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Denote by �2 the automorphism group of the free group F2 on

two generators. We classify the irreducible 6-dimensional com-

plex representations of �2 whose restriction to F2 is nontrivial.

J. Dyer, E. Formanek, and E. Grossman have shown how the

Bürau representation of the braid group B4 gives rise to a one-

parameter family of irreducible 6-dimensional representations of�2. The faithfulness question for these and some other closely

related representations of �2 is open. Our classification shows

that all other 6-dimensional representations of �2 are not faith-

ful.

1. INTRODUCTION AND PRELIMINARIESLet F2 be the free group of rank 2 on the generatorsx and y. We set �2 = Aut(F2). To conform withthe well established practise, we consider �2 as thegroup of right automorphisms of F2. The classicalgenerators P , �, U and presentation of �2 (due toB. H. Neumann) are as follows [Magnus et al. 1966,Problem 2, p. 169]:P : x! y; y ! x;� : x! x�1; y ! y;U : x! xy; y ! y;�2 = hP; �; U : P 2 = �2 = (P�)4 = (P�PU)2= (UP�)3 = [U; �U�] = 1:iWe prefer to replace U with the involution " : x !y�1x; y ! y�1. These generators are related by" = (P�)2U� and U = (P�)2"�. In terms of thegenerators P; �, and ", the de�ning relations areP 2 = �2 = "2 = (P�)4 = (P")3 = ((P�)2"�")2 = 1:
c
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The subgroup hP; �i, a dihedral group of order 8,will play an important role and we denote it by D4.We say that a group is linear if it has a faithful�nite-dimensional linear representation over some�eld. The problem of linearity of �2 is still unre-solved. It is of interest to examine its complex linearrepresentations of low degree. For this see [D{ okovi�cand Doniz 2000] and the references quoted there.That paper describes all indecomposable complexrepresentations in degrees less than six. In this notewe describe the computational results that we haveobtained for 6-dimensional irreducible complex rep-resentations of �2.We start with the natural short exact sequence1! F2 ! �2 ! GL2(Z )! 1;where F2 is viewed as the group of inner automor-phisms of itself, and GL2(Z ) is identi�ed with theautomorphism group of the free abelian group F2=F 02of rank 2 (G0 denotes the derived subgroup of agroup G).
Remarks. 1. An anonymous referee pointed out thatthe above sequence does not split [Potapchik andRapinchuk 2000, Corollary 2.4]. On the otherhand it almost splits in the sense that there is asection whose domain is a subgroup of GL2(Z ) ofindex 8. For this see [D{ okovi�c 1983].
2. Under the canonical embedding F2 ! �2, wehave x = (�P"�P )2;y = (P�P"�)2:
3. Let Fn be the free group on n generators x1; : : : ;xn, and let 
n be the subgroup of �n = Aut(Fn)which leaves invariant the setfx�11 ; : : : ; x�1n g:
n, a �nite group of order 2n n!, is called the ex-tended symmetric group in [Magnus et al. 1966,p. 163]. In the case n = 2, we have 
2 = D4 =hP; �i, and there is a retraction �2 ! 
2 givenby P ! P , � ! �, and " ! P . Consequentlythe representations of D4 can be regarded as rep-resentations of �2.
4. E. Formanek and C. Procesi [1992] have shownthat for n > 2 the groups �n are not linear.

Magnus and Tretko� [1979] have shown that if � is afaithful �nite-dimensional complex linear represen-tation of �2, then at least one irreducible constituentof � is faithful. This explains why we are interestedin irreducible representations only (the other reasonbeing that this simpli�es the classi�cation problemconsiderably).We introduce another restriction: we assume thatour representations � of �2 do not factor throughthe natural homomorphism �2 ! GL2(Z ), i.e., that�(F2) is not the trivial group. Of course, this re-striction is harmless in regard to the above linearityproblem.Another important concept in our classi�cationis that of weak equivalence, which was introducedin [D{ okovi�c and Platonov 1996]. The abelianization�2=�02 is a four-group. Hence �2 has, up to equiva-lence, exactly four one-dimensional representations.They are given in Table 1, where �1 is the trivialrepresentation. P � "�1 1 1 1�2 1 �1 1�3 �1 1 �1�4 �1 �1 �1
TABLE 1. One-dimensional representations of �2.We say that two representations � and �0 of �2are weakly equivalent if �0 is equivalent to a tensorproducts �
�i or its dual. This is clearly an equiva-lence relation. Each weak equivalence class consistsof 1; 2; 4, or 8 ordinary equivalence classes.Our main result is the list of the representativesof the weak equivalence classes of irreducible six-dimensional complex representations � of �2 suchthat �(F2) 6= 1. The list is given in Section 4. Itconsists of nine 1-parameter families and a single 2-parameter family of representations (the last fam-ily in our list). The list is somewhat redundantas two of the 1-parameter families can be embed-ded (apart from a few exceptional values of the pa-rameter) into the 2-parameter family. One of the1-parameter families (the fourth family) is weaklyequivalent to the B�urau representation of �2. It iseasy to verify that none of the other families cancontain a faithful representation of �2, a fact �rstproved by Tenekedzhi [1986, Theorem 2].
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2. TYPES OF REPRESENTATIONSIf � is a representation of �2 we de�ne its type tobe the equivalence class of the restriction of � to thedihedral subgroup D4 = hP; �i. As in [D{ okovi�c andDoniz 2000], we denote by A, B, C, and D the re-strictions to D4 of the 1-dimensional representations�1, �2, �3, and �4, respectively. By E we denote theirreducible 2-dimensional representation of D4. Thesymbol ADEE denotes the type which is a directsum of the 1-dimensional representations A and Dand two copies of the 2-dimensional representationE. Similar notation will be used for other types.A representation � and its dual always have thesame type. On the other hand, � and � 
 �i maybe of di�erent types. For instance, if � has thetype BCEE, then � 
 �2 has the type ADEE. Itfollows from [D{ okovi�c and Doniz 2000, Proposition1] that two weakly equivalent representations are ei-ther both faithful or both not faithful.1 AAEE 6 AAABE 11 AADDE2 ABEE 7 AAACE 12 AABCE3 ACEE 8 AAADE 13 AABDE4 ADEE 9 AABBE 14 AACDE5 AAAAE 10 AACCE 15 ABCDE
TABLE 2. Types up to weak equivalence.

Lemma 2.1. Every 6-dimensional representation of�2 that is nontrivial on F2 is weakly equivalent toa representation having one of the 15 types listed inTable 2. Two 6-dimensional representations of �2whose types are di�erent and belong to Table 2 arenot weakly equivalent .
Proof. Let � be a 6-dimensional representation of �2that is nontrivial on F2. Its type must contain Eas a constituent; otherwise �((P�)2) = 1. Its typecannot be EEE because in that case �((P�)2) is acentral involution of �(�2). (By Remark 2, y =[(P�)2; �"�].) Hence the type of � contains eitherone or two E's. Assume that it contains two E's.Then by replacing � with a suitable tensor product�
�i, we may assume that its type contains at leastone A. Hence the type of � is now one of the �rstfour types in Table 2. Next assume that the type of� contains a single E. By tensoring with a suitable�i, we may further assume that the multiplicity of Aexceeds or is equal to the multiplicity of each of the

representations B, C, D. This gives the remainingeleven possibilities in Table 2. It is easy to verifythe last assertion of the lemma. �
3. BÜRAU REPRESENTATIONS OF �2This section introduces the 1-parameter family ofirreducible 6-dimensional representations of �2 thatwe call B�urau representations of �2. It is basedentirely on [Dyer et al. 1982].Recall that the braid group B4 has the presenta-tionB4 = h�1; �2; �3 : [�1; �3] = 1;�1�2�1 = �2�1�2; �2�3�2 = �3�2�3i:The reduced B�urau representation of B4 is de�nedby

�1 ! 24�t 1 00 1 00 0 1
35 ; �2 ! 24 1 0 0t �t 10 0 1

35 ;
�3 ! 24 1 0 00 1 00 t �t

35 :
We shall view this representation as a 1-parameterfamily of complex representations of B4 with non-zero complex parameter t. This representation is ir-reducible if and only if (1+ t)(1+ t2) 6= 0 [Formanek1996]. If t is a root of unity, this representation isclearly not faithful. On the other hand, if t is a tran-scendental number, then it is not known whether ornot this representation is faithful.The center Z4 of B4 is in�nite cyclic with the gen-erator � = (�1�2�3)4. In the above representationwe have � ! t4I3, where I3 is the identity matrix.We now modify this representation by following therecipe from [Dyer et al. 1982] to obtain the repre-sentation
�1 ! 1t

24�t3 1 00 1 00 0 1
35 ; �2 ! 1t

24 1 0 0t3 �t3 10 0 1
35 ;

�3 ! 1t
24 1 0 00 1 00 t3 �t3

35 ;
which maps � to I3. Hence this is in fact a repre-sentation of the quotient group B�4 = B4=Z4. This
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representation is irreducible if and only if (1 + t3)�(1 + t6) 6= 0.Let �+2 denote the subgroup of �2 of index 2 whichis the inverse image of SL2(Z ) under the natural map�2 ! GL2(Z ). One can easily check that �+2 =hP�; P"i = hP�;Ui. The next lemma is taken from[Dyer et al. 1982].
Lemma 3.1. There is a short exact sequence1! Z4 ! B4 ! �+2 ! 1;where the homomorphism B4 ! �+2 sends�1 ! PU�1P; �2 ! PU�U�1; �3 ! P�U�P:Thus �+2 is isomorphic to B�4 . Consequently theabove representation of B�4 can be viewed as a rep-resentation of �+2 . By inducing, we obtain a 1-parameter family of irreducible 6-dimensional rep-resentation of �2 of type BCEE. We refer to therepresentations belonging to this 1-parameter fam-ily as the B�urau representations of �2. By tensoringwith �2, we obtain a 1-parameter family of represen-tations of type ADEE. This last family is given by

P ! � 0 I3I3 0 � ;
� !

26666664
0 0 0 1 �1 00 0 0 1 �1 t�30 0 0 0 �t3 10 1 �t�3 0 0 0�1 1 �t�3 0 0 0�t3 t3 0 0 0 0

37777775 ;

"!
26666664

0 0 0 0 0 �t�10 0 0 t�1 0 �t�10 0 0 t2 �t2 0�t t 0 0 0 0�t t �t�2 0 0 0�t 0 0 0 0 0

37777775 ;
where t 6= 0 is a complex parameter. (To obtain theB�urau representations, one has just to replace thematrix corresponding to � by its negative.) Thisrepresentation and the B�urau representations of �2are irreducible if and only if(1 + t3)(1 + t6) 6= 0:

Remark. The generators u = P� and v = "P of �+2satisfy the relationsu4 = v3 = [u2; vuv] = 1:In fact this is a presentation of �+2 , which followsfrom the above lemma and a result of D. Cooperand D. D. Long [1997, Corollary 5.3].
4. LIST OF THE IRREDUCIBLE REPRESENTATIONSFor each of the 15 types listed in Table 2, we havecarried out an exhaustive search for irreducible rep-resentations of �2. (See the next two sections formore details.) Such representations exist only forthe �ve types ABEE, ACEE, ADEE, AACCE, andABCDE.Fix the following matrix form of the representa-tion E of D4:E : P ! � 0 11 0 � ; � ! ��1 00 1 � :The 1-dimensional representations of D4 areA : P ! 1; � ! 1;B : P ! 1; � ! �1;C : P ! �1; � ! 1;D : P ! �1; � ! �1:When we say that a representation � of �2 hasa certain type, then we shall assume in this sectionthat �(P ) and �(�) are direct sums (in the orderspeci�ed by the type) of the matrix representationslisted above. For example, if � has the type ADEE,then

�(P ) =
26666664
1 �1 0 11 0 0 11 0

37777775 ;

�(�) =
26666664
1 �1 �1 00 1 �1 00 1

37777775 :
Consequently � is uniquely determined by its typeand the matrix �(").
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The dual representation, �_, of � is given by:�_(P ) = �(P ); �_(�) = �(�); �_(") = t�("):(By tX we denote the transpose of a matrix X.) Inparticular � and �_ have the same type. If � and �_are equivalent, we say that � is self-dual.By v1; : : : ; v6 we denote the standard basis vectorsof the column space C 6.
Main Theorem. Each 6-dimensional irreducible rep-resentation of �2 that is nontrivial on F2 is weaklyequivalent to a representation belonging to one of thefamilies listed below .
First family: Type ABEE; parameter s 6= 0; 1;

"!
26666664

0 0 0 1 1 00 0 0 1 1�1=s 00 0 1 0 0 01�s s 0 0 0 0s �s 0 0 0 00 0 0 0 0 1

37777775 :
�(F2) is a four-group. If s = 1 the subspacehv1; v5; v6i is invariant. Each representation in thisfamily is self-dual.

Second family: Type ACEE; parameter s 6= 0; 1;
"!

26666664
0 0 0 1 1 00 0 0 1 1�1=s 00 0 1�2s 0 0 2�2s1�s s 0 0 0 0s �s 0 0 0 00 0 2s 0 0 2s�1

37777775 :
�(F2) is a four-group. If s = 1 the subspacehv1; v5; v6i is invariant. Each representation in thisfamily is self-dual.

Third family: Type ADEE; parameter s 6= 0; 1;
"!

26666664
0 0 0 1 1 00 0 0 1 1�1=s 00 0 1�2s 0 0 2�2s1�s s 0 0 0 0s �s 0 0 0 00 0 2s 0 0 2s�1

37777775 :
�(F2) is a four-group. If s = 1 the subspacehv1; v5; v6i is invariant. Each representation in thisfamily is self-dual.

Fourth family: Type ADEE; parameter s 6= 0; 1;� 13 ;"! 1(1�s)2
�
266666664

3s+s2 �s�3 0 3s+1 3s+1 03s+s2 �3s�s2 0 3s+1 3s2+s 0�3s�s2 3s+s2 s2�1 �3s�s2 �3s�s2 2s2�2s�3s2�s 3s+1 0 �3s�s2 �3s�s2 03s+1 �3s�1 0 s+3 3s+s2 0�3s�s2 s+3 2�2s �s�3 �3s�s2 1�s2

377777775:
This family is equivalent to the representation dis-played at the end of Section 3. More precisely, if tis a nonzero complex number and(1� t)(1 + t3)(1 + t6) 6= 0;then by setting

s = �1� t1 + t�2 ;we obtain a representation which is equivalent to therepresentation in Section 3 mentioned above. Notethat t and 1=t correspond to the same value of s. Itis not known whether or not this family contains afaithful representation of �2.The matrix that transforms the representation inSection 3 to the above one is given at the top of thenext page. Its determinant is�32t6 (1� t2)3(1 + t6)4(1 + t3)2 :
If s = 0, the subspace hv1; v5; v6i is invariant. Ifs = � 13 the subspace hv3; v4; v5; v6i is invariant. Ifs = �3 the representation above is equivalent to therepresentation of the third family for s = 14 .

Fifth family: Type AACCE; parameter s 6= �1;
"! 12

26666664
0 1+s 1 0 2 01 s 0 1 0 21+s �s�s2 2s 1+s 0 �2�2s�s s2�s+1 1�2s �s �2 2s1�s 0 �s �1�s 0 00 1�s2 s�1 0 0 �2s

37777775 :
The commutator [x2; y2] lies in the kernel of thisrepresentation. If s = 1 the subspace hv1 + v2i isinvariant. If s = �1 the subspace hv1; v2; v4; v5; v6iis invariant.
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(1+ t6)(1� t)1+ t3 �(1+ t6)1� t+ t2 t3(1+ t) 1+ t 1� t t3(t�1)0 0 (1+ t)(t3�1) (1+ t)(1+ t3) (1� t)(1+ t3) (1� t)(1� t3)t3(1+ t6)(t�1)1+ t3 t3(1+ t6)1� t+ t2 t6(1+ t) (1+ t)t3 t3� t4 t6(t�1)(1+ t6)(1� t)1+ t3 1+ t61� t+ t2 1+ t t3(1+ t) t3(t�1) 1� t0 0 (1+ t)(1+ t3) (1+ t)(t3�1) (1� t)(1� t3) (1� t)(1+ t3)t3(1+ t6)(t�1)1+ t3 �t3(1+ t6)1� t+ t2 t3(1+ t) t6(1+ t) t6(t�1) t3(1� t)

377777777777777777775
Matrix transforming the representations of �2 of type ADEE given in Section 3 to those of the fourth family.

Sixth family: Type ABCDE; parameter s 6= �1;
"! 12

26666664
�s s�1 �s �1 0 2s�2�1 0 1 0 2 0�s �s+1 �s 1 0 2s�2�s�1 0 s+1 0 2s�2 00 s+1 0 �1 0 0�s�1 0 �s�1 0 0 2s

37777775 :
The commutator [x2; y2] lies in the kernel of thisrepresentation. If s = 1 the subspace hv2; v5; v6iis invariant. If s = �1 the subspace hv1; v2; v3i isinvariant.

Seventh family: Type ABCDE; parameter s 6= �1;
"! 12

26666664
0 s�1 0 s�1 0 2�1 �s 1 s �2 00 s+1 0 s+1 0 2�1 s 1 �s 2 00 s2�1 0 1�s2 2s 0s+1 0 1�s 0 0 0

37777775 :
The commutator [x2; y2] lies in the kernel of thisrepresentation. If s = 1 the subspace hv2; v3; v4iis invariant. If s = �1 the subspace hv1; v2; v4i isinvariant.

Eighth family: Type ABCDE; parameter s (no restric-tions);
"! 12

26666664
s s2�1 �s s2�1 2s 2�1 �s 1 �s �2 0�s 1�s2 s 1�s2 2s 2�1 �s 1 �s 2 00 �1 0 1 0 01 s 1 �s 0 0

37777775 :

�(F2) is a four-group.
Ninth family: Type ABCDE; parameter s (no restric-tions);

"! 12
26666664

s 1 �s �1 2 01�s2 �s s2�1 s �2s 2�s �1 s 1 2 0s2�1 s 1�s2 �s �2s 21 0 1 0 0 0s 1 s 1 0 0

37777775 :
�(F2) is a four-group.

Tenth family: Type ABCDE; parameters u and v suchthat u+ v 6= � 12 ; setting w = 4(u+ v)2 � 1,
"!

2666666664
�v 14�v2 v v2� 14 12�2v2�2uv u1 v �1 �v 2(u+v) 1v v2� 14 �v 14�v2 12�2v2�2uv u�1 �v 1 v 2(u+v) 1� 1w uw � 1w uw 0 02(u+v)w 12� 2u2w 2(u+v)w 12�2u2w 0 0

3777777775:
�(F2) is a four-group. For u = 0 and v = �s=2we obtain (up to equivalence) all representations ofthe ninth family except those when s = �1. Foru = (s2 � 1)=2s and v = �s=2 we obtain (up toequivalence) all representations of the eighth familyexcept those when s = 0;�1.The following result, �rst proved by Tenekedzhi[1986], is an immediate consequence of the MainTheorem (page 461) and the results presented inthe previous sections.
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Corollary 4.1. If � is a faithful complex representationof �2 of degree at most 6, then � has degree 6, it isirreducible and weakly equivalent to a B�urau repre-sentation of �2.
5. COMMENTS ON THE PROOF OF THE MAIN

THEOREMThe method that we used to compile the list of irre-ducible representations is essentially the same as theone described in [D{ okovi�c and Doniz 2000]. A minordi�erence is that the generator � which was used inthat paper has been replaced by ". These genera-tors are closely related since � = �"�. If we �x thetype of the representation �, say we take the typeADEE, then the matrices �(P ) and �(�) are known(they are displayed in the beginning of the previoussection). It remains to �nd the possible matrices ".Among the de�ning relations of �2, only three ofthem involve ". We write these three relations inthe form"2 = 1; P "P = "P"; "�"P�P� = P�P�"�":For simplicity, we shall write just P , �, " insteadof �(P ), �(�), and �("), respectively. The resultingscalar equations are polynomial equations of degree2 in the 36 indeterminates, the entries of the matrix". The brute force attempt to solve the resultingsystem of polynomial equations fails and one has todevelop a strategy to simplify the computations.Let Z denote the centralizer of the matrices P and� in GL6(C ). If z 2 Z the representations de�nedby " and z�1"z are equivalent. This fact is used tosimplify the matrix ". The simpli�cations consistin assuming that certain entries of " are 0, somenonzero entries are normalized, say set equal to 1, orsome entries are expressed in terms of other entries.In most cases this allows us to reduce the numberof variables. Another device that we employ is tooccasionally replace the matrix " by its transpose(which amounts to replacing the representation �by its dual �_).Our main computational tool was Maple, and inparticular its groebner package. By using it, we wereable to handle all the types except the very last typeof Table 2, namely ABCDE. The main reason forthis di�culty is of course the fact that the abovementioned centralizer Z, in this case, is of very low

dimension: it consists of diagonal invertible matriceswith the last two diagonal entries equal. This meansthat the only kind of simpli�cation that is availableto us is the normalization of certain entries of ".This last case was very challenging, and we hadto use Singular [Greuel et al. 1998] in order to han-dle it. Several �rst attempts to �nd a Gr�obner basisfor the ideal generated by our equations failed be-cause of insu�cient memory. The subcases whereat least one of the entries of " located at the posi-tions (i; 6) with 1 � i � 4 is 0, were not hard toresolve. The hard case, when all these four entriesof " are nonzero, could be normalized by setting allof them equal to 1. Still Singular was complainingof not having enough memory. Final modi�cation,that led to success, was to introduce four more vari-ables (the normalization had reduced the number ofvariables by four) and use them to force the �rstfour entries of the last row of " to be nonzero. Thiswe could do because otherwise our representation �would be equivalent to the dual of a representationalready found in the previous cases.The computations were done on a Sun SPARC-station 10 with 96 MB of memory. The CPU timeusage was relatively low; the main bottleneck wasinsu�cient memory.
6. A TYPICAL COMPUTATIONIn this section we give the details of the proof that�2 has no irreducible 6-dimensional representationsof type AAEE. We write �(") in the form

�(") =
26666664
a1 a2 a3 a4 a5 a6b1 b2 b3 b4 b5 b6c1 c2 c3 c4 c5 c6d1 d2 d3 d4 d5 d6e1 e2 e3 e4 e5 e6f1 f2 f3 f4 f5 f6

37777775 :
The centralizer Z of �(P ) and �(�) in GL6(C ) con-sists of all invertible matrices z having the form:

z =
26666664
a bc d e fe fg hg h

37777775 :
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Thus Z is isomorphic to GL2(C )�GL2(C ), and, forbrevity, we shall write this matrix also as z = (z1; z2)where z1 = � a bc d � ; z2 = � e fg h � :The conjugation �(") ! z�1�(")z transforms thesubmatrix of �(") in the intersection of the �rst tworows and the fourth and sixth columns as follows� a4 a6b4 b6 �! z�11 � a4 a6b4 b6 � z2:Consequently, we may assume that this submatrixis one of the three matrices� 1 00 1 � ; � 1 00 0 � ; � 0 00 0 � : (6–1)Consider the �rst case, where a4 = b6 = 1 anda6 = b4 = 0. In this case we can make one furthersimpli�cation. Namely by taking z with z1 = z2and by conjugating �(") with such a z, the abovementioned submatrix will not be altered, but the 2by 2 block in the upper left hand corner will undergoa similarity transformation by z1. Consequently wemay also assume that a2 = 0.The three de�ning relations of �2 that involve "produce a system of 88 polynomial equations. LetI denote the ideal generated by these 88 polynomi-als. We used Singular to �nd a Gr�obner basis of I(this was accomplished on our workstation in 55 sec-onds). It consists of 31 polynomials. The fact thatthis ideal is not the unit ideal means that the repre-sentations of type AAEE indeed exist. By inspect-ing this Gr�obner basis we deduce that the variablesa5, c2, c5, c6, d2, d3, d5, d6, e1, f3, and f5 belongto I. (For the variables c2, c5, and c6 we had touse the function reduce to check this claim.) Thismeans that these entries in �(") have to be 0. Conse-quently the subspace of C 6 spanned by the standardbasis vectors v2, v5, and v6 is �2-invariant, i.e., therepresentation is reducible.Next we consider the second case, where a4 = 1and a6 = b4 = b6 = 0. Now Singular spent 271seconds in computing a Gr�obner basis of the idealI. In this case the basis consists of 178 polynomi-als. Again this means that the representations, withthe above four entries speci�ed, exist. By examin-ing this basis we conclude that the entries b1, c1, c2,c5, d3, d5, d6, and e1 must vanish. If the entries b3

and b5 are both 0, then the subspace spanned byall vi's with i 6= 2 is �2-invariant. Hence, we mayassume that b3 or b5 is not 0. On the other handwe �nd that the products b3f5, b5f5, b3e6, and b5e6are all in I. Hence these products must vanish, andwe deduce that f5 = e6 = 0. We now encode thisnew information in our matrix �(") and rerun theSingular groebner command. We now �nd that b2,c5, e5, and f3 vanish. Furthermore we obtain thatf6 = 1 and d4 = �a1. We again update the matrix�(") and rerun the groebner command. This time we�nd that c3 = 1 and b5e2 = 1. By conjugating �(")by a suitable diagonal matrix z 2 Z, we may addi-tionally assume that b5 = e2 = 1. Now the groebnercommand gives the relation d2 = �d1a5. We cannow deduce that the subspace spanned by the vec-tors a5v1 + v2, v5, and v6 is �2-invariant. Hence weare done with second case.Finally we consider the third case, where a4 =a6 = b4 = b6 = 0. If at least one of the entries d1,d2, f1, f2 is not 0, then the dual representation be-longs to one of the two previous cases. As we arecarrying out the classi�cation only up to weak equiv-alence, we may assume that d1 = d2 = f1 = f2 = 0.The 2 by 2 submatrix of �(") in the intersection ofthe �rst two rows and the third and �fth columnscan be transformed into one of the three matricesof (6{1). In fact the zero matrix can be ruled outbecause in that subcase the subspace spanned byv3, v4, v5, and v6 is �2-invariant. The �rst twosubcases can be treated jointly by using only thefacts that a3 = 1 and a5 = b3 = 0. The fact thatb5 may be assumed to be 0 or 1 will be used onlylater. We insert this information into our matrix�("). Then the ideal I has 80 generators, and thegroebner routine produces quickly a Gr�obner basisof I consisting of 56 polynomials. We now �nd thatthe variables b1, c4, c6, d3, d5, d6, e4, e6, f4 and f5must vanish. We also �nd that b5f5, b5f4, b5e6, andb5e4 belong to I. If b5 = 0 the subspace spannedby the vi's with i 6= 2 is �2-invariant. Hence wemay assume that b5 6= 0, and consequently we musthave f5 = f4 = e6 = e4 = 0. We also obtain thatc1 = d4 = 1. Once again we invoke the groebnercommand on the updated matrix �("). We obtainthat several other entries must vanish, in particularthe entries a2, c2, and c5. Therefore the subspacespanned by v2, v5, and v6 is �2-invariant.
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