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We study a family of cubic branched coverings and matings of
cubic polynomials of the form g 1L f, withg =g, : z — z> + a
and f = P, fori =1, 2, 3 or 4. We give criteria for matability
or not of critically finite g, with each P;. The maps g, L P; il-
lustrate features that do not occur for matings of quadratic poly-
nomials: they never have Levy cycles but do sometimes have
Thurston obstructions.

INTRODUCTION

A mating of two polynomials is a covering of the
2-sphere constructed in a certain simple way, which
gives it interesting dynamics.

The precise construction is as follows. Let g and f
be two monic polynomials of the same degree, such
that all critical points have finite orbits. We first
add to C a circle of directions at infinity, and ex-
tend both ¢ and f to this circle in the natural way.
Next we sew up two copies of C along the circles
at infinity, with opposite orientations. This gives
a topological sphere. We then define a branched
covering ¢g 1l f that coincides with ¢ on one hemi-
sphere and with f on the other. If this map, or a
suitable modification of it, is Thurston-equivalent to
a rational map (which is to say, it is equivalent to
a rational map up to isotopy relative to the post-
critical set and topological conjugacy), we say that
g and f are matable, and that g 1L f is a mating of
f and g.

In this paper we study matings of cubic poly-
nomials ¢g 1l f that occur in A, the class of cubic
branched coverings with one double critical point
and one period-three orbit containing two simple
critical points. By affine conjugation one can reduce
to the case where ¢ is of the form of g, : z — 2°> +a
and f is among four specific cubic polynomials P,
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P,, P;, and P, (Lemma 2.1). We want to study the
matability of these pairs of polynomials.

There exist already several necessary or sufficient
conditions for two general polynomials g and f to be
matable, namely by means of Thurston obstructions
and Levy cycles on one hand, and by means of the
topology of 52/ ~ray O the other hand, where ~ ., is
the equivalence relation on the sewed up sphere gen-
erated by external rays of g and f. We will introduce
the notion of removable Levy cycles and formulate
these various criteria.

Theorem 0.1. The four properties

(@) g and f are not matable,

(b) g LL f has an irreducible obstruction which is not
a removable Levy cycle,

(¢) g LL f has a non-removable Levy cycle,

(d) S?/ ~pay is not homeomorphic to S*

can be related as follows:

(@) ., ()
f f

d = (9

where (a)‘<="(b) means that (a)<=(b) if a suitable
modification s(g LL f) of g LL f (see Theorem 3.12)
has a hyperbolic orbifold (there are counterexamples
otherwise).

Implication (c)==(b) is trivial, and (d) == (a) was
proved by M. Rees (see also [Shishikura 2000]). We
will give a proof of the rest; other similar proofs
exist in the literature.

We first show how to modify a branched cover-
ing in order to delete a maximal number of remov-
able Levy cycles, without changing the dynamics too
much (Theorem 3.12 and Corollary 3.13). We then
apply this technique to matings, making use of the
ray-equivalence relation (Proposition 3.16).

For quadratic matings and cubic matings related
to Newton maps, we also have (b)==(c) [Tan 1992;
1997); therefore in this case the four conditions are
in fact equivalent.

One major objective of this work is to show that
(b), (¢), and (d) are not always equivalent (K. Pil-
grim [1994] has found other examples of this type).
More precisely, we show that (a) <= (b) for a mat-
ing gL f in A and that, for g, IL P;, S*/~,, is

a sphere, there is no Levy cycles and there are a-
values for which g, 1L P, satisfies (b) (and therefore
(a)). We conjecture that g, and P, are not matable
if and only if for s = a or a, the two external rays
R, (%) and R, (%) land at the same point. The
set of such s values form a sublimb of the connect-
edness locus M3. So far we can only prove that for
s in one half of the sublimb union the largest copy
of M; in the sublimb, and ¢ = s or s, g, and P, are
not matable. We find also a values outside of the
sublimb (in terms of the topological entropy of g,
on its Hubbard tree) for which g, and P, are mat-
able. But we are unable to give a complete proof of
either direction of the conjecture. It might therefore
not be a realistic conjecture.

For each other choice of f, we try also to find
conditions on a so that g, and f are matable. Two
of the four possible candidates for f, denoted by
P; and P,, are non real polynomials with star-like
Hubbard trees. We shall prove that each of them is
matable with any critically finite g, (Theorem 2.6).
For g, 1L P, the remaining case, we show that (c)
is equivalent to the fact that the two external rays
R, () and R,, (%) land at the same point (Theorem
2.5). We conjecture that this last condition is a
consequence of (b), therefore the four properties (a),
(b), (c¢), and (d) are equivalent.

In order to prove these results, we study at first
the structure of Thurston obstructions for a general
map in A (Theorem 2.2 and Proposition 2.3), and
then apply this to matings, using techniques about
Hubbard trees, external rays, etc.

Although our results are only partial, some of the
tools introduced here might be useful for the study
of other class of maps. We emphasise also that
most phenomena about matings in A were first ob-
served by computer experiments, and then proved
or partially proved mathematically later on. Here
the computer experiments have served us as a guide
to rigorous mathematical results.

The paper is organized as follows: Sections 1A-1C
recall definitions and results. In Section 2 we intro-
duce the class A and the polynomials P;, state our
results about structures of Thurston obstructions for
a map in A and, for each i, give criteria for g, and
P; to be not matable. We give also an example of
a mating in A which has a Thurston obstruction
but no Levy cycles. Section 3A contains a sufficient
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condition for §?/ ~,,, of a mating to be a sphere. In
Sections 3B-3H we review and develop several tech-
niques for the analysis of Thurston obstructions and
(removable) Levy cycles together with their applica-
tions to matings. In Section 4 we prove our criteria
about non-matability of g, and P; for « = 2, 3, 4
and show that for g, 1L P, the quotient S?/ ~ .,y is
a sphere. In Section 5 we establish results regard-
ing Thurston obstructions for a map in A and for
G 1L Pr.

In the appendix, we give interpretations of our
results in the parameter space of rational maps in
A along with several numerical observations.

1. PRELIMINARIES

1A. Thurston and Levy’s Theory on Branched Coverings
from S” to S

All branched coverings in this paper are assumed to
be orientation-preserving and of degree greater than
one.

Definition (postcritical set). Let F : S* — S? be a
branched covering of degree d. Set

Qp = {critical points of F'} and Pp = U F"(Qp).
n>0

The set Pr is called the postcritical set of F. We
say that F'is postcritically finite, if Py is finite.

Definition (equivalence between branched coverings).
We say two postcritically finite branched coverings
F and G from S? to S? are equivalent, and write F' ~
G, if some topological conjugate of G is isotopic to F
rel Pr. More precisely, there exist two orientation-
preserving homeomorphisms 6,0, : S? — S? such
that Gof; = 0,0 F, 6, = 6, on Pr, 6;(Pr) = Pg for
1=1,2, and 6,, 0, are isotopic relative to Pp.

There are some equivalent conditions for F,G to
be equivalent. First, we summarize related results
of Thurston and Levy. For details and proofs see
[Thurston 1983; Douady and Hubbard 1993].

Definition (multicurve). Let F' : S? — S? be a postcrit-
ically finite branched covering, with degree d > 2. A
simple closed curve in S? — Py is called peripheral if
it bounds a disc containing at most one point of Pp.
A multicurve T is a collection of finitely many dis-
joint nonperipheral simple closed curves in S? — Pr

such that no two curves are isotopic to each other
in 52 - PF.

For a multicurve I' of F, the Thurston linear trans-
formation Fy is a linear map from R" = {2 er e
¢, € R} to itself defined by

Fr(y) = [Y]r fory €T,

1
. !
W,C;m deg(F : 7' —7)
where the sum is over all connected components +'
of F'(), and [y']r denotes the curve in I isotopic
to ~" if it exists and [y']r = 0 otherwise. We denote
by Ar the leading eigenvalue of Fr.

A multicurve I with A\ > 1 is called a Thurston
obstruction. Initially, Thurston obstructions are de-
fined for F-invariant multicurves. But the two def-
initions are equivalent, as shown in Lemma 3.5 be-
low.

Theorem 1.1 (Thurston). Suppose F : S? — S? is a
postcritically finite branched covering. If F' has no
Thurston obstructions then F is equivalent to a ra-
tional map. The rational map is unique up to con-
formal congugacy. If F' has a hyperbolic orbifold (see
the remark below) and Thurston obstructions, then
F is not equivalent to a rational map.

Remark. The notion of orbifold can be found in [Dou-
ady and Hubbard 1993]. If a branched covering F
is has a non-hyperbolic orbifold, then F~!(Pp) C
Qp U Pp and #Pp < 4.

Definition (good, degenerate and removable Levy cycles).
A multicurve I' = {7y, ...,7,} of F is called a Levy
cycle if each F~'(v;41) contains a component .,
isotopic in S* — Py to v; and F : y),, — 741 Is
of degree one for i« = 0,...,n—1, where v = 7,.
We say that I' is a good Levy cycle if the connected
components of S* — |J,y; are By, B,,...,B,,,C,
with B; discs, and, in case n = 1, ¢ = @ and
F : v — 7, reverses the orientation; in case n > 1,
one component C' of F~'(C) is isotopic to C' and
F : C" — C is of degree one. We say that I' is a
degenerate Levy cycle if the connected components
of $? —Ji_, vi are By, Bs, ..., B,,C, with B; discs,
and each F~'(B;y1) has a component B/, isotopic
to B, (rel Py), and F : B}, | — By, is of degree one
for: =0,1,...,n—1, where By = B,. We say that
I' is a removable Levy cycle if it is degenerate and
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for all j > 1 and all 4, the components of F~7(B;)
are discs.

Here are some known results concerning degree two
mappings:

Theorem 1.2 [Levy 1985]. Suppose F' is of degree 2
and posteritically finite. If it has a Thurston ob-
struction then it has a Levy cycle.

Theorem 1.3 [Rees 1986; Tan 1992]. Suppose F' is of
degree 2 and postcritically finite. If it has a non-
removable Levy cycle then it has a good Levy cycle.

We will see in this work many counterexamples of
Theorem 1.2 for higher-degree mappings. In fact we
are going to construct a family of cubic branched
coverings which have nested obstructions (see defi-
nition below) but no Levy cycles. A counterexample
of Theorem 1.3 can be easily found.

We will see in Section 3E that each removable
Levy cycle can be literally ‘removed’ by modifying
the map. On the other hand, one can not always re-
move simultaneously two such cycles if they are not
disjoint. The following result, which will be made
precise and proved in Section 3E, gives the condi-
tion under which one can remove all the Levy cycles
and get a rational map:

Definition (irreducible obstruction). We say that a mul-
ticurve I' is an srreducible obstruction if the matrix
Fr is irreducible with A(T") > 1.

Theorem and definition (weak equivalence). We say that
F is weakly equivalent to a rational map if all irre-
ducible obstructions of F' are removable Levy cycles
smaller or equal to an element of 3'(F') (see Section
3E for definition). In this case a suitable modifica-
tion of F' is equivalent to a rational map.

Definition (nested obstruction). A multicurve I" for a
postcritically finite map F' is a nested obstruction if
S? —T has only two disc components and A\(Fy) > 1.
For example a Levy cycle with one or two curves is
a nested obstruction.

1B. Matings of Polynomials

In this section, we give definitions of matings.

Definition (formal mating). Let f and ¢ be two monic
polynomials of degree d. Set

C=CU{c0-e*™ |s€T=R/Z}.

We then extend f and g continuously to C by set-
ting

2dmis

f(oo- ") =00~ ¥,

g(OO . e27ris) _ . e2d7ris.

Set
S3, =CrUC,/{(c0 €™, f) m (c0- e, g)}.

The formal mating of f and g is defined to be the
branched covering f 1L g: 57  — S7, with

fJ_Lg:foan and fJ_Lg:gon@g.

When there is no ambiguity, we write S? instead of
S2 .
fr9

Definition (matability). We say that two monic post-
critically finite degree d polynomials f and g are
matable if f 1L g is weakly equivalent to a rational
map.

See [Douady and Hubbard 1984] or [Carleson and
Gamelin 1993] for the definitions of the Julia set J,
the filled-in Julia set K and the external rays of a
polynomial f. Recall that if f is postcritically finite,
then K is connected and locally connected, and all
external rays land at Ky. For @ € T, let us denote
by R;(0) the closure in C; of the external ray of
angle 6.

In S7,, the external rays Ry(f) and R,(—0) are
connected at the point (oo - 2™ f).

Definition (ray-equivalence). For z and y in C 7, we de-
fine ~¢ to be the equivalence relation generated by
z,y € Rs(6) for some . The relation ~, on C, is
defined similarly. In S7 , define the ray-equivalence
~ray tO be the equivalence relation generated by
~; on C; and ~, on C,. Denote by [z] the ray-
equivalence class (or for short: the ray class) of
xr € 5%,

A Levy cycle for a mating is closely related to a
periodic cycle of ray classes.

Theorem 1.4 [Tan 1992]. Set F' = f1llg. FEach
Levy cycle T corresponds to a unique periodic cy-
cle of ray classes [xo),...,[Tm—1] (they are called
limit set of T') and a finitely connected subset X;
of [z;] for each i such that F : [x;] = [Tit1 mod m)»
X; = Xii1 mod m are homeomorphisms, and I' s
1sotopic to the boundary of a tubular neighborhood
of XoU---UX,,_1. In particular,
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1. if I is degenerate, then
#lz ] N Pp > #X;N Pr > 2,

and each component of X; is a tree;

2. if I is not degenerate, each X; (and [z;]) contains
a closed curve;

3. if I is a good, then Xy is connected, F'(X,) = X,
F([xo]) = [wo]. If #1' > 1, then m(X,) s isomor-
phic to the fundamental group of the unique non-
disc component of S* — . If #I < 2, then X,
15 a simple closed curve, F . Xy — X, reverses
the orientation and Xy contains exactly two fizved
points of F' (if F' is quadratic, [xo] contains ex-
actly two fized points, even when #I' > 2).

1C. M. Rees’ Theory of Matings

Denote by v¢(#) the landing point of R;(f) on J;.
Note that

SJ%,g/ ~ray = Ky UK [{7;(0) = 7,(-0)}.
Theorem 1.5 [Rees 1992; Shishikura 2000]. Suppose f

and g are two monic postcritically finite polynomi-
als, both with degree d. If f and g are matable then
the following two conditions are satisfied:

(i) the quotient space S,/ ~ray is homeomorphic to
S?;
(i) the quotient map

f Ll g]: S,%,g/ ~ray Si,g/"’ray
15 topologically conjugate to a rational map.

This theorem is presented and proved in case of
d = 2 and f and g both hyperbolic polynomials
in [Rees 1992]. Shishikura gave a proof of the gen-
eral case in [Shishikura 2000]. Note that a ray class
of f 1l g containing at least two postcritical points
will represent one postcritical point for the quotient
mapping. This is the reason for which we have
to modify the formal mating in order to study the
equivalence between a mating and a rational map.

Condition (i) is a purely topological one, but the
condition (ii) involves conformal structure problems.
For quadratic matings and matings related to cubic
Newton methods, (i) implies also the matability of
the polynomials [Rees 1986; Tan 1992; 1997]. But
our study in this paper will show that this is not
always true.

2. STATEMENT OF THE RESULTS AND EXAMPLES
2A. The Class A and Related Matings

We are mainly interested in a special class A of cubic
branched coverings and related matings.

Notation. We denote by A the set of cubic branched
coverings F' satisfying: F' has a double critical point
w and a period-three cycle  — y — 2z — = contain-
ing two simple critical points « and y. Denote by a
the critical value F'(w).

We want to study matings in A. It turns out that
they all have a simple form, as indicated in the next
lemma. First note that cubic polynomials with a
double critical point are always of the form g, : z —
2% + a. Next, there are exactly four pairs of monic
cubic polynomials P,, P,, P, P, P, P;, Py, P,
for which there is a 3-periodic orbit containing two
simple critical points, with P,(t) = —P,(—t) for all
t € C. Denote by z,y the two simple critical points
with orbit # — y — 2z — x. We choose P, to be a
monic real cubic polynomial with x, y, z real and y <
2 < z. These properties determine P; uniquely up
to translation by a real vector. We choose P, to be
a monic cubic polynomial for which the imaginary
axis ¢R is preserved, z,y,z € iR and 1z < 1y < 1.

For P,, the fixed point o' € [y, z] has external angles
13

) ?An efficient way to describe a polynomial is by its
Hubbard tree. According to Douady and Hubbard,
each postcritically finite monic polynomial g has a
forward invariant Hubbard tree, which is the convex
hull of P, in K, [Douady and Hubbard 1984; 1985;
Poirier 1993]. The Hubbard tree of Pi,..., P, are

given in Figure 1.

Lemma 2.1. The matings i A are exactly maps of
the form g 1L f, with ¢ = g, : 2° +a and f €
{P,,P,;i=1,2,3,4}. Moreover each mating is topo-
logically conjugate to g, L f, for some value a and
fe{P, P, P, P,}.

Y T z

FIGURE 1. The Hubbard trees of P, P, P3, P;.
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Proof. Clearly the branched coverings of the form
go 1L P; and ga_LL]-T’Z- belong to A. On the other
hand, if a mating g 1L f is in A, one of the polynomi-
als, say, f, must have a 3-periodic orbit containing
two simple critical points, and the other polynomial,
g, must have a double critical point. So ¢ is of the
form z® 4+ a and f is among P; and P;. We notice
also that g, 1L ]5Z is conjugate to g_, 1L P;. O

2B. Results

In order to study which matings in A are equivalent
to rational maps, we need to study at first possible
obstructions for a general map in A. Here are our
results:

Theorem 2.2. Let I' be an wrreducible obstruction for
a postceritically finite map F in A. Then exactly one
of the following statements holds.

1. T' s a removable Levy cycle.

2. Some preimages of I' contains a good Levy cycle
with at most two elements.

3. I' is a nested obstruction but not a Levy cycle,
with a and y contained in one disc component,
say D, ('), of S* =T, z in the other disc compo-
nent D_(T) of S* =T and x ¢ D, (I') UD_(T).

Proposition 2.3. Assume that I is a multicurve for a
postcritically finite map F in A, such that S?—T" has
only two disc components D (I'") and D_(I") with
a,y € D, (I'"), z€ D_(I") and x ¢ D, (I")UD_(I").

For any T a submulticurve of T", denote by D (T")
the disc component of S?—T containing Do (T"). Set
4o(T) = FA(D, (T)).

Then T is a Thurston obstruction if and only
iof there is a submulticurve I' of I such that, up
to isotopy, D+(F) is contained in a component of
F~1(D_(T)), Ao(T') contains no curve of ' and sep-
arates D (T') and D_(T), and D_(T") is separated
from Ay(T) by a component of F~*(0Ay(T)). In this
case A\r = 1 and pr = %(1 +/5), where pr is the
leading eigenvalue of the unweighted Thurston linear
transformation defined by

Fur:ve > [l

VCEH()

foryel.

We now turn to results and conjectures about mat-
ings. It is a case by case study. We write 6 ~,_ n if
the two external rays for g, of angles # and n land
at the same point.

Theorem 2.4. Let g, be postcritically finite. Then
2 b/ ~ray is homeomorphic to S*. Moreover, of
the following conditions, 1 and 2 are equivalent, 3

wmplies 1 and 4, and both 1 and 4 imply 5.

1. g, and P, are not matable.

2. g, 1L P, has a nested obstruction which is not a
Levy cycle.

3. For By the fixed point of g, with external angle 0,
either By and g,(a) are in the same component
of J, — {w} and g> is renormalizable (i.e. g2 is
a cubic polynomial-like mapping with connected
Julia set), or By, g.(a) and g2(a) are in the same
component of J, — {w}

; 7 9 17
4. FEither 55 ~g, 55 0T 55 ~g. 56-

5. The topological entropy of g, on its Hubbard tree
is at least log(1(1+V/5)).

We conjecture that 1 is equivalent to 4. We consider
the above theorem as a partial proof for the direction
4 = 1 and the direction 4 <= 1. At present we
don’t have a complete proof of either direction of
the conjecture.

The part 1 = 5 relies on a recent result of Shi-
shikura relating ur to the topological entropy. It is
easy to see from examples that 5 does not imply 4.

In the appendix we give parametric interpreta-
tions for Conditions 3 and 4.

Theorem 2.5. Let g, be postcritically finite. Then
conditions B, C, and D are equivalent and each im-
plies A.

A. g, and P, are not matable.
5 7

B. g Ngu g

C. go IlL P, has a good Levy cycle with at most two
elements.

D. g, 1L P> has a non-removable Levy cycle.
We also conjecture that A and B are equivalent.

Theorem 2.6. If g, is postcritically finite, then g, and
P; are matable, fori= 3,4.

2C. An Example of a Nested Obstruction

Consider g = g, : z — 2* 4+ ¢ such that the double
critical point w = 0 has orbit w — ¢+ ¢®* + ¢ — w
and that the two rays R,(5) and R, (5%) land at the
same point. These condltlons determlne ¢ uniquely.
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B
g(c) /aoo
c Qg1 @ w @0
a2
@2

FIGURE 2. Extended Hubbard tree for g.

Figure 2 shows an extension of the Hubbard tree
of g. The points « and [ are fixed points,

{O[, Qp, 0[2} = g_l(a)J
and {ap;, apo, a2} = g7 (ap). The external angles
of these points are

>ﬁ:{0}7
>a={g i} a0 ={55} >e={5 a4}
>a01:{%7%}7>a00:{%7%}7>a02:{%7% .

Figure 3 shows an extension of the Hubbard tree
of P, (see also Figure 1). Here ', 3" and o are
fixed points, {4, 51, A} = P (), {o/, b, aj} =
Pri(a), {agy, a, ahe} = P (o) and @, y., 2
are the roots of basins of attraction of z, y, z, re-
spectively (i.e. repelling periodic orbit of period 3
on the boundary of the basins). The external angles
of these points are

1 1 2
>3 ={0}, >8"={3}, >B. ={5}, >B = {3},
— 3 10 _ 4 9 _ 1 12
> ={& b >v.={55H >=={s 5}
1 3 1 11 5 7
> ={L1} > ={5 5} > ={3% &}
__J11 25 _J 1 35 __J13 23
>ap={5 5} >a={m 5} >an={5 5}
We now construct a Thurston obstruction {d;, 0, }
for F = g 1L P,, which is made of external rays and

some part of the equator E = {(co - €*™ g) | s €
T =R/Z).

For ¢',t € ]0,1][, set
E[t' 1] = { (c0- > g) | s € [min{t', t}, max{t', t}] }.

For i = g¢,P, if two external rays R;(f), R;(0")
land at a common point u € K;, set

RZ(U, 0, 9’) == RZ(Q) U R1(9')
Now we define

61 = B[ HURe (o' —1,—3) UB[2, 3R, (o5 3. 1),

871 1878

0, is clearly a nonperipheral simple closed curve in

S? p, — Pp. We will see that:

(i) F~*(0;) contains two components d, and d; with
deg(F : 63 — d;) =1, deg(F : d3 — 0,) = 2. The
curve 0, is nonperipheral, non-isotopic to ¢; and
disjoint with 0;. The curve d;3 is isotopic to §; rel
Pr.

(i) F~*(05) contains two components d; and d5 with
deg(F : 04 — 05) =1, deg(F : §5 — d) = 2. 0,4
is peripheral and d5 is isotopic to 0; rel Pg.

Proof. An easy calculation shows that

0, = B35 1] U Rp(ags =55, — )V
E[55, 51] U By (03 33 37)

0y = B3, 5] U Rp (b =35, —33) U
B[, 5] U Ry (3 33, 35) U
Els 3l URe(af;—3, =) U
E[§ 5] U Ry (o5 5,5),

01 = El7535] U Re(cto; =55, —35) U
E[5: 7] U By(ao0; 5, 75),

0 = B3, 5] U Re (e =55, —55) U
E[3%, 2] U Ry (o 33, 73) U
B[ %] U Re(afis =55 —35) U
El5: 1] U By(aor; 3, 53).

We get (i) and (ii) from Figure 4. O

P
D

FIGURE 3. Extended Hubbard tree for P;.
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FIGURE 4. The curves d1, d2, and d3.

Now I' = {6,,6,} is a multicurve whose Thurston
linear transformation £ : R' — R" is given, in the
basis d;, 2, by the matrix

L

2

§

whose leading eigenvalue A equals 1, with eigenvec-
tor (i) Clearly I' is an irreducible obstruction but
not a removable Levy cycle. It is also a nested ob-

struction. By definition, F' is not weakly equivalent
to a rational map; that is, g, P, are not matable.

O =

3. GENERAL ANALYSIS ON BRANCHED COVERINGS
AND MATINGS

Section 3A studies the ray-equivalence of a mating.
Sections 3B-3H contain useful techniques to deal
with Thurston obstructions, intersection problems
of a multicurve with a Hubbard tree, weak equiv-
alence to a rational map, etc. We will see some
applications in the next section.

3A. The Quotient is a Sphere

A mating F' = f 1l g posesses a ray-equivalence re-
lation, which gives more detailed information about
Thurston obstructions and Levy cycles, such as re-
sults in Theorem 1.4 and Theorem 1.5.

In this section we want to analyze some properties
of the ray-equivalence relation of a mating, and give

some conditions for S?/ ~ray tO be a topological 2-
sphere.

First a general result about a Hubbard tree; for a
proof, see [Tan 1997].

Proposition 3.1. For a postcritically finite polynomaial
f, every point x € J; with more than one external
ray folls eventually into the Hubbard tree of f.

We say that an equivalence relation ~ in a compact
metric space X is closed if the graph of ~ in X x X
is a closed set. This is equivalent to say that any
sequences ¥, — ¥, Y, — y such that z, ~ y, for
each n satisfy z ~ y.

Proposition 3.2. Suppose f, g are degree-d monic poly-
nomials with locally connected Julia set. Set F =
fALg. If there is K < oo such that #[z]NE < K
for every x € S7 , ray-equivalence is closed.
Proof. An external ray R(0) = R;(0)UR,(—0) C 57,
is a connected arc. Since the Julia set of both f and
g is locally connected, the rays move continuously.
So, as 6, — 0y as n — oo, we have R(6,) — R(6)
with respect to the Hausdorff distance on the space
of closed subsets of S7 .

Suppose x,,y, € S%g such that x, ~,, v, for
all n, and x, = %o, ¥y — Yo. We need to prove

Lo ~ray Yo-
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For each n, there is a collection of angles 0,, 1, 0,, -,
.., 0,1, such that

L, € R(en,l)a Yn € R(gn,kn)a R(emi)mR(emH-l) 7é %]

forte=1,2,...,k,—1.

By assumption, we have k,, < K for each n. Tak-
ing a subsequence if necessary, we may assume that
k, is a constant k for all n. By taking again subse-
quences, we may assume that 6, ; — 6; (as n — 00)
for some #; € T and for each i =1,2,...,k.

By the continuity of external rays R(6), we have

R(0,,:) — R(0;), as n — o0,

fori =1,2,...,k. It follows that zo € R(6,), yo €
R(Hk), and R(QZ)HR(92+1) §é @ fori = ].7 2, . ,k—].
Hence

is connected, and therefore xy ~ay Yo. O

Corollary 3.3. If, moreover, no equivalence class of
~ separates S ,, then S? [ ~ is homeomorphic to

S2.

Proof. This is a simple application of the Moore’s
theorem [1925]: If G is a partition of S? into com-
pact, connected, nonseparating sets that gives rise
to a closed equivalent relation, the quotient S?/G is
homeomorphic to S2. O

Proposition 3.4. The induced quotient map [f 1L g]
from S%g/ ~ to utself is again a branched covering.

Proof. Denote by V' the union of the finitely many ray
classes containing critical values of f. Then f~(V)
consists again of finitely many ray classes and f :
S? — f71(V) — S? — V is an unbranched covering.
Let y € 7(S? — V) and Y a simply connected open
neighborhood of y. Since 7 : S =V — 7(S? —V) is
proper, 7 (V) is again simply connected [Douady
and Douady 1979]. Thus each connected compo-
nent of f~'71(Y) is simply connected. So is each
connected component of wf~tx~1(Y). This proves
that [f LL g] is a covering of S? minus finitely many
points. It extends then naturally to a branched cov-
ering of S?. O

3B. Irreducible Obstructions

Let F': S? — S? be a postcritically finite branched
covering. Recall that, for a multicurve

I'= {717"'77n}7

the corresponding matrix F = (a;;) is defined by

1
Qi; = Z .
F .~ ;
YV EFTL(vj), 7'~ deg(F 17" = )
See [Gantmacher 1959] for the definition and prop-
erties of irreducible nonnegative matrices.

Definition. A multicurve I is called irreducible if Fr
is irreducible. I' is called an irreducible obstruction
if Fr is irreducible and A(Fy) > 1. In other words,
for any (4,7) € {1,...,k}*, k = #TI, there is an
integer n, a component 7' of F~"(v;) isotopic to
vi, and for 1 < m < n, F™(y') is isotopic to a
curve in I'. Levy cycles are examples of irreducible
obstructions. A multicurve I' is F-invariant, if for
any v € I, each connected component of F~*(v) is
either peripheral or isotopic to a curve in I' rel Pg.

Lemma 3.5. Any Thurston obstruction contains an
wrreducible obstruction. Any irreducible obstruction
15 1sotopically contained in a F-invariant Thurston
obstruction. As a consequence, in the case that F
has a hyperbolic orbifold, F is not equivalent to a
rational map if and only if F has an irreducible ob-
struction.

Proof. Let I' be a Thurston obstruction for F'. Then
I' can be considered as disjoint union of submulti-
curves I',, such that Fy  is irreducible. Moreover,
A(Fr) = max,, {\(Fr,,)}. Any I',, with A\(Fp,) > 1
is an irreducible obstruction.

Now let I'y be an irreducible obstruction for F.
Let I'; be the set of isotopy classes of curves in
F~Y(Iy). Then 'y C I'; (isotopically). To show that
I'; is again a multicurve we should check that two
classes in I'; do not intersect (isotopically). Since
curves in 'y are disjoint from each other, so are
curves in F~1(Ty), so are isotopy classes in I';. Now
we can take inductively I',, to be the set of isotopy
classes of F7*(T",_;). Then T',, is a multicurve con-
taining I';,_;. There is a n such that I, =T, i.e.
I',, is an F-invariant multicurve. It remains to show
A(Fr,) > 1. Let Fr, = (aij)mxm> Fry = (bij)exr-
We have k£ < m. Number curves in I',, so that the
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first k ones are in I'y. Define a new matrix (¢;;)mxm
as follows: ¢;; = b;; if 4,5 < k, and ¢;; = 0 else-
where. Then a;; > ¢;; for each (¢,j). By Perron-
Frobenius theory on nonnegative matrices, we have
A(ai;)) = M(cij)) = Al(by;)) = Aldr,) 2 1. So Iy
is an F-invariant Thurston obstruction. O

3C. Disc-Components in the Complement

Let F be a postcritically finite branched covering.
Let A, B be two subsets of S?. We say that A is
1sotopically contained in B if there is a homeomor-
phism v of S?, isotopic to the identity rel P, such
that 1(A) C B. If there is such a ¢ with ¢(A4) = B,
we say that A is isotopic to B.

Lemma 3.6. Let I' be an irreducible multicurve for F
(for example, a Levy cycle). Then

(a) Each connected component of S* — F~(T") is ex-
actly a connected component of F~'(A), where A
is some connected component of S* —T.

(b) Any connected component of S? — F~*(T') is iso-
topically contained in o connected component of
S? —T.

(c) Let D' be a disc-component of F~(D) for D a
component of S* —T', such that 0D’ is isotopic
to a curve ~y; in L', then D' is isotopic to o disc-
component of S? — T with boundary ;. And if
the components of F~(D) are discs, at least one
of them must be isotopic to a disc-component of

S?—T.

Proof. Statement (a) is due to general properties of
a branched covering.

For (b), since any curve in I is isotopic to a curve
in F~1(T"), there is a homeomorphism 1 isotopic to
the identity rel Px mapping I' into F~*(T"). So ¢!
maps a component of S — F~(T") into a component
of §? —T.

For (c), suppose that D' is isotopically contained
in A and that A is not a disc-component of S? — .
Since each boundary curve of A is nonperipheral,
0D’ can not be isotopic to any of them. So A is
a disc, dD' is isotopic to A and D’ is isotopic to
A. Assume now that the components of F~!(D)
are discs. Since at least one curve 7' of F~1(9D) is
isotopic to a curve in I', the unique disc-component
D' of §* — F~}(I') bounded by ~' is isotopic to a
disc-component of F'. [l

The following result combines work of S. Levy, M.
Rees, the authors and others.

Proposition 3.7. I' is a removable Levy cycle if and
only if I' 1s an irreducible obstruction and there is a
disc-component D of S* —T', such that for all n, the
connected components of F~™(D) are discs. In this
case F~Y(T') contains a unique subset I isotopic to
I such that F : I — T" s a homeomorphism. IfT s
an irreducible obstruction and each disc component
of S? — T contains at most one critical value, then
I" 4s a removable Levy cycle.

Proof. Necessity is a consequence of the definition.
To prove sufficiency, set v = 0D. Given any 7, € I,
by irreducibility, there is an integer n such that a
curve 7' in F~"(v) is isotopic to ;. Since v" bounds
a disc-component D' of S? — F~"(T"), by the above
lemma, D' is isotopic to a disc-component D; of
S? —T bounded by 7;. Thus S? — T has at most one
non-disc-component.

For simplicity, assume that #I' = k > 1 (the case
#I' = 1 is left to the reader). Then S? — T has
exactly k disc-components Dy, ..., D, with v, =
0D;. We claim that F = (b;;), with

1
TS -
D' isotopic to D;, deg(F D' — D])

F(D')=D;

Let 7' be a component of F~*(v;). It bounds a
unique disc-component D’ of S* — F~!(T") such that
F(D') = D;. Moreover deg(F' : " — ;) = deg(F" :
D" — Dj). By the above lemma, 7' is isotopic to +;
if and only if D' is isotopic to D;. By definition of
Fy, we get the claim.

Now for each j, there is at most one D' in F'~*(D;)
isotopic to D;. So the sum in b;; contains at most
one term. On the other hand, for each i, there is
at most one j such that b;; # 0, because F~'(D,)
and F~!(D;/) are isotopically disjoint whenever j #
j'. By the irreducibility and the fact \(T") > 1, we
conclude that, after a suitable numeration, b;y1) =
1, byy = 1 and b;; = 0 elsewhere. This proves that
F~1(T") contains a unique subset I" satisfying the
properties in the proposition and I' is a degenerate
Levy cycle. Since the components of F~"(D;) are
discs for all n, I is also removable.

In the last case of the proposition, take D a disc-
component. Since it contains at most one critical
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value, all components of F~!(D) are discs, each is
isotopically contained in a component of S* — T,
therefore contains at most one critical value. By
induction, all components of F~"(D) are discs. O

From this we get again a result of M. Rees and a
result of S. Levy:

Corollary 3.8. Any irreducible obstruction of a quad-
ratic branched covering contains a Levy cycle.

Proof. Let I' be an irreducible obstruction for F'.

A quadratic map F' has exactly two critical values.
If some curve v € I separates the two critical values
of F', then we are in the case to apply the above
proposition. So I' must be a removable Levy cycle
(by looking at the degree, we can even prove that
A(I") < 1, a contradiction. So in fact this situation
does not occur). If the two critical values of F' are
contained in the same component of S? —I', then
F~'(v) for each v € I' consists of two curves and
each of them is mapped by F' to v with degree one.
This implies every periodic cycle in I' is a Levy cycle.

O

3D. Geometric Intersection Number

Let f : S? — S? be a postcritically finite branched
covering. We say that n is a nontrivial open arc
in §* — P, if n = h(]0,1]), where h : [0,1] — S*
is a continuous mapping, injective on ]0,1[, with
h(0),h(1) € P; and h(]0,1[) N P; = &, moreover
h is not homotopic to a constant map relative to
its boundary values. Denote by [] the isotopy class
(rel Py) of .

Denote by L the set of isotopy classes of non-
peripheral simple closed curves and nontrivial open
arcs in S? — Py, and by R the real linear space gener-
ated by L. For [n],[(] € £, we define the geometric
intersection number by:

[0] - [¢] = inf{ #n" O C" [ " € [n], "€ [C]}
Note that [n] - [7] = 0. This geometric intersection

number can be extended bilinearly to R x R.
We define a linear transformation fu : R — R by

fe) = > W,
n'Cft(n)
where the sum is taken over all connected compo-
nents of f~*(n), and again [n'] denotes the isotopy
class of n’, which is zero if i is a) a peripheral closed

curve, b) an open arc with at least one end point out
of Py, or c) an open arc isotopic to a point (rel Py).
It is clear that fx([n]) does not depend on the choice
of the representative of [n], and (fz)" = (f").
Assume that a finite subset {[y],...,[y]} of L
admits a representative I' = {7;,...,7;} such that
viNy; = @ for i # 5. We define two linear transfor-
mations fr : R" — R" and far: R" — R" by

]' !
fF(7) = V’C;(W) deg(f . 7’ — 'Y) [7]F7
far( =Y Ml
YCFTHY)

for every v € I', where [y']; denotes the element in
I' isotopic to «' if it exists and O otherwise. Note
that deg(f : ' — n) = 1 whenever 7 is an arc. We

have (fyr)" < (f")#r, and (fr)"(v) < (f")r(v),
since some n-th preimage +' of v might come back

to I but f(v') ¢ T

For T as above, set ['(f™) to be the union of those
components of f~"(I') that are isotopic to elements
of I’ (the case n = 1 being written simply I'). If I is
irreducible, each component of I' is isotopic to some
(not necessarily unique) component of I'(f").

A different form of the next theorem appeared in
the preprint version of this paper. The generaliza-
tion given here is proved in [Pilgrim and Tan 1998].

Theorem 3.9. Let f : S? — S? be a postcritically finite
branched covering. Assume that two finite subsets of
L admit representatives I' = {vi,..., %} and A =
{1, o, N} such that vy, = NN = @ fori # 5.
Assume furthermore that

(0) #(U N A) =T A;

(1) fr has neither zero row nor zero column, with
leading eigenvalue at least 1;

(2) A (C f~*(A)) has a subset A isotopic to A and
f: A" = A is a homeomorphism.

Then either

.I'-A=0and ' f7"(A) =0, f7"(I')- A =0 for
alln > 1; or
2.T-A#0 and

a. Dis 1sotopic to I, A is isotopic to A, the map-

pings f : T = T and f : A — A are homeo-

morphisms (so A = L), TN(f*(A)—A)) =@

and AN(f~1(I')—T') = @. More precisely, each
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component of I' is isotopic to a unique compo-

nent of T, each component of A is isotopic to

a unique component of A, and

i. for each v € L', there is exactly one com-
ponent ' C f~1(v) such that v/ N A # @,
moreover, v is the unique component of
f71(7) isotopic to an element of T;

ii. for each A\ € A, there is exactly one com-
ponent X' of f~1(X\) such that N NT # @,
moreover, X is the unique component of
F7H(X) isotopic to an element of A.

b. The transformations fur and fu o are transi-
tive permutations of the basis vectors.

c. The above results remain true if we replace f
by f", for any n > 1 (though transitivity may
fail).

d. For any X isotopic to a component of f~"(\)
for some n > 1 but not isotopic to a compo-
nent of A, ' - A = 0. Simalarly, for any v
isotopic to a component of f~"(T) for some
n > 1 but not isotopic to a component of T,
A-~v=0.

Corollary 3.10. If A is a Levy cycle and T’ an irre-
ducible obstruction with I'- A # 0, then ' is again a
Levy cycle.

Corollary 3.11. Suppose that in a mating f 1L g, one
polynomaal, say g, has a “star-like” Hubbard tree
H,, that is, H, has only one branch point o and
g:H, — H, is a homeomorphism. Then any irre-
ducible obstruction of f Ll g is o Levy cycle, whose
limit set (according to Theorem 1.4) coincides with
the ray class [a]. Moreover, if the rays of a form
a single orbit by g then either there is 0 such that
R;(8) U R, (—0) links a to a fized point of f, or (]

1S a tree.

Proof. Consider H, as a periodic cycle of isotopy
classes of arcs. For I' an irreducible obstruction of
f 1L g, we must have I'- H, # 0 (otherwise I" reduces
to an obstruction for f). So by the above theorem
I' is a Levy cycle, with limit set passing through
H,. The only possibility is [«], since « is the unique
point of H, in the Julia set.

Denote by d the degree of f and g. By assump-
tion, the map 6 — df acts as a cyclic permuta-
tion on the set —6;,...,—0; of external angles of
a. Denote by «; the landing point of R;(0;). If

a; = «; for some ¢ # j, then by the cyclic per-
mutation property and the fact that F' preserves
the cyclic order at branch points of [«], we have
ap = ay = --- = o and it is a fixed point of f.
Assume now the «;’s are pairwise distinct. Fix an
index j and n # 6; (if any) an external angle of «;.
Then the ray R¢(n) U R,(—n) lands at a periodic
point u € J, — H, (since H,NJ, = {a}). The point
u has no other external rays (Proposition 3.1). So
[] is a tree. O

3E. Removing Levy Cycles

Let F : S? — S? be a postcritically finite branched
covering. We describe here how to modify F' in or-
der to delete simultaneously a maximal number of
removable Levy cycles.

Recall that each removable Levy cycle I' with n
curves decomposes the sphere into n disc-compo-
nents By, ..., B, and one extra component C' (which
is not a disc unless n = 1), such that each F~*(B;)
has a component B’ isotopic to Bj_1 (mod n)’ with
deg(F' : B} — B;) = 1. Moreover for all £ > 0, all
components of F~%(B,) are discs. Therefore for all
k>0and j =1,...,n, all components of F~"(B;)
are discs. Set B(I') =, B;.

Denote by ¥ = X(F') the set of isotopy classes of
removable Levy cycles for F. We define a partial
order on Y: we say that & < & if there are repre-
sentatives I'y, I'y of &, & such that B(I';) C B(Iy).

If the geometric intersection number &; - £, is zero
for two elements of X, either one is smaller than the
other, or there are representatives I'y, I's of &, &
such that S? — 'y U T, has exactly one non-disc-
component, and #I'; + #I'; disc-components.

Denote by X' = X/(F') the set of £ € X, satisfy-
ing that ¢ is maximal in ¥ and £ - I' = 0 for any
Levy cycle I' (see Sections 3F-3H for examples and
counterexamples).

Denote by G, the set of equivalence classes of post-
critically finite branched coverings of degree d.

Theorem 3.12. There is a mapping s : G4 — G4 with
these properties:

(a) it fizes every class which contains a rational map;
(b) if s([F]) = [G], there is a bijection between the
two sets Ap = {isotopy classes of irreducible ob-
structions of F not smaller than or equal to an
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element of ¥'(F)} and Ag = {isotopy classes of
irreducible obstructions of G};

(c) ¥(G) = @ for [G] € s(G4) and so s = s.

Proof. For any ¢ € ¥'(F), we have ¢ - I' = 0 for any
irreducible obstruction I', since by Corollary 3.10,
any [' with £ -T' # 0 is a Levy cycle.

I. Construction of s. We define s([F]) = [F] if ¥'(F) =
@. Assume that X' = ¥X/(F) # @.

For any £ € ¥/, the set £ N Pr is defined to be
B(I') N P, for any I' a representative of £. The set
&N Pp is not empty, independent of the choice of
I', and contains only periodic non-superattracting
elements of Pp. For £, € Y distinct, we have
(ENPp)N(E'NPp) = . Since #Pr is finite, the set
3’ contains only finitely many elements &;,...,&.

Step 1: The mapping H and the integer n. For each 1,
choose I'; a representative of §; such that I';, I'; are
disjoint for i # j. Denote by ' = Ule I;, and
B = Ule B(T;). From the proof of Proposition 3.7,
the set I of curves in F~(T") homotopic to some
curve in I' is isotopic to I'y and F : I" — T' is a
homeomorphism.

Let ¥ : §? — S% be a homeomorphism isotopic
to the identity rel Pp, such that ¥(I') = I". Set
H = FoWV. Then H is Thurston equivalent to F,
Py = Pp, HI) =T, and H : B — B is a homeo-
morphism.

Note that I' ¢ HY(T") and #H'(T) > 2. By in-
duction H=("=1(T") ¢ H~"(T'). There is a minimal
integer n such that

(H™"H(B) — H"(B)) N (P UQy) = 2,

where (5 is the set of critical points of H.

Step 2: Marking points. In each component B of B
we mark a point y such that y has the same period
as B (such a point exists according to Brouwer’s
fixed point theorem), and H maps marked point
to marked point. Inductively, for j = 1,...,n, we
mark a point y in each component B of H™7(B) —
H~U=Y(B) such that H(y) is the marked point of
H(B).

Step 3: Modifications. We will modify the map in each
marked disc (B,y) of H "(B) containing a critical
point (such a disc is surely not periodic, that is,
B ¢ B). Set (B',y') = H((B,y)). Denoting by

D the unit disk, let ¢ : B — D be an orientation-
preserving homeomorphism with ¢(y) = 0, and like-
wise ¢ : B' — D with ¢'(y') = 0. Extend the
boundary mapping g = ¢’ o Hyg o ™' to a mapping
(denoted again by g) of the whole disk by ¢ - w —
t-g(w), 0 <t < 1. It is a covering branched only at
0, and its degree coincides with deg(H : 0B — 0B').

Now we define G : S — S? to be: on each disc
B of H~™(B) containing a critical point, set Gz =
(¢')"t o gop. Elsewhere set G = H.

Step 4: Independence of [G] on the choices in the con-
struction. At first another choice of I' in its isotopy
class and ¥ will give always a mapping H in the class
of F'. The integer n in Step 1 remains unchanged.
Next another choice of the marked orbit and the
maps ¢, ¢ will give a different extension of H|yp
for B a component of H "(B) containing a critical
point. So this gives a different mapping G;. How-
ever, for a circle covering h : S' — S, any two ex-
tensions of h in the unit disc as a branched covering
such that h71(0) = 0 are topologically conjugate by
a homeomorphism ) : D — D with Ylsrugoy = id.
In our case, there is a homeomorphism @& of the
sphere, which is the identity on S? — H"(B), map-
ping the first choice of the marked orbit to the sec-
ond one, such that ! o G; o ® coincides with G
everywhere, except on H~("*V(B) — H~"(B). The
exceptional set is a disjoint union of finite discs away
from Pg. So @710 G, 0® and G are isotopic rel Pg.
Thus G; and G are Thurston equivalent.
Now the mapping s : [F] = [G] is well defined.

I1. Properties of s. Any rational map R which is post-
critically finite has no Levy cycle [Bielefeld et al.
1992], so s([R]) = [R].

Next, let F,H,G,B be as above. Since Pg N
H~"(B) is contained in the set of marked points,
curves in OH~"(B) are peripheral for G. So for
¢ € Ag and [ a representative of & such that rn
H "(B) = @, we have G '|z = H '|z. SoT is again
an obstruction for H and then for F. It gives rise
to a uniquely determined &' € Ap.

Now let £’ € Ap, so & is not smaller than any ele-
ment of ¥'(F). There is a representative I of £’ such
that TN'‘B = @. So I is an obstruction for H. Now
since ['- 9B = 0, by Theorem 3.9 (with A = 9B), we
have I - H-"(dB) = 0. Moreover I is not isotopi-
cally contained in H—"(B). So we can choose I in its
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isotopy class such that I' N H~"(B) = @. In other
words, T is in the identical part of H* and G
As a consequence, A\(I',G) = N[, H) = AT, F) > 1
(this shows in particular that curves in I’ are not
peripheral for G). Thus [ is an irreducible obstruc-
tion for G, and gives rise to a uniquely determined
€ Ag.

Finally, let I’ be a maximal removable Levy cycle
of @ such that T'-T' = 0 for any irreducible obstruc-
tion I of G (i.e., [[] € ¥'(G)). Tt is again a remov-
able Levy cycle for F' and gives rise to a £ € Ap,
by the preceding paragraph. Moreover [-T =0 for
any irreducible obstruction I' of F. By definition of
Y'(F) and the fact that £ ¢ X'(F), there is a re-
movable Levy cycle £ for F strictly larger than &'
This contradicts the maximality of I for G.

As a consequence, so s = s. O

Definition. Two branched coverings F, F' are weakly
equivalent if s([F]) = s([F']). We say that F is
weakly equivalent to a rational map R if s([F]) =
[R].

Notation. We denote by s(F) a representative of
s([F])-

Corollary 3.13. If all irreducible obstructions for F
are removable Levy cycles smaller than or equal to
an element of X'(F), F is weakly equivalent to a
rational map. On the other hand, in case that s(F)
has a hyperbolic orbifold, iof F' is weakly equivalent to
a rational map then all irreducible obstructions for
F are removable Levy cycles smaller than or equal
to an element of ¥'(F).

Proof. Set G = s(F'). In the first case G has no
irreducible obstructions; by Lemma 3.5 it has no
Thurston obstructions. Therefore by Theorem 1.1 G
is equivalent to a rational map. In the second case,
G has no Thurston obstructions (Theorem 1.1). We
can then apply part (b) of the theorem above. O

We conclude this section with applications to several
problems about matings.

3F. A Criterion for a Branched Covering to Be a Mating

Every mating is a branched covering. But many
branched coverings can not be realized as a mating,
for instance with mixed critical orbits. As an exam-
ple, choose a degree two branched covering with one

critical point periodic and the other falling eventu-
ally into the first orbit. But this mixed-orbit con-
dition is far from sufficient, even in degree two case
there are rational maps whose both critical points
are periodic with disjoint orbits but which is not
equivalent to a mating (see [Wittner 1986]). In fact
the key point for a branched covering to be equiva-
lent to a mating is that there is a curve is S? playing
isotopically the role of the equator for a mating:

Theorem 3.14 [Thurston 1983; Levy 1985; Wittner
1986]. Let F' be a postcritically finite branched cov-
ering of degree d. Assume that F' has no degenerate
Levy cycle. Then F s equivalent to the mating of
two polynomaals f,qg if and only if there is a closed
curve v C S? — Py such that F~'(v) =+ is again
a single closed curve and ' is isotopic to v rel Pg
with the same orientation. Moreover given such a
the two polynomials f,g are uniquely determined.

It happens also that there are several “equators”
for the same branched covering. This phenomenon
is called shared mating in [Wittner 1986]. Hence
the mapping f,g — f 1L g, from the space of pairs
of monic polynomials of degree d to the space of
degree-d branched coverings, is neither surjective
nor injective.

3G. Levy Cycles around Periodic Ray Classes

This part intends to complete the picture of Theo-
rem 1.4.

Lemma 3.15. Let F' be a mating. Let [z] be a periodic
ray class such that [z] contains either a closed loop
or at least two postcritical points. Then each bound-
ary curve of a tubular neighborhood of [x] generates
a Levy cycle.

Proof. All we need to prove is that such a curve v is
not peripheral (the periodicity and the degree-one
property are guaranteed by that of [z]). But if ~
were peripheral, the disc component D of S? — [z]
containing v would be periodic, i.e. there would be
an integer k > 0 such that F~*(D) has a component
which coincides with D, i.e. F*(D) = D. But DNE
consists of finitely many intervals (where E is the
equator), and F* is expanding on E. So

FF(DNE)#DNE,

which is a contradiction. O
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3H. How to Find Removable Levy Cycles in a Mating

Proposition 3.16. Let F' = f 1l g be a postcritically
finite mating. The set ¥'(F') consists of boundary
curves of tubular neighborhoods of periodic cycles
{lz1], [z2],---, [zm]} of ray classes such that each
[x;] contains at least two postcritical points and no
ray class in |J, -, F~"([x;]) contains a closed loop.
If S?/ ~yay is homeomorphic to S then F has no
non-removable Levy cycles. Moreover f and g are
matable if all irreducible obstructions of F are re-
movable Levy cycles. And, in case that s(F') has
a hyperbolic orbifold, if f and g are matable then
all irreducible obstructions of F' are removable Levy
cycles.

Proof. We will only sketch the proof here. The details
are left to the reader.

It is very easy to see that the boundary curves
I' of a tubular neighborhood of such a periodic cy-
cle of ray classes form a removable Levy cycle. To
see that I is maximal among removable Levy cycles,
we apply Theorem 1.4. To see that I' is (geometri-
cally) disjoint from any other Levy cycle we apply
Lemma 3.15 and then Theorem 1.4. To see that ev-
ery element of X'(F) is in this form we apply again
Theorem 1.4.

Assume now that F' has a non-removable Levy cy-
cle. Then the limit set of the cycle {[z],...,[z.]}
satisfies that for some i and some n, the set F'~"([z;])
contains a closed loop. So one of the ray classes
contains a closed loop. Therefore S%/~.y is not
homeomorphic to S2.

Recall that by definition f and g are matable if
F is weakly equivalent to a rational map, that is, if
s(F') is equivalent to a rational map.

Due to Theorem 1.4 and Lemma 3.15, if all irre-
ducible obstructions of F' are removable Levy cycles,
each of them must be smaller than or equal to an
element of ¥'(F). So F is weakly equivalent to a
rational map, by Corollary 3.13.

On the other hand, in case that s(F") has a hyper-
bolic orbifold, if F' is weakly equivalent to a rational
map then by Corollary 3.13 again all irreducible ob-
structions of F' are removable Levy cycles. O

Now we give an example of a maximal removable
Levy cycle which is not geometrically disjoint from
an irreducible obstruction. Consider f to be a cubic

polynomial with one fixed critical point and the sec-
ond iterate (3 of the other critical point fixed (so that
the second critical point behaves like 0 for 2* — 2).
Consider now F = f 1L f, with f(z) = —f(—2).
Then the ray class [5] consists of two fixed rays R(0)
and R(1/2). A curve around each ray is a maximal
removable Levy cycle, but intersects always a curve
around the other ray.

4. PROOF OF THE RESULTS: FIRST PART

If F' € A is postcritically finite, then it is easy to
check (by definition of s) that s(F) € A and s(F)
has a hyperbolic orbifold.

Proof of Theorem 2.6. Denote by P one of P, P,.
Then P is star-like, with « the unique branched
point in its Hubbard tree (see Figure 1). Denote by
—0,,—0,, —03 the external angles of a. They form a
single orbit by 6 — 36. According to Corollary 3.11,
an irreducible obstruction for g, 1L P is a Levy cy-
cle I' with limit set [a], and, either [¢] is a tree, or
R, (01), R, (02) and R, (05) all land at the same
point in J,, which is also a fixed point of g,. This
latter case does not occur for the following reasons:
the map g, has a unique fixed point o' having more
than one external angles, and o' € [a,w]. A simple
calculation shows that the set of external rays of o is
disjoint from either [0,1] or [2,1]. But {6;,6,,6;}
intersects both [0, %] and [2,1]. So o' ¢ [].

As a consequence, [a] is a tree. Furthermore, by
induction each component of F~"([a]) is again a
tree and contains at most one critical value (that
is, a, since the other two critical values y and z do
not have external rays). Therefore each component
of F"*1([a]) is a tree. Hence any irreducible ob-
struction is a removable Levy cycle surrounding [a].
So g, 1L P is weakly equivalent to a rational map
(Proposition 3.16). O

Proof of Theorem 2.5. The part D = A is proved
in Proposition 3.16 for general matings (recall that
s(g, 1L P,) has always a hyperbolic orbifold).

B=>C. In this case the closed curve R(3)UR(%)
or a tubular neighborhood of it forms a good (thus
non-removable) Levy cycle. C =D is trivial.

It remains to show D = B. By Theorem 2.2 (to
be proved later), the map g, 1L P, has a good Levy
cycle with at most two curves. Its limit set X, is



44 Experimental Mathematics, Vol. 9 (2000), No. 1

contained in a ray class and is a simple closed curve
with two fixed points (Theorem 1.4). Therefore o €
Xy, where « is the fixed point in Hp, (see Figure 1).
The two external angles of « are —%, —%. No other
two-periodic rays land at a point of Hp,. Similar
to the proof of Corollary 3.11, one can show that
cither R,(2) and R, () land at the same point or
[ is a tree. But the latter case does not occur since
Xo C ). So 2 ~,, I proving B. O

The rest of this section is devoted to the proof of the
equivalence 1 <= 2 in Theorem 2.4. First we need
to study in more detail the ray-equivalence relation
for g, 1L P;.

According to Douady and Hubbard [1984], for any
postcritically finite polynomial f with K as its filled-
in Julia set, there is a way to define a (unique) regu-
lar arc [u,v] C K for any pair of points in K so that

the convex hull [uy,...,u;] C K of any finite subset
is a topologically finite tree, and f([u,...,w]) =
[f(ul)a s 7f(ul)7 f(wl)a s 7f(wk)]7 where Wy ---,

wy, are the critical points of f in [uy,...,w]. The
Hubbard tree is precisely the convex hull of the post-
critical set.

As in Section 2C, set P = P;, and for i = a, P,
denote by ~;(f) the landing point of R;(6) on K.
Let F = g, 1L P.

Set H, = [Ha, o, (1, 3] with 3; = 7,(i/3) and
Hp = [Hp, 3,3, 3] with 3 = vp(i/3). These are
the extended Hubbard trees. Note that I:Ip =HpU
ly, B1] U ly, 8] U [y, 2] (see Figure 3). For i = a, P,
we have F(H;) C H; and F(H,) C H,.

Note that each nontrivial ray class [u] is com-
pletely determined by [u] N (J, U Jp). For example,
the extremities of [u] are points in [u] N (J, U Jp)
having only one external angle. The other points in
[u] N (J, U Jp) have at least two external rays. For
this reason, we give

Definition (simple and multiple point). A point u in
J.UJp C S} pisa simple point if u has only one
external angle, and a multiple point if v has at least
two external angles.

Lemma 4.1. If u is multiple and u # w, F(u) is also
multiple. If w ¢ [u], then F : [u] — [F(u)] is a
homeomorphism.

Proof. In w = x or y it has no external rays and [u] is
trivial. If u is not a critical point of F, the mapping

F' is a local homeomorphism, and F' sends external
rays to external rays. So F'(u) has the same number
of external angles as u. The rest follows. 0

Lemma 4.2. For ¢ = a, P, there is an integer m; such

that for any u € J;, the number of external angles

#>u is bounded by m;. Moreover mp = 2 and no
12

point in Hp has external angles in [g, g].

Proof. For a multiple point u € Jp, since all critical
points of P are in int(Kp), the orbit of u contains
no critical points. There is k such that F*(u) € Hp
(Proposition 3.1) and F* is a homeomorphism in a
neighborhood of u. So #>u = #>F*(u). Since
Hp contains no branched points, #>u = mp = 2.
Moreover since [5], 5] N Hp = {y} and y has no
external rays (Figure 3), no point in Hp has angle
i [1,2].

It is known that there is m, such that #>u < m,
for any u € H,. For a multiple point u € J,, either
there is a unique k such that F*(u) = w or the
orbit of u does not contain w and there is k such
that F*(u) € H, (Proposition 3.1). In both cases
#>u=H#>F"(u) <m,. O

Lemma 4.3. Fvery multiple point u in J, has a for-
ward image in [w, al.

Proof. Assume that none of the iterates of u meets w
(otherwise the lemma is trivial). Iterate u enough
times so that the set of external angles of F™(u)
meets at least two components of T — {0,%,2}.
Then F™(u) € [, w] U [B1,w] U [B2,w]. We have
F([B;,w]) = [fo,w] U [w,a], for i =0,1,2, and F :
[Bo, w] — [Bo,a] is expanding. So there is n' > n
such that F" (u) € [w, a]. O

Proposition 4.4. Each ray class [u] for F' contains at
most m, + 1 points of J, and no closed loops.

Proof. If all points in [u] N .J, are simple we are done
since a point in [u] N Jp has at most two external
rays.

Claim. Suppose that u is a multiple point of J, and
that F™(u) # w for all n. Let 6,0 be two distinct
angles of u and v =yp(—0), v' = yp(—0'). Then at
least one of v,v" is a simple point. A consequence of
this is that, if there is n € Zu with vp(—n) multiple,
then vp(—n') is simple for any n' € Lu with ' # n.
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FIGURE 5. No point in Hp has an external angle in [%, %] .

Suppose by contradiction that both v and v’ are
multiple.

Note that w disconnects H, into three compo-
nents Wy, Wy, W, with §; € W, and [w, a] — {w} is
in one of Wy, W,.

Since F"(u) # w for all n, F™(u), F"(v) and F"(v")
are multiple and F"(v) # F"(v') for all n. Take k
large enough such that F*(u) € [w,a] — {w} (see
Lemma 4.3) and such that F"(u) € H, and F"(v),
F"(v") € Hp for all n > k (Proposition 3.1). We
may assume k = 0. Now there is [ > 0 minimal
such that {3'0,3'0'} intersects at least two com-
ponents of T — {0, %,% . In case [ = 0, we have
u € [w,a] — {w} so u € [w,a] N [F;,w] for i =1 or
2. Therefore one of the angle, say 0, is in [%, %]
So —6 € [+,2]. But v = yp(—#) is in Hp. This is
impossible since no point in Hp has angles in [1, 2]
(Lemma 4.2; see also Figure 5). In case [ > 0, if
F'(u) € Wy, UW,, then one of the angles, say 3'6 is
in [, 2] with F'(v) € Hp. Again this is impossible.
Assume now [ > 0 and F'(u) € W,. We will show
this does not occur. In S2 ., the two rays R,(3'0)
and R,(3'¢") together with a portion of the equator
form a Jordan curve. Denote by D the disc bounded
by this curve containing ;. Then F~!'D has three
discs each contains one of [y, 31, 3:. So the curve
R,(3" 1) UF'" Y (u)UR,(3""10") together with a por-
tion of the equator separates already {f, 1,52}

This contradicts the fact that [ is minimal. This
ends the proof of the claim.

Now consider the critical value class [a]. If it is
nontrivial a is eventually periodic (Misiurewicz case)
and is never mapped to w.

For any two distinct angles 6,6, of a we have
vp(—61) # vp(—0,) otherwise yp(—6,) and vp(—0,)
are both multiple contradicting the above claim.

Let 6 be an angle of a. The point yp(—0) is either
simple or it has only one other angle —r. In the
latter case let u' = 7,(n). Since n has the same
preperiod as 6, u’ is not mapped to w under the
iterates of F'. If ' is multiple, for any 6" # n external
angle of u’, by the above claim the point vp(0') is
simple. In any case #([a]NJ,) <1+ #>a, and [d]
contains no loop.

An easy consequence is that #([w]NJ,) < 1+
#>w = 1+ 3#>a, #([u] N J,) = #(w] N J,) if
F'(u) = w for some [ > 0, and these ray classes
don’t contain closed loops.

Now assume [u] contains no preimage of w. We
claim that #([u]N.J,) < 2 and [u] contains no closed
loop. Again this is easy if all points in [u] N .J, are
simple. Assume that u is a multiple point in J,.
Then by the above claim there is at most one ex-
ternal angle of wu, say 6, such that yp(—0) is mul-
tiple, and this point has at most one more angle
—n. Now the point v’ = ~,(n) satisfies the condi-
tion of the claim. So any other angle than n of u'
must lead to a simple point in Jp. As a consequence
[u] N J, = {u,u'} and [u] contains no loops. O

Corollary 4.5. Each ray class of F intersects the equa-
tor E at at most my(m, + 1) points.

Proof. Each point of [u]N.J, has at most m, external
rays and [u] N J, has at most m, + 1 points. O

The next result is part of Theorem 2.4.

Corollary 4.6. The quotient S, p/~ry is again a
sphere.

Proof. The previous two results put us in the situa-
tion of Proposition 3.2 and Corollary 3.3. U

Proof of Theorem 2.4, part 1 <= 2. We need to show
that g, and P, are not matable if and only if g, 1l P,
has a nested obstruction which is not a Levy cycle.
The “if” part follows from Proposition 3.16. For
the other direction, since Sjm p/ ~ray 1 a sphere, the
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Levy cycles of g, L P, are all removable (Proposi-
tion 3.16). Now we can apply Theorem 2.2 (to be
proved later) to conclude that g, 1L P, must have a
nested obstruction. 0

5. PROOF OF THE RESULTS: SECOND PART

Proof of Theorem 2.2. 1t is not difficult from the fol-
lowing argument to see that the three cases are mu-
tually distinct.

Recall that A(I') > 1 by assumption.
apply repeatedly Lemma 3.6.

We will

Step 1. Suppose there is a disc-component D of S? —
[ such that DN{z,y,z} = &. Then each connected
component of F~"(D) is disjoint from {z,y, z}, so
contains at most one critical value. So by induction
on n all preimage components of D are discs. By
Proposition 3.7, I' is a removable Levy cycle.

Step 2. Suppose that there are exactly three disc-
components D,,D,,D, of §* — I, with « € D,,
yeD,, z€ D,. We claim that this is impossible.

If a ¢ D,UD,, each component of S* —I" contains
at most one critical value. By Proposition 3.7, we
have I' = {v,,7,,7.}. But in this case A(I') < 1 (by
looking at the degree).

Now assume a € D,. Then F~'(D,) is connected,
containing y, but none of z,z. So F~'(D,) is iso-
topically contained in D,. As a consequence, one
connected component of F~'(v,) is isotopic to v,
the other is not in I'. Thus I' = {~,,,, 7.}, and, by
looking at the degree, A(I') < 1. The case a € D, is
similar.

Step 3. Suppose that there are exactly two disc-
components Dy, D, with #(D; N{z,y,z}) =1 and
#(Dy N{z,y,z}) = 2. We claim then I' is a good
Levy cycle with at most two curves.

Proof. Set v; = 0D;. We claim at first that a € D,
and D, N{x,y,z} C {y,z}. If not, x € D; and D,
contains at most one critical value. So F~*(D;) are
discs. One of them contains z, but not z,y, the
others are disjoint from {x,y, z}. Thus no curve in
F~1(0D,) is isotopic to a curve in I'. This contra-
dicts the irreducibility.

One possibility is a,z € D; and x,y € D,. In this
case, F71(D;) consists of two discs one of which
is strictly contained in D,, so the other must be
isotopic to Dy, with degree 1. On the other hand,
F~1(D,) is an annulus isotopically contained in D,.

The connected component ' of F~(v,) separating
z and y is isotopic to vy, and deg(F : v — 71) =
1. Thus I' = {7,712} is a Levy cycle. Let A be
the complement of D; U D,. Either A = @ or a
component of F~'(A) is isotopic to A of degree 1.
In any case I' is a good Levy cycle with at most two
curves.

The other possibility is a,y € D; and z,z € Ds.
A similar analysis will show that I' = {7;,7.} with
A(I') = 1/2, which is excluded by the hypothesis.

Step 4. Suppose that there are exactly two disc-
components D,, D, with

#(Dl n {JI,y,Z}) = #(‘DZ N {:c,y, Z}) =L

We claim that either a,y € D, and z € D5 or a,z €
D, and x € D,. In the latter case, some preimages
of I' contain a good Levy cycle with at most two
curves.

Proof. Similarly to step 2 above, one of the two
discs, say D;, must contain two critical values. One
is a, the other is one of y,z. So F~(D,) are discs.
So at least one component D" of F~(Dy) is isotopic
to one of Dy, D,. It can not be isotopic to D, be-
cause of the periodic cycle {z,y,z}, so it must be
isotopic to D;. Thus if y € D,, then z € D,; if
z € D; then x € D,.

Suppose z € D,. Set v, = 0D, and vy, = 0D,.
Complete I' into an F-invariant multicurve I, as in
the proof of Lemma 3.5. Define a subset

Sy ={m}U{yel"|yseparates 7, and {y,z} }

(see the remark below). This set has a natural order.
For any v € S;, we have F~!(y) = v* U~**, with
Ve € S, [yl & Si, deg(F vt = ) = 1,
and the mapping v — [y*]r, S1 — S is weakly
decreasing. So there is a periodic cycle of period at
most 2.

Step 5. Now assume a,y € Dy, z € D, and = ¢
D; U D,. By definition, I' is a nested obstruction.
We just need to show that it’s not a Levy cycle.
This is part of Proposition 2.3. U

Remark. We say that a curve v € S? separates two
sets U and V if U is contained in one component of
S? —~ and V is contained in the other component
of S? —~. Recall that [n]r denotes the curve in T’
isotopic to i, and [n]r = 0 by convention, if no such
curve exists.
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Proof of Proposition 2.3. Assume at first A(I) > 1.
Let I' C I be an irreducible obstruction. Denote
by D., Ay the sets D, (I'), Ay(I') respectively. An
application of Lemma 3.6 would show that, up to
isotopy, D, is a component of F~*(D_), A, does
not contain curves of I' and separates D, and D_.

Let B, be the discs of S% — A, containing D (up
to isotopy) respectively. Note that x € Ay, z € B_,
y€ B, and B, UB_ = F(5§*-D,).

We decompose I' into S, LS with

Sy ={vy €T'|~ separates {a,y} and {z,z} },
S_ ={y eT| v separates {a,y,z} and {z} }.

Take v € T'. Denote by A the component of S% —
v containing z, and by Ay the two components of
F~1(A), with deg(F : A_ — A) = 1 and deg(F :
A, — A) = 2. Then AL are discs. Moreover,
for v. = 0AL we have deg(F : 7. — ) = 1 and
deg(F : vy —v) =2.

ForveTl,ify_isin I then it isin S_, and if v,
is in I' then it is in S;. Moreover if v € S_, then
v— is not in T, since z ¢ A_. Clearly I' does not
contain a Levy cycle. Let

U:ZC’W

yer

be a positive eigenvector (i.e. every c, is positive)
of F- with the eigenvalue A = A(I"). Such a positive
eigenvector exists, since by the assumption I' is an
irreducible multicurve. Write

U; = Z Cy7Ys |Ui| = Z Cy,

YES;: YES;
where ¢ = +, —. Using the notation above, we have
Fr(vy) = Z e[yl + Z sC [l
YESH YES+
R )= Y Lol
YES_

and

Z 36 [l + Z 56/ [ lr = Ay,

YESH yES_

Z &y [y-Ir = Av_.

YES+

Hence
Slocl+o-) = > der+ D 5
YESt YES_
2 A Z Cy = )\|U+|,
YES+
> (5-1)
lvi| = 2{: Cy
YES+
> A Z cy = Ao_|.
YES_ J

A necessary and sufficient condition for both in-
equalities to be equalities is that

(x) for v € S;, both v, and «_ are isotopic to curves
in I', and for v € §_, v, is isotopic to a curve in I'.

Adding two times the first inequality in (5-1) to
the second, we obtain

2vi| + lo-| = A2vg | + [o-]).

Hence A < 1. But A > 1 by assumption. It follows
that A = 1, and equalities hold in (5-1), proving (x).
Applying (%) to B, which is a component of 9 Ay,
we conclude that (0B, )~ is isotopic to a curve in T,
therefore separates Ay from D_.

We turn to the second half of the proposition. Let
I' be a submulticurve of IV with the given properties.
Define

Sy ={y €TI'|~ separates Ao(I") and D, (")},
S_ ={yel]|~yseparates Ao(I") and D_(I')}.

Then'=5,US5 .

By assumption, For v € S, , we have F~'(y) =
Y4 Uy, with v, € S;, deg(F : vy — 7v) = 2 and
v €S8 ,deg(F:v. —~)=1.

For v € S, we have F7'(y) = v, U~vy_, with
Ve €8Sy, deg(F :yy —v)=2and y_ ¢ T

Define o : R" — R? by h(y) = (}) if v € Sy and
h(v) = () if v € S_. Define G,G4 : R* = R” to
be the linear maps with matrices

1 1 1 1
2 2
(15) = (i)

respectively. Then one can check easily that ho Fr =
Gohand hoFypr = Gyoh. Set A = Ap. Let v be
a nonnegative nonzero eigenvector of Fr for A, that
is: Fr(v) = A-v. Hence X\ - h(v) = G(h(v)). Since h
has only nonnegative coefficients, h(v) is also non-
negative nonzero. So A is also a positive eigenvalue
for G. By looking at left eigenvectors and the fact
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that h is surjective every eigenvalue of G is also an
eigenvalue of Fr. As a consequence they have the
same leading eigenvalue, which is 1. Similarly, G»
and F - have the same leading eigenvalue, which is

L1+V5). O

Proof of Theorem 2.4, 3 = 2. We start by introduc-
ing some notation. Assume that g, is postcritically
finite. We define 0 = 0%(a) with 6~ < 6% to be
two angles such that the corresponding two external
rays land at the same point b = b(a) and their union
separates a from the rest of the critical orbit. If w is
periodic, we take b to be the unique periodic point
on the boundary of the immediate attracting basin
of a which has at least two arguments and whose
period divides that of a. If w is strictly preperiodic,
we take b a point arbitrarily close to a having two
arguments 6~ < 61 with the required property. It
is known that such a point b always exists, and once
b is chosen the two arguments #~ < #* are uniquely
determined.

For ¢ = 0,1, 2, denote by f; the point in J, with
external angle i/3. Let

f{ = g;l[Haa ﬁOJﬂ].?ﬂz]?

where H, is the Hubbard tree and [H,, (o, (1, (2]
denotes the convex hull of H, and f; (the extended
Hubbard tree).

Note that w disconnects H into three components
Wy, W1, Wy, numbered in a way such that 3; € W;.
We have a € W, UW,. Since g, IlL P, and g; 1L P,
are conjugate by an orientation reversing homeo-
morphism, one has a Thurston obstruction if and
only if the other one has. So replace g, by g if
necessary, we may assume in the following a € Wj.

For any z € [H,, By, b1, 02] —{a}, denote by z; the
point g;*'(z) N W,;. For b the landing point of rays
of angle 0%, we have b; € [H,, (%, 1, 8:] N W;, for
1 =0,1,2. Furthermore b,y € H. Also w, € Wy, and
wy is the unique point in [w, Fy] which is mapped to
w. We may choose b (and therefore 6F) so that the
b;’s are not separated from w in J, (or H,) by any
points in the forward orbit of a, and similarly for
the b;p’s and wy. The situation is this:

a «o w ay Wy 5o

T b - b1 bo  bio boo -
bz b2o
a

First assume that 3y, g,(a) € Wy and ¢? is renor-
malizable. In particular, «, the fixed point in [a, w],
is not in the postcritical set, and has external angles
s and 2. Moreover the point a, does not separate
the period-three orbit of the renormalized Julia set
(the small Julia sets). So we can define the curves
01, 0, exactly in the same way as in Section 2C. Since
0; does not meet the small Julia sets, no preimages
of it does. Therefore d3, 05 as in Section 2C are ho-
motopic to ;. So d;,d, form a nested obstruction.

Now consider the case where [,9.(a),g2(a) €
Wy. One can choose % so that neither b,y nor by
belong to [g,(b), g.(a)].

Recall from Section 2C that for P; the points
T+, Ys, 2 denote the roots of basins of attraction
of z,y, 7 respectively, and >y, = {3, 3}, >z =

.15} (see Figure 3).
In Sg p,» We are going to modify the subsets

= R,(30") UR,(30) U {gu(b)} U Ry, (L)
URp, (£2) U{z.},

JU(B}URR, () UR, ()00}

in a neighborhood of the equator, so that they be-
come two Jordan curves y_ and v, whose homotopy
classes rel Pr do not depend on the modification.

To do this first we take a closed annular neigh-
borhood N of the equator of S p bounded by an
equipotential e* of g, and an equipotential e' of
P, (here the subscripts v and [ mean “upper” and
“lower” boundary of N). We denote by (0, u) the
point in e* with angle 6. Define (6,!) similarly.

We know that 30% are two arguments of g, (b). As
9a (D) E Wy and [(,, the point in J, with external
angle 2, is in W, we know that (2,u), (307, u),
(307, u) are placed counterclockwise in e¥.

On the other hand, the points (%, l), (%, l), (ig , l)
are placed clockwise in e'.

Note that (R, (%) URp, (3)) NN is a vertical seg-
ment connecting ( ) (% ) Now we can mod-
ify v NN so that it consists of two affine segments
disjoint from ( a( ) URp, (%)) N N and connecting
(30=,u) to (35,1) and (307, u) to (12,1) respectively.
This, together with v — IV, defines our Jordan curve
v_. See Figure 6.

Turning to the modification of v/, , we will use v_
as reference rather than R, ( ) U Rpl( ), which is
no longer good. The points (367, u), (301, u), (0, u),

¥, = Ry (6%)UR, (6~
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(0™, u) appear counterclockwise on e* and the points
(5.0), (£.0), (1), (5,1) appear clockwise on
e’. So we can modify v/ N N so that it consists of
two affine segments disjoint from v_ and connecting
(0, u) to (19—3,l) and (0%, u) to (14—3,l) respectively.
This, together with v/ — N, defines our Jordan curve
Y. See Figure 6.

By construction, y_ and <4 are disjoint; more-
over one disc component D, in the complement of
v, contains only a and y as postcritical points, while
a disc component D_ in the complement of v_ con-
tains only F?(w) and z as postcritical points. Set
Ay = F~Y(Dy).

Note that S? — D, is a disc and that it contains
D_, the connected set

s = [b, Bo] U R,(0) U Rp, (0) U[B, ],

and a unique critical value, which is z. By looking
at components of F~*(s) one can prove easily that
by, by € 0T Ay (the component of 0A, separating Ay
and a), the point by is in the other component of
0Aq and D, is homotopically contained in a com-
ponent of F~'(D_). Iterating backward once more
we can show that b, by are in the same component
of F~1(0% Ay).

Now the fact that by, by,b, ¢ [g.(a), o] implies
that Ay is essentially contained in the annulus A
bounded by v, an v_, and by, by & [g.(a), Bp] im-
plies that the component of F~' (9% A,) containing
b1 is essentially contained in A. Now define I' to
be the set of curves v such that ~ is essentially con-
tained in A — Ay and is homotopic to a curve of
F~"(y_) for some n > 0. By Proposition 2.3, I' is a
nested obstruction and not a Levy cycle. O

(5,u) (365 u)36%w) (3,v)

(365 w) (36%u) (67u) (6% u)

) (@) ) (B (&

FIGURE 6. Modifications in .

Proof of Theorem 2.4, 4 => 5. There is a polynomial g,
for which w is three-periodic and *(c) = &, & Its
Hubbard tree is the segment [c, g(¢)] in Figure 2 and
the entropy is log(%(1+ +/5)). By monotonicity of
entropies (see [Douady 1995], for example), any g,
with = ~, 2 will have an entropy on its Hubbard

tree at least log(2(1 + v/5)). O

Proof of Theorem 2.4, 2 = 5. We will need the fol-
lowing (unpublished) result of M. Shishikura: Let I
be a Thurston obstruction for a mating F' =g 1L f.
Then

pr < eleor(Hy) (5-2)

where hyo,(H,) denotes the topological entropy of
the map g : H, — H,.

Now let FF = g, 1L P, and IV be a nested ob-
struction. By Proposition 2.3, I contains a sub-
obstruction I with pp = £(1++/5). Put this into
(5-2) we get

6ht0p(Hg) 2 %(1 + \/5)7
which is Condition 5 of the theorem. O

Proof of Theorem 2.4, 3 => 4. Assume a € W, (other-
wise consider g;). If g,(a) € Wy and g2 is renormal-
izable, the small Julia set containing a has a fixed
point (for g3) in [a,w] with external angles %, 2.
If g.(a), g% (a) € Wy, then wy € [a,g,(a)]. Since g,
maps each segment in the sequence

[, wo| = [, w] = [, a] = [, g, (a)]

homeomorphically onto the next (Figure 5), and

since [« g, (a)] contains [ag, wy], there is a 3-periodic

point z in [ag, wp]. An easy calculation shows that
79

g2(z) has external angles =, 2. O

APPENDIX: MATINGS SEEN IN PARAMETER SPACE
AND SOME NUMERICAL OBSERVATIONS

The rational maps in A form, up to Mobius trans-
formation, a one-parameter family given by:

(3t —2)2% — (¢t* — 3t> + 5t — 2)(3z — 2)

(3t —2)z3 —t3(32 — 2)
(t—1)*(t+2)(3z —2)
(3t —2)2% —t3(32 — 2)’

with the parameter t € C—{—2, 2,1}. Here 0, 00,1,
correspond to w,x,y, z; in other words, 0 is a free

Fi(z) =
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double critical point, co and 1 are two simple critical
points, with orbit co +— 1+ ¢ +— oo.

Figure 7 shows the ¢-plane in the window —5 <
Ret <5, =5 < Imt < 5, and then again under
magnification near the point t = —2.

We first describe several major hyperbolic compo-
nents. The unique unbounded light grey component
consists of t-values such that 0 is in the immediate

basin of oo for F;. The central dark grey component
G consists of ¢ values such that 0 is in the immedi-
ate basin of ¢ for F;. The largest black component B
symimetric with respect to R represents ¢ values such
that 0 is in the immediate basin of 1 for F;. Note
that 0 € G and the degenerate parameter ¢ = 1 is
in B. (In the zoom-in of Figure 8 the set G touches
the left edge and B touches the right edge.)

FIGURE 7. The family {F;}. On the top left is the region —5 < Re t < 5, =5 < Im ¢t < 5. The remaining panes
zoom in at —2 with increasingly greater magnifications. In each case, white pixels represent values of ¢ for which
the orbit {F*(0)} is not attracted by the orbit of co. We color a t-value light grey, dark grey, or black if F°2(0),
EPPTH0), FPPT2(0), respectively, is contained in the basin of oo, for some integer p > 0.
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FIGURE 8. The family {F}} near the point 2.

There are four “simplest” (but not always largest)
white components, defined as follows.

There are four distinguished ¢-values for which 0
is fixed under F;. They are the solutions of #* —
3t? + 5t —2 = 0. Two of them, denoted t,,#, with
t; < t, are real, and two, denoted by t3,t, with
Imts; > 0, are complex conjugate. For ¢ = 1,2, 3,4,
the polynomial F;, is conjugate to P;.

Denote by W, the white component containing
t;, for 1 = 1,2,3,4. Then W, is the largest white
component on the left of G. The boundary of W;
has two cusps, the right one corresponding to the
left corner of Figure 7, top right. The set W5 is the
largest white component sitting between G and B.
Figure 8 gives a closer look of it. The boundary of
W, has three cusps, with the unique real cusp at
the degenerate parameter ¢t = % W3 and W, are
the two big white components above and below B.
Their boundaries have two cusps.

We now give an interpretation of our result about
matings. Define

M;={aecC|gl(0) A o0 as n— oo}
(see Figure 9) and
M' ={a € C | g, is postcritically finite } C M.
Recall that, for 1 = 1,2, 3,4, we defined
A;={aeM'|g, and P, are matable }.

FIGURE 9. The connected locus of the family 23 + a.

For a € A; the mating g, 1L P; is weakly equiv-
alent to Fy,; for a unique ¢t = t(a,i) (Theorem
1.1 of Thurston). In particular, for a« = 0, we have
go LL P, ~ F;, for ¢ =1,2,3,4. We denote by m,; the
mapping A; — C, a — t(a,i). Therefore m;(0) =
t, e W,

Theorem 2.6 shows that A; = A4, = M’. Denote
by L, the limb of M; with internal angle ¢ and by
Yar, (0) the landing point in Mj; (if it exists) of the
external ray of angle #. Then (as proved in the case
of the Mandelbrot set) L3z coincides with the set of
a € M; such that 2~ .

Theorem 2.5 shows A, C M' — L3 and we conjec-
ture that A, = M' — Ls.

The set A; is dealt with by Theorem 2.2.

Similarly to the study of the Mandelbrot set, one
can show that vy, (55) = v, (55), it is a root of
a hyperbolic component W (c) with center ¢ as in
Section 2C and ur, (&) is the other root of W(c).

26
Next, if we denote by Lz o the component of

Mz —{vu, (%),f}/M3 (%)} containing ¢ and by M (c)
the small copy of Mj; centered at ¢, then ¢ € W(c) C

M(c) C Lz s, the set M(c) corresponds to the set
2626

3 : 7 9
of a such that g; is renormalizable and 5z ~,, 5,

and the set L%,% corresponds to the set of a € M,
7 9
such that 55 ~g, 5.
Furthermore, the union of the internal rays of
W(c) with angles 0 and 1/2 separates L o into

9
26
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two halves, named by L% 5 and L% 2 respectively,
with the last one containing var, (1).
Condition 4 of Theorem 2.2 corresponds to

Lz o =1L
2626
We conjecture that Ay = M'— Lz o ULz 10. Con-

2626 G226
dition 3 of Theorem 2.2 corresponds to

M'N(M(e)UM(c)ULs o ULy is),

726

UL
26

19
726

and Theorem 2.2 shows that

Ay CM —(M(c)UM(c)UL ULy ).

Condition 5 is more difficult to describe. One
can show, however, that any a in the segment from
0 to 'YMs(%) has topological entropy smaller than
log(1(1++/5)), and therefore, by Theorem 2.2, is
in A;.

Our computer observation strongly suggests that
the mappings m; are continuous and can be ex-
tended to a considerably large and connected subset
of Mjz. Moreover it seems that my(Lz) = ms(Lsz)
and my (L1 — L') = my(—(Ly — L')). Using shared
mating techniques, we can actually show that

ma(Lg N M) € my (M),
m2(L% ﬂM') C mg(Ml),
m4(L% ﬂM') C mg(M’).

8 9
2626

The period-two hyperbolic component D of M;
attached to the main component W, with internal
angle % does not seem to have a corresponding image
(under my) attached to W,. We think that t = 2
corresponds to the cutting point (or the root) of
D of M. This supports the conjecture that A, =
M'—Ls;.

The degenerate parameter ¢ = —2 is much more
mysterious. The component W; looks very much
like W,,. However there is a period 2 component W, ,
which is attached to W) at two points, each corre-
sponding to a root of W, ». This suggests that W ,
can be considered as a self shared mating, and can
be indeed proved. The point ¢ = —2 is surrounded
by Wi, and W; (see the zoom-ins in Figure 7), and
we see no white component attached to t = —2.

This is the first time in our experience that we see
a singularity in an analytic family which is not on
the boundary of any structurally stable component.
We think that this should be related to the presence
of non Levy cycle obstructions in A.

There is another way to construct rational maps
from polynomials, named by ‘captures’. It has been
intensively studied by B. Wittner, M. Rees, J. Head,
Tan Lei and others. For the precise definition see
[Tan 1997]. It is farely easy to show that, for a
postcritically finite map F3, if the basins of z, y and
z are attached at a common fixed point, then F; is
equivalent to either a mating or a capture. One may
ask if this is still true for any postcritically finite F}
(it is indeed the case for cubic Newton maps; see
[Tan 1997]). Note that our family {¥;} is somewhat
similar to the family of quadratic rational maps with
one critical point three-periodic (they both have one
free critical point and a period-three orbit contain-
ing the remaining critical points). We therefore be-
lieve that, as known in the quadratic family due to
Wittner, there are maps in the form of F; with w
periodic and not equivalent to a mating (they are
by definition not equivalent to a capture).
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