, and two, denoted by t3; t4 withImt3 > 0, are complex conjugate. For i = 1; 2; 3; 4,the polynomial Fti is conjugate to Pi.Denote by Wi the white component containingti, for i = 1; 2; 3; 4. Then W1 is the largest whitecomponent on the left of G. The boundary of W1has two cusps, the right one corresponding to theleft corner of Figure 7, top right. The set W2 is thelargest white component sitting between G and B.Figure 8 gives a closer look of it. The boundary ofW2 has three cusps, with the unique real cusp atthe degenerate parameter t = 23 . W3 and W4 arethe two big white components above and below B.Their boundaries have two cusps.We now give an interpretation of our result aboutmatings. De�neM3 = fa 2 C j gna (0) 6! 1 as n!1g(see Figure 9) andM 0 = fa 2 C j ga is postcritically �nite g �M3:Recall that, for i = 1; 2; 3; 4, we de�nedAi = f a 2M 0 j ga and Pi are matable g:

FIGURE 9. The connected locus of the family z3 + a.For a 2 Ai the mating ga??Pi is weakly equiv-alent to Ft(a;i) for a unique t = t(a; i) (Theorem1.1 of Thurston). In particular, for a = 0, we haveg0??Pi � Fti for i = 1; 2; 3; 4. We denote by mi themapping Ai ! C , a 7! t(a; i). Therefore mi(0) =ti 2Wi.Theorem 2.6 shows that A3 = A4 = M 0. Denoteby Lt the limb of M3 with internal angle t and by
M3(�) the landing point in M3 (if it exists) of theexternal ray of angle �. Then (as proved in the caseof the Mandelbrot set) L 34 coincides with the set ofa 2M3 such that 58 �ga 78 .Theorem 2.5 shows A2 �M 0�L 34 and we conjec-ture that A2 =M 0 � L 34 .The set A1 is dealt with by Theorem 2.2.Similarly to the study of the Mandelbrot set, onecan show that 
M3� 726� = 
M3� 926�, it is a root ofa hyperbolic component W (c) with center c as inSection 2C and 
M3� 826� is the other root of W (c).Next, if we denote by L 726 ; 926 the component ofM3 � f
M3� 726�; 
M3� 926�g containing c and by M(c)the small copy ofM3 centered at c, then c 2W (c) �M(c) � L 726 ; 926 , the set M(c) corresponds to the setof a such that g3a is renormalizable and 726 �ga 926 ,and the set L 726 ; 926 corresponds to the set of a 2M3such that 726 �ga 926 .Furthermore, the union of the internal rays ofW (c) with angles 0 and 1=2 separates L 726 ; 926 into



52 Experimental Mathematics, Vol. 9 (2000), No. 1two halves, named by L 726 ; 826 and L 826 ; 926 respectively,with the last one containing 
M3� 13).Condition 4 of Theorem 2.2 corresponds toL 726 ; 926 [ L 1726 ; 1926 = L 726 ; 926 [ L 726 ; 926 :We conjecture that A1 =M 0�L 726 ; 926 [L 1726 ; 1926 . Con-dition 3 of Theorem 2.2 corresponds toM 0 \ (M(c) [M(c) [ L 826 ; 926 [ L 1726 ; 1826 );and Theorem 2.2 shows thatA1 �M 0 � (M(c) [M(c) [ L 826 ; 926 [ L 1726 ; 1826 ):Condition 5 is more di�cult to describe. Onecan show, however, that any a in the segment from0 to 
M3� 726� has topological entropy smaller thanlog� 12(1 +p5 )�, and therefore, by Theorem 2.2, isin A1.Our computer observation strongly suggests thatthe mappings mi are continuous and can be ex-tended to a considerably large and connected subsetof M3. Moreover it seems that m4(L 78 ) = m3(L 58 )and m1(L 14 � L0) = m1(�(L 14 � L0)). Using sharedmating techniques, we can actually show thatm1(L 78 \M 0) � m3(M 0);m2(L 78 \M 0) � m3(M 0);m4(L 78 \M 0) � m3(M 0):The period-two hyperbolic component D of M3attached to the main component W0 with internalangle 34 does not seem to have a corresponding image(under m2) attached to W2. We think that t = 23corresponds to the cutting point (or the root) ofD of M3. This supports the conjecture that A2 =M 0 � L 34 .The degenerate parameter t = �2 is much moremysterious. The component W1 looks very muchlikeW0. However there is a period 2 componentW1;2which is attached to W1 at two points, each corre-sponding to a root of W1;2. This suggests that W1;2can be considered as a self shared mating, and canbe indeed proved. The point t = �2 is surroundedby W1;2 and W1 (see the zoom-ins in Figure 7), andwe see no white component attached to t = �2.This is the �rst time in our experience that we seea singularity in an analytic family which is not onthe boundary of any structurally stable component.We think that this should be related to the presenceof non Levy cycle obstructions in A.

There is another way to construct rational mapsfrom polynomials, named by `captures'. It has beenintensively studied by B. Wittner, M. Rees, J. Head,Tan Lei and others. For the precise de�nition see[Tan 1997]. It is farely easy to show that, for apostcritically �nite map Ft, if the basins of x, y andz are attached at a common �xed point, then Ft isequivalent to either a mating or a capture. One mayask if this is still true for any postcritically �nite Ft(it is indeed the case for cubic Newton maps; see[Tan 1997]). Note that our family fFtg is somewhatsimilar to the family of quadratic rational maps withone critical point three-periodic (they both have onefree critical point and a period-three orbit contain-ing the remaining critical points). We therefore be-lieve that, as known in the quadratic family due toWittner, there are maps in the form of Ft with wperiodic and not equivalent to a mating (they areby de�nition not equivalent to a capture).
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