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Homotopies provide computational evidence for a challenging

instance of a conjecture about whether all solutions are real.

By a homotopy we mean a family of polynomial systems that

describes algebraically the geometric transition from an easier

configuration in special position into the general configuration

for the problem we want to solve. The solutions to our problem

lie at the end of the solution paths we trace with numerical con-

tinuation methods starting at the solutions of the easier, special

problem. The numerical difficulties are overcome if we work in

the true synthetic spirit of the Schubert calculus, selecting the

numerically most favorable equations to represent the geomet-

ric problem. Since a well-conditioned polynomial system allows

perturbations on the input data without destroying the reality of

the solutions we obtain not just one instance, but a whole man-

ifold of systems that satisfy the conjecture. Also an instance that

involves totally positive matrices has been verified. The opti-

mality of the solving procedure is a promising first step towards

the development of numerically stable algorithms for the pole

placement problem in linear systems theory.

1. INTRODUCTIONSolving a polynomial system numerically meanscomputing approximations to all isolated solutionsof the system. Having an approximate root, as in[Blum et al. 1998], implies that Newton's methoddoubles its accuracy in each step. Homotopy con-tinuation methods provide paths to all isolated ap-proximate roots. The references [Morgan 1987; Li1997; Cox et al. 1998] treat polynomial homotopiesrespectively from within the �elds of engineering,numerical analysis and computational algebraic ge-ometry. Path-following methods are described in[Allgower and Georg 1990; 1997].Optimal homotopies for solving polynomial sys-tems arising in the Schubert calculus of enumera-tive geometry were proposed by Birk Huber, FrankSottile and Bernd Sturmfels in [Huber et al. 1998].
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These homotopies are optimal in that every pathleads to a solution when applied to a generic probleminstance, whereas the standard homotopies force oneto trace many diverging solution paths.The results described in this article were obtainedwith SAGBI homotopies [Huber et al. 1998]. Theirimplementation leads to a three-stage solver con-catenating polyhedral continuation, at deformationand cheater's homotopy. Polyhedral homotopies[Huber and Sturmfels 1995; Verschelde et al. 1994]are optimal for systems with generic coe�cients.The at deformations de�ned by the SAGBI ho-motopies transform a generic intersection probleminto a polynomial system with generic coe�cients.Cheater's homotopy [Li et al. 1989; Li and Wang1992], or coe�cient-parameter polynomial contin-uation [Morgan and Sommese 1989], ensures thatsingularities may only occur at the end of the solu-tion paths. This last stage is invoked when solvinga speci�c real problem instance.The speci�c problem we wish to solve representsthe geometric problem of enumerating all p-planesthat meet mp given m-planes in C m+p. When thosegiven m-planes are in general position, the numberof solution p-planes is �nite. An explicit formula tocount the solutions was derived by Schubert [1891].Brocket and Byrnes [1981] showed that every so-lution to this classical problem of enumerative ge-ometry corresponds to a feedback law to control anm-input, p-output machine whose evolution is de-scribed by a linear system. This establishes the geo-metric interpretation of the so-called pole placementproblem in linear systems theory [Byrnes 1989]. Ev-ery solution path de�ned by the homotopies devel-oped in [Huber et al. 1998] ends at a p-plane andcorresponds to a feedback law. The optimality ofthe homotopies is a promising �rst step to providingnumerical algorithms for the pole placement, formu-lated as one of the open problems in [Rosenthal andWillems 1999].The purpose of this paper is to report on veri-�ed large instances of some conjectures of Boris andMichael Shapiro. They proposed speci�c choices forthe input m-planes and conjectured that for thosespeci�c input data all solution p-planes would bereal. Having real solutions is important because themachines are speci�ed with real data, and real feed-back laws are required for control. Note that, if all

feedback laws are real, then to control the machineit su�ces to compute just one solution to the geo-metric problem, which can simply be done by follow-ing one single solution path. To verify the conjec-tures, we have to �nd all solutions to the polynomialsystems, but for engineering applications [Kailath1980] �nding just one solution is enough. We referto [Faug�ere et al. 1998; Rosenthal and Sottile 1998;Sottile 2000b] for other tests and related work onthese conjectures. Note that Sottile [1999] devel-oped an asymptotic choice of inputs for which heproved that all solutions are real.The type of polynomial system that needs to besolved is presented in the next section, followed by asurvey on standard root-counting methods. There-after come implementational aspects for the homo-topies and a derivation of the equations in the poleplacement problem. A report on the main numer-ical di�culties and solutions is given in the sixthsection. The last part of the paper contains a shortdescription of the freely available software packagePHC developed by the author. Execution times arelisted, illustrating the performance of the methods.
2. TESTING A CONJECTURE OF BORIS AND MICHAEL

SHAPIROOur problem instance is encoded as (m; p) = (2; 8);see [Faug�ere et al. 1998; Rosenthal and Sottile 1998;Sottile 2000b; 1999] for other cases and related work.The formulation used here is as a problem in enu-merative geometry.Given 16 2-planes osculating a rational normalcurve, we look for 8-planes in C 10 that meet these16 given 2-planes nontrivially. The intersection isnontrivial if and only if, for i = 1; 2; : : : ; 16,
fi(x) = det

26666664
1 0 x11 x12 � � � x18si 1 x21 x22 � � � x28s2i 2si 1 0 � � � 0s3i 3s2i 0 1 � � � 0... ... ... ... . . . ...s9i 9s8i 0 0 � � � 1

37777775
= 0:

(2–1)

The given 2-planes are spanned by the �rst twocolumns of the matrix; the second column is thederivative of the �rst. This makes it tangent to aspace curve, whence we call it `osculating'.
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The last eight columns of (2{1) span the unknown8-planes. Local coordinates are chosen �xing thelower-right block of the matrix as the identity ma-trix. The 16 unknowns xij are determined by 16equations that come from choosing 16 distinct si-values and expanding the determinant (2{1). Thisdistinct choice implies to have a generic problem in-stance with a �nite number of solutions.Schubert [1891] computed that there are generi-cally 1430 solutions to this problem. The Shapiro{Shapiro conjecture is that all solutions to the poly-nomial system (2{1) are real. Another version ofthis conjecture involving totally positive matrices isdescribed at the end of section six.
3. WHY WE NEED NEW HOMOTOPIESThe standard homotopies perform poorly when ap-plied directly to our problem because the bounds onthe number of solutions are too high. We now reviewvarious standard root-counting methods, which givea priori bounds that determine the number of pathsin the homotopies.
Definition 3.1. The total degree D of F (x) = 0 isD = nYi=1 deg(fi):
Theorem 3.2 (Bézout). F (x) = 0 has at most D iso-lated complex solutions , counted with multiplicities .In [Morgan 1987], the theorem is proved by di�er-ential geometry. A proof based on projective elimi-nation theory appears in [Cox et al. 1997]. In [Blumet al. 1998] we �nd another proof with a treatmentof the complexity.Expanding (2{1) we obtain 16 quadratic polyno-mials. Applying B�ezout's theorem gives D = 216 =65; 536. A homotopy based on this bound requiresthus the tracing of 65,536 solution paths with only1430 (= Schubert's bound) converging ones.The application of multihomogeneous homotopieswas introduced in [Morgan and Sommese 1987] andhas been applied with great success to various prob-lems in mechanism design; see [Wampler et al. 1990;1992], for example.
Definition 3.3. Denote fx1; x2; : : : ; xng by X. Con-sider S � X. The degree deg(f; S) of f in S isdeg(f(xjxi=1;i=2S)).

Definition 3.4. Let Z = fZ1; Z2; : : : ; Zkg be a parti-tion of X. For F , the degree matrix M 2 N n�k isde�ned as Mij := deg(fi; Zj). The k-homogeneousB�ezout number B is the permanent of M .The permanent of the degree matrix M counts thenumber of solutions of a random linear-product startsystem. Every equation is the product of #Z fac-tors. The j-th factor for the i-th equation is theproduct of Mij linear equations in the unknownsof Zj , with random coe�cients.
Theorem 3.5. For any partition Z of X we havek = #Z. The corresponding k-homogeneous B�ezoutnumber B bounds the number of isolated complexsolutions of F (x) = 0, counted with multiplicities .A multihomogeneous homotopy (see [Morgan andSommese 1987]) reaches all isolated solutions of apolynomial system.Di�erent partitions give di�erent B�ezout numbersB. A partition with the minimal B is hard to �nd ingeneral. See [Wampler 1992] for exhaustive searchalgorithms. In applications the optimal partitionfollows from the meaning of the variables. Herewe naturally group according to rows or columns.For the (2; 8)-case, the partition ffx11; x12; : : : ; x18g,fx21; x22; : : : ; x28gg gives B = 12;870.Polyhedral methods have led to a computationalbreakthrough in solving polynomial systems. See[Sturmfels 1998] for developments and open prob-lems on counting roots with polytopes.
Definition 3.6. Consider f(x) = Pa2A caxa, withca 2 C and xa = xa11 xa22 � � � xann . The set A = fa 2Z n j ca 6= 0g is the support of f . The convex hull ofA is the Newton polytope of f .
Definition 3.7. Let P = (P1; P2; : : : ; Pn) be a tuple ofpolytopes. The mixed volume Vn(P) of P is
Vn(P) = XI�f1;2;:::;ng(�1)n�#I voln�Xi2I Pi�; (3–1)

where voln is the usual volume.
Theorem 3.8 (Bernshteı̆n). A system F (x) = 0 withNewton polytopes P has no more than Vn(P) isolatedcomplex solutions in (C �)n counted with multiplici-ties (where C � = C n f0g).
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m = 2 m = 3p 2 3 4 5 6 7 8 9 2 3 4 5D 16 64 256 1024 4096 16384 65536 262144 64 19683 531441 14348907B 6 20 70 252 924 3432 12870 48620 20 1680 34650 756756V 4 17 66 247 918 3425 12862 48611 17 642 22148 ?N 2 5 14 42 132 429 1430 4862 5 42 462 6006
TABLE 1. Standard root counts and the actual number of roots N for various (m; p)-systems.The proof in [Bernshte��n 1975] is constructive, andwas implemented in [Verschelde et al. 1994]. Seealso [Cox et al. 1998].We see from (2{1) that all supports are equal,so P = Pi for i = 1; 2; : : : ; n, and then Vn(P) =n! voln(P ), which is the case of Kushnirenko's the-orem [1976]. The direct application of Bernshte��n'stheorem leads to a homotopy with voln(P ) = 12;862solution paths.For this (2; 8)-instance, only 1430 solution pathsconverge using homotopies based on the above rootcounts, as predicted by Schubert's formula [1891].Table 1 summarizes the performance of the rootcounts. More such tables can be found in [Sottile2000b].If p � m, separating the unknowns that belongto di�erent rows gives the minimal B. Otherwise,we better group unknowns that belong to the samecolumns. For m = 2, B is remarkably close to V .For m = 3, the gap widens. The calculation of Brequires a permanent computation which is a #P -hard problem. This means that there is no nonde-terministic polynomial time algorithm available tosolve this problem for general dimensions. Despitethis, the algorithms in [Wampler 1992] outperformthe volume computation.

4. SAGBI HOMOTOPIESSAGBI homotopies are one of the three homotopiesproposed in [Huber et al. 1998]. Here we summarizethe method emphasizing the algorithmic aspects.The general principles are illustrated with a running

example. At each stage characteristics in solving the(2; 8)-case are listed.To implement SAGBI homotopies we concatenatethree di�erent homotopies, see Figure 1. Table 2de�nes the polynomial systems at each stage. Com-plex arithmetic in this concatenation is necessarybecause of singularities that otherwise may occur.In solving several real problem instances, we recyclethe solutions of one generic complex problem usingcheater's homotopy.
Example 4.1 (Running example). The system for(m; p) = (2; 2)consists of four equations:

fi(x) = det
2664 1 0 x11 x12si 1 x21 x22s2i 2si 1 0s3i 3s2i 0 1

3775 = 0; (4–1)

for i = 1; 2; 3; 4. To create a speci�c real problem wechoose four di�erent values for si and apply Laplaceexpansion in terms of 2-by-2 minors. The polyno-mials in the SAGBI homotopy aref̂i(x; t) = C(i)34 (x11x22 � tx12x21)�C(i)24 (�x12)+ C(i)23 x11 + C(i)14 (�x22)� C(i)13 x21 + C(i)12 = 0; (4–2)for i = 1; 2; 3; 4. The lower indices in the coe�cientsC(i)kl refer to the choice of rows of the matrix in theelaboration of (4{1). The SAGBI homotopy startsat t = 0 and ends at t = 1. At t = 1 the genericcomplex problem has coe�cients C(i)kl which are 2-by-2 minors of a 4-by-2 matrix of random complexcoe�cients.
BinomialSystems -polyhedralhomotopy GenericComplexSystem -atdeformation GenericComplexProblem -cheater'shomotopy Speci�cRealProblem

FIGURE 1. Concatenation of three homotopies. The central part in the chain is the SAGBI homotopy.
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Binomial System : exactly two monomials in every equationGeneric Complex System : coe�cients are randomly chosen complex numbersGeneric Complex Problem : problem with randomly chosen complex planesSpeci�c Real Problem : real osculating planes as in the conjecture
TABLE 2. The end points in the homotopies are four di�erent types of polynomial systems.Our running example is a classical problem in enu-merative geometry. Note that 2-planes in C 4 corre-spond to lines in P3 . The question is then to �ndall lines that intersect four given lines nontrivially.In general, two lines satisfy this condition; see Fig-ure 2, where the positive real orthant of projective3-space corresponds to the interior of the tetrahe-dron. Note that this problem is fully real: both theinput and output lines are real lines.

FIGURE 2. The case m = 2 = p. Given four lines(drawn thin and black) in general position there areexactly two lines that intersect all four (thicker andgray).The special position of two of the four input linesis adapted from the Pieri homotopy algorithm [Hu-ber et al. 1998]. Another choice of local coordinates,unlike those in (4{1), for the output planes enablesto solve this instance.
4A. Newton Polytopes and Polyhedral ContinuationTo compute the mixed volume we need a subdivisionof the polytopes. A regular subdivision is obtainedby lifting the polytopes into a higher-dimensionalspace and projecting the facets of the lower hull ofthe sum of the lifted polytopes down to the originalspace. The key idea of [Huber and Sturmfels 1995]is that this lifting induces the so-called polyhedralhomotopy, starting at binomial systems whose New-ton polytopes match the cells in the subdivision. Werefer to [Li 1997] for numerical aspects.

For our problem we compute the volume of oneNewton polytope, for which the dynamic lifting al-gorithm [Verschelde et al. 1996] is well-suited. Thisalgorithm incrementally updates the triangulationeach time selecting the lowest possible lifting valuefor the added point. The induced homotopies havea minimal power in the continuation parameter. Forthe (2; 8)-case, the highest lifting value is 133.
Example 4.2 (continuation of Example 4.1). The poly-hedral homotopy that is induced by the dynamiclifting algorithm consists of the equationsĝi(x; t) = c(i)1 x11x22 + c(i)2 x11t+ c(i)3 x12+c(i)4 x21 + c(i)5 x22 + c(i)6 = 0; (4–3)for i = 1; 2; 3; 4. The coe�cients c(i)j are randomcomplex constants. The triangulation has two cellsand correspondingly there are two homotopies. The�rst homotopy equals (4{3). At t = 1 we have thesystem we want to solve. At t = 0 we have a systemof four equations, each with exactly �ve terms. ByGaussian elimination we obtain a binomial systemthat can be solved e�ciently [Verschelde et al. 1994].So at t = 0 we know the solutions and we can startfollowing the paths de�ned by the homotopy (4{3).Ordering the variables as (x11; x12; x21; x22; t), thesupport of (4{3) is the lifted point con�guration Â =f(1; 0; 0; 1; 0), (0; 1; 0; 0; 0), (1; 0; 0; 0; 1), (0; 0; 0; 1; 0),(0; 0; 1; 0; 0), (0; 0; 0; 0; 0)g. The other cell in thetriangulation consists of the points â 2 Â for whichthe inner product hâ;vi with v = (�1; 0; 0; 1; 1) isminimal. To set up the second homotopy we replacexa by xathâ;vi:ĥi(x; t) = c(i)1 x11x22 + c(i)2 x11 + c(i)3 x12+c(i)4 x21 + c(i)5 x22t+ c(i)6 = 0;for i = 1; 2; 3; 4. At t = 1 we have the system wewant to solve. At t = 0 we can again reduce thesystem to a binomial system whose solutions are thestarting points of the paths de�ned by the homotopyin the preceding equation.
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We have found all roots for the system we wantedto solve since (0; 0; 0; 0; 1) and (�1; 0; 0; 1; 1) are theonly two vectors (unique upon scaling) for which theselection of points with minimal inner product leadsto a cell with nonzero volume and a homotopy thathas solutions in (C �)4 at t = 0.The triangulation for the (2; 8)-case consists of 1430simplices because the Newton polytope is the orderpolytope [Sturmfels 1996] which is unimodular.
4B. Flat Deformations arising from Gröbner and SAGBI

BasesThe �rst homotopy of the three presented in [Huberet al. 1998] is the Gr�obner homotopy. Although itse�ciency is inferior compared to the SAGBI homo-topy, it helps understanding the latter.Gr�obner basics [Sturmfels 1996] teach us that forany term order � and ideal I, there exists a weightvector w 2 N n de�ning a monomial order �w (as:xa �w xb () ha;wi > hb;wi or ha;wi = hb;wiand xa �lex xb) that induces the same initial ideal:in�(I) = in�w(I). In [Eisenbud 1995], given a Gr�ob-ner basis, a homotopy is de�ned to deform the zeroset of the ideal I into the zero set of in�w(I). Inparticular, the parameter t in the at deformationis introduced substituting each xi by xitw(xi), wherew(xi) is the weight of xi. Hereby xa is replacedby xatha;wi. All systems in that homotopy have thesame initial ideal, whence the same Hilbert function,whence the same structure of the zero set for all t.The unknowns in the Gr�obner homotopy are p-by-p minors, denoted by brackets. A bracket is a vectorof indices to the rows that have been selected in con-structing the minor. The monomials are products ofbrackets. We see monomials as tableaux that havebrackets in their rows. A tableau is standard if itscolumns are sorted, otherwise it is nonstandard. Thestraightening algorithm provides relations to rewritea nonstandard tableau as a linear combination ofstandard ones. The combinatorics of tableaux andthe relation with the Schubert calculus are treatedin [Fulton 1997].
Example 4.3 (a straightening syzygy). A 2-by-2 minorthat selects the i-th and j-th row of a matrix, i < j,is represented by the bracket [i j]. Expanding thedeterminant in (4{4) along the �rst row, we see thatwe always obtain two equal columns. With Laplace

expansion into 2-by-2 minors we obtain in bracketnotation a straightening syzygy. Thus,
det

2664 x11 x12 0 0x21 x22 x21 x22x31 x32 x31 x32x41 x42 x41 x42
3775 � 0

is equivalent to[1 2][3 4]� [1 3][2 4] + [1 4][2 3] = 0: (4–4)We can rewrite the nonstandard monomial [1 4][2 3]as a linear combination of standard ones.The de�ning ideal of the Grassmann manifold isgenerated by all straightening syzygies needed torewrite all possible nonstandard tableaux. Sturm-fels [1993] proved that these rewriting rules consti-tute a Gr�obner basis for the term order that selectsthe monomials corresponding to the nonstandardtableaux as the leading ones. In [Huber et al. 1998]we �nd a recipe to assign weights and to set up theat deformation. The initial ideal is squarefree sothat the start solutions are regular. Except for coef-�cients that belong to an algebraic set, all solutionsare regular.
Example 4.4 (continuation of Example 4.2). The Gr�ob-ner homotopy consists of �ve equations, homoge-neous in the six brackets, namely[1 4][2 3]� [1 3][2 4]t+ [1 2][3 4]t2 = 0 (4–5)andC(i)34 [1 2]� C(i)24 [1 3] + C(i)23 [1 4]+C(i)14 [2 3]� C(i)13 [2 4] + C(i)12 [3 4] = 0; (4–6)for i = 1; 2; 3; 4. The �rst of these equations comesfrom (4{4). The coe�cientsC(i)kl are minors selectingthe k-th and l-th row of a 4-by-2 matrix with randomcomplex coe�cients. At t = 0, there are two startsolutions.Note that the parameter t only appears in the equa-tion that de�nes the Grassmann manifold. The lin-ear equations of the intersection condition remaininvariant under the at deformation.In the (2; 8)-case, the coe�cients are 2-by-2 mi-nors and the unknowns are brackets representing8-by-8 minors, � 108 � = 45 unknowns in total. Ex-panding (2{1) leads to a 16-by-16 linear system inthe brackets constrained by 210 quadratic equations
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that de�ne Grassmann manifold. The Gr�obner ho-motopy solves the (2; 8)-problem as an overdeter-mined system of 226 equations in 45 unknowns.When the minors are expanded in terms of thexij's the equations that de�ne the Grassmann man-ifold are automatically satis�ed. Therefore we areleft with fewer equations than in the Gr�obner ho-motopy, which explains the superior e�ciency of theSAGBI homotopy. In particular, for the (2; 8)-casewe are left with 16 equations in 16 unknowns.After the expansion in the xij 's we no longer havean ideal but polynomials that form a subalgebrain the polynomial ring C [xij ]. SAGBI stands forSubalgebra Analogue to Gr�obner Bases for Ideals.The term order we use selects as leading monomialthe product of elements on the diagonal of the ma-trices. In [Sturmfels 1996] at deformations are ex-tended to SAGBI bases. The general recipe for theat deformation in [Huber et al. 1998] is given bysubstituting xij by xijt(i�1)(p�j) and dividing out thelowest power of t, minor per minor. The leadingmonomials with this term order have minimal pow-ers of t and are products of diagonal elements in theminors.
Example 4.5 (continuation of Example 4.4). The SAGBIhomotopy (4{2) in determinantal form is

fi(x) = det
26664
c(i)11 c(i)12 x11 x12c(i)21 c(i)22 x21t x22c(i)31 c(i)32 1 0c(i)41 c(i)42 0 1

37775 ; (4–7)

for 1; 2; 3; 4, where the coe�cients c(i)kl are randomcomplex constants. The brackets are expanded asfollows:[1 2] x11x22 � x21x12 t[1 3] �x12[1 4] x11
[2 3] �x22[2 4] x21[3 4] 1Substituting the brackets into the linear equationsof (4{5) and (4{6) gives the SAGBI homotopy (4{2).The SAGBI homotopies are nonlinear in t. For the(2; 8)-case, the highest power of t equals 7.

4C. The Cheater’s HomotopyIn [Li et al. 1989] the so-called cheater's homotopywas presented to solve repeatedly a polynomial sys-

tem with coe�cients as functions of parameters forseveral instances of these parameters. The proce-dure assumes that one has solved the polynomialsystem once (this is the cheating part) for a genericcomplex choice of the parameters. See [Morgan andSommese 1989] for a similar idea.The parameters in our problem are the minorsfrom the m-planes. To avoid repeated evaluation ofminors we apply the result of [Li and Wang 1992].The start system is a problem instance for a genericchoice of the parameters c0 2 C k. For any c 2 C k,the following homotopy is guaranteed to reach allsolutions of F (c;x) = 0:H(c; t) = F �(1�[t�t(1�t)])c0+(t�t(1�t))c; x�= 0; (4–8)for t 2 [0; 1] and  2 C . This homotopy avoids theevaluation of the parameters during path following.
Example 4.6 (continuation of Example 4.5). Take thehomotopy H(x; t) = 0 in (4{8). At t = 0, the pa-rameters c0 consist of all 2-by-2 minors C(i)kl of a4-by-2 random complex matrix. This system hasbeen solved by the SAGBI homotopy. At t = 1,the parameters c consist of the maximal minors ofthe �rst two columns of the matrix in (4{1). Thetwo solution paths converge to two distinct real so-lutions that span 2-planes intersecting the two given2-planes nontrivially.Using cheater's homotopy, the conjecture can betested systematically, deforming so that every sys-tem in the family is a real problem instance. If sin-gular solutions occur where two real solution pathsjoin into a complex conjugate pair of solutions, thenthe conjecture is false.
5. THE POLE PLACEMENT PROBLEMIn this section we describe how to translate the poleplacement problem of linear systems theory [Byrnes1989; Rosenthal and Schumacher 1997] into the ge-ometric formulation (2{1). This connection was es-tablished in [Brockett and Byrnes 1981]. First wegive a classical example [Kailath 1980] of control.In Figure 3 we consider the balancing of a pointer.The controller has to bring the pointer back to up-right position after a slight deviation. In derivingthe evolution equation we assume that all mass m
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is located at the top of the pointer. Furthermore,the controller only moves in the direction of the x-axis. To obtain a linear system, we assume that thedeviation angle � is small.

x0 b(t) p(t)
L

m� mg
F

FIGURE 3. Balancing a pointer of length L with massm at top.If the pointer has base point b(t), the projectionof the top on the x-axis has position p(t):p(t) = b(t) + L sin(�(t)) � b(t) + L�(t): (5–1)The projection of the gravitational force onto thepointer is mg cos(�(t)) � mg, as cos(�(t)) � 1 for�(t) � 0. Denote by F the magnitude of the forceacting at the bottom end of the pointer. To com-pensate for gravity, F = mg. The x-component ofF is Fx(t) =m�p(t), so:m�p(t) =mg sin(�(t)) �mg �(t): (5–2)Elimination of the position of the projected centerof mass yields g�(t) = �b(t)+L��(t), or, equivalently,��(t) = gL�(t)� �b(t)L : (5–3)This second-order di�erential equation is equivalentto a system of �rst-order di�erential equations, in-troducing the states (x1; x2) = (�; _�). As input u,we take the impulse u = �b(t)=L and copy the statesto the output (y1; y2). Then the state-space descrip-tion is given by the evolution equation� _x1_x2 � = � 0 1g=L 0 � �x1x2 �+ � 0�1 � [u] ;the output of the system� y1y2 � = � 1 00 1 � �x1x2 � ;and the input-to-output feedback[u] = [�f1 �f2 ] � y1y2 � :

In closed form, the system becomes� _x1_x2 � =�� 0 1g=L 0 �+ � 0�1 � [�f1 �f2 ] � 1 00 1 ���x1x2 � :To stabilize the system, all eigenvalues of the ma-trix represented by the expression in parenthesesmust all have a negative real part. If all eigenvalueshave a pure imaginary part, the pointer oscillates.For eigenvalues with a positive real part, the systemspins out of control. In this simple situation, we candetermine the feedback laws by identi�cation of thecoe�cients of the characteristic polynomial.In general we consider a system with input u 2R m, output y 2 R p, and internal states x 2 R n,where n = m + p, whose evolution in time t is gov-erned by the �rst-order linear di�erential equation_x(t) = Ax(t)+Bu(t)y(t) = Cx(t)u(t) = Fy(t)
with A 2 R n�n; B 2 R n�m;with C 2 R p�n;with F 2 R m�p;where the last part expresses the control of the inputby constant output feedback F .Substitution into the �rst of these three equationsyields _x(t) = (A+ BFC)x(t), whose characteristicpolynomial is'(s) = det(sIn �A�BFC): (5–4)The roots si (i = 1; 2; : : : ; n) of '(s) = 0 are thenatural frequencies of the controlled system.The pole placement problem is an inverse prob-lem: given A, B, C, and ' (determined by the fre-quencies si), compute the feedback laws F that sat-isfy '(si) = 0, for i = 1; 2; : : : ; n.We rewrite the characteristic equation '(s) = 0 inseveral stages. First, a determinantal identity showsthat det(sIn �A�BFC) = 0 is equivalent to

det24 sIn �A 0 �B�C Ip 00 �F Im
35 = 0; (5–5)

where Ip and Im represent identity matrices of rankp and m. Secondly, we see that this is further equiv-alent to
det24( 0 �F Im )0@X(s)Y (s)U(s)

1A35 = 0;
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by applying the fact thatdet � P (s)M(s) � = c det [M(s)Q(s)]for nonzero c 2 R , where
P (s) = � sIn �A 0 �B�C Ip 0 � ; Q(s) = 24X(s)Y (s)U(s)

35 ;
and P (s)Q(s) = 0. The (n+p+m)-by-m polynomialmatrix Q(s) describes the the behavior of the sys-tem explicitly; that is, it gives for an m-input thenew states, output and feedback. Finally, a simpleelaboration transforms the characteristic equationof the pole placement problem into,det �U(s) FY (s) Im � = 0;the familiar geometric form that we have used insolving the problem.
6. SYMBOLIC-NUMERIC CALCULATIONSSingularities do not occur for generic complex prob-lems. To solve the real problem, we choose orthog-onal representations for the planes and obtain well-conditioned polynomial systems.
6A. Localizing before Expanding, Expanding before

CheatingThe equations (2{1) are already written in local co-ordinates. But any 8-by-8 submatrix using the last8 columns can serve as unit matrix. Setting upthe equations we better �rst �x this choice beforeexpanding the determinants. Otherwise, see whathappens in the (2; 8)-case: every 8-by-8 minor hasin its expansion 8! = 40;320 terms and there are 45such minors.One can implement the cheater's homotopy in twoways. Either one can introduce the continuationparameter t inside the matrix (2{1) or one can dothis after the expansion of the minors. The �rstway [Li et al. 1989] leads to homotopies that requirethe elaboration of determinants each time evalua-tion is needed. The second way [Li and Wang 1992]uses (4{8) which does not require the evaluation ofthe parameters which leads to a much more e�cientcheating procedure.

To illustrate this last point, the determinantalcheater's homotopy for the case (4; 2) requires 384seconds of CPU time, versus 30 seconds for the ho-motopy which avoids the evaluation of determinantsin every step.
6B. Using Chebyshev Polynomials as BasisGenerating values for s in equation (2{1) quicklyleads to huge numbers when s > 1 or very tiny num-bers when s < 1. The calculation of minors in theexpansion of (2{1) ampli�es this e�ect. We cannottake all values for s too close to 1 because then theinput planes lie too close to each other.To approximate a function by a polynomial withminimal error the basis of Chebyshev polynomials(see [Gerald 1978], for example) is commonly usedinstead of the basis of standard monomialsf1; x; x2; : : : ; xng:The n-th Chebyshev polynomial Tn(x) is de�ned ascos(n arccos(x)), whence Tn(x) 2 [�1;+1], for x 2[�1;+1]. Therefore we obtain nice numbers for thecoe�cients in the polynomials generated by (2{1).We show the equivalence of problem formulations byexample.
Example 6.1 (reformulation of Example 4.1). Multiplyingthe 4-by-2 matrix by a nonsingular matrix gives anequivalent representation for the 2-plane. As theresult of the multiplication2664 1 0 0 00 1 0 0�1 0 2 00 �3 0 4

3775
2664 1 0s 1s2 2ss3 3s2

3775 =
2664 1 0s 12s2�1 4s4s3�3s 12s2�3

3775
we recognize the �rst four Chebyshev polynomialsand their derivatives.Note that this modi�cation of the system (2{1)does not change the problem, but only its represen-tation as polynomial system. Actually, this refor-mulation gives rise to a wider class of polynomialsystems whose solutions are all expected to be real.Polynomials in the Chebyshev basis have morereal roots on average than polynomials in the stan-dard basis. In [Bharucha-Reid and Sambandham1986] we read that a polynomial of degree d with in-dependent, normally distributed random coe�cientswritten in the Chebyshev basis is expected to have
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d=p3 real roots, as d!1, whereas this asymptoticbound is only (2=�) log d for a random polynomialdenoted in the standard basis. See [Cucker and Roy1990] for more on the implication of the number ofaverage real roots on complexity issues in computeralgebra. In our case, Chebyshev polynomials lead toa numerically better formulation of a problem thatis expected to have all its solutions real.
6C. Orthonormal Representations of the PlanesUsing Chebyshev polynomials su�ces in casem = 2,because the function values are bounded. However,it is hard to get bounded derivatives. In the (8; 2)-case we must di�erentiate 7 times and compute 8-by-8 minors with the results of this di�erentiation.Without reformulation, only the cases where m = 2are numerically tractable.The column vectors in orthogonal matrices forman orthogonal basis. Orthonormal matrices are thebest conditioned representations of the input planes.The QR factorization [Golub and Van Loan 1996] ofthe matrix A 2 C m�n rewrites A as the product

A = QR;
where Q 2 C m�m is orthonormal and R 2 C m�n up-per triangular. If A has full column rank, then the�rst n columns of Q form an orthonormal basis forthe space spanned by the columns of A. This fac-torization is computed by the QR algorithm [Goluband Van Loan 1996]. Adopting this representation,there is no di�erence between the cases (3; 4) and(4; 3).Carrying this much further would be to developa Newton's method for the Grassmann manifold,which would| instead of �xing the localization inadvance|exploit the freedom of additional vari-ables to work with orthogonal bases for the p-planesthroughout the path following. As mentioned in[Edelman et al. 1999], there has never before beenan explicit study of Newton's method on the Grass-mann manifold. In our case we would have to ap-proximate the Jacobian matrix to avoid dealing withthe huge expanded polynomials before the localiza-tion. This is an interesting application of the secantmethod for which an �-theory has recently been de-veloped [Yakoubsohn 1999].

6D. Total PositivityAnother conjecture of Boris and Michael Shapiro in-volves totally positive matrices, and is also describedand tested in [Sottile 2000b]. A real matrix is totallypositive [Ando 1987] if all its minors are positive.Upper triangular matrices are called totally positivewhen all minors are positive, except for those minorswhich vanish on all upper triangular matrices. Forall upper triangular totally positive matrices T con-sidered here we assume Tii = 1.The sequence ofm-planes proposed in this Shapiro{Shapiro conjecture for which all solutions are ex-pected to be real is de�ned as follows. The �rstm-plane can be spanned by any (m+p)-by-m ma-trix. The next m-plane is generated by the last mcolumns of the product of the previousm-plane withany (m+p)-by-(m+p) random totally positive ma-trix. Repeat this generation until mp m-planes areobtained.Since totally positive matrices have all their en-tries positive, a multiplication with a totally posi-tive matrix increases the size of the numbers. Geo-metrically, the limiting position of the planes in thesequence de�ned above corresponds to moving fromthe plane spanned by the �rst m standard basis vec-tors to the so-called opposite ag, spanned by thelast m standard basis vectors. For example, in Fig-ure 2, we see the �rst and last line in the sequenceas those lines spanned by the corners of the tetrahe-dron. With a localization as in (4{1) the intersectioncondition for the opposite ag is
det

2664 1 0 x11 x120 1 x21 x220 0 1 00 0 0 1
3775 = 0;

which reduces to 1 = 0. This geometric interpreta-tion exhibits the extremal cases of numerical trou-bles with this localization. So we use a localizationthat has in every row and column at least one freevariable to represent any point of intersection. Theexpansion leads to polynomials of degree p.Whitney's reduction theorem [1952], in the formof Loewner [1955], is used to generate the upper tri-angular totally positive matrices. For every n-by-nmatrix we generate 12n(n�1) positive random num-bers. Tuning the size of those random numbers al-lows us to control the speed by which the sequence
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moves to the opposite ag. There is the follow-ing tradeo�. A selection of small random numbersleads to input planes that lie too close to each other,whereas with large numbers we end up with a clusterof planes too close to the opposite ag. The actualinput to the cheater's homotopy consists in the or-thonormal part of the QR-factorization applied tothe generated sequence of m-planes.The case (3; 4) veri�ed by the SAGBI homotopieshas total degree D = 412 = 16;777;216 and 4-homo-geneous B�ezout numberB = 369; 600 with the parti-tion ffx11, x51, x71g, fx22, x62, x72g, fx33, x63, x73g,fx44, x64, x74gg, whereas we know there are only462 solutions. All 462 solutions are di�erent fromeach other, with condition numbers less than 108,and as conjectured, are all real. The components ofthe solution p-planes all have the same sign pattern.The matrices that represent those solutions are nottotally positive, although all corresponding minorshave the same sign.
7. AVAILABLE SOFTWARE AND EXECUTION TIMESThis section describes programming and computa-tional experiences with the author's software PHC(Polynomial Homotopy Continuation). See [Ver-schelde 1999] for a complete description of PHC.
7A. A new driver added to PHCHomotopy continuation methods have two parts:
1. Bounds for the number of roots are obtained byapplying the theorems of B�ezout or Bernshte��n.For sparse systems, the mixed volume yields amuch sharper bound and polyhedral homotopiesare invoked to solve a start system with randomcoe�cients. For general dense systems or whenthe degrees are used to count the roots, the con-struction of a start system does not require con-tinuation.
2. The path tracker exploits the fact that solutionpaths of polynomial homotopies do not turn back,so that the continuation parameter is �xed dur-ing the correction stage. Path crossing is avoidedenforcing Newton's method to converge quadrati-cally when correcting the solutions. At the end ofthe solutions paths, condition numbers are com-puted and mathematical certi�cates of divergence[Huber and Verschelde 1998] can be obtained.

The implemented homotopy methods are powerfuland reliable enough to operate as a general-purposesolver in black-box mode for small and medium-sized problems. This is illustrated in [Verschelde1999] on the test suite of about eighty polynomialsystems from a wide variety of sources that are inthe distribution of the package. Of course, given thepoor performance of the standard root counts, theblack-box solver is not recommended for the (2; 8)-problem.The SAGBI homotopies are implemented in a sep-arate module of PHC, which generates the equa-tions, calls the dynamic lifting algorithm and thepath-tracking routines. Besides the driver, the newimplementation consists of Laplace expansion, theassignment of the powers of the continuation pa-rameter in the at deformation, and the genera-tion of the osculating planes. The new public ver-sion of PHC o�ers this driver when calling phc -e.Another new feature in PHC is the multi-precisionarithmetic to evaluate and re�ne the solutions of apolynomial system.
7B. Computational ExperiencesIn Table 3 the timing results for the main compu-tation are summarized. Calculations are done on a166 MHz Pentium II processor with 64 Mb internalmemory running Linux.In Table 3 we see that the most expensive stageis the cheater's homotopy to a speci�c real probleminstance. The (4; 3)-case is given to illustrate howthe computations scale up when going from a 12-dimensional to a 16-dimensional system, from 462to 1430 roots. Dividing total time by 1430 paths,the cost for each path is about 1 minute user CPUtime. The (3; 4)-case with totally positive matricesis harder because of the fourth-degree polynomials.The systems with their solutions are available viathe author's web page. The condition numbers ofthe Jacobian matrices evaluated at the end of thepaths range between 104 and 108, which is in theworst-case scenario still su�cient to guarantee thecorrectness to eight decimal places. The distancebetween two roots is at least 10�8.Moreover, these condition numbers are complex inthe sense that they reect the sensitivity of pertur-bations with complex numbers. The real conditionnumbers must be much smaller, because the largest
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stages of computation (4; 3) (2; 8) (3; 4)TPregular triangulation 0h 0m 7s 250ms 0h 0m 56s 860ms 0h 0m 6s 910mspolyhedral continuation 1h 21m 21s 630ms 8h 1m 37s 330ms 1h 32m 28s 790msat deformation 1h 2m 6s 0ms 4h 24m 49s 590ms 3h 51m 8s 50mscheater's homotopy 2h 42m 15s 340ms 13h 23m 7s 330ms 13h 33m 29s 410mstotal solving time 5h 6m 21s 110ms 25h 52m 55s 150ms 18h 57m 13s 160ms
TABLE 3. User CPU times for solving the cases (4; 3), (2; 8), and (3; 4) with total positivity.imaginary parts of the solutions are of order 10�20.After application of Newton's method (using QRdecomposition followed by least squares approxima-tion to solve the linear systems) ten times to eachsolution, the imaginary parts shrunk below 10�100.

8. CONCLUSIONSFor the (2; 8)-case we computed a polynomial sys-tem with all 1430 solutions real, well-conditionedand distinct from each other. Homotopy continua-tion extends this real problem instance to a manifoldof polynomial systems that have all their solutionsreal.The results of the calculations described in thispaper are relevant for the following reasons:
1. The class of systems constitutes an interestingbenchmark for polynomial system solvers. Wecan exploit the synthetic nature of enumerativegeometry questions to choose the most favorablenumerical representation of the problem.
2. In addition to providing computational evidencesfor conjecture in real algebraic geometry, thesetools and experiences may become useful to theengineering community. Providing stable numer-ical algorithms for the pole placement problemis one of open problems listed in [Rosenthal andWillems 1999]. This paper shows that homotopycontinuation is a �rst promising step.
3. Almost all computations in algebraic geometryare exact as implemented in computer algebrasystems. The calculations reported in this pa-per show that meaningful results (in the spirit of[Stetter 1998]) are obtained from numerical ap-proximations.
4. The practical e�ciency of homotopies for solv-ing polynomial systems that arise from expand-ing determinants is demonstrated. How to ap-ply the theory of [Dedieu and Shub 2000] to the

overdetermined homotopies that arise in the Pierihomotopies [Huber et al. 1998] is an interestingfuture research project.
Finally we remark that the Pieri homotopies pre-sented in [Huber et al. 1998] have been implementedin [Huber and Verschelde 2000]. Those Pieri homo-topies have been extended to compute the feedbacklaws of the dynamic pole pole placement problem,which is equivalent [Rosenthal 1994] to enumeratingall curves of degree q that produce p-planes whichmeet mp + q(m + p) given m-planes in C m+p atspeci�ed interpolation points. One analogue of theShapiro conjectures for the case q > 0 does not hold;see [Sottile 2000a] for a counterexample.
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