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We show that the Holt–Rees extension of the standard MeatAxe

procedure finds submodules of modules over finite algebras with

positive probability in more cases than originally claimed. For

the case when the Holt–Rees method fails we propose a further,

but still simple and efficient extension.

1. INTRODUCTIONFinding the irreducible composition factors of a �-nite module M for a �nite dimensional associativealgebra A over a �nite �eld F is one of the funda-mental tasks in computational modular representa-tion theory. The most commonly used practical ap-proach to this problem is the MeatAxe algorithm[Parker 1984], which solves the problem of prov-ing constructively that M is irreducible. Originally,the method did not perform satisfactorily when theground �eld F is large. Holt and Rees [1994] haveproposed an extension to Parker's method based onfactoring the characteristic polynomial of randomelements from A. They provided an accurate analy-sis and showed that their approach proves e�cientlythat a given module is irreducible regardless of thesize of the ground �eld. Furthermore, in most casesthey also have a de�nite chance of �nding a non-trivial submodule. In this note we prove that theextension works in more cases than claimed in [Holtand Rees 1994]. However, there is still one type ofmodule where the algorithm de�nitely fails; we pro-pose a method for this case. The implementation ofM. Ringe as part of the C-MeatAxe shows that ouralgorithm is also practically feasible. The readerinterested in the theoretical complexity of relatedproblems is referred to the survey [R�onyai 1993].We restrict our attention to a fundamental sub-task which can be interpreted as an e�ective versionof testing irreducibility. Let F = GF(q) be the �nite�eld consisting of q elements. We assume, without
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loss of generality, that A contains an identity el-ement denoted by 1A or by 1 for short; that themodule is M = F d, the space of column vectors oflength d; and that the action of A on M is faith-ful and is given in terms of matrices for generatorsof A. (In contrast to the MeatAxe implementationin GAP [Sch�onert et al. 1996], which is based onrow vectors and right action, our discussion is pre-sented in terms of column vectors and left action.)The procedure either concludes that M is an irre-ducible A-module or returns a nontrivial submoduleof M . Furthermore, we identify A with its imagein Md(F ). Finally, we assume that we are providedwith an auxiliary procedure which generates randomelements of A (independently and uniformly).The paper is structured as follows. In Section 2we briey comment on the original algorithm pro-posed in [Holt and Rees 1994] in order to extend theprobability analysis to slightly more cases and to de-scribe a class of algebras A which contains all thesituations where the method fails. The algorithm forthis class of algebras is outlined in Section 3. Theprobability of success will be estimated in Section 4.Finally, in Section 5 we provide some experimentalresults with the C-MeatAxe implementation of thealgorithm.For the standard notions and facts related to �nitedimensional algebras and modules, see [Pierce 1982],for example. We adopt the following conventions.Modules are assumed to be left modules. If H isa subset of an algebra A and K is a subset of anA-module (which can be A itself) then by HK wedenote the linear span of all the products �v where� 2 H and v 2 K. Also, if � and � are two elementsof the algebra A then [�; �] stands for the additivecommutator �� � ��. Again, if H and K are twosubsets of A then [H;K] denotes the linear span ofall the commutators [�; �] (with � 2 H and � 2 K).By RadA and by RadM we denote the (Jacobson)radical of the algebra A and the moduleM . Rad2Mstands for the iterated radical RadRadM . We alsouse the standard notation CH(K) and Z(H) for thecentralizer of the subset K in a subalgebra H andthe center of H , respectively.We assume that A is a �xed algebra. It willbe convenient to introduce some additional nota-tion. By the Wedderburn{Malcev principal theorem[Pierce 1982, Section 11.6], A can be written as

A = S +RadA; where S �= A=RadA:Since the complementary subalgebra S is unique upto a conjugation by an inner automorphism of A,we can speak about the structural properties of Ain terms of S even if S is not speci�ed explicitly.
2. THE EXCEPTIONAL ALGEBRASIn [Holt and Rees 1994], the extension of MeatAxeis proved to succeed in constructing a nontrivialsubmodule with probability at least 0.144 in manycases. In particular, it recognizes irreducible mod-ules, �nds a nontrivial submodule if M=RadM isdecomposable or M contains non-isomorphic com-position factors. The submodule is generated fromthe kernel of p(�), where � is a random element andp(x) is an appropriate irreducible factor of the char-acteristic polynomial of � on M (see Lemma 2.1 be-low). The probability analysis of success is basedon the following observation, which will be useful inthe analysis of the present paper as well.
Lemma 2.1. Let W be an irreducible A-module andE = EndA(W ), the algebra consisting of the A-endomorphisms of the module W . Then for at least21:4% of the elements � 2 A the characteristic poly-nomial over F of � on the module W has an unre-peated irreducible factor of degree dimF E.
Proof. By Schur's lemma and Wedderburn's theoremon �nite division algebras, E is a �nite extension�eld of F . Note also that if W as an E-module isisomorphic to En and I = f� 2 A j �W = (0)g is theannihilator ideal of W , then A=I �= Mn(E). Sinceuniform selection of elements in A corresponds touniform selection in the factor A=I, we may assumethroughout the proof that I = (0) and identify Awith Mn(E). The statement for the case E = Fis proved in [Holt and Rees 1994] (with a somewhatbigger constant), therefore we may restrict ourselvesto the case e = dimF E > 1. The argument given inby Holt and Rees for this case appears to contain aminor mistake, therefore we give a corrected proofbelow.The condition is equivalent to saying that �, con-sidered as a matrix over E, has an unrepeated eigen-value � such that � is not contained in any propersub�eld E0 with F � E0 < E and for every au-tomorphism � 2 Gal(EjF ) such that �� 6= �, ��
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is not an eigenvalue of �. (This follows from thefact that the characteristic polynomial of � over FisQ�2Gal(EjF ) c(x)�, where c(x) 2 E[x] is the charac-teristic polynomial of �, regarded as a matrix overE. See [Reiner 1975, Theorem 9.10 and Exercise9.4], for example.)Note that at most half of the elements in E can becontained in a proper sub�eld of E. This establishesthe case n = 1. For the rest of the proof we assumen > 1.Let F = GF(q) and E = GF(qe). Followingthe arguments given in [Holt and Rees 1994], letH denote the number of matrices � 2 Mn(E) suchthat a speci�c � 2 E is an unrepeated eigenvalueof �. Also, let H 0 stand for the number of matri-ces with two distinct speci�c unrepeated eigenvalues�; � 2 E. In [Holt and Rees 1994] it is shown thatH and H 0 are independent of the particular choiceof � and �, and
H = 1qe � 1 n�1Yi=0(qen � qei) and H 0 � Hqe � 1 :Let R denote the set of elements � 2 E such that� has exactly e conjugates over Gal(EjF ) and letr = jRj. By inclusion-exclusion, at leastrH � �r2�H 0 � �r � r(r � 1)2(qe � 1)�Hmatrices have some unrepeated eigenvalue from R.For the number of matrices having at least two eigen-values from some orbit of Gal(EjF ) on R we havethe crude upper boundre �e2�H 0 � re �e2� Hqe � 1 :Hence the number of matrices with the requiredproperty is at least�r� r(r�1)+r(e�1)2(qe�1) �H = �1� r+e�22(qe�1)� rH� �1� qe+e�42(qe�1)� qe2 H= �12� e�32(qe�1)� qe2 H� 730qeH:The �rst inequality follows fromqe=2 � r � qe � q � qe � 2;

while the second follows from the fact that the max-imal value of (e�3)=(2qe�2) for the integers q; e � 2is 130 (taken at q = 2, e = 4). Hence the proportionof such matrices is at least730qeH=qen2 = 730 nYi=2(1� q�ei)
� 730 1Yi=2(1� 4�i) � 0:214: �

Remark. The mere assumption that �, regarded as amatrix over E contains an unrepeated eigenvalue �which is not contained in any proper sub�eld [Holtand Rees 1994] appears to be insu�cient even forthe purposes of the MeatAxe. Indeed, if an alge-braic conjugate �0 of �, di�erent from �, is also aneigenvalue of �, then the characteristic polynomialof � over F contains the minimal polynomial p(x) of� at least twice and therefore the dimension of thekernel of p(�) over E is at least 2.The only possible situations when the Holt{Rees ex-tension of MeatAxe may fail are modules M suchthat RadM 6= (0), M=RadM is irreducible and allthe composition factors are isomorphic toM=RadM.Since M is faithful, this implies that every irre-ducible A-module is isomorphic to M=RadM . LetE = EndA(M=RadM), as in Lemma 2.1. ThenE is a �nite extension �eld of F and M=RadMis isomorphic to En as an S-module for some in-teger n, where S is a subalgebra of A isomorphic toA=RadA. Note that the multiplicity of En in Mis d=en, where e = dimF E and S �= Mn(E). Thecenter of S is therefore isomorphic to E. We mayand shall identify E with Z(S). In summary:�RadA 6= (0); S �=Mn(E);E = Z(S) is an extension �eld of F : (2–1)The Holt{Rees extension of the MeatAxe is shownto succeed even in this case provided that E = F .We extend the proof given in [Holt and Rees 1994]to the more general case where E � Z(A).
Proposition 2.2. Assume that (2{1) holds , M=RadMis irreducible and E � Z(A). Then, for at least14:4% of the elements � in A, there exists a factorp(x) 2 F [x] of the characteristic polynomial of � onM such that the kernel of p(�) is a nonzero subspaceof RadM .
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Proof. The case E = F is proved in [Holt and Rees1994]. Assume that E > F . Note that every el-ement � 2 A can be uniquely written in the form� = �0 + �1 where �0 2 S and �1 2 RadA. As-sume that the characteristic polynomial (over F ) of�0 2 S on the irreducible S-moduleM=RadM �= Enhas an unrepeated irreducible factor p(x) 2 F [x] ofdegree e = dimF E. By Lemma 2.1, this is the casefor at least 21:4% of the possible choices for �0. Let�1; : : : ; �e be the roots of p(x) in E. Then thereexists an element � 2 f�1; : : : ; �eg, say � = �1,such that the kernel of �0 � � is an E-submoduleof M=RadM of rank 1 (i.e., a one dimensional E-linear subspace). Furthermore, �0 � �i is a unit inS for i = 2; : : : ; e.Obviously, for every �1 2 RadA, the kernel of�0 + �1 � � in M is nonzero, since the quotient mapon M=RadM is �0��. Let L stand for the set con-sisting of �1 2 RadA for which this kernel is notcontained in RadM . We claim that L is containedin a proper E-submodule of RadA. To this end con-siderM as an S-module. Since S is a simple algebrathere exists an S-submodule M0 complementary toRadM . Then M0, as an S-module, is isomorphicto M=RadM . In particular, there exists a nonzeroelement v 2 M0 such that (�0 � �)v = 0. Then forevery element �1 2 RadA, the kernel of �0 + �1 � �is contained in the E-submodule Ev + RadM . As-sume now that �1 2 L, i.e., this kernel contains anelement u 2M nRadM . Then u = "v+w for someunit " 2 E and some element w 2 RadM . Multi-plying by "�1, we may assume that u = v + w withw 2 RadM . Now0 = (�0 + �1 � �)(v + w) = �1v + (�0 � �)w + �1w;and hence �1v = �(�0 � �)w � �1w is in(�0 � �)RadM +RadARadM= (�0 � �)RadM +Rad2M:ThusL � L0= f�1 2 RadA j �1v 2 (�0��)RadM +Rad2Mg:Obviously L0 is an E-submodule of RadA. Assumethat L0 = RadA. ThenRadM = Rad(Av) = RadAv= L0v � (�0 � �)RadM +Rad2M:

(Here the �rst equality holds because of M = Av +RadM and Nakayama's lemma.) From this we in-fer that ��� acts surjectively on the factor moduleRadM=Rad2M , and hence on its composition fac-tors as well. Since all these composition factors areisomorphic to M=RadM , this is a contradiction tothe fact that ��� is singular onM=RadM . Thus Lis included in the proper E-submodule L0 of RadA,as claimed.By the claim, for at least 1�1=jEj of the possiblechoices for �1, the kernel of � � � = �0 + �1 � � is asubspace of RadM . Let � =Qei=2(���i). Then � isa unit modulo RadA and hence � itself is a unit inA. Therefore the kernel of (� � �)� = p(�) is equalto the kernel of � � �. Thus, the kernel of p(�) is anonzero subspace of RadM provided that the kernelof � � � is. As the components �0 and �1 of � arechosen independently, this gives 0:214(1� 1=jEj) �0:214 � 3=4 > 0:16, so at least 16% > 14:4% of theelements � 2 A satisfy the desired property. �This means that the Holt{Rees extension of Meat-Axe succeeds with probability at least 0:144 in thiscase. Hence we can restrict our attention to the casewhere E is not central, i.e., algebras A satisfying(2{1) and the additional hypothesis[A;E] > (0): (2–2)

3. THE ALGORITHMWe propose the method described below for treat-ing algebras with properties (2{1) and (2{2). As de-scribed in the last section, the algorithm has beensuccessfully incorporated into the program chop byM. Ringe, which is part of the C-MeatAxe version2.3.We assume that a random element � 2 A is se-lected and that the irreducible factors of the charac-teristic polynomial c(x) of � over F are computed.Note that these computations are carried out as apart of the original algorithm described in [Holt andRees 1994]. We select a factor p(x) of minimum de-gree among the factors of c(x) of minimum multi-plicity and do the following.
(i) Determine the polynomial i(x), a representativeof the primitive idempotent of the algebraF [x]=(c(x))
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corresponding to the factor p(x). More precisely,by the Chinese Remainder Theorem,F [x]=(c(x)) �= F [x]=(pl(x))� F [x]=(q(x));where l is the multiplicity of p(x) in c(x) andq(x) = c(x)=pl(x) and we want the identity ele-ment of the component isomorphic toF [x]=(pl(x)):To be explicit, 1 can be expressed using the ex-tended Euclidean algorithm in the form1 = a(x)pl(x) + b(x)q(x);with polynomials a(x) and b(x). Then i(x) �b(x)q(x) (mod c(x)).
(ii) Choose another random element � 2 A as well asa random vector v 2 M and calculate the sub-module N generated by [�; i(�)�i(�)]v. If this isa proper nonzero submodule then return N , oth-erwise report failure.We make comments only on the costs of steps whichare additional to the Holt{Rees extension of theMeatAxe procedure. The polynomial i(x) can bedetermined with O(d2) operations in F (Note thatl is less than d). The cost of computing the vec-tor [�; i(�)�i(�)]v is O(d3) arithmetical operationsassuming that we use a method based on perform-ing O(d) matrix-by-vector multiplications. Usinga method based on fast calculation of Krylov se-quences [Bini and Pan 1994] the cost can be re-duced to O(MM(d) log d) operations, where MM(d)stands for the number of arithmetic steps requiredto multiply two d by d matrices. We remark thatEberly and Giesbrecht [1996, Lemma 3.1] give an ef-�cient algorithm to compute all the primitive idem-potents of the subalgebra generated by � simultane-ously in explicit matrix form. The method is basedon computing the rational canonical form of � [Gies-brecht 1995], and the running time is essentiallyO(MM(d) log d).Thus the total number of arithmetical steps re-quired by the algorithm is dominated by the cost ofcomputing the submodule N in step (ii), which isO(d3), provided that the number of generators of Ais �xed.

4. PROBABILITY OF SUCCESSWe now give an estimate for the probability of �nd-ing a proper submodule in the situation where thealgebra A satis�es conditions (2{1) and (2{2). Ac-tually we show that the commutator [�; i(�)�i(�)]has a positive chance for being a nonzero element ofRadA.
Lemma 4.1. Assume that the �nite dimensional F -algebra A with identity satis�es conditions (2{1) and(2{2). Let � be an idempotent of S. Then(a) [�E�; �A�] = �[E;A]�,(b) S(�[E;A]�)S = [E;A], and(c) (0) � [�E�; �A�] � RadA:
Proof. First we note that since � commutes with E,�"� = �" = "� for every " 2 E and hence �E� =�E = E�. Part (a) is immediate from the followingequalities which hold for every " 2 E and � 2 A.�" � ���� ��� � �" = �"� � ��� �� � ��"= �" � ��� �� � "� = �("�� �")�:To prove part (b), let �; � 2 S; " 2 E; � 2 A. Then��["; �]�� = ��"��� � ���"��= "����� � �����" = ["; ����� ];where the second equality holds because " commuteswith the elements �; �; � 2 S. From this we inferthat S�[E;A]�S = [E;S�A�S]. It remains to estab-lish the equality S�A�S = A. To this end observethat S�S is a nonzero ideal in the simple algebra S,therefore S�S = S. Hence S�A�S = S�SAS�S =SAS = A. (The �rst and the last equalities areobvious because S contains 1A.)Part (c) follows from (a) and (b) and the fact thatE is central modulo RadA. �After these preparations we are ready to give a lowerbound on the probability of success of the algorithm.
Proposition 4.2. Assume that the matrix algebra A �Md(F ) satis�es conditions (2{1) and (2{2). Thenthe proportion of the triples (�; �; v) 2 A � A � F dfor which the algorithm described in the precedingsection �nds a proper submodule is at least 0:08.
Proof. Assume that p(x) is an unrepeated irreduciblefactor of the characteristic polynomial of �+RadAon En. Then the degree of p(x) is the dimension(over F ) of the kernel of p(�+RadA). This subspace
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is obviously a Z(A=RadA)-submodule of En, andhence the degree of p(x) is at leaste = dimF Z(A=RadA) = dimF E:Assume that the degree of p(x) is exactly e. ByLemma 2.1, such a factor does exist for at least21:4% of the elements � 2 A. Furthermore, all thefactors of this kind are characterized as the mini-mum degree factors amongst the factors of minimalmultiplicity of the characteristic polynomial of � onthe whole module M .Referring to the homomorphism F [x]=(c(x))! Ainduced by x 7! �, it is immediate that � = i(�) is anidempotent. Let �� = � + RadA and �� = �+ RadA.Furthermore, the characteristic polynomial of ���� onEn is p(x)x(n�1)e. It follows that ���� and �� have ranke, therefore �� is a primitive idempotent of A=RadA.Hence ��(A=RadA)�� = ��Z(A=RadA)��. In particular,���� 2 ��Z(A=RadA). On the other hand, the mini-mum polynomial of ���� on ��Z(A=RadA) is of degreee, therefore ���� generates the whole ��Z(A=RadA).Now [�; ���] is a nonzero element of RadA for atleast 1 � 1=jEj � 34 of the elements � 2 A, seeLemma 4.3 below, and let us assume in the follow-ing that this is the case. Then [�; ���] is a non-trivial F -linear transformation and hence the ker-nel has codimension at least 1. Therefore for atleast 1 � 1=jF j � 12 of the elements v 2 M thevector [�; ���]v is a nonzero element of the propersubmodule RadAM = RadM . Putting the boundstogether, the algorithm �nds a proper submodulewith probability at least 0:214 � 34 � 12 > 0:08. �The proposed method, complemented with the Holt-Rees approach, gives an algorithm of Las Vegas typefor every case.
We now give the promised proof of the statementused above.

Lemma 4.3. Assume that the �nite dimensional F -algebra A with identity satis�es conditions (2{1) and(2{2). Assume further that � is an element of A and� is an idempotent of the subalgebra of A generatedby � and 1A such that the subalgebra of A=RadAgenerated by ��+RadA is (�+RadA)Z(A=RadA).Then [�; �A�] � RadA and [�; ���] 6= 0 for at least1� 1=jEj of the elements � 2 A.

Proof. Let A� denote the subalgebra of A generatedby ��. We �rst note that � is the identity elementof A�. Indeed, �� = �� = � holds for every element� 2 A�. On the other hand, it is straightforward tosee that A0� = A� + F� is a subalgebra and A� is anideal of A0�. By the assumption(A0� +RadA)=RadA = (A� +RadA)=RadA�= Z(A=RadA);thus A0� is a local algebra and A� is not a nilpotentideal. But since in a local algebra every proper idealis contained in the radical, A� = A0�, establishing thecontainment � 2 A�.We will now replace S and E with appropriateconjugates in order to achieve the situation where� 2 S and �E is a subalgebra of A�. By the Wedder-burn{Malcev principal theorem, A� = S� +RadA�,where S� is a semisimple subalgebra of A�. Since ev-ery maximal semisimple subalgebra of A is a conju-gate of S by an inner automorphism [Malcev 1942],there exists a unit � 2 A such that S� = ��1S� �S�. Because conditions (2{1) and (2{2) are invari-ant under automorphisms, we may replace S withS� and E with E�, or, equivalently, assume S� � S.Note that � is just the identity element of S�.By the assumption,(A�+RadA)=RadA = (�+RadA)Z(A=RadA) �= Eis a simple algebra; therefore Rad(A� + RadA) =RadA. On the other hand, RadA� + RadA is ob-viously a nilpotent ideal of A� + RadA. It followsthat RadA� � RadA, A� + RadA = S� + RadAand S� = �E.Observe that, since the idempotent � commuteswith �, for every � 2 A we have[�; ���] = ����� ���� = ������ �����= ������ ����� = [��; ���]:The equality �E = S� and the preceding lemma give[S�; �A�] � RadA. Since S� � A� � S� +RadA, wehave [A�; �A�] � [S�; �A�] + RadA � RadA:The �rst inclusion of the formula above holds be-cause RadA is a two-sided ideal and hence[�A�;RadA] � RadA:
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In particular, [�; �A�] = [��; �A�] � RadA. So wehave proved the �rst part of the statement.In order to see the second part, notice that, sinceS� � A�,C�A�(�) = C�A�(A�) � C�A�(S�) < �A�:The latter inclusion is strict because not the whole�A� commutes with S� = �E by Lemma 4.1. Obvi-ously, C�A�(S�) is an S�-submodule of �A� (multipli-cation by elements from S� from the left hand side).The set of elements � such that [�; ���] = 0 is theF -linear subspace (1A � �)A + A(1A � �) + C�A�(�).By the preceding argument the codimension of thissubspace is at least dimF S� = dimF E, whence thesecond part of the assertion follows. �
5. EXPERIMENTAL RESULTSWe conclude with a running time comparison for twoversions of the composition factor program chop inthe C-MeatAxe written by M. Ringe. For the detailsof the algorithm used for determining the composi-tion factors of a given representation, see for exam-ple [Lux 1997]. For our purposes the following roughoutline of the algorithm is su�cient: the main sub-routine of chop takes as input a sequence of matricesfor the generators of the algebra A. Its aim is to �nda proper A-invariant subspace or to prove that thereis no such subspace. If it �nds an A-invariant sub-space, it determines matrices for the generators onthe subspace and the quotient space and calls itselfwith the matrices obtained. The search for the in-variant subspace is done by looking for the kernel ofwords in the matrices for the generators using theHolt{Rees approach; see [Holt and Rees 1994]. Inthe old implementation, if a word � did not lead tosplitting of the given representation and irreducibil-ity could not be shown in reasonable time using Nor-ton's lemma, then the algorithm would just take thenext word. In the new implementation, before tak-ing the next word, we check for the exceptional case.This is done as follows:For all factors p(x) of the characteristic polyno-mial of � of degree at least two, do the following:determine i(x) as de�ned above. Then choose a sec-ond word � and random vector v. Furthermore, de-termine the vector [�; i(�)�i(�)]v. If it is nonzero,check whether it lies in a proper invariant subspace.

If it does, call the main subroutine with the two newrepresentations obtained.This method (actually, an implementation basedon an earlier version of the paper) di�ers from the al-gorithm described in Section 3 in the sense that justone factor is selected in order to assure that the algo-rithm never performs more than roughly O(d3) op-erations. As the number of factors of the character-istic polynomial is usually small (probably aroundO(log n), where n is the number given in (2{1)),the exhaustive search given here does not cause toomuch loss of e�ciency in practice. Furthermore, thealgorithm succeeds usually with the �rst factor witha probability much higher than the modest estimategiven in Section 4.We now compare the running times of the old andthe new version of chop. The new version is part ofthe MeatAxe 2.3.2 release and the old is part of theMeatAxe release 2.2 as delivered with GAP 3.4.In order to test the two programs we proceed asfollows. We �rst construct a reducible representa-tion for a �nite group that has two isomorphic com-position factors with a large endomorphism ring.This is done using GAP [Sch�onert et al. 1996].We �rst take the two generatorsA;B for SL(n; Fq),q = pe with p prime, as produced by the commandSpecialLinearGroup in GAP. We then form the ma-trices a1 = �A I0 A��and b1 = �B I0 B�� .Here I is the n by n identity matrix over Fq and �denotes the Frobenius automorphism of Fq mappingx 2 Fq to xp. Note that � is applied to the entriesof A, B. The GAP command BlowupSQ is used toperform the Galois descent, i.e. to replace all entriesin the matrices by the corresponding matrices in theregular representation of Fq over Fp. In this way weconstruct two 2en by 2en matrices a1 and b1 overFp.We then proceed by conjugating a1 and b1 by arandom invertible matrix produced by GAP, the re-sulting matrices are a and b. Furthermore, letx(a; b) = ababbabababbabb;y(a; b) = ababbabbabababb
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be given words in a and b. We test the programs onthe representation generated by the pairs of matrices(xi(a; b); yi(a; b)), wherex0(a; b) = a;xi(a; b) = x(xi�1(a; b)); y0(a; b) = b;yi(a; b) = y(yi�1(a; b));for i = 1; : : : ; 5. As already mentioned in [Holt andRees 1994], the old chop program can only success-fully split a representation if it �nds a null vectorof a word in the generators contained in an invari-ant subspace. If the representation is given by thematrices a and b, it follows from the constructionof a and b that the �rst basis vector of a singularword in the generators will lie in the invariant sub-space generated by the �rst ne basis vectors. Thisjusti�es the conjugation with a random invertiblematrix. The reason for taking random elements inthe group is given by the observation that if the cho-sen generators are not random enough there will beshort words in these generators whose nullspace iscontained in the proper invariant subspace.The tables below compare the running time. The�rst column gives the running time for the old ver-sion, the second column the running time for thenew version. As one can see, if we input the origi-nal matrices a and b to chop, the old version has noproblem in splitting the representation.The �rst example is of dimension 8 over F310 , sothe resulting representation over F3 is of dimension160. generators old newa; b 0:1 s 0:1 sx1(a; b); y1(a; b) 66:4 s 0:6 sx2(a; b); y2(a; b) 999:3 s 1:9 sx3(a; b); y3(a; b) 1216:5 s 1:6 sx4(a; b); y4(a; b) 558:8 s 0:6 sx5(a; b); y5(a; b) 1081:9 s 0:6 sThe next example is of dimension 8 over F212 , sothe resulting representation over F2 is of dimension192. generators old newa; b 0:4 s 0:5 sx1(a; b); y1(a; b) 7:0 s 2:3 sx2(a; b); y2(a; b) 272:8 s 2:2 sx3(a; b); y3(a; b) 117:5 s 6:1 sx4(a; b); y4(a; b) 551:4 s 2:4 sx5(a; b); y5(a; b) 813:5 s 2:3 s

Similar runs for other primes indicated the sametendency. The running time of the old version islonger, the uctuation is greater, and in principle itwould be no problem, as predicted by the theory,to produce examples, where the quotient betweenthe old running time and the new running time getsarbitrarily large.
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