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We study the average number of intersecting points of a given
curve with random hyperplanes in an n-dimensional Euclidean
space. As noticed by A. Edelman and E. Kostlan, this problem is
closely linked to finding the average number of real zeros of ran-
dom polynomials. They showed that a real polynomial of degree
n has on average % logn + O(1) real zeros (M. Kac’s theorem).
This result leads us to the following problem: given a real se-
quence (ay)ken, study the average

1 N—1
N Z p(fn),
n=0

where p(f,) is the number of real zeros of f,(X) = g+ X+- - -+
a,X". We give theoretical results for the Thue-Morse polynomi-
als and numerical evidence for other polynomials.

1. FINITE CURVES

Let &,, be real n-dimensional Euclidean affine space
with a given orthonormal base. We identify points
x € &, with the column vector *(zy,...,z,) whose
entries are the coordinates of z.

A hyperplane h C &, which does not contain the
origin is represented by its Cartesian equation

zn: hiZUi = 1,
i=1

or hz =1 for short, where h = (hy, ha,...,h,) is an
element of the dual space €. Both &, and &} are
endowed with the Euclidean norm.

A change of orthonormal base in &, induces a
change of coordinates from the initial base to the
new one:

1z = Az + 2°
(© A K Peters, Ltd.
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where A is an n x n orthogonal matrix. The hyper-
plane h then becomes h' = hA~*/(1+ hA 'z°) and
it is easy to see that

[l | 2 1 |
i=1 i=1
so that
dh = ||b|| =" T dh

i=1

is the natural invariant measure on the space &.
Perhaps the most elementary way to see this classi-
cal result is to notice that any change of orthogonal
base is a product of a rotation around the origin
followed by n translations parallel to a coordinate
axis. For each of these component base changes,
the above invariance holds.

Let v C &, be a finite rectifiable curve, that is,
a rectifiable curve of finite length |y|. Let Q(v) be
the family of hyperplanes h that intersect ~y, and let
|7 N k| be the number of intersection points of h and
7. Santalé [1976, p. 245] establishes that

n1/2
l/hﬁhdh

where I is the usual Euler gamma function. See also
[Klain and Rota 1997].

(n+1) |’7|, (1_1)

2. BREADTH OF A BOUNDED SET

Let K be a bounded convex set in &,,. For z € &,
call K, the length of the orthogonal projection of K
on the axis Oz, where O is the origin. Lengths are
positive. The mean breadth of K is

/szx// dx,
Sn Sn

where S,, is the unit sphere 2% + x5 + --- 4+ 22 = 1.

If L is any bounded set in &,,, we define the mean
breadth B(L) as the mean breadth of the convex
hull of L; in particular, the mean breadth of v is
well defined. Using Santald’s result again, we easily
find that the h-measure of those hyperplanes h that
intersect 7 is

,n.n/2

/hm#z dh = @3(7).

The quotient of equalities (1-1) and (2-1) thus gives
us the average number N(v) of intersecting points

(2-1)

of v with a random hyperplane given that these hy-
perplanes meet 7:

1 T(5) Nl
VAT(25) B(y)'
Let 0 be the diameter of the set 4. Then clearly
B(y) < 4. On the other hand the convex hull of v
contains a segment o of length §. Since
1 T(E)
VT L(%5)

where the equality is easily verified, we conclude
Y

that ()
I'(3) hi
L CoRILUARS

N(y) =

(2-2)

B(y) > B(o) = 5,

(2-3)

3. EXTENSION TO FINITE DOODLES

Formulas (2-2) and (2-3) can be extended to gen-
eralized curves called “doodles”. A doodle 7 is a
connected set which is a finite union of rectifiable
curves vi,%z,---,%k- JLhe length of v is naturally

defined as
k
= bl
i=1

To any doodle v we can associate a closed curve 74
that goes over v twice. According to formula (2-2),

o= L TG) 2hl
MO = e Ba)
since |§| = 2|v| and B(¥) = B(y). But N(%) =

2N (7y) since each intersection point of a hyperplane
h with 4 counts twice. Dividing by 2 leads to for-
mula (2-2) for doodles.

This result should be compared to those of Favard
[1932], Sulanke [1966] and Laurent-Gengoux (pri-
vate communication).

4. DIMENSION

Several earlier articles have discussed the dimension
of curves in the plane [Mendés France and Tenen-
baum 1981; Dekking and Mendes France 1981; Men-
deés France 1991]. The extension to curves in &, is
straightforward.

Indeed, let v be an unbounded, locally rectifiable
curve in &,, such that bounded subsets of &,, contain
only finite portions of 7. So for example in €, curves
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like the one given in polar coordinates by § = sin1/p
are excluded: the unit ball centered at the origin
contains infinitely many branches of the curve.

With no real loss of generality we assume that ~
has an endpoint (or rather a starting point!). Let v,
denote the beginning portion of v of length s. Let
e > 0 be given. Consider the so-called Minkowski
g-sausage

v(s,e) ={z € &, | dist(z,,) < e}.

Let |v(s,¢€)| be its volume. If §(s) is the diameter of
7s, define the dimension d = dim(vy) by the formula

log |7(5,2)|
logd(s)
Despite appearances, dim(y) does not depend on &:
this is easily seen [Mendes France 1991, page 329).
Clearly 1 < d < n, and it can be shown that for all
a € [1,n] there exists a curve « for which dim(y) =
a.
The volume of v(s,¢) is at most
(n—1)/2
T
(s, ) € Ty
(%)

dim(y) = lim inf (4-1)

S§—00

" s+ 0(eM),

so that

log s
logd(s) "
Under certain circumstances equality holds: for ex-
ample, when there exists a real number A > 0 such
that unit balls contain portions of « of total length
less than A.

Let € > 0 be given. Formula (4-2) shows that
there exists a value s(&) such that

logd(s) 1

g_
log s d+

dim(y) < liminf (4-2)

S5—00

N ™

for all s > s(e), so that
5(8) < 81/d+5/2.
Inequality (2-3) therefore implies a lower bound for
N(7,) = N(s):
1 T(%)
N > 2 1-1/d—e/2 >
W2 e -

On the other hand, if « is a curve for which for-

mula (4-2) is an equality, then

N(S) < 31—1/d+a

gi=l/d=e  (4-3)

(4-4)

for infinitely many large s.

Inequality (4-3) implies that if d > 1 the average
number of intersections of v, with a random hyper-
plane tends to infinity as s grows. In particular, if
< is an unbounded algebraic curve then N(s) is less
than the degree of ~: this forces d = 1. Unbounded
algebraic curves are one-dimensional.

5. REAL ZEROS OF REAL POLYNOMIALS

Let v be an unbounded curve in &, as before. Let

T 2501(5)7 T2 :502(3)7 ceey I :QDn(S)

be its parametrical representation: the ;’s are real
functions of bounded variation on every finite inter-
val and s denotes the length coordinate. The pre-
vious results show that the average number of real
zeros of the equation

Zhicpi(t) —1=0, for0<t<s,

i=1
is

N(S) > 81—1/d—5

for all large s.

The most interesting case is when ;(t) = t*, with
|t| <T ~ s'/", fori=1,2,...,n. Then N(s) would
be the average number of real zeros in [-T,+7] of
the polynomial

P(t) = hot" + hp o t" " 4o byt — 1.

Unfortunately, as noticed in Section 4, the dimen-
sion is 1 so all we get is the trivial result N(s) > 0.

Edelman and Kostlan [1995], reflecting on a re-
sult of M. Kac [1943; 1949; 1959], realized that it
is possible —and even easy — to obtain the average
number of real zeros of the polynomial

ho + bt + -+ + hpt"

using results from integral geometry. Indeed, con-
sider the curve

(s ... x,) = (1,t,82,...,t"), forteR,

or rather the curve v obtained by projecting it cen-
trally onto the unit sphere 23 + --- 4+ 22 = 1. Inter-
secting v by a random hyperplane h

ho$0+h1$1 ++hnxn :0,

where h = (hg, h1,...,h,) is uniformly distributed
on the surface of the unit sphere h + --- + h% =
1, shows that the average number of intersecting
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points—that is, zeros of the polynomial hg + hit +
-+ h,t" —is equal to |y|/m. The length |v| is easily
computed:

+oo
"= / t2_1

This is Kac’s formula, obtained by Edelman and
Kostlan’s analysis. Kac obtained an equivalence
when n increases to infinity and the second authors
were able to give a much more precise result which
finally shows that the average number of real zeros
of the polynomial is

n + 1)2t2n

s

2 2 1
Zlogn+0625...+ — +0(-).
s ™n n

The main difference between their approach and
ours holds in projecting curves on the surface of the
unit n-sphere so that curves of infinite length in &,,
may well have a finite length on S,,. Their normaliz-
ing factor 1/7 is a measure of the set of hyperplanes
h € &' which pass through the origin. Some of
the hyperplanes do not intersect ~.

Erddés and Offord [1956] discussed a similar prob-
lem, namely to compute the average number of real
zeros of a n degree random polynomial with coef-
ficients 1. They find that the average is again
% log n. The method is very different and it would be
desirable to be able to find a geometrical approach
to their analysis.

6. DETERMINISTIC RESULTS

The deterministic counterpart of the Kac—Erd&és—
Offord theorems could be as follows. Given an in-
finite sequence a = (v, )nen of £1, say the Erdés—
Offord case, we form the polynomials

X)) =g+ X+ +a, X"

Writing p(f,) for the number of real zeros of f,
counted with multiplicity, we want to study the av-
erage

2

1

n=0

and to compare it with 2log N as N goes to in-
finity. If the two quantities are equivalent we can
consider the sequence (a,)nen to be “random” in
some sense. We conjecture that almost all sequences

a € {—1,1}" behave like that. We studied two de-
terministic (4, —) sequences. The first is the Thue—
Morse sequence, which is the only nontrivial ex-
ample for which we can give a precise result. It
is also a special case of more interesting sequences
(see addendum at the end of this paper for details).
Even though the Thue-Morse sequence is far from
mimicking randomness, it still retains some features
associated with randomness: namely, the spectral
measure is continuous (yet not absolutely continu-
ous as would be the case for a random sequence).
Theorems 6.1 and 6.2 below show that the Thue-
Morse sequence is actually far from random.

Before stating them, we consider another (4, —)
sequence which appears to behave a la Kac—Erdés—
Offord. Put By = B; = 1 and B, = p, mod 4 for
n > 2, where p, is the n-th prime number. To
this day it seems completely out of reach to prove
any relevant theorem concerning the zeros of the
related polynomials. So we leave it as a conjecture
to establish that the average is equivalent to 2 =log N.
See our numerical evidence obtained with the help of
the command polsturm of PARI-GP up to V = 600.
Figure 1 shows

N-1
™
9N log N ;p(f)

as a function of N when the coefficients of f,, follow
a random sequence and the 3 sequence mentioned
above.

In the remainder of the paper, (g;);eny will rep-
resent the Thue-Morse sequence defined by &; =
(—1)*@) where /(i) is the sum of the binary digits of
i. Then f,(X) will be the Thue-Morse polynomial
of degree n, that is, f,(X) =¢co+&1 X+ +¢,X".
For this very special sequence we are able to prove
that

1
lim ——— —
N'oo Nlog N nz_op(f”) !

In fact, we shall show:

Theorem 6.1. If n € N is even, f, has at most two
real roots. More precisely:

1. If n = 0 mod 4 and €, = 1 then f, has no real
T00t.

2. If n = 2 mod 4 and ¢, = 1 then f, has two
negative roots.
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FIGURE 1. Plot of /(2N log N) Zf:’;ol p(fr) as a function of N, for a random sequence (left) and the 3 sequence

of the text (right).

3. Ife, = —1 then f,, has two real roots, one positive
and the other negative.

4. If n € N is odd, let k be the 2-adic valuation of
n+1. Then ife, = (—1)k, f, has 2k—1 real roots
and if €, = (—1)**', f, has 2k + 1 real roots.

Theorem 6.2. The mean
1 N1
n=0

L as N tends to infinity.

tends to Y

We start with elementary results.

7. ELEMENTARY PROPERTIES

First we remark that e5; = ¢; and €9;,.1 = —&9; and
that the generating series of (g;);cy is

(oo}

ieixi =T -x%).

=0

(7-1)

Now we define the Thue—Morse word € on the al-
phabet {+, —} by iterating the morphism ¢ defined
by ¢(+) = +— and ¢(—) = —+ so that

€ = lim ¢"(+).
n— oo

The link between the Thue—-Morse word and the
Thue—Morse sequence is well known. The letter
of order 7 of € is + or — depending on whether
g, = 1 or g = —1. We introduce another useful
morphism, namely v satisfying ¢(+) = +——+ and
(—) = —++—. Since ¥ = p?, we have also

€ = lim ¢¥"(4).

n— o0

At last, if ¢ < j we write ;€; for the factor of €
whose first (resp. last) letter is the letter of rank 4
(resp. j) of €. For example ¢€3 = +——+. In the
same way, the definitions of ¥ and ¢ ensure that

4n84n+3 = ¢(+) or 1/](_)

and that +++ and ——— are never factors of €.

We now get back to polynomials. We write R(P)
for the set of real roots of a polynomial P. Note
that in general |R(P)| # p(P) since p(P) counts
the roots with multiplicity. If we consider a poly-
nomial P with coefficients £1 it is well known that
R(P) C [—2,—%] U [%,2]. In addition, for Thue-
Morse polynomials, we have:

Lemma 7.1. R(f,,) N [—0.95,0.95] = & for n > 255.

(7-2)

Proof. Indeed,

ot
1-095

Now (7-1) shows that fass(z) = [[I_,(1 — %) so
that for z € [—0.95,0.95] we have

f255($) 2 f255(095) = 0.000132... s

| fu(@) — fos5(x)] < 0.95°%

5256 1

whereas 0.9 095

< 0.00004. U

We now investigate odd degrees.

8. THUE-MORSE POLYNOMIALS OF ODD DEGREE

Lemma 8.1. If n = —1 mod 2%, namely if n = v2* +
28 — 1 with v > 0, then

FalX) = for 1 (X) fu(X7).
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Proof. We remark that every integer i € [0, n] can be
written uniquely as the sum i = 2¥q 4+ r with 0 <
g<vand 0 <r <2¥ —1. Since g; = €rEq, We have

2k_1 o

(X)) = Zn:a,-X" = Z Zngrquqz’“
= foroa(X) fu(XP). O

Now we specify the roots of for_.

Lemma 8.2. Let k be a positive integer. The only
real Toots of fox_1 are —1 and 1 respectively of order

k—1 and k.

Proof. This relies on the factorization

Faa(X) = (1— X514+ X T+ X%)

=1

k—1-1

derived from (7-1). O

Lemma 8.3. For k > 2, fox_; is strictly increasing on

[—1,—%[ and strictly decreasing on [0, 1].

Proof. The equation in the proof of the preceding
lemma asserts that for ;(z) > 0 for z in | — 1,1].
Moreover

We deduce from this that f;,_,(z) < 0 for z € [0,1]

and that f5, () >0on [—-1,—3%[. O

Now we prove that the derivative of Thue-Morse
polynomials can be bounded, in some cases, on an
neighbourhood of —1 and 1. We set I, = [—1, -1+

%] and IF = [1—%, 1}.

Lemma 8.4. If n > 3 is an odd integer, we have
|fi(z)] <4 onIf. Ifn=3mod4 then |f(z)| < 10

on I .

Proof. For the first point, suppose that n = 3 mod 4.
Then,

fa(z) = fs(@)g(a") = (1 — 2°)h(x).

It is easy to see that g(x) and so also

h(z) = (1+ z)g(z")

have coefficients £1. The equality (8-1) then im-
plies that |h(z)| < (n+1)/2 on [0, 1] and that

n—3
T4 2
—n—2
W (2)] < S (40 +4i+1) = %
1=0

Since f/(z) = (1 —xz)*h/(z) — 2(1 — x)h(x), we have

, 3\2n?t—n—2 3 n+1
@< () 1 T2
33n2 + 15n — 18
- 16n2 <3
for all n > 0.

If n =1 mod 4 we write
fi(@) = f1y(@) % (0 — Dam=? = nan~?

Obviously, for n > 3, |[(n — 1)z" 2 —na" | < 1
[0,1]. The result is proved on I} since |f! ,(z)| < 3,
by the previous point.

For x € I, we begin by the case n = 7 mod 8, we
write f,(z) = (1 + z)?k(z) and as previously we get
|k(z)| < 2n+2 and |K'(z)|] < n® —n—2 which assert
that | f(z)| < 4 for all n > 0.

If n = 3 mod 8, relation (7-2) ensures that

| fu(@)| < [foma(@)|[+](n=3)2" " fa(2)|+|2"*f3(2)].
The summands are bounded by 4, 2, and 4. O

9. THUE-MORSE POLYNOMIALS OF EVEN DEGREE

If n is a positive integer we have
fan(X) = fu(X?) = X foa (X7),
fon(X) = (1 = X) fu(X?) + e, X7

We continue with a result on the monotonicity of
f! near —1 and 1.

Lemma 9.1. Let n be an even positive integer. Then
f! does not vanish on I, UIT. More exactly, on I,
we have

€n  if n =2 mod 4,

sen(fu) = { if n =0 mod 4,

and on I we have sgu(f!) = ¢e,.

_ETL

Proof. For = € I}, we write f/(z) = f._,(z) +

ennx™ t. Then for n large, Lemma 8.4 ensures that
nz"~! is greater than |f/(x)| on I. For small n
we check the result directly. On I, the starting

relations are f;(z) = fi () — epy1(n + 1)z" or
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fi(z) = fl_i(x) + e na™ ! and we conclude with

n

the same arguments. O

Concerning the real roots of f,, two criteria must
be taken into account, namely the remainder of n
modulo 4 and the coefficient of the highest term ¢,
of f,. So we define four sets: Ay, A1, Bg, and B;.
The letter A stands for the condition n = 0 mod 4,
and B for n = 2 mod 4. The indices 0 and 1 mean
respectively that €, = 1 and ¢, = —1. For example,

Ar={fn|n=0mod 4 and ¢, = —1}.

Figure 2 shows the behaviour of polynomials in each
set.

Therefore we shall show that for n even, f, has
at most 2 real roots. The proof of this fact requires
different methods depending on the part of [—2,2]
that we consider.

The next lemma enables us to reduce the domain
where we can expect f,, to vanish.

N

0.5 1
0.5 1

IN)

N

-4

Lemma 9.2. Let f, be a Thue-Morse polynomial of
even degree, then R(f,) C [—2,1]. In addition, if
n =0 mod 4 then R(f,) C [-1,1].

Proof. As n — 1 is odd, Lemma 8.1 ensures that

|ful@)| = [l2"] = | fi(2) fo ().

Now if z > 1 then |2"| > % This and (9-1)
imply that f, has no real root greater than 1.

If n =0 mod 4, Lemma 8.1 shows that | f,(z)| >

9-1)

[lz"| = | f3(x) fo(z")||. Moreover if x| > 1 it is im-
mediate that
no [ =DE" -] | fs(z)(=" - 1)
2”1 > z2+1 N zt—1 ’

Therefore |z"| — |f3(z)f,(z*)| > 0 if |z| > 1, which
completes the proof. O

Lemma 9.3. Let f,, € Ao U By, then f, is positive on
[0,1]. In particular, R(f,)N[0,1] = @.

Proof. We consider the set Cq = Ay U By, ordered by
the degree.

-0.5

-1

-1

5

-2

6
4
2

0.5
-1 -0.5
-1 -0.

2.5
-1.5 0.5

FIGURE 2. Typical representatives of Ag, A1, Bo, B1.
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We prove the lemma by induction on the rank of
the elements of Cy. This result is true for the first
polynomials of Gy, namely, fs, fio and fis.

Suppose the result is true for all polynomials in
Co whose rank is at most r > 3. Let d be the degree
of the polynomial of rank r and f, the polynomial
of €, whose rank is » + 1. Examining ¢*(+) and
©*(—) we deduce that

n—d<6.
From (9) we know that
Ful@) = (1= @) foa(a?) + 2"

If f, € Ao then f,/; € €y and by the hypothesis
of induction, f,/2(x) > 0 on [0,1]. Therefore f, is
positive on [0, 1], and the condition is fulfilled for a
polynomial of rank r + 1.

If f,, € By, we search the Thue-Morse polynomial
of smallest degree m greater than n such that f,, €
Aop. The idea is to show that the difference f,(z) —
fm () is positive. We check that m must satisfy m =
n+2 or m = n+6 and therefore that f,(z) — fi.(z)
must equal z"*! — "2 or

(9-2)

xn+1 + $n+2 _ xn+3 _ xn+4 + mn+5 _ xn+6'

Moreover, from (9-2), we have m —d < 12. Since
12 < d,
m
— < d.
2

So we can write
fn(@) = (1= ) frn)2(2®) + ™!

and conclude that f,, does not vanish on [0, 1].

To complete the proof, we verify that zn+1 — 27 +2
and xn+1 + xn+2 _ anrS _ xn+4 + xn+5 _ xn+6 are
positive on 0, 1[. Since f,(0) = f,(1) = 1, the hy-
pothesis is fulfilled in this case too. The polynomial
fn of rank r + 1 does not vanish on [0, 1]. a

Lemma 9.4. Let f, € Ao U By, then f, is positive on
[—1,0]. In particular, R(f,) N[-1,0] = @.

Proof. We consider the set
Ay ={fn € Ao | €n1 = —1},

ordered by the degree. So the terms of f, of degree
n to n—4 are known. They correspond to the factor
n748n = 1/}(_)4_

First we show by a descending induction that ev-

ery polynomial in Ay is positive on [—1, —%].

For this, we display polynomials in A, which are
positive on [—1, —%] and whose degree is arbitrarily
large. If n;, = 2824+ 2%1 with k odd, then f,, € Ao,

€n,—1 = —1 and we are able to prove that f,, is
positive on [—1, —2].

Now we focus our attention on the second step of
the induction. We suppose that f,, the polynomial
of rank r in A, is positive on [—1, —ﬂ and we want
to deduce that f,, € Ay whose rank is r — 1 is also
positive on [—1,—3].

In fact the terms of higher degree of f, are well

known. Examining € we find four cases:

n—128n = Tﬁ(—"‘—)‘h
n—16Cn = 1/)(_++_>+7
n7168n = w(_—i___)_{—’

n—208n = "Qb(_‘H‘__) +.

We obtain respectively m = n — 8, m = n — 12,
m =mn — 12, m = n — 16, so that

fu(@) = fu(z) + 2" P(2),

where P(z) must be a polynomial among four deter-
mined polynomials. For example, if m = n — 8 then
P(z)=1+z—2*+2*—2* —2°+ 25— 2". We point
out that m + 1 is odd and that P(x) is negative on
[—1, —%] in all the cases. Therefore the hypothesis
fa(z) > 0 proves that f,,(z) >0 on [-1,—2]. Ev-

ery polynomial in A is then positive on [—1,—2].

If f, € Ao\ Ay, wesee that , 4&,. 11 = V(++—+)
or n_4€nt15 = Y(++——+). Then

fu(@) = fn(@) + 2™ P(2)

with f,,(z) € Ay, m =n+8 or m = n+ 12 and

P(z) negative on [—1, —32] in all the cases. It follows

4
that f,(z) > 0 on [—1,—3] for every polynomial
fn € Ao.

Finally, if f, € B; then f, , € Ay and f,(x) —
fa—2(z) is positive on |—1, —3] which ensures that
every polynomial in Ay U B, is positive on [—1, —%]
since f,(—1) = —1.

Let f, be in Ay U B,. If n < 255 a direct study
with the command polsturm of PARI-GP shows that
fn does not vanish on [—1,0]. If n > 255, Lemma
7.1 proves that f, does not vanish on [—%,0] C
[—0.95,0] so that R(f,) N [-1,0] = 2. O

The two following lemmas display intervals contain-
ing a root.
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Lemma 9.5. Let f, € A, U By, then f, has a unique
root in [0, 1].

Proof. Let C; = A; U B, be ordered by the degree.
If f, € C; we show that f/(z) < 0 on [1,1] by a
descending induction on the rank of the elements of
Cy.

First of all, for k& > 2, fo» belongs to A;. More-
over, Lemma 8.3 asserts that f;, < 0on [0,1]. So we
can start the induction at degrees arbitrarily large.

If f,, the polynomial of rank r of €y, is strictly
decreasing on [%,1], then we prove that f,,, the
polynomial of rank r — 1 of €y, satisfies the same
property.

If f,, € Ay, the tail of f,, corresponds to the factor

n748n = w(‘i‘)_ or n748n = ¢<_)_

sothat m=n—2or m=n—4.
If f, € By, the tail of f,, must be

nfﬁgn = '(,D(_)‘i‘— — Oor n,ﬁ((:n = ¢(+)+__

and m=n—6orm=n—4.
So
fm(@) = ful) + 2" Q()

with 3 possibilities for @Q(z). In each case, it is easy
to check that ™' Q(z) is decreasing on [£,1— 2],
because Q(z) and z@Q'(x) are increasing on this in-
terval. On I}, Lemma 9.1 asserts that f/ (z) < 0.
So each polynomial of f,, € C; is strictly decreas-

ing on [£,1]. Since f,, satisfies

fm(o)fm(_l) =-1

and does not vanish on [0, %], we have proved the

result. O

Lemma 9.6. Let f, € Ay U By. Then f, has a unique
root in [—1,0].

Proof. For n < 255 a direct study shows that ev-
ery f, € A; U By has a unique root in [-1,0]. We
suppose until the end of the proof that n > 255.
Let
.A1+ = {fn € .Al | En—1 — 1}

be ordered by the degree. We show with the help
of a descending induction that every element of A}
with a degree greater than 255 is strictly increasing
on [—1,-0.92].

First, if £ > 2 is an even integer then fo+ belongs
to A} and f2,(z) > 0 on [-1,-0.92], by Lemma 8.3.

The second step of the induction consists in prov-
ing that f,,, the polynomial of A of rank r — 1, is
increasing on [—1, —0.92] assuming that f,, the poly-
nomial of rank 7 is also increasing on this interval.
The different possible tails of f,, are

n7128n = ¢(+_+)_7

n—16€n = "[}(‘f’__"i_)_v
n—16€n = w(+_++)_7
n7208n = ¢(+__++)_’

so that
fm(x> = fn(x) —+ acmHR(w),

where R(z) can take four different values. In each
case, we check that 2™ R(z) is strictly increasing
on [—-1+3/2m, —0.92].

As Lemma 9.1 proves that f/ (z) > 0 on I, the
monotonicity of f,,(z) on [—1,—0.92] is established
for all the polynomials in A} of degree > 255.

If f, € A, \ A we point out that , 4&,,11 =
(=) O n-srirs = B(——++-). 50

fu(@) = fu(@) + 2™ R(2)
with f,,(z) € A, m =n+8 or m = n + 12 and
x™ " R(z) strictly increasing on [—1+3/2m, —0.92].
Thus as previously, f/(z) > 0 on [-1,—0.92].

Finally, f, € A; is equivalent to f, o € By. Now
frnaa(z) — fu(x) is increasing on

[—1+3/(2n +4), —0.92],

and we conclude on I, , by Lemma 9.1.

So every polynomial f, € A; U By is strictly in-
creasing on [—1,—0.92]. From Lemma 7.1, f, does
not vanish on [—0.92,0] and it satisfies

fa(0)fu(=1) = —1.
So f, has a unique root in [1,0]. O

We now study the property of the reciprocal poly-
nomial f of f,, in order to determine the real roots
of f, outside the unit circle.

Lemma 9.7. Let f, € By U B,. We can then write

fu(X) = €.Q(X) X" 959 + f(X),
with r = n — deg@ — 1 and where Q(X) is one of
flO(X)a 7f14(X)’ flS(X)a 7f22(X)-

Proof. For convenience, we first prove a similar result
for m = 3 mod 4.
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If m = 3 mod 4 then f,,(X) = f3(X)f,(X?).
Without loss of generality we can assume that ¢, =
1. As t¥(+—+ —+) never occurs in the Thue-Morse
word &, we see that the tail of f,, must be one of
the following words

m-11€m = P(—++),
m-15Cm = P(+——+),
m-19Cm = ¢(_++_+)a
m—23Cm = 1/’("'**‘1'*'1')

Thus f,,(X) equals
P(X)X™m=%" + f,(X),

where P(X) is one of — f11(X), fi14(X), —fi1s(X), or
fa2(X). If n =m — 1 then

fa(X) = QX)X 799 + f,(X),

where Q(X) is one of —f1o(X), fia(X), —f1s(X), or
fa2(X). Finally, €,, = —e, and the proof is com-
pleted. ]

Lemma 9.8. Let f, € By U B,. Then
R(f)N[-13,-1] = 2.
Proof. Let f,, € BoU B;. Using Lemma 9.7 we write
falw) = €.Q(z)a" "5 + f.(2),
with Q € {—fi0, f1a, —f1s, f22} and
r=n—deg@Q — 1= 3 mod 4.
If £, vanishes at z then z"~4°¢%|Q(x)| = |f.(z)| and

(@ — Dan-te)

|fr(x)| < z2 4+ 1 < |xn7degQ - 1|
— xnfdegQ _ 1
Thus
l.n—degQ -1
Q)] < —rodmq S L.

Therefore if |Q(z)| > 1 then f,(z) # 0. Now the
minimum of

—f10(2), f1a(z), —fis(x), fo(z)
is > 1 on [-1.3,—1[. Since f,(—1) # 0 we have
R(f)N[-13,-1] = @. O

Lemma9.9. If f,, € BoUB, then f, has a unique root
in [—2,—1].

Proof. By Lemma 9.7,
fa(@) —eaQ" () = f7 (z)x =t
with r =n —deg@ — 1 = 3 mod 4. Therefore

f:(.l’) = f3($)g(.’1}4),

where ¢ is a unimodular polynomial. Thus

|(f7 (2)z9= Y| <Y 7| (2 fy(a)ats 9.
k=0
Now for n odd and z in [-0.8, —0.5], |(f3(x)z")| <
2.52(—0.8)" — 0.81(—0.8)"n. As

Z2.52(—0.8)4’““1—0.81(—0.8)4’“+11(4k+11) < 1.3,
k=0

we deduce that on this interval |(f7(z)zd®@+1)| <
1.3 as soon as deg @) > 10. The study of the deriva-
tives of f}y, —f4, fis and —f;,, ensures that they
are greater than 1.3671 ... in modulus and that they
keep the same sign on [-0.8,—0.5]. The derivative
of f* then keeps its sign on [-0.8, —0.5]. Now

fa(0)fr(=1) = -1

and f(z) does not vanish on [—1,—0.8] by Lemma
9.8. Thus f; has a unique real root in [—1,—0.5].
This proves that f,, vanishes only once in [—2, —1].

0

We can now prove Theorems 6.1 and 6.2.

10. PROOF OF THE THEOREMS

Proof of Theorem 6.1. Let n be even. Lemmas 9.2, 9.3,
9.4 establish the theorem when f, € Aj.

If f, € Ay, Lemmas 9.2, 9.5 and 9.6 ensure the
result.

If f, € By, Lemmas 9.2, 9.3, 9.6 and 9.9 allow us
to conclude.

If f,, € By, Lemmas 9.2, 9.4, 9.5 and 9.9 complete
the proof for the case n even.

Let n be odd. If k is the 2-adic valuation of n + 1
then we see that

FalX) = for 1 (X) fu(X?)

with v even. From what we have just proved f, has
a real positive root if and only if £, = —1. The
relation ey« _; = (—1)* and Lemma 8.2 complete the
proof. O
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Proof of Theorem 6.2. Let N be an integer. We in-
vestigate polynomials of even degree n < N. The
relation |fy_1(1)| < 1 implies that

N -1
2

<\{0<z‘<N—1|si:1}\<N;1.

The same inequalities hold for
{O<i<N-—1]g=-1}.

Since €; = 1 is equivalent to €5; = 1 and ¢; = 1 is
equivalent to €5;,; = —1, the four sets

{0<i<N-1]g =(-1)" and i = s mod 4},

for r € {0,1} and s € {0, 2}, have between N/8 — C
and N/8+C elements, for some constant C' indepen-
dent of . So the Thue-Morse polynomials of even
degree less than N contribute to at least % —6C
and to at most % + 6C real roots.

We now examine odd degrees. Let k be an inte-
ger. We consider the integers i € [0, N—1] such
that the 2-adic valuation of ¢ + 1 is precisely k.
These i’s can be written generically g2F+! 4 2¢-1!
with ¢ € N and ¢; = ¢,(—1)*. So for ¢ = 0 mod 4
and t = ¢q, g+1, ¢+2, g+3, the Thue—Morse polyno-
mials of degree t2"*! + 2*=1 have 8k roots. Now for
every N and k fixed, one can make | N/2*"3] such
groups which give 8k| N/2*+3| roots, and for each k
we forget at most 8k roots in the sum.

Thus it is easy to see that

6C 1= 1/ N 3N
o < _ R, -
N \anop(fn) N<;8k{2k+sJ+ 4 )
[logy V|
6C 1
<2 4= 8k,
NN &
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ADDENDUM

After this article was submitted, a generalization of
its methods allowed Doche to find families of (+, —)
sequences for which

liminf p(f,,)/logn > 0.
See [Doche 1999] for details.
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