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This is a preliminary investigation of the geometry and dynamics
of rational maps with only two critical points.

INTRODUCTION

We study rational maps f : C —C of degree n > 2
that are bicritical, that is, have only two critical
points. Every rational map of degree two is bicriti-
cal; this case is discussed in [Milnor 1993; Rees 1990;
> 2000; Silverman 1998; Stimson 1993]. For n > 2,
bicriticality is a very strong restriction. In fact bi-
critical maps seem to behave much more like quad-
ratic rational maps than like general rational maps
of degree n.

It is shown that the moduli space M, consisting of
all holomorphic conjugacy classes of bicritical maps
of degree n, is biholomorphic to C*. Furthermore,
the Julia set of a bicritical map is either connected,
or totally disconnected and isomorphic to the one-
sided shift on n symbols. In the latter case this
Julia set can be either hyperbolic or parabolic. Cor-
respondingly the moduli space splits as the disjoint
union of the connectedness locus, the hyperbolic shift
locus, and the parabolic shift locus:

M = CU Spyp U Spar

Shyp is a connected open subset of M with free cyclic
fundamental group, while 8,,, is a codimension one
subset, conformally isomorphic to C \ D.

Remark 0.1. There is another interesting trichotomy
obtained by considering the multipliers Ay, ..., A,
at the various fixed points (see Section 2). If we
assume that |A\;| # 1 for all of these multipliers,
there are three possibilities, as follows. If two of
the fixed points are attracting, then we are in the
principal hyperbolic component, and the Julia set is
a quasicircle. If there is just one attracting fixed
point, we are in the polynomial-like case, and can
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reduce to the polynomial case by a quasiconformal
surgery. (If N is a compact neighborhood of the
attracting point which contains exactly one critical
value, with f(NN) compactly contained in N, then
f carries C . f~}(N) onto C \ N by a map which
is polynomial-like in the sense of [Douady and Hub-
bard 1985b].) Note that the hyperbolic shift locus
is included here. Finally, it may happen that all
n + 1 fixed points are strictly repelling. This essen-
tially non-polynomial-like case is the most interest-
ing, since this is where we must look for any new or
exotic behavior. (Compare Remark 3.2.)

In order to understand limiting behavior as the ra-
tional map becomes degenerate, it is convenient to
introduce a partial compactification of moduli space
by adding a line L., = C of “points at infinity”. The
resulting extended moduli space M = MU L, fibers
as a complex line bundle

C—M>5C

over the Riemann sphere, with Chern number equal
ton —1. Here X : M — C is a certain conjugacy
class invariant which can be described up to sign
as a cross-ratio (see Lemma 1.7), and X (Lo,) = 0.
The connectedness locus C C M has compact closure
within M.

For each A € C \. {0} the curve Per;()) consisting
of conjugacy classes of maps with a fixed point of
multiplier A forms a holomorphic section of the line
bundle M — C. Any two such sections have exactly
n — 1 intersections, counted with multiplicity. On
the other hand, for A = 0 the locus Per;(0) is not a
section, but rather coincides with a fiber

Lo={(f) e M: X(f) =0}

This fiber can be identified with the set of con-
jugacy classes of unicritical polynomial maps z —
z™ + constant.

The moduli space M =2 C* contains a real sub-
space My = R?. This consists not only of conjugacy
classes of maps with real coefficients but also, when
the degree n is odd, of a more exotic region consist-
ing of conjugacy classes of maps f which commute
with the antipodal map z — —1/Z of the Riemann
sphere. Such f give rise to dynamical systems on
the nonorientable surface which is obtained by iden-
tifying z with —1/z. Similarly the extended moduli

space M S M contains a real subset JV[R which fibers
as a real line bundle

R < Mz = RU{oo}

over the circle R U {oo}. Topologically, Mz is either
a cylinder or Mobius band according as n is odd or
even.

1. CONJUGACY INVARIANTS AND THE MODULI
SPACE M

Let Bicrit,, be the space of all bicritical maps of
degree n > 2. It is not hard to check that Bicrit,
is a smooth 5-dimensional complex manifold. By
definition, two rational maps f and g are (holomor-
phically) conjugate if there exists a Mdbius auto-
morphism ¢ of the Riemann sphere so that g =
po fopt. We are interested in the moduli space
M consisting of all conjugacy classes (f) of degree n
bicritical maps. The first two sections will provide
a rather formal algebraic description of this space.

First consider the marked moduli space M’, con-
sisting of conjugacy classes of f with numbered crit-
ical points ¢y, c,. Here, by definition, the conjugacy
class of (f,c1,cy) consists of all triples

(pofoe™, o), ple)),

where ¢ ranges over Mobius automorphisms of the
Riemann sphere C. In order to construct a complete
set of invariants for such an (f,c;,¢;), we proceed
as follows.

Lemma 1.1. If we put the critical points c; at infinity
and cy at zero, then f must have the form

nip
) = = id, (1-1)
with derivative
, nz""(ad — be)
f(Z)— (Cz”+d)2

(There should be no confusion between the coeffi-
cient ¢ and the critical points ¢;.) Here the determi-
nant ad — bc must be nonzero. Note that this trans-
formation depends only on the ratios (a:b: c: d).

Proof. Write f(z) as the quotient p(z)/q(z) and look
at the equation f(z) = v or p(z) — vq(z) = 0. Sup-
pose, to fix our ideas, that the two critical values
v; = f(0) and v, = f(o0) are finite. Then the poly-
nomial p(z) — v,q(2) has no finite roots, and hence



must be constant. Similarly, p(z) — v;¢(2) has no
nonzero roots, hence must have the form kz™. Solv-
ing the resulting linear equations for p(z) and ¢(z),
the conclusion follows easily. The case where v; or
vy is infinite can be handled by a similar argument.

O

Remark. The Julia set of a bicritical map of degree n
always has an n-fold rotational symmetry about its
critical points. If we use the normal form (1-1), this
symmetry is expressed by the equation f(wz) = f(2)
and hence J = wJ, whenever w™ = 1.

Theorem 1.2. A complete set of conjugacy invariants
for a map f in the normal form (1-1), with marked
critical points at zero and infinity, is given by the
expressions

n+lin—1 n—1 Jyn+1
:bc,lea b ,Y2:c d ‘
ad—be (ad—bc)™ (ad—bc)™
(1-2)

These invariants are subject to the relation

VY, = X" H(X+1)M Y (1-3)

but to mo other relations. Hence the moduli space
M’ consisting of all such marked conjugacy classes is
homeomorphic to the affine algebraic variety consist-
ing of all (X,Y1,Y3) € C? satisfying equation (1-3).

As an example, the polynomial function f(z) = 2"+
b corresponds to the matrix

© 1o ]

X=Y,=0,

with invariants
Y, =L

Figure 1(a) and Figure 2 on page 492 show the Y;-
coordinate plane and the b-coordinate plane for de-
gree n = 4, in this locus X = Y; = 0 of polynomial
maps.

Proof of Theorem 1.2. Multiplying the four coeflicients
in (1-1) by a common factor, we can normalize so
that ad — bc = 1. The coeflicients are then uniquely
determined up to a common change of sign. Note
that the expressions (1-2) are all invariant under
this transformation, since numerator and denomi-
nator are homogeneous of the same degree. With
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this normalization, we can write (1-2) in the sim-
pler form

X +1=ad,
}/1 — anJrlbnfl’ }/2 —

X = b,

cnfldnJrl . (1 —4)
Such a normal form with critical points at zero and
infinity is not unique, since we are still free to con-
jugate by a Mo6bius automorphism that fixes both
zero and infinity. If we write such an automorphism
as p(z) = z/t?, we must replace f by gofop™'(z) =
f(t*z)/t*. A brief computation shows that the four
coefficients, normalized so that the determinant re-
mains +1, are then transformed by the rule

(a,b,c,d) — (t" ta, b/t"T ", d/t"h). (1-5)

It is clear that the three expressions (1-4) are invari-
ant under this transformation (1-5), and also under
a simultaneous change of sign for a, b, ¢, d, and that
they satisfy the required relation (1-3).

Conversely, given (X,Y7,Y,) satisfying (1-3), we
must show that there is one and only one corre-
sponding choice of +(a,b,c,d), up to the transfor-
mation (1-5).

Case 1. Suppose that Y3 # 0, hence ¢ # 0 and d # 0.
Then using (1-5) we can make a linear change of
variables so that d = 1. It follows from (1-4) that

a=X+1, b= X/c, =Y.

Thus we obtain a normal form which is uniquely
determined by X and Y5, up to a choice of (n—1)-st
root for Y,. With this choice of a,b,c, d, note that
the relation Y; = a" ™'~ ! follows from (1-3). But
applying (1-5) again with ¢ equal to any (2n—2)-nd
root of unity, since t"~! = £1, we see that

(a,b,c,d) — *(a, b/t? t?c, d),

where t? can be an arbitrary (n—1)-st root of unity.
Therefore, the conjugacy class does not depend on
a particular choice of (n—1)-st root c.

Case 2. If Y] # 0 the argument is similar.

Case 3. If Y; = Y, = 0, then X must be either 0 or
—1 by equation (1-3). If X =Y, =Y, = 0, then
making use of the hypothesis that ad — bc = 1 we
see that b = ¢ = 0 and that f is conjugate to

z 2",
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On the other hand, if X +1 =Y; = Y, = 0, then
it follows similarly that a = d = 0 and that f is
conjugate to the map

z—1/2"

(Remark: These two exceptional points in mod-
uli space will often require special attention.) This
completes the proof. O

Now consider the quotient space of M’ under the
involution

(f,c1,¢2) < (f,c2,01),

which interchanges the two critical points.

Corollary 1.3. This quotient space M, consisting of all
holomorphic conjugacy classes of degree n bicritical
maps, is biholomorphic to C*, with coordinates X
andY =Y, + Y.

We will use the notation Lx, for the complex line
consisting of all (f) € M with X(f) = X,.

Proof. If f is given by (1-1), then a holomorphically
conjugate map with critical points interchanged is
given by
1 d"+ec
f(1/z)  bzr+a
Thus (a,b,c,d) <> (d,c,b,a) and Y; < Y,, with X
fixed. We must form the quotient of M’ under this
involution. Since the product Y;Y, can be expressed
as a smooth function of X, it is easy to check that
the two quantities X and Y =Y; + Y, form a com-
plete and independent set of invariants for the quo-
tient variety M. O

Remark. The algebraic variety (1-3) has a singular
point at X = -1, Y, =Y, =0, and (if n > 3) an-
other singular point at X =Y; =Y, = 0. However,
by passing to the quotient variety in which we un-
mark the critical points, these two singular points
miraculously disappear.

Corollary 1.4. The symmetry locus ¥ C M, consisting
of all conjugacy classes of f which commute with
some Mdabius automorphism, is the variety defined
by the equation

Y2 =4X" X +1)",
Proof. First suppose that there exists a non-trivial

automorphism which fixes the two critical points.
Then it must also fix the critical values, hence the

set of critical points must coincide with the set of
critical values. There are only two possibilities: Ei-
ther f fixes both critical points hence (f) is the con-
jugacy class of z — 2" with X =Y =0, or else f
interchanges the two critical points, hence (f) is the
class of z — 1/2" with X +1 =Y, =Y, = 0.
(In these two exceptional cases, the group of auto-
morphims fixing the critical points is cyclic of order
n —1 or n+ 1 respectively, and the full group of au-
tomorphisms is dihedral of order 2(n—1) or 2(n+1)
respectively.)

If we exclude these two cases, then a non-trivial
automorphism ¢ commuting with f must be an in-
volution which interchanges the two critical points,
and must be unique. It is easy to see that such an
involution exists if and only if Y; =Y, = Y/2. Since
the two exceptional cases also satisfy this equation,
the conclusion then follows from (1-3). O

Remark 1.5. When n is odd, this symmetry locus is
a reducible variety, splitting as >, U ¥X_ where X
is defined by

Y = £2 X0 D/2(X 4 1) D/2,

In fact a class (f) € M can be symmetric in two
essentially different ways when n is odd. Let ¢ be the
(usually unique) involution which commutes with f.
Then the two fixed points of ¢ are also fixed by f
when (f) € X, but are interchanged by f when
f € X_. This can be proved by using the normal
form (1-1), taking ¢(z) to be 1/z, so that
_ 4 az" +0b

1(z) = b2" +a

(Note that the two exceptional conjugacy classes,
where the involution ¢ is not uniquely determined,
constitute the intersection ¥, N X_.) For (f) €
3., computation shows that the two invariant fixed
points have multipliers A; and A\, with sum A +Xy =
2n(2X + 1) and with product A\ = n®. On the
other hand, for (f) € ¥_ the two fixed points of ¢
constitute a period two orbit for f with multiplier
n?. It follows that ¥ _ is contained as one irreducible
component in the curve Pery(n?) of Section 8.
Evidently, the two halves of the symmetry locus
represent quite different dynamic behavior. For ex-
ample if (f) € ¥_ then there are either two non-
repelling fixed points or none. In either case, it fol-
lows that the Julia set is connected. On the other

(1-6)



hand, if we use the normal form (1-6) with the pos-
itive choice of sign, a brief computation shows that
the multiplier at the fixed point 1 = f(1) = ¢(1)
equals n(a—b)/(a+b). Whenever this fixed point is
attracting, it follows by symmetry that both critical
points must lie in its immediate basin. Using Theo-
rem B.5 (Appendix B), it follows that the Julia set
is totally disconnected.

For n even, the symmetry locus is irreducible, con-
formally isomorphic to a punctured plane. In fact
each (f) € ¥ has a unique fixed point which is invari-
ant under the involution. The multiplier A at this
fixed point can take any nonzero value, and compu-
tation shows that X = (A\/n + n/A —2)/4 is then
uniquely determined. (The correspondence A — X
is two-to-one, since a generic fiber Lx intersects 2
in two different points.)

Remark 1.6. Adam Epstein made the following obser-
vation. Again let ¢ be the (usually unique) involu-
tion commuting with f. Then there is a natural in-
volution of the symmetry locus given by (f) — (f*),
where f* = f o1 = 10 f has the same Julia set as
f- The map f* has invariants X* = —1 — X and
Y*=(-1)"YX/(1+ X). When n is odd, note that
this involution maps each irreducible component ¥,
to itself. Using the normal form (1-6), this involu-
tion interchanges the coefficients a and b.

An interesting involution of the entire moduli space
M is given by the correspondence (f) — (J o f),
where J = J; is the unique involution of the Rie-
mann sphere which fixes the two critical values. If
f is given by (1-1), then

az™ —b
cz® —d’

Jo f() =

with X(J o f) = X(f) and Yi(J o f) = =Yi(f).
Thus this involution maps the symmetry locus to
itself, interchanging >, and ¥_ in the odd degree
case.

The correspondence (f) — X(f) is rather natural,
and can be defined in several different ways. For ex-
ample, we will see in Section 2 that X (f) is linearly
related to the sum of the multipliers at the various
fixed points of f. The next lemma offers another
example, involving a cross-ratio formula. (Compare

Appendix C.)
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Lemma 1.7. If f is a rational map with critical points
c1,¢2 and with critical values v; = f(c;), then the
invariant X = X (f) is equal to the negative of the
cross-ratio

(c1 —v1) (c2 — v2)

(01 - 02) (U1 - 112)'
Proof. This cross-ratio is clearly well defined and
invariant under conjugation. (Note that the denom-
inator never vanishes.) Putting the critical points
at ¢; = oo and ¢y = 0, the left hand factors cancel
and the cross-ratio reduces to

0—v,  —b/d  —bc
vy —v, a/c—b/d ad—bc’
as required. O

For further cross-ratio formulas, see Appendix C.

Corollary 1.8. Denote the modulus of an annulus A C
C by modA, and let modf > 0 be the largest pos-
sible modulus of an annulus in C which separates
the critical values of f from the critical points of f
(taking modf = 0 when there is no such annulus).
Given a sequence of conjugacy classes (f;) € M, the
invariants | X (f;)| tend to infinity if and only if the
invariants modf; tend to infinity.

Proof. In fact we will show that

logr

<modf < mod(@ ~ ([-1,0]u [T7+OO]))7

where r = | X|, and where both the upper and the
lower bound tend to infinity as » — oo. After
a Mobius automorphism, we may assume that the
critical points are located at 0,—1 and the corre-
sponding critical values at X,oco. Now the lower
bound is obtained by using the round annulus {z :
1 < |z| < r}, while the upper bound follows from
[Ahlfors 1966, Ch. III]. O

The space C? is an extremely flabby object, with a
very large group of holomorphic automorphisms. In
Section 6 we will impose a much more rigid struc-
ture on the moduli space M = C? by partially com-
pactifying it. The invariant X will play a key role
in this partial compactification, since it will serve
as the projection map of a canonical fibration, with
typical fiber

Lx, ={(f): X(f) = Xo}-
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2. FIXED POINTS AND THE CURVES Per; ()

Recall that the multiplier of a rational map f at a
finite fixed point z = f(z) is defined to be the first
derivative A = f’(z). (In the case of a fixed point at
infinity the multiplier is equal to the limit of 1/f’(2)
as z — 00.) We first prove the following.

Lemma 2.1. Let f be a bicritical map of degree n with
invariants X and Y. If f has a fixzed point of multi-
plier X\, then the product \™Y can be expressed as a
polynomial function of degree 2n in the variables X
and .

Definition. Let Per;(\) C M be the set of all conju-
gacy classes of bicritical maps which admit a fixed
point of multiplier A.

Corollary 2.2. For \ # 0, the curve Per;(\) can be
described as the graph of a polynomial function Y =
polynomial, (X). In particular, for A # 0, each fiber
Lx, = {(f) : X(F) = Xo} contains one and only
one conjugacy class (f) of maps which have a fized
point of multiplier \.

Proof of Lemma 2.1 and Corollary 2.2. We will use the
normal form (1-1). First suppose that A # 0. Then
the fixed point of multiplier A must be distinct from
the two critical points 0 and oco. After a linear
change of coordinates, we may assume that this fixed
point is z = 1. Thus 1 = f(1) = (a + b)/(c + d).
Multiplying the coefficients by a common factor, we
may assume that a +b = ¢+ d = 2. If we define
parameters p and £ by the equations

bzl_ﬂ_ga

a straightforward computation shows that ad —bc =
Ay,

a=1+p+¢,

(2-1)
Czl_u+§7

n(ad — bc)
>\ e ! 1 = — = X e
and that Y equals

(A+pt)"H(A—p=8)" H+(A=p+O)™ T(A4+p=E""

(4p)" '
Thus p™Y is equal to a polynomial of degree 2n in
the variables p and &. Note that this expression
for Y is unchanged if we replace & by —¢. (The

involution £ <+ —& corresponds to the conjugation
f(z) + 1/f(1/2).) Hence p"Y can be expressed

(1—p)?—¢&
4p

I

as a polynomial function of u and £2. Substituting
€ = (1—p)*—4pX and g = \/n, we obtain the
required polynomial expression for A"Y, of degree n
in A and X. This proves Corollary 2.2.

To prove Lemma 2.1, we must also check that this
same polynomial relation remains valid when f has a
fixed point (necessarily 0 or co) of multiplier A = 0.
In that case, the product A"Y is certainly zero, and
X = 0 so that £ = %1, and the numerator of the
expression for Y is identically zero, as required. [

We can describe the form of these polynomial rela-
tions more precisely as follows. We will continue to
work with the quotient p = \/n.

Theorem 2.3. For each n there are polynomials Py(X),
P (X), Po(X), ..., P, (X) in Z[X], each Py(X)
having degree < k, so that
pY = Pia(X) = pPoy(X) + p? Py (X) =+
+H(=p)"Pi(X) + (=p)" T Py(X).
As explicit examples, we have
pY =X —pX(2X-1)+p*(4X+1) — p

for n = 2, and
pY = X? -2, X*(X-1)

+ 2 (9X2+4X +1) — 23 (3X +1) + p
for n = 3.
Proof of Theorem 2.3. From the proof of Lemma 2.1, it

follows easily that we can define polynomials P;(X)
by the formula

W= 3 (=) Py(x),

i+j=n+1

(2-2)

where 0 < 7 < 2n or equivalently n+1>1¢>1—n,
and where each P;(X) has degree < j. What is new
in Theorem 2.3 is the statement that the P; have
integer coefficients, and that P; = 0 for j > n + 1.
To prove this, we will derive the same formula (2-2)
in a different way. Again we use the normal form
(1-1) with a fixed point of multiplier A # 0 at z = 1,
but now we normalize so that ad — bc = 1, and set
u =a-+b=c+ d. Then computation shows that
= A/n =1/u®. Furthermore

l=ad—bc=(u—>b)(u—-c)—bc=1u"~—(b+c)u,
or in other words

b+c=u—1/u.



Since bc = X, it follows that b and ¢ are the two
roots of the equation

b> — (u—1/u)b+ X = 0.

Thus

2b=u—1/usx+/(u—1/u)? — 4X.

For |u| large, each of the two solutions b and ¢ can be
expressed as a Laurent series in u with coeflicients
depending on X. One solution has the form

_ X XAHX) | XA+X)([A42X)

n u3 ub

b

)

tending to zero as u — oo, where the successive
coefficients are polynomials in X with integer co-
efficients which can be computed by a straightfor-
ward induction. The other solution is then given
byc=u—-1/u—b=u—(1+X)/u—---, and is
asymptotic to u. From these we can compute

Y =(u-—

b)n—i—lbn—l + (u _ c)n+lcn—1

as a Laurent series in u. This series begins as
Y =’ X" - X" (2X+1-n)
+ (P’X" 4 +1) /U’ 4+ O(1/u?)
= X"/ X" 2X+1-n)
+ (X" 1) e+ O(p?),
or in other words as

pY = X" = X" (2X +1-n) p

+(PPX" )+ O(p?) (2-3)

as u — 0. Thus there are no terms in p’ with i <
0. This proves that formula (2-2) reduces to the
required form. O

Here is some more precise information about the
polynomials Py (X). It will be convenient to intro-
duce the abbreviation

m—k m—k—1
5(m’k)_( k >+< k-1 )
for the sum of two binomial coeflicients.

Lemma 2.4. Each P,(X) with 0 < k < n is a polyno-
mial of degree k, however P,.,(X) is a polynomial
of degree n — 1. We have
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Fy(X)
Py(X)

L,
2nX + (n — 1),

n—2
1
Poa(X)=n2x 430 (" -

j=0 J
Pu(X) =2X" + (1—n)X",
Por(X) = XL,

)X

The constant term Py,(0) in each of these polynomi-
als is equal to the binomial coefficient (";1), while
the coefficient of the degree k term is equal to the
sum ((2n, k).

Proof outline. The explicit formulas for Py (X) with
k > n — 1 can be derived from the computation
(2-3). For the remaining information, we again use
the normal form (1-1) with ad — bc = 1 and with
u=a+b=c+d Lets, =0b"+c" where s; =
b+ c=wu—1/u. Starting from the Newton formula

Spp1 = (b+c)sp — (be) sp_1 = (u—u")sp — X sp_1,

it follows inductively that we can express each s;, as
a polynomial function of u—u~! and X. The precise
formula is

S =

ST ) (~X) (u— ),

0<j<k/2

(Note that this computation is independent of the
degree n.) Equivalently, recalling that u = 1/u?, we
can write

S . . o
+= 2 Bl (-uXY (-t 24
0<j<k/2
Now we can compute
Y — an+1bn71 + Cnfldnjtl
— (U _ b)nJrlbnfl + Cnfl(u _

= un+18n,1 — (nfl)unsn + (ﬂ;rl)un—lsn+1

C)nJrl

—_ + PP j: 827’“
or equivalently
Sn—1 n—+ 1\ s, n+ 1\ Sp11
vt () ()
M unfl 1 umr + 2 un+1
San
I o

Substituting (2—4) into this last equation, we obtain
a fairly explicit formula for p”Y. Further details
will be left to the reader. O
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As an application, we can give a more precise form
of Corollary 2.2.

Corollary 2.5. Each Per;(\) C M with A # 0 can be
described a smooth curve of the form

Y =-2X"
+ (ROHFATTH D) 1) X - A (=)

If X # XN with AN # 0,1, then it follows easily that
the curves Per;(\) and Pery(\N') have exzactly n — 1
points of intersection, counted with multiplicity.

Proof. The first statement is proved by plugging the
explicit values from Lemma 2.4 into the equation
of Theorem 2.3. It follows that each intersection
Per;(A) N Per;(N) with A # X is described by a

polynomial equation of the form

n()\—i-l—)\'—l

iy )\’) X" + (lower terms) = 0.

In the generic case where AN # 0, 1, this equation
has degree n — 1, and the assertion follows. O

(On the other hand, if AN = 1 the leading coef-
ficient of this polynomial equation is zero. In this
case, we must count one or more “intersections at
infinity” in order to get the right number. (See Sec-
tion 6.) A more significant exception occurs when
A = 0. In fact, to make the count come out right,
we should identify Per; (0) with the curve X"~ = 0,
or in other words with the locus Ly counted n — 1
times. (Compare Section 8.) In fact, as A\’ — 0 with
Y bounded, the locus Per;(\’) degenerates towards
an (n—1)-sheeted covering of the locus X = 0. to-
wards the curve X"~! = 0 of multiplicity n — 1.

Definition. Every rational map f of degree n has
n + 1 fixed points counted with multiplicity. Let
A1, .., Ang1 be the multipliers at these fixed points,
and let

O — Z >\11>\1k

1<i1 < <ipg<n+1

be the k-th elementary symmetric function of these
multipliers. It is convenient to set o, = 1. Note
that the quotient o;/n* can be described as the k-
th elementary symmetric function of the quotients

i = )\Z/TL

Theorem 2.6. These elementary symmetric functions
can be computed by the formula

op/n* = P(X) for 0<k<n+l, k#n,

(2-5)
o,/n" = P,(X)+Y.

Proof. Each of the n + 1 multipliers A = A, trivially
satisfies the polynomial equation

n+1
AT g Ao AT ko = [T (A M)
k=1
= 0.

Hence the quotient p = A/n satisfies
’un+1 —al,u"/n—i—ag,unfl/nz 4. -:i:an+1/n"+1 = 0.
On the other hand, from Theorem 2.3 we see that

pttt — Py (X )™+ Py(X)pmt
— 4 TF(Pu(X) + YY)t Py (X) =0.

The difference of these two polynomial equations is
a polynomial of degree n in u which vanishes at
all n + 1 of the p;. If the pu; are pairwise distinct
(or in other words if the multipliers \; = nu, are
pairwise distinct), then it follows immediately that
corresponding coefficients are equal, which proves
(2-5). These identities follow in the general case
by continuity or by analytic continuation, since for
generic (f) € M the n + 1 multipliers are indeed
distinct. To prove this, we need only construct a
single example where the multipliers are distinct.
For example if f(z) = 2" + b then the multipliers
are distinct provided that we exclude n very special
values of the parameter b. First we must guarantee
that (f) # Per;(1), in order to be sure that the n+41
fixed points are distinct. But if (f) € Per;(1), then
the fixed point equation b = z— 2" together with the
multiplier equation nz"~! = 1 imply that the invari-
ant Y = b""! is equal to (n — 1)"~!/n". Finally, we
must choose b # 0 to guarantee that two distinct
fixed points, say z # wz, cannot have the same mul-
tiplier A = nz""! = n(wz)" 1. But this would im-
ply that w™ ! = 1, and the fixed point equation
z — 2" = b would then yield (wz) — (wz)" = wb # b,
provided that b # 0. Also, no finite fixed point has
multiplier zero provided that b # 0. Thus gener-
ically the multipliers are distinct, which completes
the proof. O



Remark 2.7. As an immediate corollary of Lemma 2.4
and Theorem 2.6: We could equally well use the two
invariants o1 and o, as coordinates for the moduli
space M =2 C?, in place of the invariants X and Y
of Section 1. (In practice, in Section 6, it will be
convenient to use X and o,, as coordinates.)

Remark 2.8. It seems surprising that every one of
the elementary symmetric functions o, with k # n
can be expressed as a function of X alone. Only o,
depends also on the coordinate Y. As an example
to illustrate this statement, consider the family of
unicritical polynomials

f(z) = =" +b,

with invariants X = 0 and Y = b"~!. For the special
case b = 0, there are two fixed points of multiplier
zero and n — 1 fixed points of multiplier n, hence

ot =" )

for every k. It follows from Theorem 2.6 that this
same formula holds for any value of the parameter b,

provided that k # n. On the other hand for k = n,

since this binomial coeflicient is zero, it follows that
o, /n" =Y =b""L

For example in the quadratic case f(z) = 22 + b, it
follows that the multipliers at the finite fixed points
satisfy Ay + Ay = 2 and A\, = 4b.

Remark 2.9. The holomorphic fixed point formula as-

serts that
n+1 1

Z1—Aj:1

1

if A; # 1 for all j. (See [Milnor 1999], for example.)
This gives rise to a linear relation between the o}, or
equivalently between the P, which takes the form

Y (-D)fn—k)or =Y (—n)*(n — k) P(X) =0,

It follows by continuity that this relation still holds
also when some of the A; equal 1. Note that the
invariant Y is not involved, since the coefficient of
o, in this formula is zero.

Remark 2.10. It is sometimes convenient to consider
the moduli space for bicritical maps with one marked
fixed point. In this case, a complete set of invariants
is provided by X and Y together with the multiplier
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A = n p at this marked point. These are subject only
to the relation pY = X" ! —uP,(X)+u?P,_1(X) —
+ -+ (—p)"t. We can understand the topology of
the resulting variety better by introducing a new co-
ordinate Y, = Y +P,(X)—puPy_1(X)+—-- -4 (—p)"
in place of Y. Then X,Y, and p are subject only
to the relation pY, = X" '. For n > 3 this variety
has a singular point at X =Y =Y, = = 0.

3. SHIFT LOCUS OR CONNECTEDNESS LOCUS

By definition, a conjugacy class (f) of degree n ra-
tional maps belongs to the connectedness locus C if
the Julia set J; is connected; and belongs to the
shift locus 8 if Jy is totally disconnected with f|;,
topologically conjugate to the one-sided shift on n
symbols. This section will prove that every conju-
gacy class of maps with only two critical points must
belong to one or the other:

Theorem 3.1. Every (f) € M belongs either to the
connectedness locus or to the shift locus.

Note. If (f) belongs to the shift locus, then evidently
both critical points belong to the Fatou set C \ J¢,
which is connected but far from simply connected.
There are two possibilities. If f has an attracting
fixed point, and hence is hyperbolic on its Julia set,
then we will say that (f) belongs to the hyperbolic
shift locus 8yy,. Otherwise, f must have a parabolic
fixed point, and we will say that (f) belongs to the
parabolic shift locus §,,,. Thus the moduli space
partitions as a disjoint union

M - e U Shyp U Spar-

We will explore this partition of M further in Sec-
tions 4 and 7.

Remark 3.2. In contrast with the polynomial case,
we will see that the connectedness locus is neither
closed nor bounded in M (although it has compact
closure in the extended moduli space M). In anal-
ogy with the polynomial case, one might be tempted
to conjecture that the interior of the connectedness
locus consists only of hyperbolic maps. In fact this
conjecture is true if we restrict attention to the open
subset consisting of (f) with at least one attract-
ing fixed point. (Compare Remark 0.1.) However,
the connectedness locus also contains an “essentially
non-polynomial-like” region Cyp consisting of maps
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for which all n+1 fixed points are strictly repelling.
This region is certainly contained in the interior of
the connectedness locus, and yet contains many non-
hyperbolic maps. (Compare [Rees 1986].)

Here is one example. If f(z) = k + (1 — k)/2",
with x an n-th root of unity distinct from 1, the
critical points are 0 and oo with 0 — oo — Kk > 1,
so that both critical orbits eventually land at the
repelling fixed point 1. It follows that the Julia set
is the entire Riemann sphere, and that all periodic
orbits are strictly repelling. (This map lies in the
locus X = —1, where one critical point maps di-
rectly to the other. Compare [Bamén and Boben-
rieth 1999].) It is conjectured that the region Cyp
is a topological 4-cell. When n = 2, this can be
proved as follows. Let I; = 1/(1 — ;) be the holo-
morphic fixed point index at the j-th fixed point.
(Compare Remark 2.9.) Then this region in moduli
space can be identified with the star shaped region
consisting of unordered triples of complex numbers
I; with 0 < Rel; < £ and I; + I, + I3 = +1. On the
other hand, for n > 2, I don’t know even whether
Cxp is simply connected. Evidently an understand-
ing of the topology and dynamics associated with
this region Cyp would be fundamental in reaching
an understanding of bicritical maps.

The two key ingredients in the proof of Theorem 3.1
are the following:

Theorem A.1 (Shishikura). A rational map with two
critical points cannot have any Herman rings.

A proof of this statement can be extracted from
[Shishikura 1987], although it is not explicitly stated
there. See Appendix A for a proof that does not use
quasiconformal surgery.

Theorem B.5 (Przytycki and Makienko). If a map f with
two critical points has the property that both critical
values lie in a common Fatou component, then (f)
belongs to the shift locus.

More generally, it is shown in [Przytycki 1996] and
in [Makienko 1995] that any rational map with all
critical values in a single Fatou component is iso-
morphic, when restricted to its Julia set, to the one-
sided shift. However, since their argument is rather
complicated, and since we need only the bicritical
case, a proof of Theorem B.5 is given in Appendix B.

Remark 3.3. Here is an alternative statement: Sup-
pose that both critical orbits are eventually absorbed
by an invariant Fatou component, Q = f(Q). Then
(f) belongs to the shift locus. In fact such a Fatou
component must contain at least one of the two crit-
ical points, and hence must be fully invariant, ) =
f71(Q). Hence it contains both critical values, and
Theorem 3.1 applies. (By way of contrast, a map
with three critical points may well have connected
Julia set, even though all critical orbits are even-
tually absorbed by an invariant Fatou component.
For example the map f(z) = 2+223/(27(2—z)) has
critical points 0,3, 00 with orbit 3 — 0 — 2 — oo
ending on a superattractive fixed point. The im-
mediate basin of infinity contains no other critical
point, since no critical orbit converges non-trivially
to infinity, hence this basin is simply connected. It
follows, as in the proof of Theorem 3.1, that every
Fatou component is simply connected.)

The proof of Theorem 3.1 will also use the following
elementary observation.

Lemma 3.4. Let P C C be a region bounded by a sim-
ple closed curve which passes through neither critical
value. Then the pre-image of P under f can be de-
scribed as follows.

1. If P contains no critical value, f~'(P) consists
of n disjoint simply-connected regions bounded by
n disjoint simple closed curves.

2. If P contains just one critical value, f~*(P) is a
single simply connected region bounded by a sim-
ple closed curve, and maps onto P by a ramified
n-fold covering.

3. If P contains both critical values, f~*(P) is a
multiply connected region with n boundary curves,
and maps onto P by a ramified n-fold covering.

Proof. The proof is straightforward. Cases 0 and 2
correspond to the “inside” and “outside” of the same
simple closed curve. In the case of just one criti-
cal point in P, the set f~'(P) must be connected
since f is locally n-to-one near a critical point, and
the branched covering f~!(P) — P is unique up to
isomorphism, since the fundamental group of P ~
(critical value) is free cyclic, so that there is only
one n-fold covering of this set up to isomorphism.
O



Proof of Theorem 3.1. Suppose that (f) is not in the
shift locus, and hence that no Fatou component con-
tains more than one critical value. If L is a loop in
an arbitrary Fatou component, then using Sullivan’s
Non-Wandering Theorem we see that some forward
image f°%(L) lies in a simply connected region U
which is either

(1) a linearizing neighborhood of some geometrically
attracting periodic point,

(2) a Bottcher neighborhood of some superattracting
periodic point,

(3) an attracting petal for a parabolic point, or

(4) a Siegel disk.

Here we are using the fact that there are no Herman
rings (Theorem A.1). Using Lemma 3.4, it follows
by induction on k that each component of f=*(U)
is simply connected. This proves that every Fatou
component is simply connected, and hence that the
Julia set is connected. O
4. THE PARABOLIC SHIFT LOCUS 8, ~ C ~ D

par

Recall from Section 3 that the moduli space M splits
as a disjoint union

M = CU Spyp U Spar-

Evidently 8y, is an open subset of moduli space,
disjoint from the curve Per;(1) = C, while §,,, is a
relatively open subset of this curve Per;(1).

Lemma 4.1. The parabolic shift locus is contained
in the common topological boundary 08y, = OC.
Hence the closure C C M is equal to € U Pery(1),
with complement Syy,.

Proof. For every (f) in the parabolic shift locus, we
must show that f can be approximated arbitrarily
closely by a map with connected Julia set, and also
by a hyperbolic map with totally disconnected Julia
set. Let {f;} be a holomorphic one-parameter family
of maps with fy = f. We will assume that each
f: has two critical points, and that this family is
not contained in Per;(1). Then for |¢| small but
nonzero, the parabolic fixed point for f, splits into
two nearby fixed points, with multipliers say A; and
Aa2. As t traverses a loop around ¢ = 0, these two
fixed points may be interchanged. However, if we set
t = w2, both \; and )\, can certainly be expressed
as single valued holomorphic functions of u, with
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A1(0) = Ay(0) = 1. Since these functions are non-
constant, we can choose u close to zero so that A\, (u)
takes any required value close to 1.

First we choose u so that A;(u) = €>™/7 with
q > 1. Then the corresponding fixed point is para-
bolic, with at least two attracting petals. Hence
the associated Fatou set is not connected, and (f,2)
must belong to the connectedness locus €.

Now we choose u so that A;(u) is real, with A; < 1,
so that the corresponding fixed point is strictly at-
tracting. For u sufficiently close to zero, we will
show that (f,2) belongs to the hyperbolic shift lo-
cus. Choose a simple arc A joining the two critical
points with the Fatou set for fy. Then for large k the
image f5*(A) lies close to the parabolic point, and
within a sector of small angular size about the at-
tracting direction for this parabolic point. An easy
perturbation argument then shows that the same
description holds for f(,»), provided that A;(u) <1
with u close to zero. (See [Milnor 2000, § 4], for ex-
ample.) Thus both critical values lie in a common
Fatou component, and it follows that (f,2) € Spyp-

O

Theorem 4.2. The intersection C N Per;(1) is a com-
pact, connected, full subset of the curve Per;(1) =
C. Equivalently, the parabolic shift locus 8, =
Per;(1) ~ (€N Pery (1)) is always non-vacuous, con-
formally isomorphic to a punctured disk.

Compare Figure 1(d) and [Milnor 1993, Figure 4].

I will outline two proofs of Theorem 4.2, one sug-
gested by conversations with Schleicher, and the
other suggested by Shishikura. The first begins as
follows.

Proof of compactness. It will be convenient to use the
normal form (1-1), choosing the matrix of coeffi-
cients to have the form

[a b} _ [n—i—l—i—a n—1l—-uo

c d n—1+a n+l—-al’ (“4-1)

where a € C is a parameter. Then it is easy to
check that the associated rational function f satis-
fies f(1) = f'(1) = 1, and that the invariant X =
X (f) of Section 1 is given by X = ((n—1)*—a?)/4n,
so that |X| — oo as |a| — oo.

Remark. The special case a = 0 corresponds to the
unique conjugacy class (f) such that f has a fixed
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FIGURE 1. Pictures of €NPer; () for A =0, 0.01, 0.5, and 1 respectively, for the degree n = 4. The configuration
deforms continuously for 0 < A < 1, and conjecturally as A — 1 also. However, there is a qualitative difference
between the first and second pictures due to the fact that as A — 0 the curve Per;(\) converges not towards
Per; (0) but rather towards an (n—1)-fold branched covering of Per;(0), as shown in Figure 2. Thus Figure
1b is a somewhat squashed version of Figure 2. The surrounding curves in Figures 5a, 5b, 5¢ represent equal
rates of convergence towards the attracting fixed point for the more slowly converging critical point. (For the

corresponding curves in Figure 1d, see Remark 4.3.)

FIGURE 2. The “Multibrot set” for degree n = 4,
that is, the connectedness locus in the b-parameter
plane for the family of unicritical polynomial maps
z + 2% +b. (See [Lau and Schleicher 1996], for
example.) Note the (n—1)-fold rotational symmetry.
The corresponding figure in the b3-plane is shown in
Figure 1(a).

point of multiplier +1 with two attracting petals.
Using this normal form (4-1), the corresponding Ju-
lia set is the unit circle.

Assuming that « # 0, set
2 2
? + a(z—1)

aw’
Then a straightforward computation shows that the
map z — f(z) corresponds to
B 2
af(l1+2/aw) —a
1
=w+1+ O(—),

aw

w +— F(w)

(4-2)

where the error estimate holds uniformly provided
that both |a| and |aw| are sufficiently large. In par-
ticular, it follows that the region {z : Rew > 3}
maps holomorphically into itself, and hence is con-
tained in the Fatou set of f, provided that |« is
sufficiently large. On the other hand, it is not hard
to check that

b 2 a 2
O =g =1+ o) =St
where
1 -1
wy=1- 21 wy =1+ 2 (4-3)
« o

Thus, for || sufficiently large, both critical values
belong to the half-plane Rew > %, and hence belong
to the same Fatou component, so that (f) belongs
to the parabolic shift locus. Therefore the closed
set € N Per;(1) is bounded and hence compact, as
asserted. O

Remark 4.3. We can construct a holomorphic func-
tion @ : §y.r — C as follows. For any (f) € Spar,
let P C C \ J; be an attracting petal for the para-
bolic fixed point, and let ¢ be a Fatou coordinate,
mapping P biholomorphically into C, and satisfying

o(f(2)) = ¢(2) + 1.

Then ¢ extends canonically to a holomorphic map
which carries the entire parabolic basin onto C, sat-
isfying this same functional equation. In particular,



if ¢; and ¢, are the critical points, then the differ-
ence ¢(c1) — ¢(cy) is a well defined complex num-
ber, independent of the choice of petal and Fatou
coordinate. In order to make this construction in-
dependent of the numbering of the critical points,

we set
2

<I>(f) = (‘P(Cl) - 90(02)) .
then it is not difficult to check that
®: 8, = C

is well defined and holomorphic. (Compare the con-
struction of Fatou coordinates as given in [Steinmetz
1993].) The curves |®| = constant are shown in Fig-
ure 1(d), and in a much larger region of Per;(1) in
Figure 3. The asymptotic formula

2n\? -n
P ~—) ~ 4-4
=) X() =
as | X (f)| — oo can be verified as follows. The in-
equality
dF(w) 1
=1
dw + 0 (aw2>

follows from (4-2) together with Schwarz’s Lemma.

Hence
1
aws;

provided that w,/w; is reasonably close to 1. Set-
ting

p(c2) — p(cr) = lim (Fom(wz) - Fom(wl))
as in [Steinmetz 1993], it follows that
p(c2) — pler) = (w2 —wy) (1 + O(1/a)).
But wy — w; = 2n/a by (4-3); and (4—4) follows.

F(wy) — F(w1)

Wy — Wy

The first proof of Theorem 4.2 continues as follows.
To show that €N Per;(1) is connected, we study the
limit, in the Hausdorff topology, of the intersection
CNPer;(\) as A tends to 1 through real values A < 1.
First note that

lim sup € N Per; (A) C €N Pery(1).
A

(4-5)

Suppose that (f) can be approximated arbitrarily
closely by elements of C N Pery(A\) with A A~ 1. If
(f) did not belong to € N Per;(1), then it would
have to belong to the parabolic shift locus. From
the proof of Lemma 4.1, it would follow that any
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FIGURE 3. Another picture of CNPer;(1) in the case
n = 4, showing a much larger region in order to
illustrate behavior near infinity.

approximating map in Per;(\) with A < 1 must be-
long to the hyperbolic shift locus, contradicting our
assumption.
On the other hand, we will show that

liIAIl/Hlf d(€NPeri (X)) DIACNPeri(1)). (4-6)
We again use the normal form (4-1) with marked
critical points 0 and oo, and with parabolic fixed
point z = 1, writing f = f,, where « is the param-
eter. Consider a boundary point f,, of €N Per;(1).
We will show that f,,, can be approximated arbitrar-
ily closely by maps f, such that one critical orbit of
fo lands on a repelling periodic orbit. To fix our
ideas, suppose that the critical point oo lies in the
parabolic basin for f,,, and consider the sequence
of maps

a s f2£(0)

for k =1,2,3,..., where a ranges over some neigh-
borhood of «.

Case 1. Suppose that the f2*(0) do not form a nor-
mal family throughout any neighborhood of oy, and
choose a repelling periodic orbit for f,, with pe-
riod > 3. This orbit varies holomorphically with
the parameter «, throughout some neighborhood of
ay. By non-normality, we can choose « arbitrarily
close to ay so that the orbit of 0 under f, eventu-
ally lands on this periodic orbit. Now perturbing
slightly, we can preserve this critical orbit relation
but replace the multiplier at the fixed point z = 1
by some number A < 1. The resulting map must
belong to € N Per; (), as required.
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Case 2. Now suppose that the f2#(0) do form a nor-
mal family throughout some neighborhood of «y.
The hypothesis that every neighborhood of f,, in-
tersects the parabolic shift locus then guarantees
that this family of maps must converge uniformly
near «g to the constant map a+ 1 as k — o0o. In
particular, fo¥(0) must converge to 1. If 0 lies in the
same parabolic basin as co, then it follows that f,,
lies in the shift locus, contradicting our hypothesis.
The only other possibilities are that either

(@ ao = 0, so that f,, has two distinct parabolic
basins and z = 1 is a fixed point of higher multi-
plicity, or

(b) some forward image f3¥(0) is precisely equal to
the parabolic fixed point z = 1.

In case (a), under a slight perturbation within
Per;(1) this fixed point splits into one fixed point
of multiplier +1. together with a second fixed point
which can have any multiplier close to 4+1. In par-
ticular, if we perturb so that this second fixed point
is attracting, then we must be within the connect-
edness locus. Therefore f,, is not an isolated point
of €N Per;(1). Hence it is not an isolated bound-
ary point, and, after a slight perturbation, we can
obtain a contradiction by the argument above.

In case (b), there is only one parabolic basin. Sup-
pose that (f,,) were an isolated point of €N Per;(1).
Let o range over a small circle centered at og, and
assume that the corresponding maps f, all belong to
the (parabolic) shift locus. Then the corresponding
images f2%(0) must loop around the parabolic fixed
point z = 1 one or more times, without ever hitting
the Julia set J(f,). By Mafié-Sad—Sullivan or Lyu-
bich, this Julia set must vary continuously as we go
around around the loop. Choose a repelling periodic
point of period > 2 which is close enough to z =1
so that it remains inside this loop in the z-plane,
for all parameter values in the circle. A priori, we
might worry that this periodic point comes back to
a different periodic point as we go around the circle.
However this cannot happen since we can deform
the circle in Per; (1) into a circle in Per; (1 —¢) which
deforming the Julia set homeomorphically. The cor-
responding disk in Per;(1 — €) bounds a disk in the
hyperbolic shift locus, so the monodromy must be
trivial. Now shrink the parameter loop down to the
point z = 1. A winding number argument shows

that at some point during this shrinking, the image
f2k(0) must exactly hit the corresponding repelling
point, and hence belong to the Julia set. This con-
tradicts the hypothesis that (f,,) was isolated in
€ N Per;(1). But if this point is not isolated, then
we see as above that it is indeed possible to approx-
imate f,, by a map with 0 eventually mapping to a
repelling periodic point.

Now as we vary A = 1 to a value slightly below 1,
the point in moduli space satisfying this critical or-
bit relation, say f°*(0) = f°/(0) deforms continu-
ously, and necessarily belongs to the connectedness
locus. This proves (4-6).

Remark. In fact it is conjectured that € N Per;(1)
is equal to the Hausdorff limit of € N Per;(\) as
A 1. However, our arguments will leave open
the possibility of a “parabolic queer component” in
CNPer;(1), whose points can be approximated arbi-
trarily closely by points in the hyperbolic shift locus.

Proof that C N Per;(1) is connected. For |\| < 1, it is
known that € N Per;(\) is compact, connected and
full, with connected boundary. (Compare [Gold-
berg and Keen 1990], [Milnor 1993].) If € N Per;(1)
were not connected, then we could choose boundary
points in two different components. By (4-6), these
could be approximated by points in the boundary of
say CNPer;(1—¢). Since this is true for arbitrarily
small ¢, it would follow from (4-5) that these points
must actually belong to the same component. Thus
C N Per;(1) is connected.

In order to prove that CNPer;(1) is full, or equiv-
alently that the parabolic shift locus is connected,
we will need a sharper form of the construction used
to prove Theorem B.5.

Lemma 4.4. If (f) € 8,4 has no critical orbit rela-
tion, then there exists an attracting petal for f which
contains both critical values.

By an attracting petal we mean a simply-connected
open set P which eventually captures all orbits in
the parabolic basin, and such that f maps the clo-
sure P homeomorphically, with f(P) c P U {2}
where Z is the parabolic fixed point. By a critical
orbit relation, we mean some relation of the form
fok(cl) — fOl(C2)-

We start with some petal P, with smooth bound-
ary containing no points of the critical orbits. We



may assume that P, contains no critical value. We
construct Py C P, C P, C --- inductively, defining
P, as the connected component of f~!(P) that
contains P,. We define the two integers 0 < k; < ko,
by setting k; equal to the smallest integer such that
Py; contains j distinct critical values. Then Py, is it-
self a petal, but Py, ;4 is not, since it contains a crit-
ical point (using Lemma 3.4). The proof of Lemma
4.4 will be by induction on the difference ky — k;.
To start the induction, if k; = ks, then Py, is the
required petal, and we are done.

Suppose then that k; < ko. Let v; be the crit-
ical value which is contained in FP;,. By Lemma
3.4 we know that Py, is a simply connected open
set which contains the corresponding critical point
c; and is a branched n-fold covering of P,. Let
x = f°h2=k(c,) be the unique point in Py, 1 \ Py,
which belongs to the second critical orbit. Choose
some path v within Py, \ Py, _; which joins the criti-
cal value v; to the boundary of Py, , and which avoids
the point f(z) = f°*2=*)(y,). Then the preimage
of v under f is a union 13 U - - -, of n paths, each
joining the critical point c¢; to the boundary of Py, ;.
These n paths cut the open set Py, into n regions,
each of which maps diffeomorphically onto P, ~\ 7.
Exactly one of these n regions contains the point x,
and exactly one of these n regions contains P, .

Assertion. It is possible to choose the path v so that
x and Py, belong to the same connected component

of Pryy1~ (mU---Uy).

For example, in Figure 4, as drawn, this require-
ment fails; but if we modify the path v in a neigh-
borhood of f(z) so that it passes above f(z) rather
than below, the requirement is satisfied. More gen-
erally, we can choose the path + from v; so as to
loop any number of times around an arc joining v,
to f(x) before terminating on 9P,,. By choosing
the number of loops appropriately, we can easily
guarantee that x lies in the required component of
Py, i1~ (71U---U~,). Details are left to the reader.

The proof of Lemma 4.4 now proceeds as follows.
Construct a new attracting petal P which contains
no critical value by removing a thin neighborhood
of 4 from Pj,. Then the preferred component P; of
f1(P}) will consist of the component of

Py, 41~ (neighborhood of (y; U -+ U~,))
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FIGURE 4. The three petals Py, 1, Py, and Py, 4.
The point z = f*2=%1)(¢,) belongs to the orbit of
the second critical point. A path v from v, to 0P,
within Py, \ (P, 1U{f()}) lifts to n distinct paths
v; from ¢; to 0Py, +1. We must choose this path
v so that x and P, belong to the same connected
component of Py, 11~ (y1 U+ - U7y).

that contains Py,. By the construction, both v; and
x = fok2=k1)(¢,) belong to this set P/. Therefore,
the new difference k) — k] will be equal to ks —k; —1.
The conclusion of Lemma 4.4 now follows by induc-
tion. O

Proof of Theorem 4.2 (conclusion). We must show that
the parabolic shift locus is connected. The proof
will make use of a standard quasiconformal surgery
argument, as suggested to me by D. Schleicher. Af-
ter a small perturbation of f, we may assume that
there are no critical orbit relations. Choose a petal
P as in Lemma 4.4, and choose an embedded disk
A C P~ f(P) which contains both critical values
in its interior. Now choose a diffeomorphism from
A to itself which is the identity near the bound-
ary and which moves the critical value v, arbitrarily
close to v;. Pulling the standard conformal struc-
ture back under this diffeomorphism, we obtain a
new conformal structure on P ~\ f(P). Now push
this new structure forward under the various iter-
ates of f, and also pull it backwards under the vari-
ous iterates of f~!. Since the Shishikura Condition
is satisfied: every orbit intersects A at most once,
it follows that we obtain a well defined measurable
conformal structure, invariant under f. By the mea-
surable Riemann Mapping Theorem, there is a qua-
siconformal mapping ® which conjugates this new
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structure to the standard conformal structure. Now
g=®o fod !isanew rational map, topologically
conjugate to f. By the construction, the two critical
values of g are close together in an embedded disk
®(A) which contains no critical point. By Corollary
1.8, it follows that the invariant |A(g)| is arbitrarily
close to infinity. Thus g belongs to the unbounded
component of the parabolic shift locus. Since f and
g clearly belong to the same connected component
of Spar, this shows that §,,, is connected. O

Alternative proof of Theorem 4.2. 1 am grateful to M.
Shishikura for suggesting a quite different argument,
based on an explicit model for the parabolic shift
locus which can be outlined as follows. Start with
the map

f(z) =2"+b with b= (n—1)/n"®D,

which has a parabolic fixed point at z = (1/n)'/ (=1,
The corresponding parabolic basin B is connected
and simply-connected, and contains a single critical
point 0 — b. Let Py C B be the largest attracting
petal such that the Fatou coordinate map carries P
diffeomorphically onto a right half-plane. Thus the
critical point 0 belongs to the boundary of Py, and
the critical value b belongs to the boundary of the
smaller petal P_; = f(Py). Our model space
Spar = (BN (P_1U{b}))/a,

par

conformally isomorphic to a punctured disk, is ob-
tained by removing the subset P_; U {b} from the
basin B, and then gluing the two halves of 0P _;~{b}
onto each other under the correspondence o : z — Z.
To each point v in this model space, we construct
a multiply connected parabolic basin B! with two
critical points as follows. The original basin B can
be described as the union of open subsets

PoCcPiCcPyC---,

where each P}, is the interior of a region bounded by
a Jordan curve, and where f maps each

Prir =1 (Pw)

onto P, by an n-fold cyclic covering, branched only
over b. Let ky be the smallest index such that v €
Pi,. Construct a new family

PhCcPCP,C

as follows. Let Pj = P for k < ko, but let P, be
the n-fold cyclic covering of P}, branched over both
b and v for k > ky. The covering should extend over
the boundary, so that each boundary curve of P},
for k > kg is covered by n distinct boundary curves
for P},,. Then the inclusion P,_, < P lifts in-
ductively to an inclusion P}, < P} ;. Let B! be the
union of the P}.. Note that there is a canonical para-
bolic map f, from this Riemann surface B! to itself,
carrying each P, onto P} by an n-fold branched
covering.

In the special case where v € 0P_; \ {b}, the two
critical values b and v are on the boundary of the
same petal P_;, and there is a canonical isomor-
phism B! — B! which carries v to b and b to o.
Hence we identify B! with B, in this special case.

Conversely, suppose that we start with a point (g)
in the parabolic shift locus. Let Q, be the largest
petal for g such that the Fatou coordinate maps Qg
isomorphically onto a right half-plane. Then 99,
contains at least one critical point ¢y, and there is a
unique conformal isomorphism ¢q : Py — Qy which
conjugates f to g and (extended over the boundary)
carries 0 to ¢y. Now let Q;, = g~ *Q, and let ky > 0
be the smallest index such that Q,, contains both
critical values of g. Then ¢y extends uniquely to a
conformal isomorphism ¢y, : Py, = Qi,, still conju-
gating f to g. Let v be the unique point of P, which
maps to the second critical value under ¢y, . In this
way we obtain a holomorphic map (g) — v from
the parabolic shift locus §p,, to the model space
8- (Furthermore, it is not hard to check that
¢k, extends uniquely to a conformal isomorphism
B! — C ~ J(g) which conjugates f, to g.)

We must show that this correspondence (g) — v
is a proper map. That is, if (g;) is any sequence
of points in §,,, which has no accumulation point
within 8,,,, then we must show that the correspond-
ing sequence v; has no accumulation point within
the model space. First suppose that the (g;) con-
verge, within Per;(1), to a point of the connected-
ness locus. If the corresponding sequence of points
v; converged to a limit within the model space, then
the corresponding sequence f,, of model parabolic
basins would possess annuli with moduli bounded
away from zero which separate the two critical points
from the Julia set, yielding a contradiction. Simi-
larly, suppose that the (g;) diverge within Per;(1)



FIGURE 5. The regions Pg C Py C --- for the quad-
ratic case n = 2. (In the region outside of P4, all of
the iterated preimages of 0Py have been drawn in,
so that this figure looks more complicated near the
basin boundary.)

to the point at infinity. Using Corollary 1.8, we
see that the distance between the two critical values
of f,, must tend to zero. In other words, v; must
converge towards the puncture point b in the model
space. Thus our correspondence (g) +— v from 8.,
to 87, is proper. In order to show that it is a con-

formal isomorphism, we need only check that it has

degree one, which follows easily from the asymptotic
formula (4-4). O

Remark. The argument shows that the model space
obtained from Figure 5 is “inside out” with respect
to Figures 1(d) and 3. The puncture point b in Fig-
ure 5 corresponds to the point at infinity in the ear-
lier figures.

5. REAL MAPS

This section will study bicritical maps such that the
invariants X and Y of Section 1 are both real. Recall
that a homeomorphism « : C — C is antiholomor-
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phic if it has the form a(z) = ¢(z), where ¢ is some
Mobius automorphism of C and Z is the complex
conjugate. A is an involution if oo « is the identity
map.

Lemma 5.1. The invariants X (f) and Y (f) are both
real if and only if the bicritical map f : C - C
commutes with some antiholomorphic involution o.
This « is unique if and only if (f) lies off the sym-
metry locus (or off the real part Xx of the symmetry
locus).

Proof. We temporarily introduce the notation c(z) =
z for complex conjugation. Then the rational map
g = co foc can be obtained from f by replacing
all of its coefficients by their complex conjugates.
Evidently X(g) = X(f) and Y (g) = Y (f). There-
fore, if X and Y are real, then it follows that f is
holomorphically conjugate to g, say foy = ¢og.
Setting a = ¢ o ¢, this means that

foa=fopoc=pogoc=gpocof=aof,

so that f commutes with «. It follows that f com-
mutes with oo, which is a holomorphic map from
C to itself. If (f) lies off of the symmetry locus of
Corollary 1.4, this proves that a o « is the identity
map, as required. Even for a generic f in the sym-
metry locus which commutes with a unique ¢, since «
must either fix or interchange the two critical points,
it follows that o o o must fix both critical points,
and hence be the identity map. Finally, in the two
exceptional cases, corresponding to f(z) = 2" or
f(2) = 1/2", the assertion is clearly satisfied. Con-
versely, if f commutes with o = poc, then compos-
ing the equation fowoc = poco f on the right with
c, we see that foy = pog. Therefore X (f) = X(g)
and Y (f) =Y (g) are real, as asserted.

If there is a second antiholomorphic map (3 com-
muting with f, then « o § is a holomorphic map
commuting with f, so that f belongs to the sym-
metry locus. Conversely, if (f) does belong to the
symmetry locus, let ¢+ be a holomorphic involution
commuting with f. Then coto« is also a holomor-
phic involution commuting with f. In the generic
case where ¢ is unique, it follows that o commutes
with ¢, and that cwo is another antiholomorphic in-
volution commuting with f. In other words, f can
be given the structure of a “real map” in two es-
sentially distinct ways. The discussion in the two
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exceptional cases where ¢ is not unique is straight-
forward, and will be left to the reader. O

We must now distinguish two different cases. The
antiholomorphic involution o may have a circle of
fixed points (for example the unit circle if a(z) =
1/z). In this case, a Mobius change of coordinates
will reduce it to the standard form a(z) = Z with
fixed point set RU{oo}, and it follows easily that the
corresponding map f can be expressed as a rational
map with real coefficients. On the other hand, it
may happen that « has no fixed points at all. In
this case, a Mobius change of coordinates reduces
a to the standard antipodal map a(z) = —1/z. It
follows from a theorem of Borsuk and Hopf that
a map f which commutes with this antipodal map
necessarily has odd degree. (Compare [Alexandroff
and Hopf 1935].) Such an f gives rise to a conformal
self-map with only one critical point on the non-
orientable “Klein surface” which is obtained from C
by identifying each z with —1/Z.

More precisely, we can distinguish six cases as fol-
lows. Suppose that f commutes with the antiholo-
morphic involution «. For the first five cases we
suppose that a has a circle S! of fixed points. Note
that f induces a map from this circle to itself.

Case +n. For any degree n, it may happen that f
induces an n-fold covering map of degree +n from
the circle S to itself. In this case the Julia set J(f)
either coincides with S, in which case (f) has just
two Fatou components, each mapped onto itself by
f, or else J(f) is a Cantor subset of S*, so that (f)
belongs to the shift locus.

FIGURE 6. Symmetry locus in the real (X,Y)-plane
for degree n = 2. The three complementary domains
are labeled according to the degree of the associated
map from the circle of real points to itself. The pic-
ture for higher even values of n would have another
cusp, corresponding to (z — z™), but would other-
wise be similar.

Case —n. If f induces an n-fold covering of degree
—n, then again the Julia set may be S* or a Cantor
subset. Correspondingly, f either interchanges the
two Fatou components, or belongs to the shift locus.

Case 0. If the degree n is even, then the only other
possibility is that f maps S* onto a proper subset of
itself by a map of degree zero. In this case, the for-
ward orbits of the two critical points lie in the image
f(S"), which is an interval I ¢ S*. (Compare [Mil-
nor 1993|.) Restricting f to this interval, we obtain
a map which is either monotone, or unimodal, or
bimodal of a rather restricted type since each point
of I has at most two preimages in I. Thus the dy-
namics is largely controlled by the theory of smooth
interval maps. In particular, any attracting or para-
bolic cycle must be contained in I, and if there is
no such cycle then the Julia set must be the entire
Riemann sphere.

We can pass between these three cases only by
crossing the symmetry locus. (Compare Figure 6.)

For the remaining three cases, we assume that the
degree n is odd.

Case +1. For any odd n, the circle S may map to
itself by a homeomorphism of degree +1 with two
critical inflection points. The dynamics of the crit-
ical orbits is then governed by the theory of mono-
tone degree one circle maps, with a rotation number
which is well defined up to sign. (Compare [Bamén
and Bobenrieth 1999].) If the rotation number is
p/q, both critical orbits converge to (the same or
different) parabolic or attracting cycles of period g,
whereas if the rotation number is irrational the Julia
set is the entire Riemann sphere.

antipode-preserving,

FIGURE 7. Symmetry locus in the real (X,Y)-plane
for degree n = 3, with the five complementary do-
mains appropriately labeled.



FIGURE 8. Dynamic plane for a degree n = 3 bicrit-
ical map which commutes with the antipodal map,
with the unit circle drawn in. (The parameters are
X = —-0.235, Y = 0.213.) There are two attracting
period 4 orbits. The antipodal map of C, reflection
in the unit circle composed with the 180° rotation,
interchanges the two attracting basins, which are
colored white and grey respectively. The Julia set,
like that for an arbitrary degree n bicritical map, has
n-fold rotational symmetry. It is conjectured that
this particular map can be obtained as a mating of
the form (2% +b) 1L (2% —b), with b ~ 0.584—0.270.
(Compare [Tan 1992].)

Case —1. Similarly S* may map to itself by a homeo-
morphism of degree —1. In this case, both critical
orbits must converge to parabolic or attracting cy-
cles of period one or two.

Antipode Preserving Case. If

f(=1/2) = =1/ f(2),

then (f) necessarily belongs to the connectedness
locus. For every hyperbolic component in this region
of the (X,Y)-plane, there are either two antipodal
attracting orbits of the same period p, or else a single
attracting orbit of period 2p satisfying the identity
a(z) = f°P(z). In the latter case it is convenient to
say that the hyperbolic component is of type p + p.

The division of the real (X,Y)-plane into five re-
gions for a typical odd n is shown in Figure 7. The
antipode-preserving region in this plane is shown in
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detail in Figure 9 for two values of n, and a typical
associated Julia set is shown in Figure 8.

6. THE EXTENDED MODULI SPACE JT/[ =MU L

The next two sections will study the limiting behav-
ior as the conjugacy class (f) becomes degenerate.
We will say that a sequence of conjugacy classes (f;)
diverges to infinity in the moduli space M if this se-
quence eventually leaves any compact subset of M.
Using the results of Section 2, it is not hard to check
that the sequence {(f;)} diverges to infinity within
M if and only if

e the larger of the two invariants |X(f;)| and
|Y'(f;)| tends to infinity with j,
or if and only if

e the largest, max; |\;(f;)|, of the fixed point mul-
tipliers tends to infinity with j.
It will be convenient to number the fixed points of
each f; so that the corresponding multipliers \;(f;)
satisfy [A1| < [Ao] < - < Anpal

Lemma 6.1. If {(f;)} diverges to infinity within M,
then all but two of the fixed point multipliers must
tend to infinity, so that

|)\n+1| > 2 |/\4| > |/\3| — O0.

Furthermore, after passing to a suitable subsequence,
exactly one of the following two statements must

hold:

(1) either Ay — oo also, but \; — 0,

(2) or Ay remains bounded and \; remains bounded
away from zero, while the product Ay Ao converges
to +1.

Proof. After passing to a subsequence, we can as-
sume that X and Y and each of the \; tends to a
well defined limit in C U {oo}. First suppose that
|Y| — oo while | X| remains bounded. Then it fol-
lows from Theorem 2.6 that the elementary symmet-
ric function o remains bounded for k # n, but that
|on| — oo. Since o, is the sum of n + 1 terms, of
which AsAz - A1 is the largest in absolute value,
it certainly follows that |[AsA3 -+ A, 41| — oco. Since
the product ¢, remains bounded, this implies that
A1 — 0. We must show that |[Ay] — oo. Other-
wise, if say A, ..., \; remained bounded, with [ > 2,
then a straightforward argument would show that

the ("l+1 )—fold sum o, ;;1, with dominant summand
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FIGURE 9. Antipode-preserving region of the (X, Y)-plane for degrees 3 and 5, with periods of the larger hyperbolic
components labeled. (Note that the components of type p+p have a tricorn-like geometry. Compare [Nakane and
Schleicher 1995].) Along the top edge, these maps give rise to degree one circle homeomorphisms, with rotation
number as indicated. Also, along the edge of the principal hyperbolic component, the multiplier of one of the

two indifferent fixed points is indicated, using the notation e(z) = e>™*.



Ayl Ang1, also tended to infinity, yielding a con-
tradiction. Thus |\2| — 0o, and we are in case (1).

Now suppose that |X| — oco. In particular, we
assume that X # 0, so that

)\1)\2 e >\n+1 =0Onpt1 = n"+1X"_1 7é 0.

Let
O = 0n+1—k/0n+1

be the k-th elementary symmetric function of the
reciprocals 1/Ay,...,1/A,1. This is well defined
and finite whenever X # 0. If X — oo, we see from
Lemma 2.4 and Theorem 2.6 that

o, — 0 for k> 3,
. (6-1)
09 — 1.

(However, the limiting behavior of &; depends not
only on X but also on Y.) Suppose that exactly p
of the \; tend to zero, while exactly g of them tend
to finite nonzero limits. If p > 1, it is easy to check
that 6, — oo and also that 6,,, — oco. By (6-1),
it follows that p < 1, and also that ¢ = 0 whenever
p = 1. Thus if p = 1, we are again in case (1).
Finally, suppose that p = 0. Then evidently &,
tends to a finite nonzero limit, while o, — 0 for
k > g. Making use of (6-1), it follows immediately
that ¢ = 2, and that we are in case (2). O

A convenient coordinate near the line at infinity is
provided by the sum of reciprocals

On
o1 = Z \; ~ pntlxn—1-

0n+1

If only A; and A, remain finite, with A; — X and
X2 — AL note that this coordinate &, tends to
A+ )\_/1\. We can now define the extended moduli
space M to be the disjoint union M U L., where
L, is a complex line with coordinate 6, € C. To
make this union into a complex manifold, we cover
it with two coordinate patches, each biholomorphic
to C*. The first coordinate patch is M itself, with
coordinates X and o,,. The second is (M N Lg)U L,
with coordinates X = 1/X and &;. In the overlap
M~ Ly, these two coordinate systems are related by
the biholomorphic map

N 1 o,
X=—= 01 = nn+1Xn71 .

X’
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Lemma 6.2. The union J\A/[, with complex structure de-
fined in this way, is a well defined Hausdorff complex
manifold. Furthermore, the coordinate function X
extends to a locally trivial holomorphic projection

X :M— @,
where each fiber Lx is conformally isomorphic to C.

The proof is straightforward.

(Similarly, if Mz C M denotes the closure of the
real part of moduli space, as discussed in Section 5,
then we obtain a real line bundle

R < Mz -+ R =R U co.

Topologically, J\A/[R is either a cylinder or a Mobius
band according as n is odd or even.)

Remark 6.3. Although the fibers of the line bundle
C < M — C have a sharp geometric and alge-
braic interpretation, it is not known whether they
have any dynamic meaning. However, three particu-
lar fibers certainly do have dynamic interpretations.
The fiber L, consists of maps with a superattract-
ing fixed point; compare Figure 1(a). The fiber L
consists of maps for which one critical point maps
immediately to the other. (For a study of this fam-
ily, see [Bamén and Bobenrieth 1999].) Finally, the
line at infinity, L., is certainly quite unique. Com-
puter pictures suggest that each fiber Ly may inter-
sect € in a set which is full and connected, so that
Lx N 8pyp is conformally isomorphic to C \ D. I
know of no reason why this should be true, although
it would be compatible with the description of the
fundamental group of 8;,. (Compare Remark 6.6
and Lemma 7.8.) I don’t have a good algorithm for
making pictures of Ly N €. However, if we pass to
the (n+1)-fold branched covering in which one fixed
point is marked, then we can parametrize by its mul-
tiplier A\. (Compare Remark 2.10.) It is relatively
easy to make pictures in the disk |A\| < 1 where this
marked point is attracting. (See Figure 10.) Note
that each (f) € Lx with a unique attracting fixed
point embeds uniquely in this disk, provided that
X # 0. In particular, Lx N 8y, embeds uniquely.
However conjugacy classes with two attracting fixed
points are represented twice.

Lemma 6.4. The space of all holomorphic sections of
the bundle X : M — C is an n-dimensional vector
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FIGURE 10. Pictures in the disk |A| < 1 for X equal to —0.2, 0.27 and 0.2 respectively, for degree n = 2. (Compare
Remark 6.3.) The connectedness locus is shaded grey; while the curves in the shift locus indicate the number of
iterations needed for both critical orbits to reach a small neighborhood of the attracting fixed point.

space, consisting of all polynomial functions of the
form

n—1

o, = E chJ’

J=0

n—1
6'1 = E Cj Xnili]/nndFl.
Jj=0

It follows that a function Y =Y (X) gives rise to a
holomorphic section of this bundle if and only if the
sum Y (X) 4+ 2X™ is a polynomial of degree <n —1
mn X.

The proof is straightforward. (Compare Lemma 2.4
and Theorem 2.6.)

Corollary 6.5. For each A # 0, the closure within
M of the affine algebraic curve Per;(A) C M is a
smooth compact algebraic curve Per;(\) C M, which
can be described as the image of a smooth section of
the complex line bundle M — C. The intersection
Per;(A\) N Lo, of this curve with the line at infinity
consists of the point with coordinates X = 0,

A+

(3'1:

Proof. This follows immediately, using Theorem 2.3
and Lemma 2.4. O

Note that the coordinate 6; on the line at infinity
is real, and belongs to the interval —2 < &; < 2, if
and only if |A| = 1. (Compare Theorem 7.5.)

(As noted in Section 2, the curve Per;(0) should
be identified with the fiber Ly of this fibration with
multiplicity n—1. Similarly, it may be useful to
identify Per;(oo) with the fiber L., counted n — 1
times.)

Other examples of smooth sections of this com-
plex line bundle are the coordinate curve o, = 0
and the half symmetry locus

Y = _2X(”*1)/2(X 4 1)(n+1)/2

of Section 1 when n is odd (but not the locus Y = 0
or the other half symmetry locus).

Remark 6.6. We can actually compactify moduli space
by adding one more point o0, contained in a third
coordinate neighborhood. However, the result is no
longer a manifold when n > 2, but rather an orb-
ifold: a neighborhood of o0 is homeomorphic to a
cone over a 3-dimensional lens space whose funda-
mental group is cyclic of order n — 1. This third

A\ T o/

FIGURE 11. Schematic picture of the compactified
moduli space M U o0, with a singular point at o,
showing the three overlapping coordinate systems.



coordinate neighborhood W can be parametrized by
coordinates s, t subject to the identifications (s,t) =
(as, at), where a ranges over all (n—1)-st roots of
unity. They are related to the coordinates (X, o,,)
on the overlap where o, # 0 and s # 0, and to the
coordinates (X, 6) on the overlap where 61 # 0 and
t # 0, by the identities

t 1
X:_a On = 1’
] s
and )
~ S R
AP T e

There is just one point o0 € W that does not belong
to M, namely the singular point 50 with coordinates
s =t = 0. It is not difficult to check that these
coordinate transformations are compatible, so that
MU is a well defined compact Hausdorff space. A
small neighborhood of infinity in M can be identified
with a neighborhood of o0 in W with this singular
point removed. Evidently, for reasonable choice of
neighborhood, the fundamental group will be cyclic
of order n — 1.

Intuitively, we can think of the fibers of our holo-
morphic line bundle as a pencil of lines though this
exceptional point 5. This pencil of lines sweeps out
the compactified moduli space M U oo. Using this
construction, we can reinterpret Lemma 6.1 as fol-
lows. If a sequence of points (f;) € M converges
within M U o0 to the point o0, then we are in Case
(1) of Lemma 6.1, with all but one of the fixed point
multipliers tending to infinity. On the other hand,
if a sequence converges to some point of L., C M,
then we are in Case (2) of Lemma 6.1, so that two
of the multipliers converge to finite nonzero limits
with product +1 while the others tend to infinity.

7. THE EXTENDED HYPERBOLIC SHIFT LOCUS
Shyp cM

Theorem 7.1. The connectedness locus € is contained
in a compact subset of the extended moduli space M.
Hence the closure € C M is compact.

It follows that the complement M~ Cisa neighbor-
hood of infinity in M. By definition, this comple-
mentary open neighborhood of infinity, consisting
of 8y, together with the points of L., \ (€N L),
will be called the extended hyperbolic shift locus ghyp.
(See Theorem 7.4 for a precise description of €N L. .)
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The following statement is completely equivalent to
Theorem 7.1.

Corollary 7.2. There exists a constant k depending
only on the degree n with the following property. If
all but one of the fized point multipliers of f are
greater than k in absolute value, then (f) belongs to
the hyperbolic shift locus.

(Compare [Milnor 1993, §8.8], which shows that the
best value for k£ in the degree 2 case lies between 3

and 6.)

Proof of Theorem 7.1 and Corollary 7.2. We will first
find a rough criterion for belonging to the hyperbolic
shift locus depending on the invariants X,Y;,Y5,Y
of Section 1, and then relate this to the topology
of M. Consider a sequence of maps f; with marked
critical points so that the conjugacy classes (f;) tend
to infinity in M. Thus, passing to a subsequence if
necessary, at least one of the invariants X (f;) and
Y (f;) must tend to infinity. Since Y7 +Y> =Y and
V1Y, = (X + )" X! by (1-3), it follows that
Y, or Y; must tend to infinity. Interchanging the
two critical points if necessary, we may assume that
Y>(f;) — o0 as j — oo.

In particular, putting the f; into the normal form
(1-1), we may assume that the coefficients ¢ and
d are nonzero and hence, after a linear change of
coordinate, we may assume that ¢ = d = 1. In this
way, taking the critical values to be f(0) = v and
f(c0) = v+ J, we obtain the normal form

(v+0)2z" +v 92"

fE =k =" = ey

(We will write v = v; and § = §; whenever it is
necessary for clarity.) Note that f~'(co) is the set
of n-th roots of —1. The invariants

X =v/s, Y,=1/5"

can be computed from (1-2). It follows that 6 — 0,
and that the critical value v satisfies the equation
v" = X" /Y;. Tt will be convenient to set & = /[d] >
0. Thus € = ¢; also tends to zero as j — oo.

Case 1. Suppose that v = X"/Y; is bounded away
from —1, or equivalently that v is bounded away
from the n-th roots of —1, as j — oo. Then we will
prove that (f;) belongs to the hyperbolic shift locus
for large j. Let N.(v) be the open neighborhood
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FIGURE 12. Dynamics for (f) near oo. Here the crit-
ical points are at 0 and co, while the critical values
as well as the attracting fixed point are in the disk
N¢(v). The Julia set is contained in the n shaded
disks U;, each of which maps diffeomorphically onto
the complement C \ N.(v). As (f) — 9, each of
these n + 1 disks shrinks to a point.

of radius ¢ = /|| about v. Then the pre-image
W = f~1N.(v) consists of all z with

|2" + 1| > |6|/e = e.

If £ is small, this set can be described as the com-
plement W = C \ (U; U---UU,) of the union of
closed neighborhoods Uy,...,U, of the various n-
th roots of —1, where each Uj has radius roughly
¢/n. Thus W is a connected open set which contains
both critical points. (Compare the figure, where W
is the complement of the shaded region.) Since v is
bounded away from the roots of —1, it follows that
the image f(W) = N.(v) is compactly contained in
W provided that j is sufficiently large. Using the
Poincaré metric for W, it follows that all orbits in
W converge to a common attracting fixed point. Us-
ing Theorem B.5, it follows that (f;) is contained in
the hyperbolic shift locus.

Case 2. Suppose in fact that v™ converges to —1 (and
hence that |v| — 1), but that

|1 +v"|/e 00 asj— oo,

so that ¢ < |1 4+ v"| for large j. Note that the
distance between v and the closest n-th root of —1 is
approximately |1+ v™|/n for large j. It now follows,
just as in Case 1, that f(W) is compactly contained
in W, and hence that (f;) belongs to the hyperbolic
shift locus, provided that j is large.

Remark 7.3. More explicitly, in both Cases 1 and 2, it
follows for large j that the Julia set J is the disjoint
union of compact subsets J, = JNU},, where f maps
each U, diffeomorphically onto the strictly larger set
C ~ N.(v). Hence f is hyperbolic, that every point
of J is uniquely determined by its itinerary with
respect to the partition J = J;U...U.J,. In fact, as
j — oo, it follows that the Julia set becomes more
and more hyperbolic, in the sense that the multiplier
of any periodic orbit in J tends to infinity.

Case 3. We now return to the proof of Theorem 7.1
and Corollary 7.2. Suppose finally that the ratio
|1 + v™|/e remains bounded as j — oo, although
¢ — 0 hence 1 + v™ — 0. (By Cases 1 and 2, this
must be the case if each (f;) belongs to the con-
nectedness locus.) Then we will show that the (f;)
remain within some compact subset of M. Setting

1+0v"=14+X"/Y, =1,

we see that |n| is less than some constant time ¢,
so that |n?| is less than a constant times € = |§| ~
1/]X]|. We can now solve for

Yo=-X"(1+n+n+--)
= —X"—X"n4+0(X"),
Vi=(X+1)""X" Y, = —(X+1)" M (1-n)/X
=-X"+X"n+0(X""),
and hence
Y=Y +Y,= 2X"+0O(X" ).

Since X tends to infinity, it is appropriate to pass
to the coordinates X = 1/X and 61 = > 1/\, of
Section 6. Recall from Theorem 2.6 that
o, _ n"(Y + P,(X))
P, (X)

Y +2X" +0(X"1)
N nXn-1 ’
It follows that &, remains bounded as j — oo and
X — o0, so that the (f;) remain within a compact
subset of the extended moduli space M.

Theorem 7.1 now follows immediately, and Corol-
lary 7.2 is proved as follows. Recall that )\, is defined
to be the fixed point multiplier with next-to-smallest
absolute value. Suppose, for every positive integer
j, that we could find a conjugacy class (f;) € MNC
with |A2(f;)| > j. The resulting sequence cannot

o1 =
Un+1




be in Case 1 or Case 2, and therefore must be in

Case 3, with X (f;) — oo and 64(f;) bounded. But

this contradicts the hypothesis that |\2(f;)] — oco.
O

We can describe the set € ¢ M and its complement
Shyp more precisely as follows.

Theorem 7.4. The closure of the connected locus C
within the extended moduli space M = M U L, is
a compact set which consists of C U Pery(1) C M,
together with a closed line segment consisting of all
points in the line Lo, = C such that the coordinate
o1 1s real with —2 < g, < 2.

Equivalently, we can say that €N L., consists of all
points of L., with &; of the form

61 =2cosf =X+ 11, o

where \ = ",

so that A\ ranges over the unit circle. It follows that
the complement

/S\hyp = JV[ AN E
consists of 8y, C M, together with all points of L,

with 6, € C \[-2,2] or in other words all points for
which

Gr=A+ 1"

The proof of Theorem 7.4 begins as follows. To see

that € contains all points of L., with 61 = ¥ 4+,

note that each such point can be described as the
intersection

with 0 < || < 1.

Loo N P—er1 (eie).

But clearly Per;(e%) is disjoint from the hyperbolic
shift locus, and hence contained in C.

The proof in the other direction will depend on
a study of dynamic behavior for conjugacy classes
(f) € M C M which are sufficiently close to the line
L., C M. We must first find a normal form for such
classes. Suppose the multipliers at the n + 1 fixed
points are approximately A\, \™!, 00, ..., 00. Here we
must exclude the case A = 0, and also the case A =1
which turns out to be particularly difficult. We will
use the normal form (1-1) with ad — bc = 1 and
with a + b = ¢+ d = u, so that there is a fixed
point of multiplier A = n/u? at z = 1. Suppose
that there is another fixed point at z = k. (Here we
must assume that k™ # 1, since k™ = 1 would imply
that f(k) = f(1) = 1. In practice, we will only be
interested in the limiting case as k — 1.) Solving the
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fixed point equation ak™ + b = (ck™ + d)k (together
with the equations ad—bc = 1 and a+b = c+d = u),
we find the unique solution

a=—P+krQ, b=r"P—kQ,
c= —P+Q, d=r"P-Q,
where we have temporarily introduced the abbrevi-
ations
U 1

P:/@"—l’ Q:u(n—l)'

It follows easily that
X =bc=—(k"P —kQ)(P - Q)

is given by the asymptotic formula
(A—1)2 1

nA  (k—1)2
Thus, given X\ # 0,1, we can realize any large value
of the invariant X by suitable choice of the param-
eter k = 1. (Note by Lemma 2.1 that X and A to-
gether determine the remaining invariant Y.) The

multiplier at k, call it A’, can be computed by the
formula

X~ — as k — 1.

’I’Llﬁ’,nil
———————— =nkK
(k™ + d)?
as k — 1. For k & 1, the two critical values f(oc0) =
a/c and f(0) = b/d are close to 1 and k, and ex-
tremely close to each other. In fact the difference is
given by

a b 1 1
—_—_——_ = — ~ — = O — 1 2
¢ d e~ x O

and we can compute

N =

— )2 ~ul/n=1/\

1 1
1-Q/P " 1-x
and similarly b/d = ¢’ -1+ (1 —¢') - k with ¢/ ~

1/(1=A).
It will be convenient to conjugate f by the M&bius
involution

g:t-l-l-(l—t)'/‘i with t =
c

z—1

o) = 7 (2) = m

which interchanges the critical point 0 with the fixed
point 1, and interchanges the critical point co with
the fixed point x. Thus the conjugate map

g=y¢ofoyp
has critical points at ¢(0) = 1 and at ¢(c0) = K,
and has a fixed point of multiplier A at ¢(1) = 0
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and a fixed point of multiplier &~ A™! at ¢(k) = oo.
The critical values g(1) and g(k) are both close to
A. In fact computation shows that

K4 K +- R
9(k) = RQ/P = -

=A+0(k 1)
as k — 1, and similarly

9(1) = g(r)/K" = A+ O(k — 1).

Theorem 7.5. Suppose that we fit A # 0,1. Then
as k — 1 the rational function g = g, converges
uniformly to the linear function w — Aw throughout
any compact subset of C ~ {1}.

(Compare [Milnor 1993, §4|. Here “uniform con-
vergence” refers to convergence with respect to the
spherical metric on the target space C.) Thus, as
k — 1 the two critical points of g crash together,
and g converges to a linear map, except in a small
neighborhood of 1.

The proof will be based on the following. Let D,
be the disk {z € C : |z| < r}. If U is an open neigh-
borhood of 0 in C, it will be convenient to define
the inradius

s(U;) =max{s : Dy, C U} =dist(0,C \ U)

as the maximum radius of a disk centered at the
origin and contained in U.

Lemma 7.6. Given simply connected open sets U; C
C with inradius s(U;) tending to infinity, there ex-
ist radii r; — oo and conformal isomorphisms h; :
D,,— U; so that {h;} converges uniformly to the
identity map on any compact subset of C.

Proof. Let u range over univalent maps v : D — C
on the unit disk with u(0) = 0 and «/(0) = 1. Note
that the space of all such u is compact, and that the

inradius of the image always satisfies
s(u(D)) < 1. (7-1)

(See [Carleson and Gamelin 1993, §1.1], for exam-
ple.) It follows that the second derivative of w is
uniformly bounded on any compact subset of D, say

ju” (w)| < 2k for |w| < 1.
Hence

Ju(w) —w| < klw?|

and for all such maps u, where k is a uniform con-
stant. Let p; : D =, U; be the Riemann map,
satisfying p;(0) = 0 and p}(0) = ; > 0, and define
hi; : D,, — U; by hi(z) = pi(z/r:;). Applying (7-1)
and (7-2) to the map u(w) = p;(w)/r; = hi(r;w)/r;,
we find easily that s(U;) < r; so that r; — oo, and
that

|hi(2) — 2| < k|2%|/ri  for |z] < 1y/2.

Thus {h;} converges uniformly to the identity for z
restricted to any compact subset of the plane. [

Proof of Theorem 7.5. Let I' =T’ be a circle arc join-
ing the two critical values ¢g(1) and g(k). Then the
preimage g *(T') is a union of n circle arcs joining the
two critical points 1 and x, where two adjacent arcs
span an angle of 27 /n at either common endpoint.
Furthermore, each of the n connected components
of C \ g *(T") maps biholomorphically onto C \ T.
In fact the corresponding statement is true for any
bicritical map, since any such map can be expressed
as a composition of the n-th power map for which
it is clearly true, together with Mobius transforma-
tions which carry circles to circles. (Compare the
normal form (1-1).)

Both the diameter of T' and the diameter of g=!(T")
depend on the precise choice of circle arc I'. How-
ever, with a little care we can choose I' = I',; so
that both of these diameters tend to zero as the dis-
tance |k — 1| between the two critical points tends
to zero. It then follows that there is one largest
component U = U, of C - g ("), and that the
diameter of the complement C \ U tends to zero
as k — 1. After conjugating by a rotation of the
Riemann sphere which interchanges 1 and oo, we
can use the Lemma to construct conformal isomor-
phisms h,, : A, — U,, where A, C C ~ {1} is the
complement of a small round disk about 1, so that
h,, converges uniformly to the identity map on any
compact subset of C \ {1}. Further, without loss of
generality, we may assume that h, fixes the points
0 and oo.

Similarly we can choose conformal isomorphisms
hl, C\T, > Al fixing 0 and oo, where A’ is the
complement of a small round disk about g,.(1) & A,
so that h; converges uniformly to the identity on any
compact subset of C \ {1/\}. Now the composition
h!.0g.oh, maps the round disk A, conformally onto



the round disk A’ , and hence extends to a Mdbius
automorphism of the Riemann sphere. Since it fixes
0 and oo, it must have the form

h:{ 0 gli o hfi(w) = Aﬁw7

where A\, — A as k — 1. Now since h, and h/
converge uniformly to the identity except near 1 and
9. (1) respectively, it follows that g, (w) converges to
Aw except near 1. O

Corollary 7.7. For 0 < || < 1 and for |X| greater
than some constant depending continuously on A,
the conjugacy class (f) belongs to the hyperbolic shift
locus.

Proof. Suppose that |A| < 1 —¢ < 1. Then |g(w)| ~
|[Aw| < Jw|(1—¢) for k close to 1, or equivalently for
| X | large, provided that w is bounded away from 1.
Thus every w in the disk D;_. belongs to the at-
tracting basin of 0 for | X| large. Since the two crit-
ical values of g are close to A, with |A\| < 1—¢, they
both belong to this basin. By Theorem B.5, it fol-
lows that the conjugacy class (f) = (g) belongs to
Shyp- O

Evidently Theorem 7.4 follows immediately.

Lemma 7.8. This open set Sy, C M is connected. Its
fundamental group is cyclic of order n — 1.

The proof can be outlined as follows. Note first that
there is a holomorphic map

T:8hyp — D

to the open unit disk, which maps each (f) to the
multiplier at its unique attracting fixed point. (The
extension of 7 to the line at infinity is straightfor-
ward: If 6, = A+ A~" with |A\| < 1, then 7 takes the
value \.) For any A € D \ {0}, the fiber 77'(}) is
isomorphic to the open disk, with a point on L., as
center. (Compare the discussion in [Goldberg and
Keen 1990] and [Milnor 1993].) In this way we ob-
tain a topological fibration

D — 7 (D~ {0}) = D\ {0}.

However, the fiber 771(0) is different in two ways.
First it is missing a point at infinity, and hence is
a punctured disk. Second, there is no local cross-
section near zero. Instead we have something like a
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Seifert fibration. In fact, since o, /n"™t = X!
by Corollary 2, it follows that

A6 =" X" o,

for A close to zero and A close to +1 in the shift
locus. Thus a small loop around the line A = 1 in
the shift locus corresponds to a loop in the A-plane
which winds n — 1 times around the origin. Thus
n — 1 times a generator for the fundamental group
of #71(D \ {0}, which is free cyclic, maps to zero in
the fundamental group of Spyp.

8. THE CURVES Per,(\) C M

Roughly speaking, the curve Per,(\) is the set of
all conjugacy classes with an orbit of period p > 1
and multiplier A € C. However, we must be some-
what careful to give a definition which yields a well
behaved algebraic curve which depends continuously
on )\, even in exceptional cases. (One difficulty arises
when the multiplier is a root of unity, since a se-
quence of orbits of period pg with multiplier con-
verging to +1 may converge to an orbit of period
p with a ¢-th root of unity as multiplier. Another
difficulty arises for A = 0, since the curves Per,())
converge towards an (n — 1)-fold branched covering
of Per,(0) as A — 0.)

We first count periodic orbits. As in [Milnor 1993;
2000], define positive integers v, (p) by the formula

n? =Y (g = walp) =) ulp/g)n,
alp alp
to be summed over all divisors 1 < ¢ < p, where
the Mobius function p(p/q) is defined to be (—1)™
if p/g =1,---1,, is a product of m distinct primes
l;, and p(p/q) = 0 otherwise. The first few values
are as follows.

»p 1 2 3 4 5 6
vn(p) n n?*-n n3-n n*-n? n—n nS—ni-—n’tn

Since f°? is a rational map of degree n?, with n? + 1
fixed points in the generic case, it follows easily that
a generic f has v, (p) points of period p for p > 2.
(However, for p = 1 it has v,(1) + 1 = n + 1 fixed
points.)

We next construct a commutative diagram

Per, — Bicrit
{ {
Per, — M
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where both horizontal arrows represent branched
coverings having degree v,(p) for p > 2, but hav-
ing degree v,(1) + 1 for p = 1. (To simplify the
notation, the subscript n on Bicrit and M has been
suppressed.) Start with the variety

V, C Bicrit x C

consisting of all pairs (f,z) where f is a bicritical
map of degree n and z is a point of C satisfying
f?(z) = z. Here p can be any positive integer.
Note that V, C V,, for every divisor g of p, Let
Per, C Bicrit,, x C be the Zariski closure of the set

v,~ |V,

qlp
q<p

consisting of points in V,, which do not belong to
V, for any ¢ < p. Clearly V, can be expressed as
the union of Per, as g ranges over all divisors of p
including p itself.

By definition, two points (f,z) and (g, w) of Per,
are conjugate if there is a Mobius automorphism ¢
of C so that g=wofop™and w = p(z). The
orbifold consisting of all conjugacy classes ((f,z))
of points of Per, will be denoted by Per,. Evi-
dently the correspondence ((f,z)) — (f) yields the
required branched covering Per,, — M.

Remark. These varieties Per, and Per, are actually
irreducible. The analogous statement for unicriti-
cal polynomials was proved by Bousch [1992] in the
quadratic case and by Lau and Schleicher [1994] for
all degrees. Irreducibility of these varieties for bi-
critical rational maps follows, since any irreducible
component of Per, must intersect the locus of poly-
nomial maps.

Definition. The multiplier map
A:Per, = C

carries each ((f, z)) to the derivative of f°F at z. Let
F,, C Per, be the fiber, consisting of all ((f, z)) with
A((f,2)) = Ao, and let Per,(Ag) be its image under
the projection to M. (Intuitively, a point of Per,())
is a conjugacy class of maps (f) which posses a pe-
riod p orbit of multiplier A, while a point of F) con-
sists of such an (f) together with a specific choice
of period p point for a representative map f.)

Remark. Each k modulo p in the cyclic group Z, =
Z/pZ acts on the varieties Per, — Per, by the

correspondence (f,z) — (f, f°*(z)). Thus we ob-
tain quotient orbifolds and a larger commutative di-
agram

Per, — Per,/Z, — Bicrit

i S i
Per, — Per,/Z, — M
LA
C

where now the horizontal arrows represent branched
coverings of degree p on the left and v, (p)/p on the
right. Starting with any Ay € C we can form the
preimage in Per,/7Z, and then project to the subset
Per,(X\g) C M.

Theorem 8.1. Let Per,()\) be the closure of Per,())
within the extended moduli space M. If A # 0, then
mp()\) is a compact, not necessarily irreducible, al-
gebraic curve in the extended moduli space M. The
projection map ((f, z)) = X(f) carries Per,()\) onto
C with degree v,(p)/n. Equivalently, the number
of intersections of mﬂ()\) with any fiber Lx of the
fibration X : M — C, counted with multiplicity,
is independent of A and X, being equal to v,(p)/n.
The same statements are true for A =0 and p > 2
provided that the point set Per,(0) is counted with
multiplicity n — 1.

In other words, for p > 2, it is asserted that the set
Per,(0) intersects a generic fiber Ly in

Vn(D)
n(n—1)

distinct points, each of which must be counted with
multiplicity n—1 in order to get the correct count of
Vn(p)/n. (Here is one intuitive explanation for this
multiplicity: For (f) € Per,(0), suppose that we
perturb f within the much larger space consisting
of all rational maps of degree n. Generically, the
periodic critical point will split up into n — 1 nearby
critical points, any one of which can be periodic.
Thus the locus Per,(0) C M splits up locally, in this
larger context, into n — 1 nearby sheets.)

Outline Proof of Theorem 8.1. We need only consider
the case p > 2, since the period one case has been
discussed in Sections 2 and 6. Since Per,(\) is an
algebraic curve in M 2 C?, it can be defined by a
single polynomial equation in the coordinates X and
0. Substituting X =1/X and 6, =0, /(n" 1 X" 1),



and multiplying through by an appropriate power
of X , we obtain a corresponding polynomial equa-
tion relating X and &;. This shows that Per,())
is an algebraic curve in the variety M. If |A| > 1
so that the associated periodic orbit is contained in
the Julia set, then it follows from Remark 7.3 that
this curve is contained in a compact subset of M,
and hence is itself compact. On the other hand, if
|A| <1 with period p > 2, then Per,()\) is contained
in the connectedness locus, which has compact clo-
sure within M.
To compute the degree of the projection map

Per,(\) — C,

we first look at the exceptional special case \ =
0 and count the number of intersections of Per,(0)
with the fiber Ly. If fy(z) = 2™ + b with invariants
X =0and Y =b""', then the equation f,”(0) =0
has degree n?~! in the unknown b, so there are n?=!
solutions b, counted with multiplicity. Subtracting
off the numbers of solutions for proper divisors of p,
we see that there are v,,(p)/n choices for b. Since we
assume that p > 2, it follows that b = 0. Hence there
are n — 1 choices of b for every choice of Y = b1,
Thus the projection X : Per,(0) — C has degree
vn(p)/(n(n — 1)) for p > 2. The first few values are
as follows:

P 2 3 4 )
vn(p) n n(n n n>
e R (n+1)  (n+1)(n2+1)
p 6
Vn(P)

— 1)(n34+n—1

n(n-1) (n+1)(n*+n—1)

To check what happens as we perturb the multiplier
A away from zero, we can simply apply the following
result. See [Lau and Schleicher 1994, §2.2].

Proposition (Lau and Schleicher). If W is any hyper-
bolic component in the b-parameter plane for the
family of maps z — 2™ + b, then the multiplier map
W — D is an (n — 1)-fold branched covering, rami-
fied only at the unique inverse image of zero.

Thus, as we perturb A away from zero, each inter-
section of Per,(0) with Lo splits into n — 1 distinct
intersection, and we obtain the required count of
v,(p)/n points in Per,(\) N Ly for A # 0. O
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Example 8.2. For the special case p = 2, it follows
that Pery(0) is the image of a smooth section of the
fibration X : M — C. We can compute this section
explicitly as follows. Using the normal form (1-1)
with ad — be = 1, recall that

X — bc, X + ]_ = ad’ }/1 — an-‘rlbn—l’
and that f(0) = b/d. Thus the critical point 0 has

period exactly two if and only if
ab™ + bd"
b/d) = ——F—
f( / ) chm + dn+1
is zero, but b # 0. This yields the equation ab™~! +
d" = 0. Multiplying by a", we obtain Y; +(X+1)" =
0. If Y7 # 0, it follows that

1/2 — (X 4 1)n+1Xn71/Y-1 — —(X+ 1)‘,1:71717
and therefore that
Y=Y +Y,=(X+1)" (X+1)X" "

On the other hand, if Y7 = 0 then it is easy to check
that X +1 =Y, =Y =0 also, so that the equation
is still satisfied. Similarly, if the other critical point
oo is periodic, then interchanging the roles of Y; and
Y> we obtain the same equation.

Remark 8.3. It seems likely that the curve Per, () is
usually irreducible, however there are certainly ex-
ceptions. As an example, if n is odd then it was
noted in Section 1 that the curve Pery(n?) is re-
ducible, since it contains the half symmetry locus
Y. as an irreducible component. (This period two
curve is strictly larger that X_ since it has degree
n— 12> 2 over C while ¥_ has degree one.)

Here is another example. If 1 < ¢ < p is a proper
divisor of p, and if £ is a primitive (p/q)-th root of
unity, then it is not hard to show that

Per, (&) C Per,(1)

since, under a small perturbation of f, any period
q orbit of multiplier £ will split off a period p or-
bit with multiplier close to 1. In general, it follows
that Per,(1) is reducible for p > 2. The only excep-
tion occurs in the degree two case, where Pery(1)
actually coincides with the curve Per;(—1). (Thus a
quadratic rational map cannot have any period two
orbit with multiplier 1.)

We can describe the intersection of Per,(n) with
the line at infinity rather precisely as follows.
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Theorem 8.4. For p > 2 the intersection Per,(n) N Ly,
depends only on the period p and not on the multi-
plier n. This intersection is a finite set consisting of
points with coordinate 6, of the form A+ A~ where
A is a q-th root of unity for some q < p.

Proof. First consider the case n = 0, and suppose
that A\? # 1 for 1 < ¢ < p. In other word, we
suppose that the complex numbers

LAA, .0

are all distinct. Let (f) € M be a conjugacy class
with X close to zero and with 6, close to A 4+ AL
Using Theorem 7.5 we can find a normal form for
(f) so that both critical points are close to 1, with
the first p + 1 points of both critical orbits close to

T A= A2 AP £ L

Thus, if the pair (X, 1) is sufficiently close to (0, A+
A71), then it follows that neither critical orbit can
have period p, hence (f) ¢ Per,(0), as required.

(This argument does not apply if A? = 1 for some
q < p. For then the ¢-th forward image of the critical
point is close to 1, lying in a small region whose
image under f covers the entire Riemann sphere.
Hence the further orbit of the critical points cannot
be predicted without more information.)

Now consider Per,(n) with variable 7. Consider
the coordinate ¢; for the various points of Per,(n) N
L. The elementary symmetric functions of these
v,(p)/n (not usually distinct) coordinate values can
be expressed as holomorphic functions of the pa-
rameter 7. But if || < land p > 2 then Per,(n) is
contained in the connectedness locus, so that

Per,(n) N Lo, C €N Ly, = [-2,2] CR.

In other words, every one of the v, (p)/n values of
0, is real, hence the elementary symmetric functions
of these coordinate values are also real. But a holo-
morphic function from 7 € C to C which takes only
real values throughout the open disk || < 1 must
be constant. This proves the the intersection is in-
dependent of n for all n € C. O

Remark 8.5. More precisely, for p > 2 it can be
conjectured that the point of L. with coordinate
1 = A+ A~! belongs to Pery(n) if and only if A is a

primitive ¢g-th root of unity for some 2 < g < p, or
in other words if and only if

. 2r
01 = 2cos —

for some integers 0 < r < ¢ < p. Thus it is be-
lieved that the point of L., with coordinate 6; = 2
does not lie on any Per,(n) with p > 2. (Compare
[Stimson 1993] and [Rees > 2000], which give a more
precise description of the curves Per,(0) near L, in
the degree two case, and see also [Milnor 1993].)

Following is an intuitive argument which attempts
to justify this statement, and also to compute the
multiplicities of the various points of Per,(0)N L. I
suspect that it could be made into a rigorous proof,
but certainly have not done so. We count solutions
to the equation g(z) = k, where £k € C is some
given constant and where g is the bicritical map of
Theorem 7.5, with | X| very large so that g(z) = Az
outside of a small neighborhood of 1. If k is bounded
away from )\, then there is a unique solution z =~ k/\
which is bounded away from 1. Hence the remaining
n — 1 solutions must all lie in some small neighbor-
hood of 1. We express these facts symbolically, in
the limit as |X| — oo, by writing

k/N — k

but
123 k for k# A

In the special case k = A, all n of the solutions must
be very close to 1, so we write

12 .

The numbers on the right in the table are computed
by muliplying these factors of n—1 or n by the num-
ber of values of r/q which are listed on the left. If
N(p,q) denotes the number of solutions of period
dividing p which are computed in this way, corre-
sponding to the case where A is a primitive g-th
root of unity, ¢ > 2, then it is not hard to check
that these numbers can be computed recursively as
follows: N(p,q) = 0ifp < ¢; N(p,q) = ¢(q) if p = g,
where ¢(q), the Euler ¢-function, is the number of
primitive g-th roots of unity; and

N(p,q) =nN(p—q, q) + Z(n—l)N(p—j, q)
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P r/q limiting orbit of g(1) =~ A number total
2 1 A — 1 1
1
3 5. 2 A — N — 1 2x1
1 A— 1 3 n—1
n+1
4 I3 A — N = B — 1 2x1
12 A— A2 — 1 "3 2 (n—1)
i A — 1 5o — 1 n
1 A — 1 2= g (n—1)2
n?4+n+1
5 L,28¢ A — X2 — X8 = =1 4x1
13 A — A2 — A8 — 1 g 2x (n—1)
1,2 A A2 1 a5 2x(n—1)
12 A — A2 1 21 21 2x(n—1)?
1 A — 1 S oA — 1 2 n(n—1)
1 A — 1 = S N 1 n(n—1)
1 Ao— 1 1 1 (n—1)3
n34+n?4+n+1

TABLE 1. Numbers of points (g) € Lx such that g admits a periodic critical orbit of period dividing p, with |X|
very large, grouped by the conjectured limiting behavior of this orbit as X — oo. By definition, A = >™"/4 in
each row. The sum on the right must be equal to 1 +n 4+ n? +--- + nP~2 for all values of p.

if p > q. If N(p,q) is defined by this recursion, then
it seems empirically that the sum over g is given by

ZN(p7Q):1+n+n2+...+n;D*2‘

q>2

For any given p, this is easy to check by computer;
but I don’t know a general proof.

On the other hand, for every p > 2, the actual
number of solutions of period exactly p is known
to be v,(p)/(n(n — 1)). There are no solutions of
period 1, hence the number of solutions with period
d dividing p must be equal to

vn(d)  _
d2|p nin—1)
A1

n? —n

=1 24 ... p—2
n(n—1) tn+nt 4. +n

This agrees precisely with the intuitive computa-
tion, which supports the conjecture that the com-

puted values N(p,q) are indeed correct, and that
there are no solutions at all corresponding to the
case A = 1.

It is interesting to note that, for each p, the con-
tribution from g = 2 is by far the largest. Indeed, for
large n, the contribution of (n—1)?~2, corresponding
to a critical orbit for g which tends asymptotically
to

1= —-1—=1—=1~- 1,

contributes much more than all of the other asymp-
totic behaviors combined. The associated point of
Per,(0) N L., has coordinate 6; = A + A\~! = —2.

APPENDIX A. NO HERMAN RINGS

The following statement is a straightforward conse-
quence of results of Shishikura.
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Theorem A.1. A rational map [ with only two critical
points cannot have any Herman rings.

The proof we give is closely modeled on Shishikura’s
argument (compare [Shishikura 1987, §8 and re-
mark on page 4]), although it avoids the use of
surgery collstru/c\tions.

Let f: C — C be a rational map of degree d > 2
which possesses a cycle of Herman rings H = H; U
-+ U H, of period p > 1. That is, assume that
the H, are disjoint annuli with 0H; C J(f), where
1 ranges over the group of integers modulo p, and
assume that f maps each H; diffeomorphically onto
H; ;. Choosing some base point b € H, the closure
of the forward orbit of bis a union ' =Ty U---UT,
of smooth simple closed curves, where I'; C H; and
f(I';) =T, Since f(I') =T, we have

rcf'(mcf?rc:---.

(If T is chosen to be disjoint from the postcritical
set, then each f~"(T") will be a union of at most pd"
disjoint simple closed curves.) The connected com-
ponents of C . f"(I') are open sets which will be
called Shishikura puzzle pieces of level n. Evidently
f maps each puzzle piece of level n > 0 onto a puzzle
piece of level n — 1 by a possibly branched covering
map.

Each I'; separates the Riemann sphere into two
disks. In order to label these disks, choose orienta-
tions for the loops I'; compatible with the mapping.
Then for each T'; we can speak of the disk D} to the
left of T'; with boundary T';, and the disk D® to the
right of I'; with boundary I'; . Fixing some level n,
note that each I'; lies on the boundary of exactly two
puzzle pieces. Let L; = L™ C DF be the adjacent
piece to the left of I'; and R; = R™ C DF the adja-
cent piece to the right. Define the level n left neigh-
borhood L™ of I' to be the union L{™U---UL{™, and

define the right neighborhood R™ = Rg") U-- -URI(,")
similarly. Then we have the following result. (See
[Shishikura 1987, §7].)

Theorem A.2. The left neighborhood L™ of T con-
tains at least one critical point of f, and similarly
the right neighborhood R™ contains at least one
critical point.

Proof. We may assume that n > 1. If LyU---UL,
contains no critical point, then we will show that

f must map each L; onto L;,;, and hence that f°?
must map L; onto itself. This would imply that
each L; is contained in the Fatou set C \. J(f). But
that is impossible, since L; intersects the boundary
of the ring H;, which is contained in the Julia set.
This contradiction will prove the Theorem.

For each left hand puzzle piece Lg") we have the
following diagram.

n f n—1 n
™ Loy o .

If there is no critical point in LE”), then f maps
L™ onto LEZ;” by a covering map (which may be
one-to-one). Hence, if we pass to universal covering
spaces, this diagram takes the form

B = 170 o 11,
In other words, we can choose a single valued holo-
morphic branch of f~! which maps Lz('i)l into L{™.
Each puzzle piece L§”> is a hyperbolic Riemann sur-
face, and hence has a Poincaré metric. Fixing n,
for any smooth curve segment « : [0,1] — Lg"), let
l;(a) be the Poincaré arclength. Then one of the

following two possibilities must hold:
Case 1. If f(L{™) is precisely equal to Ll(-i)l, then this
branch of f~!is a Poincaré isometry from Lgi)l onto

EE"). In this case f preserves Poincaré arclength, so
that

liy1(foa) =li(a)
for every smooth curve in LE").

Case 2. If f(L™) is strictly larger than L), then
this branch of f ! is strictly distance reducing. Thus
f must strictly increase Poincaré arclength, in the
sense that

livi(foa)>li(a)

for any non-constant curve in LZ(-") which maps into
L.

Now choose some orbit closure IV ¢ HN L™, and
let « : R/Z — I" N Hy be a smooth parametriza-
tion of one connected component. Then f° o« is a
smooth parametrization of I'' N H;. Comparing the

discussion above, we have
lg(a) S ll(f (e} Oé) S 12(f02 (e} O[)
< S (o) =lh(a),

since f°? o« and « parametrize the same loop. Thus
equality must hold throughout, and Case 2 can never



occur. This proves that f must map every Lg") onto
Lgi)l. As noted above, this leads to a contradic-
tion. Therefore L™ must contain at least one crit-
ical point, which completes the proof of Theorem

A2 U

Remark A.3. If n > p — 1, then L™ is disjoint from
R™. This statement is clear when p = 1, since
LA R™ =@, If Le=) N RP=Y £ & with p > 1,
then L* " would be precisely equal to Rgf 5 for
some iy and some & # 0. This would imply that
Lgf ;12) = RZ(.f ;1215- Continuing inductively it would
follow that L'® = RE% for every 7. But this would
imply that the entire disk DF to the right of T; is
contained in DJ, ;. Therefore
D§ c D ¢ Dy C --- C Dy; = D,

which is impossible.

Now we specialize to the case of a rational map of
degree d with only two critical points. Note the
following basic observation. If a simple closed curve
I'; € C bounds a closed disk D which is disjoint from
the two critical values, then f~*(D) is the union of d
disjoint topological disks, each of which contains no
critical point and maps homeomorphically onto D.
On the other hand, if T'; separates the two critical
values, then f~1(T;) is a single simple closed curve,
which maps onto I'; by a d-fold covering map. Evi-
dently this second case can never occur for the loops
I'; associated with a cycle of Herman rings.

It will be convenient to put one of the two critical
points at infinity. Then one of the two components
of the complement of any I'; is bounded, and maps
diffeomorphically onto its image under f . I will
call this component the inside D" of T'; . The other
component D{"* is unbounded, and contains both
critical points.

Call T’y a separating loop if it separates the critical
points from the critical values. Then the inside D
of each I'; maps diffeomorphically onto:

the outside DYy if I'iyq is separating,

the inside DI, if T';y is non-separating.

Call 'y, minimal if the union I is disjoint from the
open disk Di".

Lemma A.4. There exists a (necessarily unique) T'y
which is both separating and minimal.
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Proof [Shishikura 1987, §8]. There certainly exists
at least one minimal T';. If every I'; were mini-
mal and non-separating, then the inside of every I';
would map diffeomorphically onto the inside of I'; 4
and we would have a cycle of Siegel disks rather than
Herman rings. Therefore, either there is some I';
which is minimal and separating, as required, or else
there is some I'; which is not minimal. In the latter
case, we can choose some non-minimal I'; so that
[;;1 is minimal. Then D", which contains other
I';, cannot map diffeomorphically onto D}, which
does not. Hence in this case I';; must be a minimal
separating loop, as required. [l

Proof of Theorem A.1. Let I'y, be the loop of Lemma
A.4. Since I'y is minimal, the closure l_)zm contains
the union I' = I'y U --- U T',. Since I'}, is separat-
ing, the preimage f *1(1_921“) is a union of d disjoint
bounded closed disks. Evidently this union contains
f74T) and has boundary f~*(T}). It follows that
the complementary region f~!(Dj*) is the unique
unbounded puzzle piece of level one. This puzzle
piece contains both critical points, and has no T';
other than I';,_; on its boundary. Therefore the level
one puzzle piece to the inner side of I';,_; is bounded
and contains no critical point, while for any 7 # k—1
both of the pieces LZ(-I) and REI) are bounded and
contain no critical point. Thus L) and R cannot
both contain critical points, which contradicts The-
orem A.2 and completes the proof that a bicritical
map has no Herman ring. O

APPENDIX B. TOTALLY DISCONNECTED JULIA SETS

We will first prove the following result, with no re-
striction on the number of critical points. Let f be
a rational function of degree n > 2.

Theorem B.1. The Julia set J of f is totally discon-
nected and contains no critical point if and only if
all of the critical values of f lie in a single Fatou
component.

In the hyperbolic case, this was proved by Rees
[1990]. I attempted to extend the argument to the
parabolic case in [Milnor 1993], but the details were
not quite right. The proof given here is rather dif-
ferent and perhaps easier. It will be based on the
following ideas.
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Definition. A map g : K — K’ between metric spaces
is called locally distance increasing if every point of
K has a neighborhood V so that

dist(g(x), g(y)) > dist(z,y)

for all x # y in V. If K is compact, an equiva-
lent condition is that for some ¢ > 0 we have (B-1)
whenever 0 < dist(z,y) < e.

(B-T)

Lemma B.2. Let g : K — K be a locally distance in-
creasing map from a compact metric space to itself.
If g is injective on each connected component of K,
then the space K must be totally disconnected.

Proof. First note that there exists a constant ¢ > 0
so that (B-1) holds whenever x and y are distinct
points belonging to the same connected component of
K and satisfying dist (g(z),g(y)) < &'. For other-
wise, with € as above, there would exist pairs (z;, y;)
belonging to the same component K; of K so that
dist (g(a:l),g(yl)) converges to zero as i — 0o, but
with dist(x;,y;) > e. After passing to a subse-
quence, we may assume that the points x; converge
to some point x and that the y; converge to some
y, where dist(z,y) > € and where g(z) = g(y). But
this is impossible since z and y belong to the same
connected component of K. In fact, the set L of all
accumulation points of K; as i — oo is a connected
subset of K containing both z and .

The diameter diam K > 0 of a non-vacuous com-
pact metric space is defined to be the maximum dis-
tance between two of its points. More generally,
for any integer m > 1 define diam,, K to be the
largest number & so that there exist m + 1 points
o, L1, ..., Ty in K that are d-separated in the sense
that dist(z;,z;) > 0 for ¢ # j. (Think of m + 1
repelling points, which try to get as far as possible
from each other.) Thus

diam K = diam; K > diam, K > diamz K > --- > 0.

Note that diam,, K = 0 if and only if K is a finite
set with at most m elements.

The proof of Lemma B.2 now proceeds as fol-
lows. Choose m large enough so that K can be
covered by subsets X, ..., X,, of diameter less than
¢’. It then follows that diam,, K < ¢’, since a col-
lection of &’-separated points can have at most one
point in each X;. Let d,.x be the supremum of the

numbers diam,,, K, as K, ranges over all connected

components of K. We want to prove that dy.x = 0.
Otherwise, if dp.x > 0, we will obtain a contra-
diction by constructing a “largest” component K,
with diam,,, K, equal to dmax, and then showing that
diam,, (f(KH)) > Omax-

Let K; be a sequence of components of K such
that the numbers d; = diam,, K; converge to the
supremum 0,,,x, and choose points z¢(i), z1(7), ...,
z,, (1) € K; that are d;-separated. After passing to
a subsequence, we may assume that each sequence
z;(1), z;(2), z;(3), ... converges to a limit z; € K.
Let L be the set of all accumulation points of { K}
as i — oo. Then L is connected, and hence is con-
tained in some connected component K,. Further-
more diam,,, K, = dpax since L contains m+1 points
x; which are d,,.x-separated.

Now, assuming that d,.x > 0, we will obtain a
contradiction by showing that diam,, ( f(K u)) must
be strictly larger than §,... In fact, for each 0 <
1 < j < m we have either

dist (f(:z;,'), f(a:j)) > dist(z;, ;) > Omax,
or else
dist (f(a:z),f(xj)) > ¢ > diam,,, K > 6max.

This contradiction proves that d,,, must be zero.
Hence every connected component K, is finite, and
hence consists of a single point. O

Proof of Theorem B.1. One direction is clear, since
a totally disconnected set cannot separate the Rie-
mann sphere. For the proof in the other direction,
suppose that all critical values lie in a single Fatou
component U. Choose a smoothly embedded closed
disk A* C U which contains all of the critical val-
ues in its interior. Let A = C \ interior(A*) be
the complementary closed disk which contains the
Julia set. Since A contains no critical values, its
pre-image f '(A) splits as a disjoint union

7 (A)=A,U---UA,

of smoothly embedded closed disks, each of which
maps homeomorphically onto A under f. Now ev-
ery connected component J, of the Julia set must
be contained in one of the A;, and hence must map
homeomorphically under f. Thus, to prove Theo-
rem B.1, we need only show that f restricted to the
Julia set is locally distance increasing with respect
to a suitably chosen metric. In fact we will prove



the following. (For related statements, see [Douady
and Hubbard 1985a; Tan and Yin 1996; Tan 1997].)

Lemma B.3. A rational map f, restricted to its Julia
set J, is locally distance increasing with respect to a
suitably chosen metric if and only if f has no critical
points in J.

Proof. If there is a critical point ¢ in the Julia set .J,
then f|; is not even one-to-one near ¢, so it certainly
cannot be locally distance increasing. Suppose then
that there are no critical points in .J. Let P be the
closure of the postcritical set of f (the union of all
forward orbits of critical values). If we exclude triv-
ial cases where P has only two elements, then each
connected component of the complement U = C\ P
has a well defined Poincaré metric. The associ-
ated Poincaré distance function will be denoted by
disty(z,y). Let Uy = f~'(U) € U. Then f maps
U, onto U by a covering map. Since Uy is a proper
subset of U, it follows that

disty (2, y) < disty, (z,y) = disty (f(2), f(y))

for any two points & # y in Uy which are sufficiently
close to each other. Thus f is locally distance in-
creasing on U, with respect to the metric disty.

Since there are no critical points in J, it follows
from the Sullivan classification of Fatou components
that every critical orbit must converge to an at-
tracting or parabolic cycle. Therefore the intersec-
tion II = P N J can be described as the set of all
parabolic periodic points. If there are no parabolic
points, then J C Uy, and it follows that f is locally
distance increasing on J with respect to the met-
ric disty;. However, if f has parabolic points, then
the Poincaré metric becomes infinite at such points.
We will modify this metric near these points so as
to obtain a better behaved metric.

It will be convenient to choose coordinates so that
the Julia set J is contained in the finite plane C. The
Poincaré metric on U = C ~\ P has the form p(z)|dz|
throughout U N C, where p extends to a function

p:C — (0,00]

which is continuous everywhere, but takes the value
+00 on the points of P N C. In particular, p(z)
tends to infinity as z tends to any point in the set
IT = PN J of parabolic points. First suppose that
these parabolic points are all fixed under f, with
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multiplier +1. Let M > 0 be a constant which is
large enough so that

M > p(z)/|f'(2)]

for every z in the finite set f~'(II) \ II. (This ratio
p(2)/]f'(2)] is always finite at the points of f~*(II)~\
I1, since such points are non-critical and outside P.)
Let N.(IT) be the open neighborhood of Euclidean
radius € about the parabolic set II. We define a new

Riemannian metric 7(z)|dz| on the open set U’ =
N (II) U (C \ P) by setting

M for z € N.(II),

n(z) =

p(z) for z ¢ N(II).
This function 7 has a jump discontinuity on the cir-
cle of radius € about each parabolic point; but this
will not cause any difficulty. As usual, we use this

Riemannian metric to define a distance dist, (z,y)
between points of U’ as the infimum of lengths

length, (T') :/ n(z)|dz|,

r

(B-2)

where I' ranges over all piecewise smooth paths join-
ing the two points within U’.

If € is sufficiently small, then we will prove that f|;
is locally distance increasing with respect to this met-
ric dist,,.

Since n(II) = oo, we can certainly choose € small
enough so that p(z) > M throughout the neighbor-
hood N, (IT). Evidently this will guarantee that any
Euclidean straight line segment lying within N, (II)
is the unique n-geodesic of minimal n-length join-
ing its endpoints. To study behavior of f near a
parabolic point z,, we proceed as follows. Assuming
for convenience that zy = 0, we can write the local
power series expansion as

f(2) = z(1 + az™ + (higher terms)),

where m > 1 and a # 0. Using the Leau—Fatou
Flower Theorem, we obtain the estimate

az™

[azm

as z — 0 within the Julia set J. Hence
f(2) = 2(1+ |az™| + o(z™)),
f'(z) =14+ (m+1)|az™| + o(z™)

as z — 0 within J. It follows easily that f|; is
distance increasing throughout some neighborhood



516 Experimental Mathematics, Vol. 9 (2000), No. 4

of each parabolic point. Furthermore, if &' is suffi-
ciently small, it follows that

[F(2)] > |2,

To prove that f is locally distance increasing at
points of J ~\ II we will prove the infinitesimal form
of the required inequality. That is we will prove that

n(f(2)) [f'(2)| > n(z)
throughout J ~\ II, and hence that

/Fn(f(Z))ldf(Z)l Z/Fn(f(Z))lf’(Z)dZI

> / n(z) |

for any path I' in some neighborhood of J~\1II. There
are four cases to consider: If both z and f(z) belong
to N.(II), then (B-4) follows from (B-3). If neither
z nor f(z) belongs to N_(II), then it follows from the
corresponding property of the Poincaré metric. If z
belongs to N_(II) but f(z) does not, then it follows
since

n(f ()1 ()] = p(F()IF'(2)] > p(2) > M = n(2).

Finally, if z € f 'N.(II) \ N.(II), then we pro-
ceed as follows. A compactness argument shows
that f 'N.(II) shrinks down to f*(II) as £ ~, 0.
Thus, given &’ we can find € so that every point
z of f~'N.(II) has Euclidean distance at most &’
from some point 2 € f!(II). If 2 € II, then since
f(2) € N.(II) it follows from (B-3) that z € N.(II)
also, contradicting the hypothesis that z ¢ N_(II).
On the other hand, if Z # II then it follows from
(B-2) that M |f'(2)] > n(2). If € is sufficiently
small, it evidently follows that M |f'(z)| > n(z) also.

This proves B.3 in the special case where every
parabolic point is a fixed point of multiplier +1. To
handle the general case, choose a positive integer k
so that every parabolic point of f°* is a fixed point
of multiplier +1, and let dist, (z,y) be a metric with
the required property for f°*. Then f itself will be
locally distance increasing on J with respect to the
metric

If'(z)]>1 forO0<|z|<e&. (B-3)

(B-4)

dist (e,) = Y disty (7(2), 7 0).

This proves B.3, and completes the proof of Theo-
rem B.1. ]

Let f be rational of degree n > 2 with Julia set J.

Lemma B.4. Suppose that there exists a closed disk

A* c C that

(a) contains all of the critical values of f in its in-
terior,
(b) satisfies f(A*) C A*, and

(c) eventually absorbs every orbit in the Fatou set.

Then f|; is topologically conjugate to the one-sided
shift on n symbols.

Proof. It follows from (b) that the interior of such a
disk A* is contained in the Fatou set. Therefore, by
(a) and Theorem B.1, the Julia set J is totally dis-
connected. As in the proof of Lemma B.2, the com-
plementary closed disk A contains J, and f~'(A)
splits as a disjoint union A; U--- U A,,, where each
A; maps homeomorphically onto A. But now we
have the additional information that each A; is a
subset of A. It follows inductively that each finite
intersection

Aig Q1 i Aio N f_l(Ail) n---N f_k(Alk)

is a closed topological disk. In fact

~

FolDiginin—Dirig. iy —> -

= A A, — AL

k—1 1k

Now given an infinite sequence I = (ig,y,1s,...),
it follows that the intersection J; of the nested se-
quence

AZ‘O D) Aioh D Ai0i1i2 IDEEEE

is compact, connected, and non-vacuous. This in-
tersection is contained in the Julia set, since by con-
dition (c) every orbit outside of the Julia set eventu-
ally leaves the disk A. Hence by Theorem B.1 each
J1 is a single point.

Equivalently, to each point z of J we can assign a
sequence I(z) = (ig, 1,12, ...) of integers between 1
and n by the condition that z; € D;; where

fiz=z20— 21— 29— -+

is the orbit of z. Evidently J; consists of the unique
point which has symbol sequence equal to I. Since
f maps J; to J,(r), where

) = (i1, iz, . ..)

(i, i1, - -



is the shift operator, this proves that the correspon-
dence z — I(z) is a topological conjugacy from f|;
onto the one-sided shift on n symbols. |

We will only try to apply this lemma in the following
very special case.

Theorem B.5. If f has only two critical values, both in
the same Fatou component, then f|; is topologically
conjugate to a one-sided shift.

Note. The hypothesis that f has only two critical
values implies that f has only two critical points
(making use of the fact that the twice punctured
sphere has free cyclic fundamental group). By con-
trast, a Chebyshev polynomial of degree n > 3 has
only three distinct critical values on the Riemann
sphere but has n distinct critical points.

Proof of Theorem B.5. Let Uy be a simply connected
open set bounded by a smooth Jordan curve, which
satisfies f(Us) C Uy, and which eventually absorbs
every orbit in the Fatou set. Thus in the hyper-
bolic case Uy will be a neighborhood of the attract-
ing point, while in the parabolic case U, will be a
carefully chosen attracting petal. We can assume
that the boundary of U, is disjoint from the two
critical orbits. Now define a sequence of connected
open sets with smooth boundary

U,cU cUy,C---

by setting Ug,; equal to the connected component
of f~'(U,) which contains Uy. If U, is simply con-
nected and contains at most one critical value, then
it is easy to show that Uy, is also simply connected.
Thus we can continue this construction until we ob-
tain some U,, which contains both critical values.
The closure U,, will then be the required disk A*,
so that we can apply Lemma B.4. O

APPENDIX C. CROSS-RATIO FORMULAS

In Remark 1.6 we mentioned that the invariant X
of Lemma 1.1 can be defined as a cross-ratio. This
appendix will give corresponding formulas for the
invariants Y; and Y;. I will use the nonstandard
notation
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(product of row differences, divided by product of
column differences). This cross-ratio symbol can be
characterized as follows. It is well defined unless
three of the four points » ¢ in C coincide, and it
takes the value:

0 if two entries in the same row are equal,

oo if two entries in the same column are equal,
1 if two diagonally opposite entries are equal.

Furthermore, if three of the four variables p,q,r, s
are fixed and distinct, then it represents a M&bius
transformation of the remaining variable.

As an example, since a Mobius transformation
which fixes three points is the identity, it follows

that
z]0
=zx.
ool 1

Furthermore, it follows easily that

o(p) | e(a) 1l|_q
() | p(s) T|s
for any Mobius transformation . This symbol is

independent of the order of rows or columns, that is
it satisfies the symmetry relations

O
rls vl qlp  slr

Now let ¢; and ¢y, be the critical points of the
bicritical map f, let v; = f(c;) be the critical values,

and let p; € f'(¢;) be any one of the n preimages
of ¢;. For example, using the usual normal form

f(z) = (az" +b)/(cz" + d),

we can take

c1 = 00, vy =a/c, p1 € ¥/—d/c
¢y =0, vy = b/d, p2 € {/—b/a.

Using these notations, we can write Remark 1.6 in
the form

B -b/d _ =bec
"~ a/c—b/d  ad—bc
Now consider the cross-ratio

Ci|V2 P1_ m

E’?z v b/d
This is well defined only up to multiplication by an
n-the root of unity. However its n-th power

c1 |v1 Uy

-X.

C2|U2 _Ul_v2

¢y | vy " _ —dfc —drtt
pilea) — br/dr T bre
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is always well defined as an element of C. Ifc #0
then we can multiply numerator and denominator
by ¢" 1, thus reducing this expression to the form

<Cl |U2>" =t
ple/ bren
B —c”fld"“< be >—” Y
(ad — be)™ \ad — be X

This proves that we can compute Y; by a cross-ratio
whenever X # 0. Still assuming that ¢ # 0, we can
also consider the expression

e v\ . —dfc
<p1 62) o (pl/vl) o a"/c"
B cnfldn+1 B _1/2
andr (X + 1)

Note that the left side of this equation is indeter-
minate if and only if ¢ = 0, or equivalently if and
only if ¢; = v; = p;. But whenever this happens,
it follows that Y5 = 0. Since X and X + 1 cannot
both be zero, this shows that we can compute Y, in
all cases. Interchanging the roles of the two critical
points, we find similar expressions for Y.

APPENDIX D. ENTIRE AND MEROMORPHIC MAPS

Douady has pointed out to me that there is an analo-
gous theory of entire transcendental or meromorphic
maps that have only two singular values.

Lemma D.1. Suppose that f : U — C is a holomor-
phic map with only two singular values, say v, and
vy, where U is a connected open subset of@ If f
has infinite degree, then U must be the complement
of a single point s € (C and f must map C < {s}
onto C ~ {vi,v2} by a free cyclic covering map.

Here, by a singular value v € C we mean either a
critical value, or an asymptotic value for the map
f. (By definition, z is an asymptotic value if it can
be described as the limit z = lim, ,; f(p(¢)) where
p:[0,1) — U is a path which eventually leaves any
compact subset of U.) The Lemma asserts that the
f in question cannot have any critical values, so we
could equally well describe it as a map with two
asymptotic values.

For a quite different characterization of this family
of maps, see [Devaney and Keen 1988a; 1989).

Proof of Lemma D.1. It is not difficult to see that f
must carry the complement U~ f~*{v;, v} onto C~\
{v1,v2} by a covering map. Since the fundamental
group of the image space is cyclic, this can only be a
cyclic covering. If it has infinite degree, then it must
be a universal covering. Hence U \ f~!{vy,v,} must
be conformally equivalent to the universal covering
of C \ {v1,v:}, or in other words to C itself. Since
U cannot be the entire Riemann sphere, this proves
that U = C \ {s} for some unique point s, and that

f:U—>@\{/U1,U2}

is a free cyclic covering map. Note that f has an
essential singularity at s. O

If we put the two singular values at zero and infinity,
then one example of a universal covering of C ~
{v1,v2} = C {0} is given by the exponential map

exp: C — C ~{0}.

Hence f can be described as the composition f =
exp ofi, where i is some conformal isomorphism from
C ~{s} onto C. Evidently we can express any such
1 as a Mobius transformation

az+b

) = cz+d

with ad — be # 0,

az+b
=ex
P\eztd)
with essential singularity at s = —d/c € C.

In practice, it will be convenient to conjugate f =
expoy by u, so as to obtain a normal form

so that

£(2) = expop(2)

(D-5)

g=mpofou™t =poexp.
Thus
ae” +b
=— D-6
ae” +be v

or equivalently g(2w) = 2572 The essential sin-
gularity of g is at infinity, and its singular values are
v; = a/c and v, = b/d. Note the identity

= g(w).

In fact we can describe g as a composition

g(w + 2mi)

C " ¢j2miz =5 € {a/e,b/d).

Since this description is rather rigid, we are free to
change the coordinate w only by a translation, or



a sign change followed by translation. If we con-
jugate g by a translation, then the resulting map
w > g(w+t) —t has the form (D-6) with matrix of
coefficients

ele d

[et(a —tc) b— td]

or equivalently

[et/2(a — tc)

et/2¢

e V2(b — td)
e t2q

if we prefer to work only with unimodular matrices).
Thus the additive group of translations acts on the
manifold PGL(2,C) by a correspondence which we
can write as

B, : [a b] = [1 —t] [a b] [et/z 0 ] _
c d 0 1 c d 0 e t/?
The difference
~a b _ ad—bc
TRTL AT T d
remains invariant under this transformation, since

vy and v, are both translated by the same constant
—t. Define X to be the reciprocal

1 cd
X = = C.
V1 — Uy aal—bce

(D-8)

This number X is a conformal conjugacy invariant.
For if we replace g(w) by —g(—w) then the matrix

[Z Z of coeflicients will be replaced by

3 90 1 - [ ) e

so that (vq,v;) is replaced by (—ve, —v;), and again
the expression (D-8) remains invariant. Since any
cooordinate change which carries (D-6) to another
expression of the same form is a composition of
translations and sign changes, it follows that X is
indeed a conformal conjugacy invariant.

We will prove several statements which are rem-
iniscent of the descriptions of moduli space in Sec-
tions 1 and 2. For each fixed X, we need one fur-
ther complex number to give a complete conjugacy
class invariant. Furthermore, given X (f) and given
A # 0, there is a unique conjugacy class of maps (f)
which have a fixed point of multiplier \. However,
unlike the finite degree situation of Section 1, it is
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necessary to treat the cases X = 0 and X # 0 sepa-
rately in order to obtain reasonable moduli spaces.

Entire Transcendental Case. If X = 0, or equivalently
if the essential singularity occurs at one of the two
singular values, then putting s = v; at infinity and
putting v, at zero, the normal form (D-6) reduces
to

g(w) = ke” for some constant k € C ~ {0}.

Here k = ¢’(0) is a conjugacy class invariant. Thus
we obtain the exponential family, which has been
studied by several authors. (See [Devaney 1991], for
example.) We could also ue the normal form

f(z) = g(k2)/k = €*,

again with s = co and zero as singular values, and
again with invariant k = f/(0). If we specify that g
has a fixed point wy = g(wy) of multiplier ¢’'(wy) =
A, then since ¢'(wg) = g(wg) = wyp it follows that
wo = A, and hence that the invariant k£ = wge™"° is
uniquely determined by .

Meromorphic Case. If X # 0, or equivalently if the
three distinguished points s, vq, v, are pairwise dis-
tinct, then g : C — C \ {v;, vz} is a meromorphic
map. (For a survey of meromorphic dynamics, see
[Bergweiler 1993].) In analogy with Section 1 we
will construct a conjugacy invariant ¥ = Y; + Y5.

Let J )
c a —
nEgewy hEer
with product

(D-10)
Then it is not difficult to check that both Y; and
Y, are invariant under the action (D-7), and that
Y, and Y5 are interchanged by the transformation
(D-9). Hence the sum Y = Y] +Y; is a conjugacy
class invariant. The two quantities Y; and Y5 indi-
vidually will be described as half-invariants, since
only the unordered pair {Y;, Y5} is actually a conju-
gacy invariant.

The choice of X # 0 and Y uniquely determines
the conjugacy class. In fact we can compute the un-
ordered pair {Y;,Y>} by solving a quadratic equa-
tion. Given Y;, we can assume, by using the ac-
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tion (D-7), that ¢ = d so that Y; = e*°. Thus
we can compute the ratio a/c, up to a summand
in 27iZ, and then compute the ratio b/d from the
identity a/c—b/d = 1/X. Thus the function g(w) =
(ae™ +b)/(ce” + d) is uniquely determined, up to a
summand in 27¢Z which can be removed by a cor-
responding translation of the coordinate w. This
proves the following.

Lemma D.2. The moduli space for meromorphic maps
with two singular values is biholomorphic to (C \
{0}) x C, with coordinates X and Y.

Cross-Ratios. Just as in Appendix C, we can express
the Y; as cross-ratios. For example, using the normal
form (D-5), one easily checks that:

U1 S
- _YI'

f(vr) |02
However, it does not seem possible to compute the
invariant X as a cross-ratio.

Bad Topology. It might seem natural to combine the
moduli space for the exponential family, together
with the moduli space for our meromorphic family,
into a larger moduli space, isomorphic to a union
(C~A{0})U(C~\{0}) xC) . However this does not
yield any useful result since the natural topology
on the union is not Hausdorff. To see this, con-
sider the two maps z — e* and z — 2e* in the
exponential family. Although these are not conju-
gate, I will show that given any neighborhood /N,
of the first and any neighborhood N, of the sec-
ond within the space of maps with two singular val-
ues, some map in N; is conjugate to a map in Nj.
Consider the analytic function & +— 2£2e!/¢, which
has an essential singularity at the origin. Since this
function omits the values 0 and oo, it follows from
Picard’s Theorem that we can choose a sequence of
values of ¢ tending to zero which satisfy the equa-
tion 2£2e/¢ = 1. For each such &, consider the two
meromorphic maps

ev 2e"
ew +17  2few +1°
A Dbrief computation shows that both have invariants
X =¢and Y = et/ + 1/¢. Hence the two are

conjugate, although these sequences tend to non-
conjugate limits as £ — 0.

Comparison with Bicritical Maps. Our invariants for
meromorphic maps look rather different from the
invariants of Section 1, but in fact there is a definite
relationship. As in [Devaney et al. 1986], we can
approximate the exponential map by the unicritical
polynomials E,(w) = (1 + w/n)". Hence we can
approximate the meromorphic function g of (D-6)
by the bicritical maps

_aB,(w)+b
) = B w)

throughout any compact subset of C. A straightfor-
ward computation then shows that

X(g) = lim X(g)/n
and that

The Symmetry Locus. There is a non-trivial M6bius
automorphism which commutes with g if and only
if Y1(g) = Y2(g). In view of (D-10), this means that

Y =Y, = (YV/2) = +e!/2X,

If we choose the plus sign, then the most general

example is conjugate to
w1

g(w) = kew e k tanh(w/2),

with a fixed point of multiplier k/2 at the center of

symmetry. Here Y; = Y; = €* and X = 1/2k. (For

a discussion of the tangent family, see [Devaney and

Keen 1988b], for example.) If we choose the minus

sign, then we can take
Y1

g(w) = KT 1= k coth(w/2).

ew J—

This is just the image of k tanh(w/2) under the in-

volution g — J, o g of Remark 1.5.

e

Fixed Points and the Curves Per;(\). Suppose that g has
a fixed point wy = g(wy) with multiplier A = ¢'(wy).
We will prove that the conjugacy class (g) is uniquely
determined by X (g) together with A\. We again use
the normal form (D-6), but now we translate coordi-
nates so that the fixed point is at the origin. Then
the fixed point equation 0 = g(0) reduces to the
equation a +b = 0. If ad — bc = 1, we have X = cd,
and we see easily that ¢'(0) = 1/(c + d)? so that
c+d= :I:l/\/X is uniquely determined up to sign.



Hence we can solve for the unordered pair {c,d} up
to sign. We can then solve for a and b = —a since
ad — bc = a(c+ d) = 1. Thus the conjugacy class is
uniquely determined. Multiplying all coefficients by
a common constant, this solution can be written as

a b| | 2X —2A

[c d] - [1—1—7“ 1—7‘]

with determinant ad — bec = 4\, where r? =1 — 4\ X
is distinct from 1. From this, one can easily write
down a precise but somewhat complicated formula
for the invariant Y as a function of A and X. This
function is holomorphic, since it can be expressed as
the sum of a power series, convergent for |r| < 1, in
which only even powers of r appear.

Real forms. A meromorphic map with two singular
values commutes with some antiholomorphic invo-
lution « if and only if the invariants X and Y are
both real. (Compare Section 5.) If Y2 > 4el/X,
then the half-invariants Y7, Y; are also real, and the
singular values are fixed by «. In this case, using the
normal form (D-6) with real coefficients, the map
g carries R diffeomorphically onto an open interval
in R U {oo}, bounded by the two singular values.
On the other hand, if Y? < 4¢e'/X, then the half-
invariants Y7, Y are complex conjugate, and the sin-
gular values are interchanged by «. In this case we
can use a normal form

atanz +b

ctanz +d

with real coefficients. These maps carry R onto R U
oo by a composition

Z =

R P Rz 2 R U {oo),

with degree *oco. On the symmetry locus, with
Y? = 4e'/X, there are two possible choices for o
and we can use either normal form.
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