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Denote by ®, the automorphism group of the free group F, on
two generators. We classify the irreducible 6-dimensional com-
plex representations of ®, whose restriction to F, is nontrivial.
J. Dyer, E. Formanek, and E. Grossman have shown how the
Birau representation of the braid group B4 gives rise to a one-
parameter family of irreducible 6-dimensional representations of
®,. The faithfulness question for these and some other closely
related representations of ®, is open. Our classification shows
that all other 6-dimensional representations of ®, are not faith-
ful.

1. INTRODUCTION AND PRELIMINARIES

Let F; be the free group of rank 2 on the generators
z and y. We set &3 = Aut(F,). To conform with
the well established practise, we consider ®, as the
group of right automorphisms of F;. The classical
generators P, o, U and presentation of ®, (due to
B. H. Neumann) are as follows [Magnus et al. 1966,
Problem 2, p. 169]:

P:z—y, y—a;
cr:ac—mv_l, Yy —Y;
U:xz—zy, y—uy;

®y = (P,0,U : P* = 0> = (Po)* = (PoPU)?
= (UPo)® =[U,oUs] = 1.)

We prefer to replace U with the involution € : z —
y 'z, y — y!. These generators are related by
e = (Po)?Uc and U = (Po)?co. In terms of the
generators P, o, and ¢, the defining relations are

P? =0?=¢>= (Po)" = (P¢)® = ((Po)’coe)® = 1.
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The subgroup (P,o), a dihedral group of order 8,
will play an important role and we denote it by D;,.

We say that a group is linear if it has a faithful
finite-dimensional linear representation over some
field. The problem of linearity of ®, is still unre-
solved. It is of interest to examine its complex linear
representations of low degree. For this see [Dokovi¢
and Doniz 2000] and the references quoted there.
That paper describes all indecomposable complex
representations in degrees less than six. In this note
we describe the computational results that we have
obtained for 6-dimensional irreducible complex rep-
resentations of ®,.

We start with the natural short exact sequence

1= F, = ® — GLy(Z) — 1,

where F, is viewed as the group of inner automor-
phisms of itself, and GL,(Z) is identified with the
automorphism group of the free abelian group F;/F;
of rank 2 (G’ denotes the derived subgroup of a
group G).

Remarks. 1. An anonymous referee pointed out that
the above sequence does not split [Potapchik and
Rapinchuk 2000, Corollary 2.4]. On the other
hand it almost splits in the sense that there is a
section whose domain is a subgroup of GL(Z) of
index 8. For this see [Dokovi¢ 1983].

2. Under the canonical embedding F, — ®,, we
have
x = (0 PeoP)?,
y = (PoPea).

3. Let F,, be the free group on n generators x1, ...,
Z,, and let €2,, be the subgroup of ®,, = Aut(F,,)
which leaves invariant the set

{xf!, ... xE)

Q,,, a finite group of order 2" n!, is called the ex-
tended symmetric group in [Magnus et al. 1966,
p. 163]. In the case n = 2, we have Qy = D, =
(P,0), and there is a retraction ®; — 2, given
by P - P, 0 = o, and ¢ — P. Consequently
the representations of D, can be regarded as rep-
resentations of ®,.

4. E. Formanek and C. Procesi [1992] have shown
that for n > 2 the groups ®,, are not linear.

Magnus and Tretkoff [1979] have shown that if p is a
faithful finite-dimensional complex linear represen-
tation of ®,, then at least one irreducible constituent
of p is faithful. This explains why we are interested
in irreducible representations only (the other reason
being that this simplifies the classification problem
considerably).

We introduce another restriction: we assume that
our representations p of ®, do not factor through
the natural homomorphism ®; — GLy(Z), i.e., that
p(F») is not the trivial group. Of course, this re-
striction is harmless in regard to the above linearity
problem.

Another important concept in our classification
is that of weak equivalence, which was introduced
in [Dokovi¢ and Platonov 1996]. The abelianization
®, /P, is a four-group. Hence @, has, up to equiva-
lence, exactly four one-dimensional representations.
They are given in Table 1, where x; is the trivial
representation.

P o €

vi| 1 1 1
2| 1 -1 1
x| -1 1 -1
ya|-1 -1 -1

TABLE 1. One-dimensional representations of ®.

We say that two representations p and p’ of ®,
are weakly equivalent if p’ is equivalent to a tensor
products p®x; or its dual. This is clearly an equiva-
lence relation. Each weak equivalence class consists
of 1,2,4, or 8 ordinary equivalence classes.

Our main result is the list of the representatives
of the weak equivalence classes of irreducible six-
dimensional complex representations p of ®, such
that p(F,) # 1. The list is given in Section 4. It
consists of nine 1-parameter families and a single 2-
parameter family of representations (the last fam-
ily in our list). The list is somewhat redundant
as two of the l-parameter families can be embed-
ded (apart from a few exceptional values of the pa-
rameter) into the 2-parameter family. One of the
1-parameter families (the fourth family) is weakly
equivalent to the Biirau representation of ®,. It is
easy to verify that none of the other families can
contain a faithful representation of ®,, a fact first
proved by Tenekedzhi [1986, Theorem 2].
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2. TYPES OF REPRESENTATIONS

If p is a representation of ®, we define its type to
be the equivalence class of the restriction of p to the
dihedral subgroup D, = (P, o). As in [Pokovi¢ and
Doniz 2000], we denote by A, B, C, and D the re-
strictions to D, of the 1-dimensional representations
X1, X25 X3, and x4, respectively. By E we denote the
irreducible 2-dimensional representation of D,. The
symbol ADEE denotes the type which is a direct
sum of the 1-dimensional representations A and D
and two copies of the 2-dimensional representation
E. Similar notation will be used for other types.

A representation p and its dual always have the
same type. On the other hand, p and p ® x; may
be of different types. For instance, if p has the
type BCEE, then p ® x. has the type ADEE. It
follows from [Pokovi¢ and Doniz 2000, Proposition
1] that two weakly equivalent representations are ei-

ther both faithful or both not faithful.

1 AAEE 6 AAABE 11 AADDE
2 ABEE 7 AAACE 12 AABCE
3 ACEE 8 AAADE 13 AABDE
4 ADEE 9 AABBE 14 AACDE
5 AAAAE 10 AACCE 15 ABCDE

TABLE 2. Types up to weak equivalence.

Lemma 2.1. FEvery 6-dimensional representation of
®, that is nontrivial on Fy is weakly equivalent to
a representation having one of the 15 types listed in
Table 2. Two 6-dimensional representations of @,
whose types are different and belong to Table 2 are
not weakly equivalent.

Proof. Let p be a 6-dimensional representation of ®,
that is nontrivial on Fj. Its type must contain E
as a constituent; otherwise p((Po)?) = 1. Its type
cannot be EEE because in that case p((Pc)?) is a
central involution of p(®,). (By Remark 2, y =
[(Po)? oeo].) Hence the type of p contains either
one or two E’s. Assume that it contains two E’s.
Then by replacing p with a suitable tensor product
P& X, We may assume that its type contains at least
one A. Hence the type of p is now one of the first
four types in Table 2. Next assume that the type of
p contains a single E. By tensoring with a suitable
Xi, we may further assume that the multiplicity of A
exceeds or is equal to the multiplicity of each of the

representations B, C, D. This gives the remaining
eleven possibilities in Table 2. It is easy to verify
the last assertion of the lemma. O

3. BURAU REPRESENTATIONS OF &,

This section introduces the l-parameter family of
irreducible 6-dimensional representations of ®, that
we call Biirau representations of ®,. It is based
entirely on [Dyer et al. 1982].

Recall that the braid group B, has the presenta-

tion

By = <01,02,U3 : [01703] =1,

010201 = 020102, 020302 = 030203>-

The reduced Biirau representation of B, is defined

-t 1 0 1 0 0
g1 — 0 1 0 y 09 — t —t 1 y
0 0 1 0 0 1
1 0 O
o3 — 0 1 0
0 t —t

We shall view this representation as a 1-parameter
family of complex representations of B, with non-
zero complex parameter ¢. This representation is ir-
reducible if and only if (14¢)(1+4¢*) # 0 [Formanek
1996]. If ¢ is a root of unity, this representation is
clearly not faithful. On the other hand, if  is a tran-
scendental number, then it is not known whether or
not this representation is faithful.

The center Z, of B, is infinite cyclic with the gen-
erator ( = (0,0203)*. In the above representation
we have ( — t*I;, where I3 is the identity matrix.
We now modify this representation by following the
recipe from [Dyer et al. 1982] to obtain the repre-
sentation

—t3 1 0 1 0 O
1 T, 5
o1 — z 0 1 0 , O2 — Z t° —t 1 y
0 0 1 0O 0 1
1 1 0 O
o3 —» ; 0 1 0 ,
0 -t

which maps ¢ to I3. Hence this is in fact a repre-
sentation of the quotient group Bf = B,/Z,. This
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representation is irreducible if and only if (1 +¢*) x
(1+1t%) #0.

Let ®; denote the subgroup of ®, of index 2 which
is the inverse image of SLy(Z) under the natural map
®, — GLy(Z). One can easily check that ®; =
(Po, Pe) = (Po,U). The next lemma is taken from
[Dyer et al. 1982].

Lemma 3.1. There is a short exact sequence
1—Zy— B, — &5 — 1,
where the homomorphism B, — ®F sends

01— PU'P, o0, — PUocU™', 03— PoUoP.

Thus @7 is isomorphic to Bj. Consequently the
above representation of B} can be viewed as a rep-
resentation of ®;. By inducing, we obtain a 1-
parameter family of irreducible 6-dimensional rep-
resentation of ®, of type BCEE. We refer to the
representations belonging to this 1-parameter fam-
ily as the Birau representations of ®,. By tensoring
with y», we obtain a 1-parameter family of represen-
tations of type ADEE. This last family is given by

0 I
P — L, 0 ,
0 0 0 1 -1 0]
o 0o o 1 -1 ¢33
SN 0 O 0 0 -3 1
0 1 —=t3 0 0 0|’
-1 1 =% 0 0 0
-t ¢ 0 0 0 0 |
[0 0 O 0 0 —t1]
o o o ¢t o0 —¢!
. |0 0 0 2 —t* 0
—t t 0 0 0 0 ’
-t t -t 0 0 0
|-t 0 0 0 0 0 |

where t # 0 is a complex parameter. (To obtain the
Biirau representations, one has just to replace the
matrix corresponding to o by its negative.) This
representation and the Biirau representations of ®,
are irreducible if and only if

(14 ¢*)(1+1t%) #0.

Remark. The generators v = Po and v = ¢P of &5
satisfy the relations

u' =v* = [u?,vun] = 1.

In fact this is a presentation of ®;, which follows
from the above lemma and a result of D. Cooper
and D. D. Long [1997, Corollary 5.3].

4. LIST OF THE IRREDUCIBLE REPRESENTATIONS

For each of the 15 types listed in Table 2, we have
carried out an exhaustive search for irreducible rep-
resentations of ®,. (See the next two sections for
more details.) Such representations exist only for
the five types ABEE, ACEE, ADEE, AACCE, and
ABCDE.

Fix the following matrix form of the representa-
tion E of Dy:

0 1 -1 0
E.P—)[l 0],0—)[0 1].

The 1-dimensional representations of D, are

A:P—1, o—1,
B:P—1, o— —1,
C:P— -1, o—1,
D:P——-1, o— —1.

When we say that a representation p of ®, has
a certain type, then we shall assume in this section
that p(P) and p(o) are direct sums (in the order
specified by the type) of the matrix representations
listed above. For example, if p has the type ADEE,
then

plo) = 0 1
~1 0
0 1

Consequently p is uniquely determined by its type
and the matrix p(¢).
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The dual representation, p¥, of p is given by:

p’(P) = p(P), p’(0) = p(o), p’(e)

t

p(e).

461

Fourth family: Type ADEE; parameter s # 0, 1, —%;

(By ‘X we denote the transpose of a matrix X.) In
particular p and p¥ have the same type. If p and p"
are equivalent, we say that p is self-dual.

By vy, ..., v we denote the standard basis vectors
of the column space C°.

Main Theorem. Fach 6-dimensional irreducible rep-
resentation of ®, that is nontrivial on Fy is weakly
equivalent to a representation belonging to one of the
families listed below.

First family: Type ABEE; parameter s # 0, 1;

1
g — 5
(1—s)
[ 3s+s2 —s-3 0  3s+1 3s+1 0
3s+s2 —3s—s2 0 3s+1 3s24s 0
" —35—52 35452 s2—1 —3s5—s? —35—5% 25225
—3s2—s  3s+1 0 —3s5—s%2 —35—s%2 0
3541 —3s—1 0 s+3  3s+s? 0
| —3s—s? s+3 2-2s —s—3 —3s—s? 1-s% |

This family is equivalent to the representation dis-

0 0 0 1 1 0
0 0 0 1 1-1/s O
. 0 0 1 0 0 0
1-s s 0 0 0 0
S —s 0 0 0 0
| 0 0 0 O 0 1)

p(Fy) is a four-group.
(v1,vs,v6) is invariant. Each representation in this
family is self-dual.

If s = 1 the subspace

Second family: Type ACEE; parameter s # 0, 1;

0 0 0 1 1 0
0 0 0 1 1-1/s 0
N 0 0 1-2s 0 0 2—2s
1-s s 0 0 0 0
s —s 0 0 0 0
| 0 0 2s 0 0 25—1 |

p(F3) is a four-group.

If s = 1 the subspace

(v1,vs,v6) is invariant. Each representation in this
family is self-dual.

played at the end of Section 3. More precisely, if ¢
is a nonzero complex number and

(1 —)(1+#*)(1+t% # 0,

1—t\?
s=|—1,
1+t

we obtain a representation which is equivalent to the
representation in Section 3 mentioned above. Note
that ¢ and 1/t correspond to the same value of s. It
is not known whether or not this family contains a
faithful representation of ®,.

The matrix that transforms the representation in
Section 3 to the above one is given at the top of the
next page. Its determinant is

(L= (1 +19)"

then by setting

—32¢°
(1+13)2
If s = 0, the subspace (vy,vs,vg) is invariant. If
s = —% the subspace (vs, vy, vs,v6) is invariant. If
s = —3 the representation above is equivalent to the

representation of the third family for s = .

Fifth family: Type AACCE; parameter s # +1;

Third family: Type ADEE; parameter s # 0, 1;

0 0 0 1 1 0
0 0 0 1 1-1/s 0
N 0 0 1-2s 0 0 2—2s
1-s s 0 0 0 0
s -5 0 0 0 0
| 0 0 2s 0 0 25—1 |

p(Fy) is a four-group.
(v1,vs,v6) is invariant. Each representation in this
family is self-dual.

If s = 1 the subspace

0 1+s 1 0 2 0
1 S 0 1 0 2
1|[14s —s—s® 2s 1+4s 0 —2—2s
£— = )
2| —s s*—s+1 1-25s —s —2 2s
1—s 0 —s —1-s5 0 0
| 0 1-s* s-1 0 0 —2s

The commutator [z2,?] lies in the kernel of this
representation. If s = 1 the subspace (v; + vy) is
invariant. If s = —1 the subspace (vy, vy, v4, Vs, Ug)

1s invariant.



3(1+t)
(1+1)(t*—1)
t5(1+1¢)
1+t

(1+¢)(1+¢%)
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F (14+t%)(1—1) —(1+19)
1413 1—t+1¢2
0 0
tB3(1+5)(t—1)  3(1+1°)
1413 1—¢t+1¢2
(1+t%)(1—1¢) 1+1°
1413 1—¢t+1¢2
0 0
tB3(1+%)(t—1) —t3(1+1°)
B 1+1¢3 1—t+1¢2

t3(1+1)

141 - BE-1) |
Q+8)(1+83) 1—t)(1+t%) (1-t)1—13)
(1+1)t 3 —t to(t—1)
t3(1+1) t*(t—1) 1—t
(1+8)(t3—1) (1—t)(1—¢3) (1—1t)(1+¢3)
t°(1+1) t°(t 1) t*(1-1) |

Matrix transforming the representations of ®, of type ADEE given in Section 3 to those of the fourth family.

Sixth family: Type ABCDE; parameter s # £1;

[ —s s—1 —s -1 0 2s5-2]
-1 0 1 0 2 0
oy b —s —s+1 —s 1 0 2s-2
—s—1 0 s+1 0 2s—-2 O
0 s+1 0 -1 0 0
| —s—-1 0 —s-1 0 0 2s |
The commutator [z2,3?] lies in the kernel of this
representation. If s = 1 the subspace (vy,vs, vg)
is invariant. If s = —1 the subspace (v, vy, v3) is
invariant.

Seventh family: Type ABCDE; parameter s # +1;

p(F3) is a four-group.

Ninth family: Type ABCDE; parameter s (no restric-
tions);

S 1 —-s -1 2 0
1-s2 —s s°—1 s —2s5 2
N 1l —s -1 s 1 2 0
2 1s?~1 s 1-s* —s —2s5 2
1 0 1 0 0 0
| s 1 S 1 0 0]

p(F») is a four-group.

Tenth family: Type ABCDE; parameters u and v such
that u 4+ v # :l:%; setting w = 4(u + v)? — 1,

I —ov i—v v UQ—i %—22}2—2111) ]
1 v e 2(utv) 1
2 1 1,2 1 2

R v vi—7 —v 3=V 5—22} —2uv u
-1 —v 1 v 2(utv) 1
_1 u _1 u 0 0

2(utv) 1 2u® 2(utv) 1 u?
LT T w2 2 0 0.

[0 s—1 0 s—1 0 2

—1 —S 1 S -2 0

SN 110 s+1 0 s+1 0 2
2| —1 s 1 —s 2 0

0 s°-1 0 1-s> 25 0

s41 0 1-s 0 0 O]

The commutator [z?,3?] lies in the kernel of this
representation. If s = 1 the subspace (vq,vs,vy)
is invariant. If s = —1 the subspace (v, vs,vy) is
invariant.

Eighth family: Type ABCDE; parameter s (no restric-

tions);

g —r

[ < N S S

s2—1
-5
1—s2

2s
-2

S OO N ON

p(F») is a four-group. For u = 0 and v = —s/2
we obtain (up to equivalence) all representations of
the ninth family except those when s = +1. For
u = (s —1)/2s and v = —s/2 we obtain (up to
equivalence) all representations of the eighth family
except those when s = 0,+1.

The following result, first proved by Tenekedzhi
[1986], is an immediate consequence of the Main
Theorem (page 461) and the results presented in
the previous sections.
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Corollary 4.1. If p is a faithful complex representation
of ®5 of degree at most 6, then p has degree 6, it is
1rreducible and weakly equivalent to a Burau repre-
sentation of ®,.

5. COMMENTS ON THE PROOF OF THE MAIN
THEOREM

The method that we used to compile the list of irre-
ducible representations is essentially the same as the
one described in [Pokovi¢ and Doniz 2000]. A minor
difference is that the generator 7 which was used in
that paper has been replaced by €. These genera-
tors are closely related since 7 = geo. If we fix the
type of the representation p, say we take the type
ADEE, then the matrices p(P) and p(o) are known
(they are displayed in the beginning of the previous
section). It remains to find the possible matrices e.
Among the defining relations of ®,, only three of
them involve €. We write these three relations in
the form

2

ec=1, PeP =¢Pe, eoePoPo = PoPoeoe.

For simplicity, we shall write just P, o, € instead
of p(P), p(o), and p(e), respectively. The resulting
scalar equations are polynomial equations of degree
2 in the 36 indeterminates, the entries of the matrix
e. The brute force attempt to solve the resulting
system of polynomial equations fails and one has to
develop a strategy to simplify the computations.

Let Z denote the centralizer of the matrices P and
o in GL¢(C). If 2z € Z the representations defined
by € and z 'ez are equivalent. This fact is used to
simplify the matrix €. The simplifications consist
in assuming that certain entries of £ are 0, some
nonzero entries are normalized, say set equal to 1, or
some entries are expressed in terms of other entries.
In most cases this allows us to reduce the number
of variables. Another device that we employ is to
occasionally replace the matrix ¢ by its transpose
(which amounts to replacing the representation p
by its dual pV).

Our main computational tool was Maple, and in
particular its groebner package. By using it, we were
able to handle all the types except the very last type
of Table 2, namely ABCDE. The main reason for
this difficulty is of course the fact that the above
mentioned centralizer Z, in this case, is of very low

dimension: it consists of diagonal invertible matrices
with the last two diagonal entries equal. This means
that the only kind of simplification that is available
to us is the normalization of certain entries of &.

This last case was very challenging, and we had
to use Singular [Greuel et al. 1998] in order to han-
dle it. Several first attempts to find a. Grobner basis
for the ideal generated by our equations failed be-
cause of insufficient memory. The subcases where
at least one of the entries of ¢ located at the posi-
tions (7,6) with 1 < ¢ < 4 is 0, were not hard to
resolve. The hard case, when all these four entries
of € are nonzero, could be normalized by setting all
of them equal to 1. Still Singular was complaining
of not having enough memory. Final modification,
that led to success, was to introduce four more vari-
ables (the normalization had reduced the number of
variables by four) and use them to force the first
four entries of the last row of € to be nonzero. This
we could do because otherwise our representation p
would be equivalent to the dual of a representation
already found in the previous cases.

The computations were done on a Sun SPARC-
station 10 with 96 MB of memory. The CPU time
usage was relatively low; the main bottleneck was
insufficient memory.

6. A TYPICAL COMPUTATION

In this section we give the details of the proof that
®, has no irreducible 6-dimensional representations
of type AAEE. We write p(e) in the form

a1 G2 Az Qa4 G5 Gg
by by by by bs bs

&1 C2 3 C4 C5 Cg
PEO= N dy dy dy dy dy
€1 €y €3 €4 €5 €5

fi o fs fo fs To

The centralizer Z of p(P) and p(o) in GLg(C) con-
sists of all invertible matrices z having the form:

a b
c d
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Thus Z is isomorphic to GLy(C) x GLy(C), and, for
brevity, we shall write this matrix also as z = (21, 22)

where
_|a b e f
a=le s == g 1]

The conjugation p(e) — 2z !p(e)z transforms the
submatrix of p(e) in the intersection of the first two
rows and the fourth and sixth columns as follows

ay Qg -1 |04 Gs
— .
Consequently, we may assume that this submatrix
is one of the three matrices

o1l oo] loof

Consider the first case, where a4y = by = 1 and
ag = by = 0. In this case we can make one further
simplification. Namely by taking z with z; = 2
and by conjugating p(e) with such a z, the above
mentioned submatrix will not be altered, but the 2
by 2 block in the upper left hand corner will undergo
a similarity transformation by z;. Consequently we
may also assume that ay = 0.

The three defining relations of ®, that involve ¢
produce a system of 88 polynomial equations. Let
I denote the ideal generated by these 88 polynomi-
als. We used Singular to find a Grébner basis of 1
(this was accomplished on our workstation in 55 sec-
onds). It consists of 31 polynomials. The fact that
this ideal is not the unit ideal means that the repre-
sentations of type AAEE indeed exist. By inspect-
ing this Grobner basis we deduce that the variables
as, C2, Cs, Cg, do, d3, ds, dg, €1, f3, and f5 belong
to I. (For the variables ¢y, c5, and ¢g we had to
use the function reduce to check this claim.) This
means that these entries in p(¢) have to be 0. Conse-
quently the subspace of C°® spanned by the standard
basis vectors vy, v5, and vg is P,-invariant, i.e., the
representation is reducible.

Next we consider the second case, where as = 1
and ag = by = bg = 0. Now Singular spent 271
seconds in computing a Grobner basis of the ideal
I. In this case the basis consists of 178 polynomi-
als. Again this means that the representations, with
the above four entries specified, exist. By examin-
ing this basis we conclude that the entries by, ¢;, co,
cs, ds, ds, dg, and e; must vanish. If the entries b;

(6-1)

and bs are both 0, then the subspace spanned by
all v;’s with ¢ #£ 2 is ®y-invariant. Hence, we may
assume that b; or by is not 0. On the other hand
we find that the products bsfs, bsf5, bseg, and bseq
are all in 1. Hence these products must vanish, and
we deduce that f5 = eg = 0. We now encode this
new information in our matrix p(e) and rerun the
Singular groebner command. We now find that b,
¢cs, €5, and fz vanish. Furthermore we obtain that
fe = 1 and dy = —a;. We again update the matrix
p(e) and rerun the groebner command. This time we
find that ¢ = 1 and bse; = 1. By conjugating p(¢)
by a suitable diagonal matrix z € Z, we may addi-
tionally assume that bs = e; = 1. Now the groebner
command gives the relation dy = —d,as. We can
now deduce that the subspace spanned by the vec-
tors asv, + vy, vs, and vg is ®y-invariant. Hence we
are done with second case.

Finally we consider the third case, where a, =
a¢ = by = bg = 0. If at least one of the entries d;,
dy, fi, fo is not 0, then the dual representation be-
longs to one of the two previous cases. As we are
carrying out the classification only up to weak equiv-
alence, we may assume that d; =d, = f; = f,, = 0.
The 2 by 2 submatrix of p(¢) in the intersection of
the first two rows and the third and fifth columns
can be transformed into one of the three matrices
of (6-1). In fact the zero matrix can be ruled out
because in that subcase the subspace spanned by
vs, U4, Us, and vg is Py-invariant. The first two
subcases can be treated jointly by using only the
facts that a3 = 1 and a5 = b3 = 0. The fact that
bs may be assumed to be 0 or 1 will be used only
later. We insert this information into our matrix
p(e). Then the ideal I has 80 generators, and the
groebner routine produces quickly a Grobner basis
of I consisting of 56 polynomials. We now find that
the variables by, c4, cg, d3, ds, dg, €4, €5, f1 and f
must vanish. We also find that b5 fs5, bsf4, bseq, and
bses belong to I. If by = 0 the subspace spanned
by the v;’s with ¢ # 2 is ®,-invariant. Hence we
may assume that bs # 0, and consequently we must
have f5 = f, = e¢ = e, = 0. We also obtain that
¢; = dy = 1. Once again we invoke the groebner
command on the updated matrix p(¢). We obtain
that several other entries must vanish, in particular
the entries as, co, and c5. Therefore the subspace
spanned by vy, vs, and vg is ®y-invariant.
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NOTE ADDED IN PROOF

From [Zinno 2000] we learned that Daan Krammer
has shown that B, is a linear group, and that this
has been extended to all braid groups B,, by Stephen
Bigelow. Consequently, ®, is a linear group [Dyer
et al. 1982].

J. Moody [1993] has shown that the Biirau rep-
resentation of B, is not faithful for n > 10. This
was improved to n > 6 by D. D. Long and M. Paton
[1993], and recently Bigelow [1999] proved the same
assertion for n = 5. The case n = 4 is apparently
still open.
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