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We define the regular immersed projective solution space for

a triangulated 3-manifold, and completely determine it for the

figure-8 knot complement. We show that there is a close rela-

tionship between vertices of this polytope and normal surfaces

of a particularly simple form immersed in the manifold.

1. INTRODUCTIONImmersed normal surface theory has been the sub-ject of considerable interest recently, as a meansof extending the techniques and results of \clas-sical" (embedded) normal surface theory to non-Haken manifolds. However, progress has been lim-ited by a dearth of examples and results. This pa-per, which builds on the work in [Rannard 1999], de-termines the \large-scale" distribution of immersednormal surfaces in a particular example, the �gure-8knot complement, using methods that apply to arbi-trary manifolds. For another approach to immersednormal surface theory see [Letscher 1997].
2. NORMAL SURFACE THEORY FOR THE FIGURE-8

KNOT COMPLEMENTWe begin by describing normal surface theory as ap-plied to the �gure-8 knot complement. We refer thereader to [Hemion 1992; Jaco and Tollefson 1995]for the theory in its full generality.Let M8 be the �gure-8 knot complement, and Tbe the canonical ideal triangulation of M8 given in[Thurston 1997]. We can form T by taking twotetrahedra T1 and T2 and identifying the faces soas to match the edges as shown in Figure 1, andthen deleting the single vertex:We see that T has two edges and four faces. Wemay view M8 as a hyperbolic manifold with a singlecusp. The link of the deleted vertex of T is a torus.
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FIGURE 1. Ideal triangulation of the �gure-8 knotcomplement.Any incompressible surface in a given triangu-lated manifold may be isotoped (or homotoped incase of an immersed incompressible surface) to meetthe triangulation in a set of disks of a special typecalled normal disks. For more detailed discussionson the theory of normal surfaces, see [Hemion 1992].
Definition 2.1. A normal arc in a tetrahedron T isan arc properly embedded on a face of T whose twoendpoints are on distinct edges of the face. A normaldisk in T is a disk properly embedded in T thatintersects each face of T in at most one normal arc.It is easy to see that a normal disk in T is either
1. a triangle cutting o� a vertex, or
2. a quadrilateral separating a pair of verticeswhose boundary edges are normal arcs. Normaldisks of the �rst type are called T-disks, and thoseof the second are called Q-disks.
Definition 2.2. A normal surface in a triangulated 3-manifold M is an immersed surface that meets eachtetrahedron in a set of normal disks. (A normalsurface need not be connected or orientable.)
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FIGURE 2. Normal disks in M8.

Some edges of one tetrahedron T may actually bethe same edge inM after the faces of the tetrahedraare identi�ed (e.g., inM8, there are only two distinctedges). This may cause some normal arcs to beginand end on the same edge after the identi�cation (asseen in M8). Similarly, it is possible that a normaldisk is not embedded but two of its edges are gluedtogether. These phenomena do not a�ect our theory.The normal disks for M8 are shown in Figure 2.There are 7 such disks in each tetrahedron, making14 in total. To each normal surface, we associatethe vector(t1; t2; t3; t4; q1; q2; q3; t01; t02; t03; t04; q01; q02; q03) 2 Z 14where ti (qi) is the number of normal disks of typeTi (Qi). The �rst seven belong to T1, and the lastseven to T2. Each 14-tuple with nonnegative integerentries is called a class.Suppose we try to reverse this operation, and askwhat classes can correspond to surfaces in M8. Theclass must satisfy some equations, called the match-ing equations : for each normal arc on each face of T ,the number of normal disks meeting the face in thatarc must be equal on each side of the face. (Thisis true even if a face of a tetrahedron T is glued toanother face of T; the matching equations still givea necessary condition.) In M8, there are 12 match-ing equations, de�ning a cone of Z 14, which we callthe solution space. ForM8, this is the intersection ofthe positive coordinate half-planes and the subspacespanned by the vectorsA = (1; 1; 1; 1; 0; 0; 0; 1; 1; 1; 1; 0; 0; 0);B = (0; 0; 0; 0; 1; 1; 1; 0; 0; 0; 0; 1; 1; 1);C = (0; 0; 1; 1; 1; 0; 2; 0; 0; 1; 1; 1; 0; 2);D = (1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1):Given a vector v = (v1; : : : ; v14) in the solutionspace, we de�ne the projectivization of v to be thevector [v] = 1P14i=1 vi (v1; : : : ; v14):Geometrically, this corresponds to projecting thevector v onto the codimension 1 hyperplane de�nedby the equation x1 + � � �+ x14 = 1:
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The set of all vectors that project to the same pro-jectivized vector is called a projective class. The setof all projective classes is called the projective so-lution space and denoted P. We can visualize P asthe intersection of the normal solution space withthe codimension 1 hyperplane x1 + � � �+ x14 = 1.This projection both simpli�es the space we seekand eliminate redundancy; for example, doubling asurface (making a parallel copy of a given surface)does not change the projective class while the classitself gets doubled. Clearly the projective solutionspace has dimension one less than the normal so-lution space; in this case it has dimension 3. Jacoand Rubinstein [1987] showed in that, for immersedsurfaces in M8, P is the three-dimensional solid oc-tahedron with vertices the classes [A], [B], [C], [C 0],[D], [D0], where C 0 and D0 are de�ned in the nextlemma (shown in Figure 3 and described below).The idea is as follows: clearly, [A] and [B] are inde-pendent, so pick two distinct points in R 3 arbitrar-ily. [C] and [C 0] must then be chosen such that theysatisfy the identity C + C 0 = A + 2B. This meansthat the midpoint between [C] and [C 0] must be thepoint on the segment from [A] and [B] that repre-sents the class A + 2B (which, by the way, is nottwo-thirds of the way from A to B because of theprojectivization). In other words, [A], [B], [C], and[C 0] are coplanar and generates a symmetric quadri-lateral. The points [D] and [D0] are not on thisplane but need to be chosen so that the equationD+D0 = A+B holds. So the segment between [D]and [D0] passes through a point close to the center ofthe quadrilateral created by [A], [B], [C], and [C 0].Now, the symmetries between [C] and [C 0] and be-tween [D] and [D0] must be reected in this objectP, so the space is a symmetric octahedron in the3-dimensional space, as claimed above. The sym-metry group of P, then, is isomorphic to Z 2 � Z 2,with one generator ipping [C] and [C 0], the otheripping [D] and [D0].A vertex solution is a vector V in the solutionspace that projects to a vertex of P. The follow-ing result from [Jaco and Tollefson 1995] gives analgebraic characterization of vertex solutions.
Lemma 2.3. If a vector V is a vertex solution, thenthe only solutions A;B to the equation mV = A+Bare such that A and B are themselves multiples of V .
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FIGURE 3. The projective solution space P.The vertices of P are the projectivizations of theclassesA = (1; 1; 1; 1; 0; 0; 0; 1; 1; 1; 1; 0; 0; 0);B = (0; 0; 0; 0; 1; 1; 1; 0; 0; 0; 0; 1; 1; 1);C = (0; 0; 1; 1; 1; 0; 2; 0; 0; 1; 1; 1; 0; 2);C 0 = (1; 1; 0; 0; 1; 2; 0; 1; 1; 0; 0; 1; 2; 0);D = (1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1);D0 = (0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 0; 0; 0):These may be interpreted geometrically as fol-lows:� A consists of one each of all the T-disks. It is thelink of the vertex, the torus neighborhood of the�gure-8 knot.� B consists of one each of all the Q-disks.� C and C 0 are related by an involution �1 of M8that respects the triangulation.� D consists of one each of the T-disks in the �rsttetrahedron together with one each of the Q-disksin the second tetrahedron. D and D0 are relatedby a second involution �2 of M8 that respects T .These vectors are linearly dependent, with the iden-tities mentioned in the description of the shape ofP; six vectors are required because no negative co-ordinates are allowed in these solution vectors.We can picture P standing in R 3 with [A] as thetop vertex, [B] as the bottom vertex (and these twoare on the z-axis), and [C] and [C 0] extending tothe y-direction and [D] and [D0] on the x-axis (seeFigure 3). This space has natural symmetries (invo-lutions) with respect to the x; z-plane and the y; z-plane. Note that we do not say that [C] and [C 0] are
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on the y-axis because P is not a regular octahedronand these two vertices are actually slightly \lower"than [D] and [D0]. We will make this concept moreprecise in Section 6.The notion of projective solution spaces has beenextensively studied; it proved to be a very powerfultool in [Jaco and Oertel 1984]; it is further discussedin [Tollefson and Wang 1996; Jaco and Tollefson1995], and, more recently, [Tollefson 1998], in whichthe theory was developed using only the Q-disks.These papers suggest the importance of the verticesof P in normal surface theory.Note that, while one can add two proper classes(say V and V 0) simply as vectors, the sum of twoprojective classes [V ] and [V 0] is not de�ned. Rather,all the points on P between [V ] and [V 0] are de-scribed in the form k[V ] + (1� k)[V 0] for some k 2(0; 1)\Q . The set of all such points on P will be re-ferred to as the open segment between [V ] and [V 0]on P and denoted V V 0. One must also rememberthat, since these 6 \basis" vectors do not have thesame number of disks, the projection is not \linear"in general, i.e.,[mV + nV 0] 6= mm+ n [V ] + nm+ n [V 0]:As real vectors, [A] = 18A, [B] = 16B, [C] = 110C,and so forth. Hence, for instance, [A+B] is not themidpoint of [A] and [B], but [A+B] = 47 [A] + 37 [B]:Similarly, it is easy to verify that[5D+D0] = 1121 [A+2D] + 1021 [B+2D];12([C+3D] + [C 0+3D]) = 1131 [A+2D] + 2031 [B+2D]:In particular, these equations show the following,which will be used later (see Figure 4).
Lemma 2.4. On the projective solution space P, thepoints [A+2D], [B+2D], and [5D+D0] are collinear ,and these points are coplanar with [C + 3D] and[C 0 + 3D].
3. THE REGULAR PROJECTIVE SOLUTION SPACEEvery vector in the solution space may be repre-sented as a collection of normal disks glued together,but this 2-dimensional structure is not necessarilyan immersed surface. If a vector represents the setof normal disks produced when an immersed surfacemeets the tetrahedra ofM8, then it is called regular.
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FIGURE 4. Around vertex [D] of P.Irregular vectors correspond to collections of normaldisks that cannot be glued together to give a surface.Irregular vectors exist in the solution space of M8,and the central focus of this paper is to determineexactly which points of P represent regular classes.At this point, it is helpful to introduce the dualstructure of a 2-complex (X;G) determined by aclass X of normal disks (in the solution space) and agiven gluing G. Pick the center point of each normaldisk of X, and join two such points via a line seg-ment (called a dual edge) if and only if the two nor-mal disks share a common edge (i.e., glued togetherby G). See Figure 5, which shows this structure forM8. If one begins at the center point p of some nor-mal disk D (Qa in the �gure) of X, proceeds to one
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FIGURE 5. An edge disk. A dual loop (the thick solidline) is made up of 6 dual edges. The vertical dashedline is an edge of the triangulation.
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FIGURE 6. A typical branch point of order 2.of the two adjacent normal disks sharing a vertexq of D (i.e., Tb or Tf ) and continues to move alongthe dual edge surrounding q, eventually one returnsto p, but perhaps after going around q more thanonce. The resulting path, a loop about q, is called adual loop, and the compact polygon bounded by it iscalled a dual disk. (Hence, (X;G) can be thought ofas a union of these dual disks glued together alongthe dual edges.) This leads to the following de�ni-tion.
Definition 3.1. If a dual loop goes around a vertex qof (X;G) exactly once, then the corresponding dualdisk is called an edge disk ; otherwise, q is called abranch point of (X;G).Figure 6 shows a typical branch point of order 2.Clearly, the 2-complex (X;G) is an immersed normalsurface if and only if every dual disk is an edge disk(see Figure 5). Note that an edge disk need not beembedded in the manifold, as before. The numberof sides of this polygon obviously coincides with thedegree of the edge, so it is possible to have a 1-gonor a 2-gon as an edge disk (although this does nothappen in M8 since all edges have degree 6). Alsoobserve that each normal disk of X is now subdi-vided into 3 or 4 quadrilaterals (3 for a T-disk, 4 fora Q-disk), each corresponding to a \corner" of theoriginal T- or Q-disk. It is convenient to refer tothese corners as T-corners and Q-corners, respec-tively, as we will see in the lemma below.An example of an irregular vector is D, consistingof four T-disks of di�erent types in one tetrahedronand three Q-disks of di�erent types in the other.

One can easily verify (see the remark after the fol-lowing lemma) that there is only one way to glue the7 normal disks of D together, which forces the disksto meet each edge of M8 at a single point. In fact,it is evident that both of these points are branchpoints of order 2.More generally:
Lemma 3.2 [Aitchison et al. 1998]. If S is a normalsurface immersed in a triangulated manifold , viewedas the pre-image of the immersion (thus decomposedinto T-disks and Q-disks), then each vertex of S hasan even number of Q-corners around it .Note that we cannot say an \even number of Q-disks" since they may be di�erent corners of oneQ-disk.For the class D (and all its multiples), since the�rst tetrahedron can supply only T-disks and thesecond only Q-disks, as one goes around an edge(of the triangulation) to construct a dual disk, theT- and the Q-disks must alternate. But since thedegree is 6, one gets exactly 3 disks of each type,which shows whyD is irregular (as well as why everyvertex of this 2-complex is a branch point as assertedabove).
Definition 3.3. A projective class [V ] is regular ifthere is some regular class that projects to [V ]. Oth-erwise, it is said to be irregular. The regular projec-tive solution space R is the set of all regular projec-tive classes in P.The regular projective solution space R is a con-vex sub-polytope of the projective solution space P,since any linear combination of two regular classesrepresents a set of disconnected immersed surfaces.Note that points on the boundary of R need not apriori be in R itself. However, we will show that, atleast for M8, R is a compact space.Section 5 deals with �nding the shape of R. Be-cause of the two symmetries mentioned in Section 2,we need to consider only the subpolytope enclosed inthe tetrahedron with vertices A, B, C, and D. Thevertices A, B, and C are all regular [Rannard 1999],but as noted above, D projects to an irregular point.Since R is convex, there will be \critical points" onthe edges connecting [D] with the other three ver-tices of P marking the closest point a vector canbe to [D] without losing regularity. It is this ques-
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tion of \truncation" around [D] (and [D0]) that iscentral to determining the shape of R for immersedsurfaces in M8. In the following sections, we will in-troduce various techniques in search of the solutionto this problem. First, in Section 4, we introduce analternative normal surface theory dual to the stan-dard theory described in Section 2. In Section 5we give our main result|the complete descriptionof R for the �gure-8 knot complement|which weobtained by applying the theories of Sections 2 and4 using a computer. The last two sections of thispaper present some geometric interpretations of thepositions of the vertices.
4. DUAL NORMAL SURFACE THEORYSince a regular surface meets the 1-skeleton of M8only in edge disks, it is natural to reverse the pro-cess and try to construct normal surfaces out ofedge disks, instead of normal disks. We call thisapproach dual normal surface theory and develop itanalogously to the standard normal surface theory.First, we construct all the possible edge disks.The following lemma suggests the large number ofpossibilities we must consider.
Lemma 4.1. There are 128 possible edge disks for M8,64 about each edge.
Proof. Pick an edge e of M8 and picture 6 tetrahe-dra around e, as in the universal cover of M8. Fixone of the tetrahedra as �1 and label the others as�2; �3; : : : ; �6, in order (say counterclockwise). Now,in �1, there are two T-disks and two Q-disks thatintersect e. This yields 4 possibilities in �1 for anedge disk around e. Now, any one of these 4 disksgives rise to a normal arc in the face of �2 glued to�1, along which either a unique Q-disk or a uniqueT-disk in �2 can be glued. Once this is �xed, thesame is true for �3; �4, and �5. So we have counted4�24 = 64 possible edge disks around e. Since everyedge disk must have an even number of Q-corners,these 5 disks (or more precisely, the 5 corners) de-termine whether the corner in �6 must be a Q-corneror a T-corner. Hence, there is only one choice for�6, yielding 64 possible edge disks around e. Do thesame with the other edge of M8. Hence, there are128 edge disks in total. �

FIGURE 7. A normal surface viewed simultaneouslyas a set of normal disks glued together (solid lines)and as a set of edge disks glued together (dashedlines).
This list of 128 edge disks was �rst created by handby the �rst author and later veri�ed by a programwritten by the second author. Once the completeset of edge disks was generated, each edge disk wasassigned a number.When a regular surface is split up into a collec-tion of edge disks, we see that two adjacent edgedisks meet in a pair of normal disks (if a face ofa tetrahedron is glued to another face of the sametetrahedron, an edge disk may join to itself{but thisdoes not happen in M8) sharing a common edge.See Figures 7 and 8.
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FIGURE 8. Two adjacent edge disks meeting in anarc. The boundary of the edge disks are drawn withdashed lines.
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Moreover, for each such pair of normal disks, thenumber of edge disks coming from one side mustequal the number coming from the other. We obtaina set of equations, the dual matching equations, asa necessary condition for the surface to exist. Eachpair of adjacent normal disks (normal disks whichshare a common edge) produces a dual matchingequation, analogously to the way each normal arcgives rise to a matching equation in standard normalsurface theory.As in the standard normal surface theory, we iden-tify each type of edge disk with a coordinate of avector space over R , so the dual matching equationsde�ne a subspace. The set of vectors in this sub-space with all coordinates nonnegative is the dualsolution space. Unfortunately, not every vector inthe dual solution space need correspond to a regu-lar surface, as shown below.Since every regular surface is represented by a vec-tor in both the standard normal solution space andthe dual normal solution space, the question arisesas to the relationship between these two vectors aswell the two spaces. There is a natural linear mapU from the dual solution space to the standard solu-tion space that answers part of this question, givenas follows. Each edge disk ei is composed of cor-ners of a �xed set of normal disks, say wi1 ; : : : ; wiq .The image of ei under the linear map is the vectorrepresenting 1d1w1 + � � �+ 1dqwq;where di = 3 if wi is a T-disk and di = 4 if wi is aQ-disk, as shown in Figure 9.We extend this to a map U on the whole dualsolution space by linearity, which we call the dual-to-standard map.

The image of the dual solution space under thedual-to-standard map is a cone, which we may con-vert into a polytope by intersecting the image of thedual solution space with the same hyperplane as instandard normal surface theory. We shall examinemethods of computing this polytope in a subsequentsection.Another natural linear map derives from the fol-lowing. Suppose an edge disk is described as[L1; L2; L3; L4; L5; L6];where the Li represent particular normal disk types(whose corners make up the edge disks). We canreplace each Li by either a \Q" or \T" depend-ing on whether it represents a Q-disk or a T-disk.In other words, one goes around the edge disk andwrites down a \Q" if one comes to a Q-corner anda \T" if a T-corner. An example of such a nota-tion is QQQTQT. Two edge disks are combinatori-ally equivalent if their symbols are the same up torotation and reection. For immersed surfaces inM8, there are 8 equivalance classes; see [Aitchisonet al. 1998]. These 8 possible combinatorial types foredge disks are referred to as vertex types in [Aitchi-son et al. 1998], but we shall call them edge disktypes here. We say a normal surface S is homo-geneous if all its edge disks are of the same edgetype (combinatorially equivalent), and a point inR (i.e., a projectivized normal surface) is a homo-geneous class if a homogeneous surface projects toit. As before, we can associate each combinatorialequivalence class of edge disks with a coordinate ofa (8-dimensional) vector space, and construct thecanonical projection. The image of the dual solu-tion space under this map is a cone, which we mayconvert once again into a polytope by intersecting
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FIGURE 9. The action of the \dual-to-standard" map U on an edge disk.
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this image with a hyperplane as in standard normalsurface theory. Homogeneous surfaces clearly corre-spond to vertices of this polytope. For the �gure-8knot complement, the vertices of this polytope havea strong connection with the vertices of the regularsolution space, as outlined in Section 6. This poly-tope seems to be an interesting object, but we willnot study it in detail in this paper; however, the fol-lowing remarks seem appropriate to conclude thissection.We mentioned previously that not every vector inthe dual solution space need correspond to a regu-lar surface. It may happen that a set of edge disksmatch up along their boundaries, but the corners ofthe edge disks (corresponding to normal disks) don'tmatch up to give a disk. This situation is analogousto the formation of branch points in the standardnormal surface theory, so we call it a dual branchpoint. At a dual branch point a normal disk is re-placed by some branched cyclic cover of the normaldisk over its center.An example of a case where a dual branch pointmust occur is the following. In [Aitchison et al. 1998]it is shown that the edge disk type QTTQTT can-not have homogeneous surfaces. However, there isa solution to the dual matching equations involv-ing only edge disks of this type. As this solutioncannot correspond to a normal surface, dual branchpoints will occur whenever the edge disks of the so-lution are glued together. The same is true for theedge disk type QQQQTT. Curiously, however, ineach case the image of the dual solution under themap to the normal solution space is a regular class.This implies that the edge disks can be cut up alongnormal arcs and reglued to give a regular surface.In other words, although this map U is very usefulfor practical computations (as we shall see in thefollowing section), some nontrivial information getslost by this map as well.
5. DETERMINING THE REGULAR PROJECTIVE

SOLUTION SPACE R FOR THE FIGURE-8 KNOT
COMPLEMENTTo determine R, we �rst �nd a set of points knownto be regular, and then show that all points outsidethe convex hull of this set are irregular. We makegreat use of the fact that R is convex.

The �rst step is accomplished by referring to theresults in [Rannard 1999], the results of a computersearch for regular surfaces using the Magma compu-tational algebra system [Bosma et al. 1997]. Fromthis we know that the classes [A], [B], [C], [A+2D],[B + 2D] and [C + 2D] are regular. The classes[C 0], [A+2D0], [B+2D0], [C +2D0], [C 0 +2D], and[C 0 + 2D0] are then regular by symmetry.To show that points outside the convex hull areirregular, we use the fact that all regular vectorsmust lie inside the image of the dual solution spaceunder U .We now show how to compute this image. Onepotential method is to consider the standard nor-mal solution space as a subspace of the dual solu-tion space, and write the dual-to-standard map asthe product of a bijective linear map with a pro-jection onto this subspace. Then we could deter-mine the image by using Fourier{Motzkin elimina-tion on the dual matching equations and the in-equalities xi � 0, where the xi are the dual coordi-nates. However, for (M8; T ) the di�erence in dimen-sion between the normal solution space and the dualsolution space was very large (4-dimensional versus101-dimensional) and the number of intermediatevertices generated by Fourier{Motzkin eliminationrises beyond the storage capacity of our computers,making this method infeasible. Instead we proceedby converting the question into a linear program-ming problem.As noted in Section 3, R is obtained from P bytruncating the vertices [D] and [D0]. Knowing thatR is convex, we can determine the truncation by�nding the maximum value of the rational parame-ter t such that [V +tD] is regular, for various classes[V ]. Our method is to view t as the objective func-tion in a linear programming problem.The dual solution space and the dual-to-standardmap are both linear. We can form the vector space0@vector spacespanned byedge disks
1A�0@vector spacespanned bynormal disks

1A�0@ one-dim.vector spacerepresenting t
1A:

The dual matching equations can be written asa set of linear equations relating the variables fromthe �rst factor, and the normal matching equationscan be written as a set of linear equations among the
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variables of the second factor. The dual-to-standardmap can be written as a set of linear equations relat-ing the variables in the �rst and second factors. Theequation V (t) = [X + tD] can be written as a set oflinear equations relating the second and third fac-tors, with some constants. The whole set of linearequations can be gathered together and writtenM y = z; y � 0where y and z are vectors, and t occurs only as alinear factor. Our problem, as illustrated in Figure10, can now be formulated as:Maximize t subject to the constraints M y = z,y � 0.

D X

X + tD

standard projective solution space

image of dual
solution space

FIGURE 10. Finding the value of t for which [X+tD]moves out of the image of the dual solution spaceunder the dual-to-standard map.To implement this method, we have written aMathematica �le containing the following data:� A list of 143 variables, labelled x1; : : : ; x143. The�rst 128 variables x1; : : : ; x128 correspond to theedge disks for (M8; T ), the next 14 variables x129,. . . , x142 correspond to the 14 normal disks, andthe �nal variable x143 represents the parameter tto be maximized;� The dual matching equations, expressed as a setof linear equations in x1; : : : ; x128;� The normal matching equations, expressed as aset of linear equations in x129; : : : ; x142;� The dual-to-standard map, expressed as a set ofequations giving each of x129; : : : ; x142 as a linearcombination of x1; : : : ; x128;� A set of equations giving each of x129; : : : ; x142 interms of x143 and constants, representing the factthat we are looking for the vector [X + tD].

To calculate the image of the dual solution space un-der the dual-to-standard map we use the LinearPro-grammaing function in Mathematica, which solvesthe linear programming problem above. The ob-jective function is x143, which is maximized subjectto the linear equations in the �le. All the variablesare kept nonnegative automatically. Coe�cients aregiven as integers or fractions and all arithmetic isexact, avoiding roundo� errors or approximations.In general the resulting values for x1; : : : ; x143 willbe nonintegral rational numbers, which become so-lution vectors after multiplying by a suitable largeinteger. This is not a problem since such vectors stillproject to points in the projective solution space.The results are as follows:
Theorem 5.1. The regular projective solution space Ris the convex hull of the points [A], [B], [C], [C 0],[A+2D], [B+2D], [A+2D0], [B+2D0], [C+2D],[C+2D0], [C 0+2D], and [C 0+2D0].
Proof. We use the method outlined above. Note �rstthat of the six vertices of P only [D] and [D0] areirregular. Using the process described above, we�nd that the classes [A+tD], [B+tD], and [C+tD]are irregular for t > 2. The same process shows theclass [D0 + tD] is irregular for t > 5, and hence byLemma 2.4 the entire segment between [A + 2D]and [B + 2D] is in the boundary of R. Finally, theclass [A + B + C + tD] is found to be irregular fort > 6. We know [A + B + C + 6D] is regular sinceA+B+C+6D = (A+2D)+(B+2D)+(C+2D).The result then follows by the convexity of R, thesymmetries of R and the regularity of the vertices[A], [B] and [C]. �The regular projective solution space R is shown inFigure 11.A few questions naturally arise from this result.First, one can ask whether or not the regular pro-jective solution space is strictly smaller than the im-age of the dual-to-standard map. In other words, isthere a solution V to the dual matching equationssuch that U(V ) does not satisfy the normal match-ing equations? As explained above, our methodcombines and solves the two sets of matching equa-tions simultaneously and thus does not address thisquestion in particular. We stated, at the end ofSection 4, that there are solutions to the dual equa-
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[C 0+2D][C+2D]
[A+2D0]
[B+2D0]
[C 0+2D0][C+2D0]

FIGURE 11. The regular projective solution space ofthe triangulated manifoled (M8; T ).tions that we know are irregular; however, these aremapped by U to regular classes.Another, perhaps more important, question is thefollowing: is the regular projective solution spaceof a given triangulated manifold completely deter-mined (as in the case of M8) by the intersection ofthe image under the map U of the dual solutionspace with the projective solution space? These twosystems of equations give a lot of information, socertainly this is a possibility.One by-product we obtain from the theorem is thefollowing rather interesting result on what is referredto as virtually regular classes in [Rannard 1999].
Definition 5.2. A class is called virtually regular ifsome integer multiple of that class is regular.Obviously the set of regular classes is a subset of theset of virtually regular classes.
Corollary 5.3. If V is a virtually regular class in M8,then its double 2V is regular .
Proof. Suppose V is a virtually regular vector. Usingthe identities C+C 0 = A+2B and D+D0 = A+B,we can write V in one of four forms: V = v1A +v2B + v3C + v4D, V = v1A + v2B + v3C + v4D0,V = v1A+ v2B + v3C 0 + v4D, or V = v1A+ v2B +v3C 0 + v4D0. By symmetry we need show the resultonly with one form; here we use the �rst.

Doubling both sides of the equation gives 2V =2v1A + 2v2B + 2v3C + 2v4D. We proceed to col-lect multiples of A + 2D. If 2v1 � v4, the result isclearly the sum of two regular vectors, so we can gluethe normal disks of 2V together to give the (discon-nected) sum of (at least) two regular surfaces. Oth-erwise, we have the equation 2V = 2v2B + 2v3C +2(v4 � 2v1)D + 2v1(A+ 2D).We now repeat the process for 2(B + 2D) and2(C + 2D). If v4 is even, we obtain2V = 2(v4�2(v1+v2+v3))D+(something regular):The restriction on the shape of the regular projectivesolution space R means v4 � 2(v1+ v2+ v3). If v4 isodd, the result may contain the term 2D; however,if this occurs, the inequalities de�ning R imply therewill always be a term 2B or 2C present. As we know(2B + 2D) and (2C + 2D) are both regular from[Rannard 1999], we conclude that 2V is regular. �
6. HOMOGENEOUS SURFACES AND VERTICES OF RThere is a close relationship between the vertices ofR and homogeneous surfaces in the standard solu-tion space. In this section we examine this relation-ship more closely, and o�er some alternative proofsof parts of Theorem 5.1 that illuminate the geom-etry of the situation and give more information onthe surfaces in various classes.
Definition 6.1. Let V be a regular class, and let jQV jand jTV j be the numbers of Q-disks and T-disks inV , respectively. De�ne the vertex angle ratio of Vto be rV = 3jTV j4jQV j ;which is the ratio of the number of T-corners to thenumber of Q-corners. We set rV =1 if jQV j = 0.Note that this ratio is well-de�ned on the projectiveclass, so we may write rV to mean r[V ]. It is easyto observe that this ratio monotonically increasesfrom 0 to 1 as the class moves from [B] up to [A].In other words, we have de�ned a \height function"r:P ! R + [ f1g. The inverse image of some pos-itive rational number under r is a at \horizontal"surface through P. This map can be generalizedto the solution space of any cell complex, as three-quarters of the ratio of the total number of Q-disksto the total number of T-disks.
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Since each edge disk of an immersed normal sur-face must have an even number of Q-corners, i.e., 6,4, 2, or 0, it is easy to see the following:
Lemma 6.2. If V is a homogeneous class , then rVmust be 0; 12 ; 2, or 1.Hence, all homogeneous surfaces occur at the ex-treme points [A]; [B], and at only two levels (2 and12) of P.We will now use this result to �nd homogeneousclasses. We begin with the vertices of P. We alreadyknow [D] and [D0] are not regular. On the otherhand, rA =1; rB = 0; rC = rC0 = 12 ;so C and C 0 could be homogeneous. Indeed, itis shown in [Aitchison et al. 1998] that they are.The computer program of [Rannard 1999] has ver-i�ed that the proper class C has 13 surfaces alto-gether, and one of them (S7 of the type QQTQQTin [Aitchison et al. 1998]) is homogeneous.Next, we look at the classes of the form m[V1] +(1�m)[V2], m 2 (0; 1) \ Q , where the Vi are the 6vertices of P (the open segment V1V2).It is straightforward to check that on the open seg-ment AB, there are only two homogeneous classes.This follows from the fact that if [V ] = [mA+ nB],where m; n � 1, then rV = 12 only when [V ] =[A+2B], and rV = 2 only when [V ] = [2A+B]. Thefact that they are homogeneous is shown in [Aitchi-son et al. 1998]. Similarly, on AC, [3A+ 2C] is theonly possible homogeneous class (with rV = 2), butno surface has been explicitly found in this class.Since [A], [B], [C] and [C 0] are known to be reg-ular, the above mentioned classes do not contributeto �nding new vertices of R. To determine the trun-cation around [D] and [D0], we now look at the edgesinvolving [D].
Theorem 6.3. The following is true concerning P.
1. On the open segment AD, [A + 2D] is the onlyhomogeneous class .
2. On the open segment BD, only [B + 2D] is ho-mogeneous .
Proof. For part 1, suppose [V ] = [mA + nD], wherem;n � 1. Then,rV = 3 � 4(2m+ n)4 � 3n = 2m+ nn = 1 + 2mn :

Hence, rV cannot be 12 but is 2 if and only if m=n =12 . Thus, [V ] = [A + 2D] is the only possible class,and this class contains Thurston's surface S3 [Aitchi-son et al. 1998] of the type QTQTTT and thus ishomogeneous.The proof of part 2 is exactly the same. Fig-ure 12 shows a regular surface (found by the secondauthor's program) in the proper class 2(B + 2D),making [B + 2D] a homogeneous class. �Here is an interpretation of the position of two ofthe vertices of R.
Theorem 6.4. The point [�A + �D] is regular if andonly if �=� � 12 . The point [�B + �D] is regular ifand only if �=� � 12 .
Proof. Let S be a regular surface that projects tothe class [�A + �D]. In each edge disk of S therecan be either 0 or 2 Q-corners, since all the Q-disksare in a single tetrahedron. Clearly the ratio �=�will be least when all the edge disks have exactly 2Q-corners. Let t denote the number of T-disks andq the number of Q-disks. Thent = 8�+ 4� and q = 3�from the de�nitions of the classes A and D. If thereare e edge disks, there are 4e T-corners and 2e Q-corners; since each T-disk has 3 corners and eachQ-disk has 4, we �nd8�+ 4�3� = tq � 4e=32e=4 = 83 ;and hence �� � 12 :The class A + 2D corresponds to the case �=� =12 , known to be regular from the program, and bytaking sums of this class with A we may constructa regular class corresponding to any rational value�=�  12 .We use the same argument for classes [�B + �D].If S is a regular surface in such a class, we knoweach edge disk of S can have either 4 or 6 Q-cornersfollowing the reasoning above, and the ratio �� isminimized if all edge disks have 4 Q-corners (i.e., ofthe type QQQTQT since all T-disks come from asingle tetrahedron). De�ning t, q and e as above,we have t = 4�; q = 6� + 3�:
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There are 2e T-corners and 4e Q-corners, so4�6� + 3� = tq � 2e=34e=4 = 23 ;by which we obtain �� � 12 :The equality holds for the class 2B + 4D. As wementioned in Theorem 6.3, there is a (homogeneous)surface (Figure 12) in this class, so the result follows.�
Remark 6.5. This argument actually shows more thanthe regularity: it implies that any surface in [A+2D]and in [B + 2D] must be homogeneous, of the typeQTQTTT and the type QQQTQT, respectively.Another curious fact is that, while the proper class2B+4D is regular, B+2D is known to be irregular;see [Rannard 1999]. It is interesting to investigatehow and why the regularity varies among properclasses projecting to the same point in P.
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FIGURE 12. Homogeneous surface in 2(B + 2D).There are no homogeneous classes in the open seg-ment CD since rV is never 2 or 12 in this segment.

In other words, while homogeneity gave a nice in-terpretation of the vertices of R on AD and BD, itwill not help us understand the vertex on CD.
7. SYMMETRIC CLASSES IN PIn order to study the regularity of classes near [D]and [D0], we examine the 8 edge disk types a littlemore carefully (see Section 4). The following de�ni-tion gives a way of understanding how the characterof the edge disks of a surface close to [D] di�ers fromthose of a surface in the plane containing [A], [C],[B] and [C 0].
Definition 7.1. Let v be an edge disk of a normalsurface immersed in M8. The edge disk type of vis said to be symmetric if the number of Q-cornersat v coming from T1 (i.e., Q1; Q2, and Q3) is equalto the number of Q-corners coming from T2 (i.e.,Q01; Q02, and Q03). Otherwise, the edge disk type isnonsymmetric.It is easy to see that we could use the number ofT-corners in the de�nition instead. It is also trivialto verify that, of the 8 edge disk types possible, allbut the types QQQTQT and QTQTTT are sym-metric. Hence, if all edge disks of a surface S areof the 6 symmetric types, the number of Q-disksfrom T1 is equal to the number of Q-disks from T2,and the same holds for the number of T-disks. Thisobservation gives us the following:
Lemma 7.2. Let S be a normal surface immersed inM8. If all the edge disks of S are of symmetric types ,then S belongs to a class that is a linear combinationof A, B, C, and C 0.
Proof. As noted above, such a surface S has the samenumber of Q-disks (and T-disks) coming from eachTi. If the class (say V ) containing S must have Dor D0, these two numbers will not be equal sinceD = (1 1 1 1 0 0 0 0 0 0 0 1 1 1);D0 = (0 0 0 0 1 1 1 1 1 1 1 0 0 0):This proves the lemma. Note that V may have thesame number ofD andD0, but then the identityD+D0 = A+B allows V to be written as a combinationof A, B, C, and C 0. �For convenience, we introduce some notation. First,we count the number of nonsymmetric edge disks of
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a surface. Let �1 be the number of edge disks ofthe type Q0QQ0TQ0T , where the prime (0) indicatesthat these Q-disks come from T2, and the othersfrom T1. Let �2 be the number of edge disks of thetype QQ0QT 0QT 0. Similarly, let �1 be the numberof edge disks of the type Q0TQ0TT 0T , and �2 thenumber of edge disks of the type QT 0QT 0TT 0. Fori = 1; 2, de�ne qi to be the number of Q-cornersfrom Ti, and ti to be the number of T-corners fromTi. Note the following facts.
Lemma 7.3. Let jQj (and jT j) be the number of Q-disks (and T-disks) in a class V . Then jQj = 14(q1+q2) and jT j = 13(t1+t2). Moreover , q2�q1 = t1�t2 =0 if and only if V is a linear combination of A;B;C;and C 0 only .
Proof. The values of jQj and jT j are obvious. For thelast statement, �rst suppose V is a linear combina-tion of A;B;C, and C 0. Each of these classes hasthe properties that q1 = q2 and t1 = t2, so the classV also has these properties. Conversely, if q1 = q2and t1 = t2 (actually one of these su�ces), thenclearly V cannot have D or D0 (unless, as before,V contains D +D0, which can be written as A+Binstead). �We can now express the number of edge disks asjVj = 4jQj+ 3jT j6 = q1 + q2 + t1 + t26 :
Lemma 7.4. The identityq2 � q1 = t1 � t2 = 2((�1 � �2) + (�1 � �2))holds for any surface S immersed in M8.
Proof. As said before, the di�erence q2 � q1 comesfrom nonsymmetric edge disks only. For each edgedisk of the type Q0QQ0TQ0T , q2 is increased by 3while q1 is increased by 1. Similarly, each occur-rence of QQ0QT 0QT 0 increases q2 by 1 and q1 by 3.Finally, each occurrence of Q0TQ0TT 0T increases q2by 2 while QT 0QT 0TT 0 increases q1 by 2. As otheredge disks are irrelevant, we haveq2 � q1 = (3�1 + �2 + 2�1)� (�1 + 3�2 + 2�2)= 2�1 � 2�2 + 2�1 � 2�2= 2�(�1 � �2) + (�1 � �2)�:A similar calculation shows thatt1 � t2 = 2�(�1 � �2) + (�1 � �2)�: �

These lemmas give some insight into the shape ofthe regular projective solution space R for M8.
Theorem 7.5. Let V be the class expressed as V =mD + nD0, where m; n are positive integers . If Vis regular , then m=n � 5.
Proof. Suppose V is regular, and S is a surface inmD + nD0. By the de�nitions of D and D0, we getq1 = 12n, q2 = 12m, t1 = 12m, t2 = 12n, andjVj = 4m+ 4n. Therefore,q2 � q1 = 12m� 12n = 2((�1 � �2) + (�1 � �2));from which we get6m� 6n = (�1 � �2) + (�1 � �2) � 4m+ 4n:Hence, 2m � 10n; or m=n � 5: �
Remark 7.6. The equality holds whenV = 5D +D0 = (D +D0) + 4D = (A+B) + 4D= (A+ 2D) + (B + 2D):We know that [A+2D] and [B+2D] are regular, sothe theorem shows that [5D+D0] is the sharp boundon this segment between [D] and [D0]. In addition,any surface in [5D+D0] has the property that everyedge disk is of the type Q0QQ0TQ0T or Q0TQ0TT 0Tand both types must occur.The same type of argument shows the following; weomit the proof, which is very similar to the proofabove.
Theorem 7.7. Let V be the class expressed as V =mC +nD, where m; n are positive integers . If V isregular , then n=m � 3.Of course, we already know this by Theorem 5.1,which says that V is regular if and only if nm � 2.The reason we state it here is that this kind of ar-gument gives many properties of prospective sur-faces in these classes and often enables us to deter-mine the regularity without solving a large system ofequations by computer. (We eventually determinedby hand that [C + 3D] is irregular.) In fact, be-cause of this last theorem and the fact that [C+3D]and [C 0 + 3D] are coplanar with the known vertices[A+2D], [D0 +5D], and [B+2D] (Lemma 2.4), wehad once conjectured that these two points are themissing vertices of R. In this context, it is very in-teresting and surprising that [C+2D], not [C+3D],
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is the vertex between [C] and [D]. Perhaps this isdue to the fact that [C + 2D], [C + 2D0], [A + 2D]and [B+2D] lie on an a�ne plane parallel to the ho-mogeneous plane containing [A], [C], [B] and [C 0].Since the plane is a�ne, the convexity argumentsused above fail.
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