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We study the average number of intersecting points of a given

curve with random hyperplanes in an n-dimensional Euclidean

space. As noticed by A. Edelman and E. Kostlan, this problem is

closely linked to finding the average number of real zeros of ran-

dom polynomials. They showed that a real polynomial of degree

n has on average 2� log n + O(1) real zeros (M. Kac’s theorem).

This result leads us to the following problem: given a real se-

quence (�k)k2N , study the average

1

N

N�1X
n=0

�(fn),

where �(fn) is the number of real zeros of fn(X) = �0 +�1X+ � � �+�nXn. We give theoretical results for the Thue–Morse polynomi-

als and numerical evidence for other polynomials.

1. FINITE CURVESLet En be real n-dimensional Euclidean a�ne spacewith a given orthonormal base. We identify pointsx 2 En with the column vector t(x1; : : : ; xn) whoseentries are the coordinates of x.A hyperplane h � En which does not contain theorigin is represented by its Cartesian equationnXi=1 hixi = 1;
or hx = 1 for short, where h = (h1; h2; : : : ; hn) is anelement of the dual space E�n. Both En and E�n areendowed with the Euclidean norm.A change of orthonormal base in En induces achange of coordinates from the initial base to thenew one: x 7! x0 = Ax+ x0
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where A is an n� n orthogonal matrix. The hyper-plane h then becomes h0 = hA�1=(1 + hA�1x0) andit is easy to see thatkh0k�n�1 nYi=1 dh0i = khk�n�1 nYi=1 dhi;so that dh = khk�n�1 nYi=1 dhiis the natural invariant measure on the space E�n.Perhaps the most elementary way to see this classi-cal result is to notice that any change of orthogonalbase is a product of a rotation around the originfollowed by n translations parallel to a coordinateaxis. For each of these component base changes,the above invariance holds.Let 
 � En be a �nite recti�able curve, that is,a recti�able curve of �nite length j
j. Let 
(
) bethe family of hyperplanes h that intersect 
, and letj
\hj be the number of intersection points of h and
. Santal�o [1976, p. 245] establishes thatZ j
 \ hj dh = �(n�1)=2��n+12 � j
j; (1–1)where � is the usual Euler gamma function. See also[Klain and Rota 1997].
2. BREADTH OF A BOUNDED SETLet K be a bounded convex set in En. For x 2 Encall Kx the length of the orthogonal projection of Kon the axis Ox, where O is the origin. Lengths arepositive. The mean breadth of K isZSnKx dx�ZSn dx;where Sn is the unit sphere x21 + x22 + � � �+ x2n = 1:If L is any bounded set in En, we de�ne the meanbreadth B(L) as the mean breadth of the convexhull of L; in particular, the mean breadth of 
 iswell de�ned. Using Santal�o's result again, we easily�nd that the h-measure of those hyperplanes h thatintersect 
 is Zh\
 6=? dh = �n=2��n2 �B(
): (2–1)The quotient of equalities (1{1) and (2{1) thus givesus the average number N(
) of intersecting points

of 
 with a random hyperplane given that these hy-perplanes meet 
:N(
) = 1p� ��n2 ���n+12 � j
jB(
) : (2–2)Let � be the diameter of the set 
. Then clearlyB(
) 6 �. On the other hand the convex hull of 
contains a segment � of length �. SinceB(
) > B(�) = 1p� ��n2 ���n+12 � �;where the equality is easily veri�ed, we concludethat 1p� ��n2 ���n+12 � j
j� 6 N(
) 6 j
j� : (2–3)

3. EXTENSION TO FINITE DOODLESFormulas (2{2) and (2{3) can be extended to gen-eralized curves called \doodles". A doodle 
 is aconnected set which is a �nite union of recti�ablecurves 
1; 
2; : : : ; 
k. The length of 
 is naturallyde�ned as j
j = kXi=1 j
ij:To any doodle 
 we can associate a closed curve ~
that goes over 
 twice. According to formula (2{2),N(~
) = 1p� �(n2 )�(n+12 ) 2j
jB(
) ;since j~
j = 2j
j and B(~
) = B(
). But N(~
) =2N(
) since each intersection point of a hyperplaneh with ~
 counts twice. Dividing by 2 leads to for-mula (2{2) for doodles.This result should be compared to those of Favard[1932], Sulanke [1966] and Laurent-Gengoux (pri-vate communication).
4. DIMENSIONSeveral earlier articles have discussed the dimensionof curves in the plane [Mend�es France and Tenen-baum 1981; Dekking and Mend�es France 1981; Men-d�es France 1991]. The extension to curves in En isstraightforward.Indeed, let 
 be an unbounded, locally recti�ablecurve in En such that bounded subsets of En containonly �nite portions of 
. So for example in E2 curves
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like the one given in polar coordinates by � = sin 1=�are excluded: the unit ball centered at the origincontains in�nitely many branches of the curve.With no real loss of generality we assume that 
has an endpoint (or rather a starting point!). Let 
sdenote the beginning portion of 
 of length s. Let" > 0 be given. Consider the so-called Minkowski"-sausage
(s; ") = fx 2 En j dist(x; 
s) 6 "g :Let j
(s; ")j be its volume. If �(s) is the diameter of
s, de�ne the dimension d = dim(
) by the formuladim(
) = lim infs!1 log j
(s; ")jlog �(s) : (4–1)Despite appearances, dim(
) does not depend on ":this is easily seen [Mend�es France 1991, page 329].Clearly 1 6 d 6 n, and it can be shown that for all� 2 [1; n] there exists a curve 
 for which dim(
) =�.The volume of 
(s; ") is at mostj
(s; ")j 6 �(n�1)=2��n+12 � "n�1s+O("n);so that dim(
) 6 lim infs!1 log slog �(s) : (4–2)Under certain circumstances equality holds: for ex-ample, when there exists a real number A > 0 suchthat unit balls contain portions of 
 of total lengthless than A.Let " > 0 be given. Formula (4{2) shows thatthere exists a value s(") such thatlog �(s)log s 6 1d + "2for all s > s("), so that�(s) 6 s1=d+"=2:Inequality (2{3) therefore implies a lower bound forN(
s) =: N(s):N(s) > 1p� ��n2 ���n+12 � s1�1=d�"=2 > s1�1=d�": (4–3)On the other hand, if 
 is a curve for which for-mula (4{2) is an equality, thenN(s) 6 s1�1=d+" (4–4)for in�nitely many large s.

Inequality (4{3) implies that if d > 1 the averagenumber of intersections of 
s with a random hyper-plane tends to in�nity as s grows. In particular, if
 is an unbounded algebraic curve then N(s) is lessthan the degree of 
: this forces d = 1. Unboundedalgebraic curves are one-dimensional.
5. REAL ZEROS OF REAL POLYNOMIALSLet 
 be an unbounded curve in En as before. Letx1 = '1(s); x2 = '2(s); : : : ; xn = 'n(s)be its parametrical representation: the 'i's are realfunctions of bounded variation on every �nite inter-val and s denotes the length coordinate. The pre-vious results show that the average number of realzeros of the equationnXi=1 hi'i(t)� 1 = 0; for 0 6 t 6 s;is N(s) > s1�1=d�"for all large s.The most interesting case is when 'i(t) = ti, withjtj 6 T � s1=n, for i = 1; 2; : : : ; n. Then N(s) wouldbe the average number of real zeros in [�T;+T ] ofthe polynomialP (t) � hntn + hn�1tn�1 + � � �+ h1t� 1:Unfortunately, as noticed in Section 4, the dimen-sion is 1 so all we get is the trivial result N(s) > 0.Edelman and Kostlan [1995], re
ecting on a re-sult of M. Kac [1943; 1949; 1959], realized that itis possible|and even easy|to obtain the averagenumber of real zeros of the polynomialh0 + h1t+ � � �+ hntnusing results from integral geometry. Indeed, con-sider the curve(x0; : : : ; xn) = (1; t; t2; : : : ; tn); for t 2 R ;or rather the curve 
 obtained by projecting it cen-trally onto the unit sphere x20 + � � �+ x2n = 1. Inter-secting 
 by a random hyperplane hh0x0 + h1x1 + � � �+ hnxn = 0;where h = (h0; h1; : : : ; hn) is uniformly distributedon the surface of the unit sphere h20 + � � � + h2n =1, shows that the average number of intersecting
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points| that is, zeros of the polynomial h0 + h1t+� � �+hntn|is equal to j
j=�. The length j
j is easilycomputed:1� j
j = 1� Z +1�1
s 1(t2 � 1)2 � (n+ 1)2t2n(t2n+2 � 1)2 dt:This is Kac's formula, obtained by Edelman andKostlan's analysis. Kac obtained an equivalencewhen n increases to in�nity and the second authorswere able to give a much more precise result which�nally shows that the average number of real zerosof the polynomial is2� logn+ 0:625 : : : + 2�n +O� 1n2� :The main di�erence between their approach andours holds in projecting curves on the surface of theunit n-sphere so that curves of in�nite length in En+1may well have a �nite length on Sn. Their normaliz-ing factor 1=� is a measure of the set of hyperplanesh 2 En+1 which pass through the origin. Some ofthe hyperplanes do not intersect 
.Erd}os and O�ord [1956] discussed a similar prob-lem, namely to compute the average number of realzeros of a n degree random polynomial with coef-�cients �1. They �nd that the average is again2� log n. The method is very di�erent and it would bedesirable to be able to �nd a geometrical approachto their analysis.

6. DETERMINISTIC RESULTSThe deterministic counterpart of the Kac{Erd}os{O�ord theorems could be as follows. Given an in-�nite sequence � = (�n)n2N of �1, say the Erd}os{O�ord case, we form the polynomialsfn(X) = �0 + �1X + � � �+ �nXn:Writing �(fn) for the number of real zeros of fncounted with multiplicity, we want to study the av-erage 1N N�1Xn=0 �(fn);and to compare it with 2� logN as N goes to in-�nity. If the two quantities are equivalent we canconsider the sequence (�n)n2N to be \random" insome sense. We conjecture that almost all sequences

� 2 f�1; 1gN behave like that. We studied two de-terministic (+;�) sequences. The �rst is the Thue{Morse sequence, which is the only nontrivial ex-ample for which we can give a precise result. Itis also a special case of more interesting sequences(see addendum at the end of this paper for details).Even though the Thue{Morse sequence is far frommimicking randomness, it still retains some featuresassociated with randomness: namely, the spectralmeasure is continuous (yet not absolutely continu-ous as would be the case for a random sequence).Theorems 6.1 and 6.2 below show that the Thue{Morse sequence is actually far from random.Before stating them, we consider another (+;�)sequence which appears to behave �a la Kac{Erd}os{O�ord. Put �0 = �1 = 1 and �n � pn mod 4 forn > 2, where pn is the n-th prime number. Tothis day it seems completely out of reach to proveany relevant theorem concerning the zeros of therelated polynomials. So we leave it as a conjectureto establish that the average is equivalent to 2� logN .See our numerical evidence obtained with the help ofthe command polsturm of PARI-GP up to N = 600.Figure 1 shows �2N logN N�1Xn=0 �(fn)as a function of N when the coe�cients of fn followa random sequence and the � sequence mentionedabove.In the remainder of the paper, ("i)i2N will rep-resent the Thue{Morse sequence de�ned by "i =(�1)�(i) where �(i) is the sum of the binary digits ofi. Then fn(X) will be the Thue{Morse polynomialof degree n, that is, fn(X) = "0+ "1X+ � � �+ "nXn.For this very special sequence we are able to provethat limN!1 1N logN N�1Xn=0 �(fn) = 0:
In fact, we shall show:
Theorem 6.1. If n 2 N is even, fn has at most tworeal roots . More precisely :
1. If n � 0 mod 4 and "n = 1 then fn has no realroot .
2. If n � 2 mod 4 and "n = 1 then fn has twonegative roots .
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FIGURE 1. Plot of �=(2N logN) PN�1n=0 �(fn) as a function of N , for a random sequence (left) and the � sequenceof the text (right).
3. If "n = �1 then fn has two real roots , one positiveand the other negative.
4. If n 2 N is odd , let k be the 2-adic valuation ofn+1. Then if "n = (�1)k, fn has 2k�1 real rootsand if "n = (�1)k+1, fn has 2k + 1 real roots .
Theorem 6.2. The mean1N N�1Xn=0 �(fn)tends to 114 as N tends to in�nity .We start with elementary results.
7. ELEMENTARY PROPERTIESFirst we remark that "2i = "i and "2i+1 = �"2i andthat the generating series of ("i)i2N is1Xi=0 "iXi = 1Yl=0�1�X2l�: (7–1)

Now we de�ne the Thue{Morse word E on the al-phabet f+;�g by iterating the morphism ' de�nedby '(+) = +� and '(�) = �+ so thatE = limn!1'n(+):The link between the Thue{Morse word and theThue{Morse sequence is well known. The letterof order i of E is + or � depending on whether"i = 1 or "i = �1. We introduce another usefulmorphism, namely  satisfying  (+) = +��+ and (�) = �++�. Since  = '2, we have alsoE = limn!1 n(+):

At last, if i 6 j we write iEj for the factor of Ewhose �rst (resp. last) letter is the letter of rank i(resp. j) of E. For example 0E3 = +��+. In thesame way, the de�nitions of  and ' ensure that4nE4n+3 =  (+) or  (�): (7–2)and that +++ and ��� are never factors of E.We now get back to polynomials. We write R(P )for the set of real roots of a polynomial P . Notethat in general jR(P )j 6= �(P ) since �(P ) countsthe roots with multiplicity. If we consider a poly-nomial P with coe�cients �1 it is well known thatR(P ) � ��2;� 12� [ �12 ; 2�. In addition, for Thue{Morse polynomials, we have:
Lemma 7.1. R(fn) \ [�0:95; 0:95] = ? for n > 255.
Proof. Indeed,jfn(x)� f255(x)j 6 0:95256 11� 0:95 :Now (7{1) shows that f255(x) = Q7l=0(1� x2l) sothat for x 2 [�0:95; 0:95] we havef255(x) > f255(0:95) = 0:000132 : : : ;whereas 0:95256 11�0:95 6 0:00004. �We now investigate odd degrees.
8. THUE–MORSE POLYNOMIALS OF ODD DEGREE

Lemma 8.1. If n � �1 mod 2k, namely if n = v2k +2k � 1 with v > 0, thenfn(X) = f2k�1(X)fv(X2k):
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Proof. We remark that every integer i 2 [0; n] can bewritten uniquely as the sum i = 2kq + r with 0 6q 6 v and 0 6 r 6 2k � 1: Since "i = "r"q, we have
fn(X) = nXi=0 "iXi = 2k�1Xr=0 vXq=0 "rXr"qXq2k

= f2k�1(X)fv(X2k): �Now we specify the roots of f2k�1:
Lemma 8.2. Let k be a positive integer . The onlyreal roots of f2k�1 are �1 and 1 respectively of orderk � 1 and k.
Proof. This relies on the factorization
f2k�1(X) = (1�X)k(1 +X)k�1 k�1Yl=1�1 +X2l�k�1�l:
derived from (7{1). �
Lemma 8.3. For k > 2, f2k�1 is strictly increasing on��1;� 13� and strictly decreasing on [0; 1].
Proof. The equation in the proof of the precedinglemma asserts that f2k�1(x) > 0 for x in ] � 1; 1[.Moreover f 02k�1(x)f2k�1(x) = k�1Xl=0 �2lx2l�11� x2l :We deduce from this that f 02k�1(x) < 0 for x 2 [0; 1[and that f 02k�1(x) > 0 on ��1;� 13�. �Now we prove that the derivative of Thue{Morsepolynomials can be bounded, in some cases, on anneighbourhood of �1 and 1. We set I�n = ��1; �1+32n� and I+n = �1� 32n ; 1�.
Lemma 8.4. If n > 3 is an odd integer , we havejf 0n(x)j 6 4 on I+n . If n � 3 mod 4 then jf 0n(x)j 6 10on I�n .
Proof. For the �rst point, suppose that n � 3 mod 4.Then, fn(x) = f3(x)g(x4) = (1� x2)h(x):It is easy to see that g(x) and so alsoh(x) = (1 + x)g(x4) (8–1)

have coe�cients �1. The equality (8{1) then im-plies that jh(x)j 6 (n+ 1)=2 on [0; 1] and that
jh0(x)j 6 n�34Xi=0 (4i+ 4i+ 1) = n2 � n� 24 :

Since f 0n(x) = (1� x)2h0(x)� 2(1� x)h(x), we havejf 0n(x)j 6 � 32n�2n2 � n� 24 + 2 � 32n � n+ 12= 33n2 + 15n� 1816n2 < 3for all n > 0.If n � 1 mod 4 we writef 0n(x) = f 0n�2(x)� �(n� 1)xn�2 � nxn�1�:Obviously, for n > 3, ��(n� 1)xn�2 � nxn�1�� 6 1 on[0; 1]. The result is proved on I+n since jf 0n�2(x)j < 3,by the previous point.For x 2 I�n we begin by the case n � 7 mod 8, wewrite fn(x) = (1+x)2k(x) and as previously we getjk(x)j 6 2n+2 and jk0(x)j 6 n2�n�2 which assertthat jf 0n(x)j < 4 for all n > 0.If n � 3 mod 8, relation (7{2) ensures that��f 0n(x)�� 6 ��fn�4(x)��+��(n�3)xn�4f3(x)��+��xn�3f 03(x)��:The summands are bounded by 4, 2, and 4. �
9. THUE–MORSE POLYNOMIALS OF EVEN DEGREEIf n is a positive integer we havef2n(X) = fn(X2)�Xfn�1(X2);f2n(X) = (1�X)fn(X2) + "nX2n+1:We continue with a result on the monotonicity off 0n near �1 and 1.
Lemma 9.1. Let n be an even positive integer . Thenf 0n does not vanish on I�n [ I+n . More exactly , on I�nwe have sgn(f 0n) = � "n if n � 2 mod 4,�"n if n � 0 mod 4,and on I+n we have sgn(f 0n) = "n.
Proof. For x 2 I+n , we write f 0n(x) = f 0n�1(x) +"nnxn�1. Then for n large, Lemma 8.4 ensures thatnxn�1 is greater than jf 0n(x)j on I+n . For small nwe check the result directly. On I�n , the startingrelations are f 0n(x) = f 0n+1(x) � "n+1(n + 1)xn or
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f 0n(x) = f 0n�1(x) + "nnxn�1 and we conclude withthe same arguments. �Concerning the real roots of fn, two criteria mustbe taken into account, namely the remainder of nmodulo 4 and the coe�cient of the highest term "nof fn. So we de�ne four sets: A0, A1, B0, and B1.The letter A stands for the condition n � 0 mod 4,and B for n � 2 mod 4. The indices 0 and 1 meanrespectively that "n = 1 and "n = �1. For example,
A1 = ffn j n � 0 mod 4 and "n = �1g :

Figure 2 shows the behaviour of polynomials in eachset.Therefore we shall show that for n even, fn hasat most 2 real roots. The proof of this fact requiresdi�erent methods depending on the part of [�2; 2]that we consider.The next lemma enables us to reduce the domainwhere we can expect fn to vanish.

Lemma 9.2. Let fn be a Thue{Morse polynomial ofeven degree, then R(fn) � [�2; 1]. In addition, ifn � 0 mod 4 then R(fn) � [�1; 1].
Proof. As n� 1 is odd, Lemma 8.1 ensures that��fn(x)�� > ��jxnj � jf1(x)fv(x2)j��: (9–1)Now if x > 1 then jxnj > jx�1j jxn�1jjx2�1j . This and (9{1)imply that fn has no real root greater than 1.If n � 0 mod 4, Lemma 8.1 shows that ��fn(x)�� >��jxnj � jf3(x)fv(x4)j��. Moreover if jxj > 1 it is im-mediate thatjxnj > ����(x� 1)(xn � 1)x2 + 1 ���� = ����f3(x)(xn � 1)x4 � 1 ���� :Therefore jxnj � jf3(x)fv(x4)j > 0 if jxj > 1, whichcompletes the proof. �
Lemma 9.3. Let fn 2 A0 [ B0, then fn is positive on[0; 1]. In particular , R(fn) \ [0; 1] = ?.
Proof. We consider the set C0 = A0 [B0, ordered bythe degree.
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FIGURE 2. Typical representatives of A0, A1, B0, B1.
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We prove the lemma by induction on the rank ofthe elements of C0. This result is true for the �rstpolynomials of C0, namely, f6; f10 and f12.Suppose the result is true for all polynomials inC0 whose rank is at most r > 3. Let d be the degreeof the polynomial of rank r and fn the polynomialof C0 whose rank is r + 1. Examining '3(+) and'3(�) we deduce thatn� d 6 6: (9–2)From (9) we know thatfn(x) = (1� x)fn=2(x2) + xn+1:If fn 2 A0 then fn=2 2 C0 and by the hypothesisof induction, fn=2(x) > 0 on [0; 1]. Therefore fn ispositive on [0; 1], and the condition is ful�lled for apolynomial of rank r + 1.If fn 2 B0, we search the Thue{Morse polynomialof smallest degree m greater than n such that fm 2A0. The idea is to show that the di�erence fn(x)�fm(x) is positive. We check thatmmust satisfym =n+2 or m = n+6 and therefore that fn(x)�fm(x)must equal xn+1 � xn+2 orxn+1 + xn+2 � xn+3 � xn+4 + xn+5 � xn+6:Moreover, from (9{2), we have m � d 6 12. Since12 6 d, m2 6 d:So we can writefm(x) = (1� x)fm=2(x2) + "mxm+1and conclude that fm does not vanish on [0; 1].To complete the proof, we verify that xn+1�xn+2and xn+1 + xn+2 � xn+3 � xn+4 + xn+5 � xn+6 arepositive on ]0; 1[: Since fn(0) = fn(1) = 1, the hy-pothesis is ful�lled in this case too. The polynomialfn of rank r + 1 does not vanish on [0; 1]. �
Lemma 9.4. Let fn 2 A0 [ B1, then fn is positive on[�1; 0]. In particular , R(fn) \ [�1; 0] = ?.
Proof. We consider the setA�0 = ffn 2 A0 j "n�1 = �1g;ordered by the degree. So the terms of fn of degreen to n�4 are known. They correspond to the factorn�4En =  (�)+:First we show by a descending induction that ev-ery polynomial in A�0 is positive on ��1;� 34�.

For this, we display polynomials in A�0 which arepositive on ��1;� 34� and whose degree is arbitrarilylarge. If nk = 2k+2+2k+1 with k odd, then fnk 2 A0,"nk�1 = �1 and we are able to prove that fnk ispositive on ��1;� 34�.Now we focus our attention on the second step ofthe induction. We suppose that fn, the polynomialof rank r in A�0 is positive on ��1;� 34� and we wantto deduce that fm 2 A�0 whose rank is r � 1 is alsopositive on ��1;� 34�.In fact the terms of higher degree of fn are wellknown. Examining E we �nd four cases:n�12En =  (�+�)+;n�16En =  (�++�)+;n�16En =  (�+��)+;n�20En =  (�++��) + :We obtain respectively m = n � 8, m = n � 12,m = n� 12, m = n� 16, so thatfm(x) = fn(x) + xm+1P (x);where P (x) must be a polynomial among four deter-mined polynomials. For example, if m = n� 8 thenP (x) = 1+x�x2+x3�x4�x5+x6�x7. We pointout that m+ 1 is odd and that P (x) is negative on��1;� 34� in all the cases. Therefore the hypothesisfn(x) > 0 proves that fm(x) > 0 on ��1;� 34�. Ev-ery polynomial in A�0 is then positive on ��1;� 34�.If fn 2 A0nA�0 , we see that n�4En+11 =  (++�+)or n�4En+15 =  (++��+). Thenfn(x) = fm(x) + xm+1P (x)with fm(x) 2 A�0 ; m = n + 8 or m = n + 12 andP (x) negative on ��1;� 34� in all the cases. It followsthat fn(x) > 0 on ��1;� 34� for every polynomialfn 2 A0.Finally, if fn 2 B1 then fn�2 2 A0 and fn(x) �fn�2(x) is positive on ��1;� 34� which ensures thatevery polynomial in A0 [B1 is positive on ��1;� 34�since fn(�1) = �1.Let fn be in A0 [ B1. If n 6 255 a direct studywith the command polsturm of PARI-GP shows thatfn does not vanish on [�1; 0]. If n > 255, Lemma7.1 proves that fn does not vanish on �� 34 ; 0� �[�0:95; 0] so that R(fn) \ [�1; 0] = ?. �The two following lemmas display intervals contain-ing a root.
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Lemma 9.5. Let fn 2 A1 [ B1, then fn has a uniqueroot in [0; 1].
Proof. Let C1 = A1 [ B1 be ordered by the degree.If fn 2 C1 we show that f 0n(x) < 0 on � 12 ; 1� by adescending induction on the rank of the elements ofC1.First of all, for k > 2, f2k belongs to A1. More-over, Lemma 8.3 asserts that f 02k < 0 on [0; 1]. So wecan start the induction at degrees arbitrarily large.If fn, the polynomial of rank r of C1, is strictlydecreasing on �12 ; 1�, then we prove that fm, thepolynomial of rank r � 1 of C1, satis�es the sameproperty.If fn 2 A1, the tail of fn corresponds to the factorn�4En =  (+)� or n�4En =  (�)�so that m = n� 2 or m = n� 4.If fn 2 B1, the tail of fn must ben�6En =  (�)+�� or n�6En =  (+)+��and m = n� 6 or m = n� 4.So fm(x) = fn(x) + xm+1Q(x)with 3 possibilities for Q(x). In each case, it is easyto check that xm+1Q(x) is decreasing on � 12 ; 1� 32m�,because Q(x) and xQ0(x) are increasing on this in-terval. On I+m, Lemma 9.1 asserts that f 0m(x) < 0.So each polynomial of fm 2 C1 is strictly decreas-ing on � 12 ; 1�. Since fm satis�esfm(0)fm(�1) = �1and does not vanish on �0; 12�, we have proved theresult. �
Lemma 9.6. Let fn 2 A1 [B0. Then fn has a uniqueroot in [�1; 0].
Proof. For n 6 255 a direct study shows that ev-ery fn 2 A1 [ B0 has a unique root in [�1; 0]. Wesuppose until the end of the proof that n > 255.Let A+1 = ffn 2 A1 j "n�1 = 1gbe ordered by the degree. We show with the helpof a descending induction that every element of A+1with a degree greater than 255 is strictly increasingon [�1;�0:92].First, if k > 2 is an even integer then f2k belongsto A+1 and f 02k(x) > 0 on [�1;�0:92], by Lemma 8.3.

The second step of the induction consists in prov-ing that fm, the polynomial of A+1 of rank r � 1, isincreasing on [�1;�0:92] assuming that fn the poly-nomial of rank r is also increasing on this interval.The di�erent possible tails of fn aren�12En =  (+�+)�;n�16En =  (+��+)�;n�16En =  (+�++)�;n�20En =  (+��++)�;so that fm(x) = fn(x) + xm+1R(x);where R(x) can take four di�erent values. In eachcase, we check that xm+1R(x) is strictly increasingon [�1 + 3=2m; �0:92].As Lemma 9.1 proves that f 0m(x) > 0 on I�m, themonotonicity of fm(x) on [�1;�0:92] is establishedfor all the polynomials in A+1 of degree > 255.If fn 2 A1 n A+1 we point out that n�4En+11 = (��+�) or n�4En+15 =  (��++�). Sofn(x) = fm(x) + xm+1R(x)with fm(x) 2 A+1 , m = n + 8 or m = n + 12 andxm+1R(x) strictly increasing on [�1+3=2m; �0:92].Thus as previously, f 0n(x) > 0 on [�1;�0:92].Finally, fn 2 A1 is equivalent to fn+2 2 B0: Nowfn+2(x)� fn(x) is increasing on[�1 + 3=(2n+ 4); �0:92] ;and we conclude on I�n+2 by Lemma 9.1.So every polynomial fn 2 A1 [ B0 is strictly in-creasing on [�1;�0:92]. From Lemma 7.1, fn doesnot vanish on [�0:92; 0] and it satis�esfn(0)fn(�1) = �1:So fn has a unique root in [�1; 0]. �We now study the property of the reciprocal poly-nomial f�n of fn in order to determine the real rootsof fn outside the unit circle.
Lemma 9.7. Let fn 2 B0 [B1. We can then writefn(X) = "nQ(X)Xn�degQ + fr(X);with r = n � degQ � 1 and where Q(X) is one off10(X), �f14(X), f18(X), �f22(X).
Proof. For convenience, we �rst prove a similar resultfor m � 3 mod 4.
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If m � 3 mod 4 then fm(X) = f3(X)fv(X4).Without loss of generality we can assume that "m =1. As  (+�+�+) never occurs in the Thue{Morseword E, we see that the tail of fm must be one ofthe following wordsm�11Em =  (�++);m�15Em =  (+��+);m�19Em =  (�++�+);m�23Em =  (+��+�+):Thus fm(X) equalsP (X)Xm�degP + fr(X);where P (X) is one of �f11(X), f14(X), �f18(X), orf22(X). If n = m� 1 thenfn(X) = Q(X)Xn�degQ + fr(X);where Q(X) is one of �f10(X), f14(X), �f18(X), orf22(X). Finally, "m = �"n and the proof is com-pleted. �
Lemma 9.8. Let fn 2 B0 [B1. ThenR(fn) \ [�1:3;�1] = ?:
Proof. Let fn 2 B0 [B1. Using Lemma 9.7 we writefn(x) = "nQ(x)xn�degQ + fr(x);with Q 2 f�f10; f14; �f18; f22g andr = n� degQ� 1 � 3 mod 4:If fn vanishes at x then xn�degQjQ(x)j = jfr(x)j andjfr(x)j 6 ����(x2 � 1)(xn�degQ)x2 + 1 ���� 6 jxn�degQ � 1j= xn�degQ � 1:Thus jQ(x)j 6 xn�degQ � 1xn�degQ 6 1:Therefore if jQ(x)j > 1 then fn(x) 6= 0. Now theminimum of�f10(x); f14(x); �f18(x); f22(x)is > 1 on [�1:3;�1[. Since fn(�1) 6= 0 we haveR(fn) \ [�1:3;�1] = ?. �
Lemma 9.9. If fn 2 B0[B1 then fn has a unique rootin [�2;�1].

Proof. By Lemma 9.7,f�n(x)� "nQ�(x) = f�r (x)xdegQ+1with r = n� degQ� 1 � 3 mod 4. Thereforef�r (x) = f3(x)g(x4);where g is a unimodular polynomial. Thus��(f�r (x)xdegQ+1)0�� 6 vXk=0��(x4kf3(x)xdegQ+1)0��:
Now for n odd and x in [�0:8;�0:5], j(f3(x)xn)0j 62:52(�0:8)n � 0:81(�0:8)nn: As1Xk=0 2:52(�0:8)4k+11�0:81(�0:8)4k+11(4k+11) < 1:3;
we deduce that on this interval j(f�r (x)xdegQ+1)0j <1:3 as soon as degQ > 10: The study of the deriva-tives of f�10; �f�14, f�18 and �f�22, ensures that theyare greater than 1:3671 : : : in modulus and that theykeep the same sign on [�0:8;�0:5]. The derivativeof f�n then keeps its sign on [�0:8;�0:5]. Nowf�n(0)f�n(�1) = �1and f�n(x) does not vanish on [�1;�0:8] by Lemma9.8. Thus f�n has a unique real root in [�1;�0:5].This proves that fn vanishes only once in [�2;�1].�We can now prove Theorems 6.1 and 6.2.
10. PROOF OF THE THEOREMS

Proof of Theorem 6.1. Let n be even. Lemmas 9.2, 9.3,9.4 establish the theorem when fn 2 A0.If fn 2 A1, Lemmas 9.2, 9.5 and 9.6 ensure theresult.If fn 2 B0, Lemmas 9.2, 9.3, 9.6 and 9.9 allow usto conclude.If fn 2 B1, Lemmas 9.2, 9.4, 9.5 and 9.9 completethe proof for the case n even.Let n be odd. If k is the 2-adic valuation of n+1then we see thatfn(X) = f2k�1(X)fv(X2k)with v even. From what we have just proved fv hasa real positive root if and only if "v = �1. Therelation "2k�1 = (�1)k and Lemma 8.2 complete theproof. �
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Proof of Theorem 6.2. Let N be an integer. We in-vestigate polynomials of even degree n < N . Therelation jfN�1(1)j 6 1 implies thatN � 12 6 ��f0 6 i 6 N � 1 j "i = 1g�� 6 N + 12 :The same inequalities hold for��f0 6 i 6 N � 1 j "i = �1g��:Since "i = 1 is equivalent to "2i = 1 and "i = 1 isequivalent to "2i+1 = �1, the four setsf0 6 i 6 N � 1 j "i = (�1)r and i � s mod 4g ;for r 2 f0; 1g and s 2 f0; 2g, have between N=8�Cand N=8+C elements, for some constant C indepen-dent of N: So the Thue{Morse polynomials of evendegree less than N contribute to at least 3N4 � 6Cand to at most 3N4 + 6C real roots.We now examine odd degrees. Let k be an inte-ger. We consider the integers i 2 [0; N�1] suchthat the 2-adic valuation of i + 1 is precisely k.These i's can be written generically q2k+1 + 2k�1with q 2 N and "i = "q(�1)k: So for q � 0 mod 4and t = q; q+1; q+2; q+3, the Thue{Morse polyno-mials of degree t2k+1 + 2k�1 have 8k roots. Now forevery N and k �xed, one can make bN=2k+3c suchgroups which give 8kbN=2k+3c roots, and for each kwe forget at most 8k roots in the sum.Thus it is easy to see that
�6CN 6 1N N�1Xn=0 �(fn)� 1N� 1Xk=0 8k � N2k+3�+ 3N4 �

6 6CN + 1N blog2NcXk=0 8k;
which ensures that

limN!1 1N N�1Xn=0 �(fn) = 114 : �
ACKNOWLEDGEMENTSWe were greatly helped in this work by LaurentHabsieger. Camille Laurent-Gengoux [� 2000] andJian-yan Yao extended the results of [Mend�es France1991] to higher dimensions. We thank them whole-heartedly.

ADDENDUMAfter this article was submitted, a generalization ofits methods allowed Doche to �nd families of (+;�)sequences for whichlim infn!1 �(fn)= logn > 0:See [Doche 1999] for details.
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