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Character-theoretic methods using Clifford algebras are devel-
oped to describe the quadratic forms on a vector space V that
are invariant under a finite subgroup G of GL(V) such that the
order of the commutator factor group of G is odd.

1. INTRODUCTION

Let G be a finite group. Any QG-module V is
uniquely determined by its character xy. So in prin-
ciple xy also determines the G-invariant quadratic
forms on V. However, there is not much known
how to calculate rational invariants of these quad-
ratic forms without describing the action of G on
V explicitly. Of course, the G-invariant form g on
V' is not unique, since for all a € Q, the form agq
is also G-invariant, and there are more G-invariant
forms, if V' is not irreducible over the reals. So one
can only hope to calculate say the determinant of
q, which is defined as the determinant of a Gram
matrix of the corresponding bilinear form modulo
squares, if dim V' is even.

Invariants for a nondegenerate quadratic space
¢ := (V,q) over an arbitrary field K can be read
off from the Clifford algebra C(y). This is a Z/2Z-
graded algebra functorially attached to ¢ and it de-
termines the two most important invariants of the
quadratic space ¢: its determinant and its Clifford
invariant (see Theorem 2.1). According to [Hasse
1924], if V is a vector space over a number field K,
then these two invariants together with the dimen-
sion of V' and the signatures of ¢ at all real places of
K describe the K-isometry class of the nondegener-
ate quadratic space @ over K completely.

If G acts on ¢ = (V,q) as isometries, then G acts
on C(y) as algebra automorphisms respecting the
grading. If dimV is even, C(y) =: ¢(g) is central
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simple; if dim V' is odd, the even part ¢(y) := Cy(p)
of the Clifford algebra is a central simple algebra.
So the simple ¢(p)-module W becomes a module for
some projective representation of G (in the sense
of Schur) of which the character yy (of a covering
group of G) is a certain square root of a charac-
ter constructed from Yy . An irreducible constituent
that occurs in xu with odd multiplicity gives infor-
mation on either the determinant of ¢, if dimV is
even, or the Clifford invariant of ¢, if dim V' is odd
(see Corollary 3.6). Applications are given in the
examples in Section 4.

Related ideas have been used by A. Turull [1992],
where he determines the Schur index of xy, using ex-
plicit knowledge about (V, q) for the (n — 1)-dimen-
sional S,,-module V.

This paper summarizes one idea of my Habilita-
tionsschrift [Nebe 1999]. There I develop also other
methods to calculate the isometry class of ¢ using
constructions of V' as a constituent of a tensor prod-
uct or of an induced module. See also [Nebe 2000].

2. CLIFFORD ALGEBRAS

Let ¢ := (V,q) be a quadratic space of dimension
n = dimV over a field K. Then the Clifford al-
gebra C(yp) = T(V)/I(p) is the quotient of the
tensor algebra T'(V) := @;°, ®'V by the two-sided
ideal I(y) generated by v@ v —q(v) -1 withv € V
(see [Scharlau 1985, Chapter 9]). Cf(y) is a 2"-
dimensional K-algebra. It contains the even Clifford
algebra

Co(p) :=(vy...v5 | v; € Vs even ) < C(p)
as a subalgebra of dimension 2"~ = dimg (Cy(p)).
Let
Ci(p) = (v1...v5 | v; € V,s odd).
If (v1,...,v,) is a basis of V, then (v;, ...v;, | 1 <
iy < -+ <is <n)is a basis of C(¢). In particular,
V is embedded in C(yp).

If char K # 2, then let B, be the bilinear form
associated to ¢, defined by

B,(v,w) := 3(q(v + w) — q(v) — g(w))

for all v,w € V. Then the determinant det(yp) is the
determinant of a Gram matrix of B, modulo squares

det(yp) := det(Bq(vi,1)J')):-’7J-:1(K*)2 € K/(K*)?

and the discriminant of ¢ is
d+(p) = (~1)18) det(p) € K/(K")"

Assume that char K # 2 and ¢ is nondegenerate,
that is, dy(¢) # 0. Then:

Theorem 2.1 [Scharlau 1985, Theorem 9.2.10]. (i) Ifn
is even, then C(p) is a central simple K -algebra
and Z(Cy(yp)) is isomorphic to

K[X]/(X? — dx())-

(ii) If n is odd, then Cy(p) is a central simple K-
algebra and Z(C(p)) is isomorphic to

KIX]/(X? — ds(¢))-

An analogous theorem holds if char K = 2; see [Knus
1991, Theorem (2.2.3)].

Let
() { C(p) ifdimV is even,
c(y) ==
4 Colp) if dimV is odd.

The class [c(p)] € Br K of the central simple K-
algebra c(¢) in the Brauer group Br K of K is called
the Clifford invariant of .

Remarks 2.2. (i) If W is the simple right ¢(¢)-module,
D := End.)(W), and W* := Homp(W, D) is
the simple left ¢(¢)-module, then ¢(p) = W* ®p
W as c(p)-bimodule.

(ii) Because of the universal property of C(¢p), the
identity embedding of V' C C(¢) extends to a
unique algebra antiautomorphism of C(y), the
canonical involution ~. The involution satisfies
Ti... U3 = V,...0; for all v; € V and induces an
algebra antiautomorphism on the central simple
K-algebra c(¢). Via this involution W* becomes
a right ¢(y)-module isomorphic to W.

The Orthogonal Group

For a nondegenerate quadratic space ¢ = (V,q) the
orthogonal group O(y) is defined as

O(¢) :={f € GL(V) [ ¢(f(v)) = g(v) for all v € V'}.

Using the universal property of C'(¢) one easily sees
that the linear action of O(¢) on V extends uniquely
to K-algebra automorphisms of the Clifford algebra
C(¢). This action of O(¢) on C(p) respects the
grading.

The Clifford group is

L(p) := {s € Co(p)"U(C(p)"NCi(p)) | sV =V}
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[Scharlau 1985, Section 9.3; Knus 1991, Section IV.6].
For s e T'(p) let v(s) = 1if s € Cy(¢) and y(s) = —1
if s € C1(yp). Define a(s) : V.— V so that

a(s)(v) v(s)s twvs.

Then a(I'(¢)) C O(p). If s € V C C,(p) satisfies
q(s) # 0, then s € I'(p) and a(s) € O(p) is the
reflection along the anisotropic vector s. If char K #
2, then the reflections along anisotropic vectors in
V generate O(y). Therefore a(I'(¢)) = O(g). If
char K = 2 then « is also surjective [Knus 1991, p.
228]. The kernel of a is K* C Cy(p)* and one has
the following exact sequence

15 K"—=T(p) > O0(p) =1
which gives rise to a projective representation
P:0(p) = T(p)

mapping the reflection along the anisotropic vector
s € Vtos € I'(¢). By [Scharlau 1985, Lemma
9.3.2], s € K* C Cy(yp) for all s € I'(p), where ~
is the canonical involution of ¢(¢) (see Remark 2.2).
This gives rise to a group homomorphism
norm : O(p) — K*/(K*)?,
g P(g) P(g)- (K)?,

called the Spinor norm [Scharlau 1985, Definition
9.3.4]. Let

ST(p) :=={seT(p)NCo(p) |5=5s""}

Proposition 2.3. The group ST(p) acts on c(p) by
conjugation: c(p) x ST(¢) — c(p), (z,s) — s xs.
With the notations of Remark 2.2 one has

() 2Wep W
as ST (¢)-modules.

3. CLIFFORD ALGEBRAS AS G-ALGEBRAS.

Let ¢ = (V,q) be a nondegenerate quadratic space
and G be a subgroup of the orthogonal group O(y).
Then ¢ is also called an orthogonal KG-module.
Theoretical concepts for Clifford algebras as G-al-
gebras are given in [Frohlich 1972]. Here practical
methods to obtain information on C(p) from the
character x = xy of the G-module V are developed.

Since G < O(), the action of O(¢) on C(¢p) re-
stricts to a linear representation A¢(,) of G' on the
Clifford algebra that respects the grading:

Remark 3.1. The character of the KG-module C(y)
respectively Co(¢p) is

> AW

1=0,7 even

X 1= Z A’ (x) respectively X :=
i=0

where A’() is the i-th exterior power of x.
Note that

X(9) = (=1)"py(=1) for all g € G

where p,, is the characteristic polynomial of g on V.
With this trick one can calculate x(g) (and xo(g))
with the help of GAP [Schonert et al. 1994], by re-
stricting x to the subgroup (g) < G, for any group
G whose character table and powermap is known.

Assumption. From now on we assume that the order
of the commutator factor group G/G’ is odd.

Lemma 3.2. There are a, € K* (for all g € G) such
that Py(g) == a,P(g) satisfies

Po(g) € Co(w), Po(g)Po(g) =1,

and Py ® Py : G — GL(c(¢p)) is a linear representa-
tion equivalent to A.).

Proof. The mapping P : G — C(¢)*,g — P(g) is a
projective representation of G. Hence P(g)P(h) =
a(g, h)P(gh) for some a(g,h) € K* and for all h, g €
G. Since K* C Cy(p), the grading of the Clifford
algebra defines a group homomorphism G — Z /27,
g +— deg(P(g)). Since |G/G'| is odd, this group
homomorphism is trivial, hence P(G) C Cy(y). In
particular P(G) C ¢(¢) and P is a projective repre-
sentation of G on the simple ¢(¢)-module W. Also
the Spinor norm, norm : G — K*/(K*)?, is a homo-
morphism from G to an abelian 2-group and hence
trivial. Rescaling P(g) with elements in K* we
may therefore assume that P(g)P(g) = 1, that is,
P(g) € ST(p) for all g € G.

Therefore, by Proposition 2.3, the G-module ¢(¢p)
is isomorphic to the tensor square W ® p W of the
projective G-module W. In particular the projective
representation P ®p P is equivalent (as a projective
representation) to the linear representation A, of
G on ¢(yp). This means that there is T € GL(c(p))
and a mapping a : G — K* such that TP(g) ®
P(g)T™' = a(g)Acp(g) for all g € G. Since P is
a projective representation and A, is linear, « :
G — K*/(K*)? is a homomorphism. Again, since
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|G/G'| is odd, we have a(g) = B(g)* € (K*)* for
all g € G and Py(g) := B(g) 'P(g) has the desired
properties. ]

Corollary 3.3 (compare [Gagola and Garrison 1982,
Theorem 1.2, Corollary 4.3]). Assume that char K #
2 and let g € G be an element of order 2 and e the
dimension of the —1-eigenspace of g in V. Then

Py(g)* = (-1)( id.

Proof. Let vy,...,v, be an orthogonal basis of the
—1-eigenspace of g on V. Then

Py(g) = azv1 ... Ve,
Py(9) = agve ... v, = (71)(;)P0(g).

Since Py(g)Py(g) = id, one has Py(g)* = (—1)(3) id.
(]

If ¢(p) =2 D*** for some central K-division algebra
D, then the simple c¢(¢)-module W is isomorphic
to D*. Over the algebraic closure of K, the c(p)-
module W is isomorphic to the sum of m copies
of a simple module, where m is the inder of D
(dimg (D) = m?).

We now fix a covering group v : G — G of G such
that P, is equivalent to a linear representation of G.
Let W be the simple ¢(¢)-module and m the index
of Endc(w) (W)

Corollary 3.4. Let mxw be the character of a linear
KG-module that is equivalent to W over the alge-
braic closure of K. Regarding x as a character of G
one has

X if n is even,

® pu—
xw i Xw {)20 if n is odd.

For the next theorem we additionally assume that
K is a number field. By [Scharlau 1985, Lemma
9.2.8] c(p) is a tensor product of quaternion alge-
bras. Since K is a number field, this implies that

¢(p) is a matrix ring over a quaternion algebra (see
[Reiner 1975, Theorem (32.9)], for instance) and

CO(SO) = Daxa’

where D = L := Z(Cy(yp)) or D is a quaternion
division algebra over L.

Theorem 3.5. With the notations above let m be the
Schur index of D, W the simple Cy(p)-module and

mxw the corresponding character of G. Assume

that there is an absolutely irreducible character v
of G occurring with odd multiplicity in xw.

(a) If n is even and L = Z(Cy(p)) is a field then L
is a subfield of the character field K ().

(b) Assume that n is odd. If the Schur index of v is
odd, then K () splits D. Otherwise let U be the

irreducible KG-module whose character contains

Y. Then D C End g (U).

Proof. By Lemma 3.2 P(G) is already contained in
Co(p) and therefore Endc, () (W) € Endg(W).

In both cases Cy(p) = D*** and dimg (Co(p)) =
a*m?[L : K] = 2" ! is a power of 2. Let = be the
multiplicity of ¥ in xy, U the irreducible K-module
whose character contains ¢ and Dy := Endga(U).
Then Dy is a skew field with center K (¢) and of
index, say, mg. Let U’ be the U-homogeneous com-
ponent in Ws. Then Endgs(U’) = Dg™ for some
y € N. Since the multiplicity of ¢ in mxw and the
multiplicity of ¥ in xy are equal, one has

mx = ymy. (3-1)

Since D has no zero divisors, D embeds into
End & (U")
and hence

A= DY @ (D ©x K(1))
— D ®xyy DY = K()mbv<miy = B,

where D7} denotes the opposite algebra of Dy. If
K () @k L is a field then let € := [L : K] € {1,2}.
Then A is a central simple K(¢) @ L-algebra iso-
morphic to D*** for some central K (1))® g L-division
algebra D of index, say, . If K(¢) ®x L is not a
field then let € := 1. Then A is a direct sum of two
isomorphic central simple K (¢)-algebras isomorphic
to D*** for some central K (¢)-division algebra D
of index, say, m.

In both cases the dimension of A over its center
is

mg -m? =m’ -k’ (3-2)

and the K(1)-dimension of a simple A-module is
e -m? -k and divides the K(1)-dimension of the
simple B-module, which is m; - y

e-m? - k divides mg, - y.

Claim. m is odd and € = 1.
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Proof. Since K is a number field, m is either 1 or 2. If
m = 1, then my and y are odd by (3-1) (recall that
z is odd) and hence also m and ¢ are odd. Assume
that m = 2. Then (3-1) implies that either my is
even and y-my /2 is odd, or y is even and my -y/2 is
odd. Assume 2 | m. If my is even, 2° divides m? - k;
if my is odd, 22 divides m? - k. But this power of
2 does not divide m#, - y in both cases, which is a
contradiction. Therefore m is odd and k is even. If
my is even, then 4 divides k by (3-2) and therefore
€ is odd. If my is odd, then also € = 1 since k is
even and y/2 is odd. The claim follows. O

In particular € = 1 and hence L is a subfield of K (v)
which proves (a).

Now we prove (b). Since n is odd, L = K and
([Dy]™" - [D @k K()]) has odd order in the Brauer
group of K (1)) because

([Du]™ - [D @k K(@)))™ =1 € Br(K ()

Therefore the local index m,(Dy) is even, if and
only if the local index m,(D ®x K(v)) is 2, for
all (infinite and finite) places o of K (). Hence
D ®k K (1) embeds into Dy, (compare [Reiner 1975,
Exercise 29.7]). O

In the applications absolutely irreducible orthogonal
G-modules (V, q) over totally real number fields K
are of special interest. Then ¢ is (positive or nega-
tive) definite. If n is even, then the discriminant of
q is negative, if n = 2 (mod 4) and positive, if 4 | n.

Corollary 3.6. In addition to the assumptions of the
theorem let K be a totally real number field and as-
sume that o is definite.

(a) Let n be even. If [K(¢) : K| is odd or n = 0
(mod 4) and all intermediate fields K() D L D
K of degree [L : K| = 2 are complex fields, then
the discriminant di(p) = 1.

If n = 2 (mod 4), then K(¢)/K has a totally
complex intermediate field L with [L : K| = 2.
One of these fields is isomorphic K[\/di(cp) ]

(b) Assume that n is odd. If ¢ has Schur indez 1,

then the Clifford invariant [c(p)] satisfies

[c(p) @k K(¢)] = [K(4)] € Bry(K(¢)).

If ¢ has Schur index 2 then [K(v) @k c(¢)] =
[End g ,)5(U)] € Bra(K()) for the irreducible
K (¢)G-module U with character 2v.

4. EXAMPLES

We will now apply the methods presented before to
some irreducible representations of finite quasi sim-
ple groups. The notations are taken from [Conway
et al. 1985].

Example 1

Let G 2 2.07(2). Then G is perfect and its univer-
sal covering group is G = 22.07(2). Let V be the
8-dimensional faithful QG-module with character y
and ¢ a non zero G-invariant quadratic form on V. If
¢ = (V,q), then dim(c(p)) = 2% and X = xw @ xw
for a 16-dimensional G-module W. One calculates
that xw = xs + X% is the sum of the two irreducible
characters xs, x5 # X which belong to absolutely ir-
reducible rational modules of degree 8 of G. There-
fore d.(p) =1 and also [¢(p)] = [Q].

Of course, that di(p) = 1 is well known and
can also be seen by inspection of the modular con-
stituents of V' [Jansen et al. 1995].

Example 2

Let G 2 M°L and ¢ := (V,q) a 22-dimensional
orthogonal QG-module with character y. The uni-
versal covering group of G is 3.G. Therefore P, :
G — ¢(p) can be chosen to be linear. There is a
unique character yy of G satisfying xw ® xw = X.
In the notation of [Conway et al. 1985] one has
Xw = 2(x1+ X2+ X3) + X5 + Xx6- Now the character
field Q[xs] = Q[x6] = Q[v/—15]. Since dim(V) = 2
(mod 4), Corollary 3.6 yields di(yp) = —15.

Example 3

Let G = S5(3) and x the irreducible character of
degree 78 with orthogonal QG-module ¢ := (V, q).
The universal covering group of G is G = 2.54(3).
Let xw be the character of G on the simple ¢(¢p)-
module. If g € G is an element of order 2 in class
2B in the notation of [Conway et al. 1985], then —g
has a 42-dimensional fixed space on V. Therefore
xw is a faithful character of G by Corollary 3.3.
With GAP one finds that there is only one faithful
character xyw of G satisfying xw ® xw = X- The
character yw contains the two complex conjugate
irreducible characters ¢; and 1, of degree 13 with
multiplicity 1683. Since dim(V) = 2 (mod 4) and
Q[1] = Q[v/—3] Corollary 3.6 yields d. () = —3.
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Example 4

The applications are not restricted to the charac-
teristic 0 case. Let V be the 4-dimensional FyAg-
module. If V admits a nondegenerate Ag-invariant
quadratic form ¢, then there is a projective repre-
sentation

As — Co((V,q))"

yielding an irreducible F, Ag-module of dimension 2.
Since there is no such module, one concludes that V'
is not of quadratic type.

Now let ¢ := (V, ¢) be a 4-dimensional simple or-
thogonal F3As-module. Then there is a linear repre-
sentation 2.A5 — Cy(p)* giving rise to a nontrivial
action of F32.4; on the 2-dimensional simple Cy((p)-
module. Since the two irreducible F32.4:-modules
of dimension 2 are only realisable over Fy, the de-
terminant d.(¢) = —1 is not a square in F3.

Example 5
Let G = U3(5) and ¢ := (V,q) be a 21-dimensional
simple orthogonal QG-module. The universal cov-
ering group of G is 3.G. Therefore Py, : G — ¢(p)
can be chosen to be linear. There is a unique char-
acter xw of G satisfying xw ® xw = x. In the
notation of [Conway et al. 1985] one has xuy =
2x1 + Xz +2x3 + 2X7 + 2X10 + X11 + X12 + X13 + X1a-
The character field of x» (of degree 20) is Q and its
rational Schur index is 2. If U is the irreducible QG-
module with character 2y, then Endgg(U) = Qo5
the rational quaternion algebra ramified only at 5
and the infinite place. Now Corollary 3.6 yields
()] = (2.t

Let g be a power of an odd prime p. As noted by a
referee, the group U;(q) has a absolutely irreducible
rational representation V' of degree ¢> — q + 1 (see
[Simpson and Frame 1973]) and a rational character
x of degree ¢(¢ — 1) with Schur index 2 at oo and
p ([Gross 1990, Section 14]). So one might hope to
generalize this calculation to arbitrary prime powers
q. For ¢ = 7 the character x occurs with odd mul-
tiplicity in xw, so here [c(p)] = [Quw,7]- If g =3 or
g = 11, then dim(V) = £+1 (mod 8). Therefore R
splits c(p) for any positive definite quadratic form
on V and x can not occur with odd multiplicity
in xw. But here one finds that the trivial charac-
ter has odd multiplicity in yw, hence [c(p)] = 1
in these cases. For ¢ = 9 the calculations do not

allow to determine [c¢(¢)] uniquely. It seems to be
very difficult to calculate the candidates for xyw (for
q=17,9,11 one has two possibilities for the charac-
ter xw) generically.

As a referee pointed out, some of the examples
above can also be considered from the integral lat-
tice point of view, replacing the determinant by the
determinant module L#/L, where L is a G-invariant
lattice in the QG-module V' and L is integral, that
is, contained in its dual lattice

L* .= {veV|B,(v,L) CZ}.

If L is a maximal integral G-invariant lattice in V,
then L#/L is a direct sum of simple selfdual F,G-
modules, where p runs through the primes dividing
|L#/L|. If all selfdual p-modular constituents of V'
have even degree, then p does not divide the deter-
minant of V. This observation immediately yields
that det(p) = 1 in Example 1, since the character is
absolutely irreducible modulo every prime p. Simi-
larly the only primes p that can divide det(p) are 3
and 5 in Example 2 and 3 in Example 3. In Example
3 one even can conclude that det(y¢) = 3, because
otherwise G would fix an even unimodular lattice
L C V, and hence 8 | dim V.

Conclusion

This method is better called a trick, because it can
not be applied too often. For instance, for the finite
simple groups only the first two or three characters
xv usually have a real chance that there is such
a constituent ¥ of yy with odd multiplicity. But
when this trick can be applied, the calculations are
easy and it is surprising to see the determinant of a
G-invariant quadratic form appear in the character
table.
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