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Unitary Ensembles. In the framework of abstract Markov diffusion operators, we derive

by the integration by parts formula differential equations for Laplace transforms and

recurrence equations for moments of eigenfunction measures. In particular, a new

description of the equilibrium measures as adapted mixtures of the universal arcsine

law with an independent uniform distribution is emphasized. The moment recurrence

relations are used to describe sharp, non asymptotic, small deviation inequalities on

the largest eigenvalues at the rate given by the Tracy-Widom asymptotics.
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1. Introduction

Limiting distributions of spectral measures of random matrices have been studied

extensively in mathematical physics, since the pionneering work by E. Wigner (cf. [Me],

[De], [Fo]), as well as in the context of multivariate analysis in statistics (cf. [Bai]).

To illustrate, as an introduction, some of the classical results, consider first, for each

integer N ≥ 1, X = XN a selfadjoint centered Gaussian random N ×N matrix with

variance σ2. By this, we mean thatX is a N×N Hermitian matrix such that the entries

above the diagonal are independent complex (real on the diagonal) Gaussian random

variables with mean zero and variance σ2. Equivalently, X is distributed according to

P(dX) =
1

C
exp

(
− Tr(X2)/2σ2

)
dX (1)

where dX is Lebesgue measure on the space of Hermitian N × N matrices, and X

is then said to be element of the Gaussian Unitary Ensemble (GUE). For such an

Hermitian random matrix X, denote by λN1 , . . . , λ
N
N the eigenvalues of X = XN .

Denote furthermore by µ̂Nσ the mean (empirical) spectral measure E
(

1
N

∑N
i=1 δλNi

)
of

X = XN . It is a classical result due to E. Wigner [Wi] that the mean density µ̂Nσ
converges weakly, as σ2 ∼ 1

4N , N →∞, to the semicircle law (on (−1,+1)).

The second main example arose in the context of the so-called complex Wishart

distributions. Let G be a complex M × N random matrix the entries of which are

independent complex Gaussian random variables with mean zero and variance σ2, and

set Y = Y N = G∗G. The law of Y defines similarly a unitary invariant probability

measure on the space of Hermitian matrices called the Laguerre Unitary Ensemble

(LUE) (cf. [Fo]). Denote by λN1 , . . . , λ
N
N the eigenvalues of the Hermitian matrix

Y = Y N and by µ̂Nσ the mean spectral measure E
(

1
N

∑N
i=1 δλNi

)
. It is a classical result

due to V. Marchenko and L. Pastur [M-P] (see also [G-S], [Wa], [Jon] for the real case in

the context of sample covariance matrices) that the mean density µ̂Nσ converges weakly,

as σ2 ∼ 1
4N and M =M(N) ∼ cN , N →∞, c > 0, to the so-called Marchenko-Pastur

distribution (with parameter c > 0), or free Poisson distribution.

Recently, U. Haagerup and S. Thorbjørnsen [H-T] gave an entirely analytical

treatment of these results on asymptotic eigenvalue distributions. This analysis is

made possible by the determinantal representation of the eigenvalue distribution as a

Coulomb gas and the use of orthogonal polynomials (cf. [Me], [De], [Fo], [H-T]...). For

example, in the GUE case, by unitary invariance of the ensemble (1) and the Jacobian

formula, the distribution of the eigenvalues (λN1 , . . . , λ
N
N ) of X = XN is given by

1

C
∆N (x)2

N∏

i=1

dµ(xi/σ), x = (x1, . . . , xN ) ∈ RN , (2)

where

∆N (x) =
∏

1≤i<j≤N
(xj − xi)
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is the Vandermonde determinant, dµ(x) = e−x
2/2 dx√

2π
the standard normal distribution

on R and C the normalization factor. Denote by P`, ` ∈ N, the normalized Hermite

polynomials with respect to µ. Since, for each `, P` is a polynomial function of degree

`, up to a constant depending on N , the Vandermonde determinant ∆N (x) is easily

seen to be equal to

det
(
P`−1(xk)

)
1≤k,`≤N .

On the basis of this observation and the orthogonality properties of P`, the marginals

of the eigenvalue vector (λN1 , . . . , λ
N
N ) (the so-called correlation functions) may be

represented as determinants of the (Hermite) kernel KN (x, y) =
∑N−1

`=0 P`(x)P`(y).

In particular, the mean spectral measure µ̂Nσ of the Gaussian matrix X is given, for

every bounded measurable real-valued function f on R, by

∫
fdµ̂Nσ =

∫
f(σx)

1

N

N−1∑

`=0

P 2
` (x)dµ(x). (3)

Coulomb gas of the type (2) may be associated to a number of orthogonal

polynomial ensembles for various choices of the underlying probability measure µ and

its associated orthogonal polynomials. This concerns unitary random matrix ensembles

(cf. [De], [Fo]...) as well as various random growth models associated to discrete

orthogonal polynomial ensembles (cf. in particular [Joha1], [Joha2]). In this work, we

only consider random matrix models associated to the classical orthogonal polynomial

of the continuous variable (for the discrete case, see [Le2]) for which determinantal

representations of the correlation functions are available. For example, the mean

spectral measure µ̂Nσ of the Wishart matrix Y may be represented in the same way by

∫
fdµ̂Nσ =

(
1− M

N

)+

f(0) +

∫
f(σ2x)

1

N

M∧N−1∑

`=0

P 2
` (x)dµ(x) (4)

for every bounded measurable function f on R+, where P`, ` ∈ N, are now the

normalized orthogonal (Laguerre) polynomials for the Gamma distribution dµ(x) =

Γ(γ + 1)−1xγe−xdx on (0,+∞) with parameter γ = |M − N |. (The Dirac mass at 0

comes from the fact that when M < N , N −M eigenvalues of Y are necessarily 0.)

Based on these orthogonal polynomial representations, U. Haagerup and S.

Thorbjørnsen deduce in [H-T] the asymptotic distributions of the complex Gaussian

and Wishart spectral measures from explicit formulas for the Laplace transforms of

the mean spectral measures in terms of confluent hypergeometric functions. They also

determine recurrence equations for moments and describe the almost sure asymptotic

behavior of the largest and smallest eigenvalues of these models.

In this paper, we actually push forward the investigation by U. Haagerup and

S. Thorbjørnsen. With respect to their work, we however avoid any appeal to

series expansions and rather only concentrate on the differential aspects of confluent

hypergeometric functions. We present the methodology in the abstract framework
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of Markov diffusion generators, that provides a convenient language to derive both

the basic differential equations on Laplace transforms and recurrence formulas for

moments from the integration by parts formula. The setting moreover allows us to

consider in the same framework and with no more efforts, spectral measures described

by Jacobi polynomials, associated to Beta random matrices. Precisely, if G1 and G2 are

independent complex, respectively M1 ×N and M2 ×N with M1 +M2 ≥ N , random

matrices the entries of which are independent complex Gaussian random variables with

mean zero and variance 1, set Y1 = G∗1G1, Y2 = G∗2G2 and

Z = ZN = Id− 2Y2(Y1 + Y2)
−1 = (Y1 − Y2)(Y1 + Y2)

−1.

The law of Z defines a unitary invariant probability distribution, element of the Jacobi

Unitary Ensemble (JUE). Denote again by λN1 , . . . , λ
N
N the eigenvalues of the Hermitian

matrix Z = ZN . Denote furthermore by µ̂N the mean spectral measure E
(

1
N

∑N
i=1 δλNi

)

of Z = ZN . Then, using the Coulomb gas description of the eigenvalues (cf. [T-W2],

[Fo]), the mean spectral measure µ̂N of Z = ZN may be represented, for every bounded

measurable function f on (−1,+1), by

∫
fdµ̂N =

(
1− M1

N

)+

f(−1) +
∫
f(x)

1

N

L−1∑

`=0

P 2
` (x)dµ(x) +

(
1− M2

N

)+

f(+1) (5)

with L = M1 ∧ N +M2 ∧ N − N , where P`, ` ∈ N, are the normalized orthogonal

(Jacobi) polynomials for the Beta, or Jacobi, distribution

dµ(x) =
Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)
(1− x)α(1 + x)βdx

on (−1,+1) with parameters α = |M1 −N | and β = |M2 −N |. Equilibrium measures

of the mean density µ̂N as M1 = M1(N) ∼ aN and M2 = M2(N) ∼ bN , N → ∞,

a, b > 0, are described by P. Forrester in the symmetric case, see [Fo] and the references

therein, and B. Collins [Co] for another particular family using asymptotics of Jacobi

polynomials [C-I]. These limits may be predicted by the free probability calculus and

the result of D. Voiculescu [Vo] and have been obtained this way in full generality by M.

Capitaine and M. Casalis [C-C]. In our setting, their construction will follow the one of

the Marchenko-Pastur distribution (and seems to be connected with free multiplicative

products of Bernoulli laws [Co]).

It is worthwhile mentioning that the Gaussian Unitary random matrix Ensemble

may be seen as a limiting case of the Laguerre Unitary random matrix Ensemble, and

similarly the latter is a limiting case of the Jacobi Unitary random matrix Ensemble.

Namely, with σ = 1,

M1Y2(Y1 + Y2)
−1 → Y2

almost surely as M1 →∞, whereas

√
M
( Y
M
− Id

)
→ X
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almost surely as M →∞.

The main results of this work are presented in Section 3 where the framework of

abstract Markov operators is used to derive identities for a general class of eigenfunction

measures. In this setting, Hermite, Laguerre and Jacobi operators are treated in

complete analogy in Section 4. On the basis of the general abstract identities developed

in Section 3, we actually deal first with the eigenfunction measures P 2
Ndµ for which the

universal limiting arcsine distribution is emphasized in accordance with the classical

theory in the compact case developed by A. Maté, P. Nevai and V. Totik [M-N-T]. The

method of [M-N-T], based on the recurrence relations for orthogonal polynomials, may

certainly be adapted similarly to the non-compact case (and orthogonal polynomials

with varying coefficents). We however develop here a strategy using differential

equations and moment recurrence relations that is well-suited to the small deviation

inequalities on the largest eigenvalues presented in Section 5. The limiting distributions

for the Cesaro averages 1
N

∑N−1
`=0 P 2

` dµ (corresponding to the mean spectral measures)

then appear as mixtures of affine transformations of the arcsine law with an independent

uniform distribution, leading thus to a new picture of the Marchenko-Pastur law and

the equilibrium law of Beta random matrices. These equilibrium measures also appear

as limits of empirical measures on the zeroes of the associated orthogonal polynomials

[K-VA].

¿From the general identites of Section 3, we obtain in Section 5 recurrence formulas

for moments of the mean spectral measures of the three ensembles GUE, LUE and

JUE. These recurrence equations are used to derive in a simple way small deviation

inequalities on the largest eigenvalues for matrices with fixed size of the GUE, LUE

and JUE, in concordance with the Tracy-Widom asymptotics [T-W1]. For example, it

is known that the largest eigenvalue λNmax of the GUE random matrix X = XN with

σ2 = 1
4N converges almost surely to the right endpoint 1 of the support of the limiting

spectral distribution (semicircle law). C. Tracy and H. Widom [T-W1] described the

fluctuations of λNmax at the rate N2/3. They showed that (some multiple of)

N2/3(λNmax − 1)

converges weakly to the Tracy-Widom distribution F constructed as a Fredholm

determinant of the Airy kernel (as a limit in this regime of the Hermite kernel

using delicate Plancherel-Rotach orthogonal polynomial asymptotics), and that may

be described as

F (s) = exp

(
−
∫ ∞

s

(x− s)u(x)2dx
)
, s ∈ R, (6)

where u(x) is the unique solution of the Painlevé equation u′′ = 2u3 + xu with the

asymptotics u(x) ∼ Ai (x) as x → ∞. Similar results have been established for the

largest eigenvalues of the Laguerre [Joha1], [Joho] and recently the Jacobi [Co] (cf. also

[Fo]) Unitary Ensembles. For discrete orthogonal polynomial ensembles, see [Joha1],

[Joha2].
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Using the moment equations for the spectral distribution, we actually show that

for every N and 0 < ε ≤ 1,

P
(
{λNmax ≥ 1 + ε}

)
≤ C e−Nε3/2/C

for some numerical constant C > 0, and similarly for the largest and (smallest –

soft edge) eigenvalues of the LUE and soft edge of the symmetric JUE. These small

deviation inequalities thus agree with the fluctuation rate N 2/3 (choose ε of the order

of N−2/3) and the asymptotics of the Tracy-Widom distribution

C ′ e−s
3/2/C′ ≤ 1− F (s) ≤ C e−s

3/2/C

for s large. They also related to the large deviation principle of [BA-D-G]. We obtain

these results from bounds on the p-th moments of the trace by a simple induction

procedure on the recurrence relations. The argument stays at a rather mild level,

however easily tractable. In particular, with respect to the Tracy-Widom asymptotics,

only the first correlation function is used and no sharp asymptotics of orthogonal

polynomials is required. Non asymptotic small deviation inequalities on the largest

eigenvalues of the LUE (as a limit of the discrete Meixner orthogonal polynomial

ensemble) may also be shown to follow from earlier bounds that K. Johansson [Joha1]

obtained using a delicate large deviation theorem together with a superadditivity

argument (cf. [Le2]). In the limit from the LUE to the GUE, these bounds also

cover the GUE case. An approach via hypercontractivity is attempted in [Le1]. In

[Au], bounds over integral operators are used to this task.

In the companion paper [Le2], the analytic approach presented here is developed,

with similar results, for discrete orthogonal polynomial ensembles as deeply investigated

recently by K. Johansson [Joha1], [Joha2].

2. Abstract Markov operator framework

As announced, to unify the various examples we will investigate next, we consider

more generally the setting of abstract Markov generators (see [Bak], [F-O-T]). The

general conclusions obtained here might be of independent interest. Let thus µ be a

probability measure on some measurable space (E, E). Let L be a Markov generator

invariant and symmetric with respect to µ. To work with more freedom, we assume

that we are given an algebra F of functions, dense in the domain of L and contained

in all Lp spaces (with respect to µ).

Given functions f, g in F , define the carré du champ operator Γ by

Γ(f, g) =
1

2
L(fg)− fLg − gLf.

Since L is invariant, the integration by parts formula indicates that for any f, g in F ,
∫
f(−Lg)dµ =

∫
Γ(f, g)dµ. (7)
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Our main assumption in this work is that L is a diffusion operator, that is, Γ is a

derivation in the sense that, for every smooth function φ on Rk, any f ∈ F and any

finite family F = (f1, . . . , fk) in F ,

Γ
(
f, φ(F )

)
=

k∑

i=1

∂iφ(F ) Γ(f, fi). (8)

This setting conveniently includes the three basic one-dimensional diffusion opera-

tors we will consider in this work.

a) The first one is the Hermite or Ornstein-Uhlenbeck operator. Here, E = R and

Lf = f ′′ − xf ′

is the Hermite operator with invariant measure the standard Gaussian measure

dµ(x) = e−x
2/2 dx√

2π
. The carré du champ operator is given, on smooth functions, by

Γ(f, g) = f ′g′. (One may choose for F the class of smooth functions with polynomial

growth). In addition, the (normalized in L2(µ)) Hermite polynomials PN , N ∈ N, that

form an orthogonal basis of L2(µ), are eigenfunctions of −L with respective eigenvalues

N , N ∈ N.

b) Next we turn to the Laguerre operator. Consider the second order differential

operator L acting on smooth functions f on E = (0,+∞) as

Lf = xf ′′ + (γ + 1− x)f ′

where γ > −1. The Laguerre operator L has invariant (Gamma) probability distribu-

tion dµ(x) = dµγ(x) = Γ(γ + 1)−1xγe−xdx (on E = (0,+∞)). The carré du champ

operator is given, on smooth functions, by Γ(f, g) = xf ′g′. (One may choose for F the

class of smooth functions on E = (0,+∞) with polynomial growth.) The (normalized

in L2(µ)) Laguerre polynomials PN , N ∈ N, that form an orthogonal basis of L2(µ),

are eigenfunctions of −L with eigenvalues N , N ∈ N.

c) Our third example concerns the Jacobi operator

Lf = (1− x2)f ′′ +
[
β − α− (α+ β + 2)x

]
f ′,

α, β > −1, acting on smooth functions f on E = (−1,+1). The operator L has

invariant (Beta or Jacobi) probability distribution

dµ(x) = dµα,β(x) =
Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)
(1− x)α(1 + x)βdx

(on E = (−1,+1)). The carré du champ operator is given, on smooth functions, by

Γ(f, g) = (1 − x2)f ′g′. The (normalized in L2(µ)) Jacobi polynomials PN , N ∈ N,

that form an orthogonal basis of L2(µ), are eigenfunctions of −L with eigenvalues

ρN = N(α+ β +N + 1), N ∈ N.
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When α = β = κ
2 − 1, κ > 0, we speak of the ultraspheric or symmetric Jacobi

operator

Lf = (1− x2)f ′′ − κxf ′

and distribution dµκ(x) = 21−κΓ(κ)Γ(κ2 )
−2(1−x2)

κ
2
−1dx of parameter (or dimension)

κ. When κ is an integer, the ultraspheric measure µk is the projection on a diameter

of the uniform measure on the κ-dimensional sphere.

Ultraspherical measures will be the basic limiting distributions in this setting, and

particular values of κ are κ = 1 corresponding to the arcsine law, κ = 2 corresponding to

the uniform distribution, and κ = 3 corresponding to the semicircle law. To this end, it

is worthwhile describing the Laplace, or Fourier, transforms of the Jacobi distributions.

Namely, let

J(λ) =

∫
eλxdµ, λ ∈ C,

be the (complex) Laplace transform of µ = µα,β . Since −Lx = (α + β + 2)x+ α − β,

by the integration by parts formula,

(α+ β + 2)J ′ + (α− β)J =

∫
(−Lx) eλxdµ = λ

∫
(1− x2) eλxdµ.

In particular thus

λJ ′′ + (α+ β + 2)J ′ −
[
λ− (α− β)

]
J = 0.

If Jκ is the Laplace transform of the symmetric Jacobi distribution µκ with

parameter κ > 0, then Jκ solves the differential equation

λJ ′′κ + κJ ′κ − λJκ = 0. (9)

Note also that for every κ > 0,

Jκ − J ′′κ = const. Jκ+2, hence J ′κ = const.λJκ+2 (10)

by (9). It will also be useful later to observe from (9) that the function J̃(λ) =

evλJκ(uλ), u, v ∈ R, u 6= 0, satisfies the differential equation

λJ̃ ′′ + (κ− 2vλ)J̃ ′ −
[
κv − (v2 − u2)λ

]
J̃ = 0. (11)

The differential equation (9) may be expressed equivalently on the moments of µκ.

Namely, if

χp =

∫
x2pdµκ, p ∈ N,

(the odd moments are clearly all zero by symmetry), then we have the recurrence

equation

χp =
2p− 1

2p− 1 + κ
χp−1, p ≥ 1. (12)
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It is worthwhile mentioning, following [Ma], that on the real line, up to affine

transformations, the three preceding examples are the only Markov diffusion operators

that may be diagonalized in a basis of orthogonal polynomials. Moreover, it is not

difficult to check as in the introduction (cf. [Sz]) that the Hermite and Laguerre

operators may be obtained in the limit from the Jacobi operators using a proper scaling.

3. Differential equations

In the preceding abstract framework, we now describe a simple procedure, relying

on the integration by parts formula (7), to establish differential equations on measures

given by pqdµ where p and q are eigenfunctions of −L, with respective eigenvalues ρp
and ρq (> 0).

We assume that we are given a function h of F such that

−Lh = A(h) (13)

for some real-valued function A on R. Assume moreover that for all f, g ∈ F ,

Γ(h, f)Γ(h, g) = B(h)Γ(f, g) (14)

where B : R → R is smooth enough (or only µ-almost everywhere). We also agree that

Γ(h, h) = B(h).

Furthermore, we assume that h, p, q are compatible for L in the sense that for real

constants dp, dq, and functions Dp, Dq : R → R,

−LΓ(h, p) = dpΓ(h, p) +Dp(h)p and − LΓ(h, q) = dqΓ(h, q) +Dq(h)q. (15)

The main result in this setting is a differential identity on the operator F given by

F (θ) =

∫
θ(h)pqdµ

for smooth functions θ : R → R. (We assume throughout the argument that all the

integrals we will deal with are well-defined.)

Proposition 3.1. Let θ : R → R be smooth. Under the preceding assumptions

on p, q and h,

F
(
R(θ′′)

)
− 2(ρp + ρq)F (Bθ

′′) + 2F
(
R
(
(Bθ′′)

′))− sF (θ)− tF
(
R(θ′)

)
− F (Dθ′) = 0

where R is the differential operator defined, on smooth functions φ : R → R, by
R(φ) = Aφ−Bφ′, D = Dp +Dq and

s =
1

2
(ρp − ρq)(dp − dq + ρp − ρq) and t =

1

2
(dp + dq − ρp − ρq).
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Proof. First note that, by the integration by parts formula (7) and diffusion

property (8), and assumptions (13), (14), for any smooth φ : R → R and any f ∈ F ,
∫
R(φ)(h)fdµ =

∫
φ(h)Γ(h, f)dµ.

As a consequence, by (8) again,

F
(
R(θ)

)
=

∫
θ(h)

[
Γ(h, p)q + Γ(h, q)p

]
dµ (16)

and

F
(
R2(θ)

)
= 2

∫
B(h)θ(h)Γ(p, q)dµ+

∫
θ(h)

[
Γ
(
h,Γ(h, p)

)
q + Γ

(
h,Γ(h, q)

)
p
]
dµ (17)

where we used (14).

Since −Lp = ρpp, by the integration by parts formula for L again,

ρpF (θ) =

∫
θ′(h)Γ(h, q)pdµ+

∫
θ(h)Γ(p, q)dµ

and similarly, using −Lq = ρqq,

ρqF (θ) =

∫
θ′(h)Γ(h, p)qdµ+

∫
θ(h)Γ(p, q)dµ.

In particular, together with (16) for θ′,

2

∫
θ(h)Γ(p, q)dµ = (ρp + ρq)F (θ)− F

(
R(θ′)

)
. (18)

We also have that

2

∫
θ′(h)Γ(h, p)qdµ = (ρp − ρq)F (θ) + F

(
R(θ′)

)
(19)

together with the same formula exchanging the roles of p and q.

Using (15), we now have that

∫
θ′(h)Γ

(
h,Γ(h, p)

)
qdµ

= dp

∫
θ(h)Γ(h, p)qdµ+ F (Dpθ)−

∫
θ(h)Γ

(
q,Γ(h, p)

)
dµ

(20)

and similarly with q. To handle the last term on the right-hand side of (20), we use

again the eigenfunction property of q to get that

∫
θ(h)Γ

(
q,Γ(h, p)

)
dµ = ρq

∫
θ(h)Γ(h, p)qdµ−

∫
B(h)θ′(h)Γ(p, q)dµ.
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Therefore, (20) yields

∫
θ′(h)Γ

(
h,Γ(h, p)

)
qdµ

= (dp − ρq)
∫
θ(h)Γ(h, p)qdµ+ F (Dpθ) +

∫
B(h)θ′(h)Γ(p, q)dµ.

(21)

We now summarize the preceding: Applying (17) to θ′′, and then (21) to θ′ (with

the same formula exchanging the roles of p and q), we get that

F
(
R2(θ′′)

)
= 4

∫
B(h)θ′′(h)Γ(p, q)dµ+ (dp − ρq)

∫
θ′(h)Γ(h, p)qdµ

+ (dq − ρp)
∫
θ′(h)Γ(h, q)pdµ+ F (Dθ′).

The conclusion follows by applying (18) to Bθ′′ and (19).

Corollary 3.2. In the setting of Proposition 3.1,

F (T4θ
(4)) + F (T3θ

′′′) + F (T2θ
′′) + F (T1θ

′) + F (T0θ) = 0

where the real-valued functions T4, T3, T2, T1, T0 are given by

T4 = −B2,

T3 = −3BB′,
T2 = A2 −A′B + 2AB′ + tB − 2(ρp + ρq)B − 2BB′′,

T1 = −tA−D,
T0 = −s.

In case the functions A, B, D are polynomials, Corollary 3.2 may be used directly

to deduce a differential equation for the Laplace of Fourier transforms of pqdµ as well

as recurrence formulas for its moments. Indeed, when θ(x) = eλx, x ∈ R and λ is a

parameter in some open domain in C, we get the following consequence. For a given

(complex) polynomial

P (λ) = anλ
n + · · ·+ a1λ+ a0

of the variable λ, denote by

P(φ) = anφ
(n) + · · ·+ a1φ

′ + a0φ

the corresponding differential operator acting on smooth (complex) functions φ.

Corollary 3.3. Let

ϕ(λ) =

∫
eλhpqdµ
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assumed to be well-defined for λ in some open domain of C. Then,

λ4T4(ϕ) + λ3T3(ϕ) + λ2T2(ϕ) + λT1(ϕ) + T0(ϕ) = 0.

When θ(x) = xk, x ∈ R and k ∈ N, we may deduce from Corollary 3.2 recurrence

equations for moments (which will be used specifically in Section 5). In the next

sections, we examine the Hermite, Laguerre and Jacobi diffusion operators with respect

to their orthogonal polynomials.

4. Limiting spectral distributions of GUE, LUE and JUE

In this section, we test the efficiency of the preceding abstract results on the three

basic examples, Gaussian, Laguerre and Jacobi, random matrix ensembles. We actually

discuss first eigenfunction measures of the type P 2
Ndµ for which, under appropriate

normalizations, the arcsine law appears as a universal limiting distribution (cf. [M-N-

T]). The Cesaro averages 1
N

∑N−1
`=0 P 2

` dµ associated to the mean spectral measures of

the random matrix models are then obtained as appropriate mixtures of the arcsine law

with an independent uniform distribution. This approach leads to a new look at the

classical equilibrium measures of the spectral measures (such as the Marchenko-Pastur

distribution). We are indebted to T. Kurtz, and O. Zeitouni, for enlightning remarks

leading to this presentation.

We refer below to [Sz], [Ch]..., or [K-K], for the basic identities and recurrence

formulas for the classical orthogonal polynomials.

a) The Hermite case. Let

ϕ(λ) =

∫
eλxP 2

Ndµ, λ ∈ C,

where µ is the standard normal distribution on R and PN the N -th (normalized)

Hermite polynomial for µ. We apply the general conclusions of Section 3. Choose

h = x so that A = x, B = 1, and p = q = PN so that ρp = ρq = N . Since

Γ(h, p) = P ′N =
√
N PN−1, we also have that dp = dq = N − 1 and D = 0. Hence

s = 0, t = −1, and T4 = −1, T3 = 0, T2 = x2 − 4N − 2, T1 = x and T0 = 0. Therefore,

by Corollary 3.3,

−λ4ϕ+ λ2
[
ϕ′′ − (4N + 2)ϕ

]
+ λϕ′ = 0,

that is

λϕ′′ + ϕ′ − λ(λ2 + 4N + 2)ϕ = 0.

Changing λ into σλ, σ > 0, ϕσ(λ) = ϕ(σλ) solves the differential equation

λϕ′′σ + ϕ′σ − σ2λ(σ2λ2 + 4N + 2)ϕσ = 0.
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Whenever ϕσ and its derivatives converge as σ2 ∼ 1
4N , N → ∞, the limiting function

Φ will thus satisfy the differential equation

λΦ′′ +Φ′ − λΦ = 0 (22)

which is precisely the differential equation satisfied by the Laplace transform J1 of the

arcsine law (cf. (9)). Precisely, let VN , N ∈ N, be random variables with distributions

P 2
Ndµ, and denote by ξ a random variable with the arcsine distribution on (−1,+1).

Using the recurrence equation

xPN =
√
N + 1PN+1 +

√
N PN−1

of the (normalized) Hermite polynomials, it is easily checked that, for example,

supN E(V 4
N/N

2) < ∞. Extracting a weakly convergent subsequence, it follows by

uniform integrability that, along the imaginary axis, the Fourier transform ϕσ of σVN
(σ2 ∼ 1

4N ), as well as its first and second derivatives ϕ′σ and ϕ′′σ, converge pointwise

as N →∞ to Φ, Φ′ and Φ′′ respectively. By (22), Φ = J1 so that VN/2
√
N converges

weakly to ξ.

As we saw it in the introduction, to investigate spectral measures of random

matrices and their equilibrium distributions, we are actually interested in the measures
1
N

∑N−1
`=0 P 2

` dµ. Towards this goal, observe that if f : R → R is bounded and

continuous,

∫
f
( x

2
√
N

) 1

N

N−1∑

`=1

P 2
` dµ =

1

N

N−1∑

`=1

f

(√
`

N
· x

2
√
`

)
P 2
` dµ

=

∫ 1

1/N

E

(
f

(√
UN (t) · VNUN (t)

2
√
NUN (t)

))
dt

where UN (t) = `/N for `/N < t ≤ (` + 1)/N , ` = 0, 1, . . . , N − 1 (UN (0) = 0). Since

UN (t)→ t, t ∈ [0, 1], and VN/2
√
N converges weakly to ξ, it follows that

lim
N→∞

∫
f
( x

2
√
N

) 1

N

N−1∑

`=0

P 2
` dµ =

∫ 1

0

E
(
f
(√
t ξ
))
dt = E

(
f
(√
U ξ
))

where U is uniform on [0, 1] and independent from ξ. Together with (3), we thus

conclude to the following formulation.

Proposition 4.1. Let µ̂Nσ be the mean spectral measure of the random matrix

XN from the GUE with parameter σ. Wheneverσ2 ∼ 1
4N , then µ̂Nσ converges wea kly

to the law of
√
U ξ with ξ an arcsine random variable on (−1,+1) and U uniform on

[0, 1] and independent from ξ.

Of course,
√
U ξ has the semicircle law, in accordance with the classical Wigner

theorem. This may be checked directly, or on the moment identities (12). Alternatively,
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and more in the differential context of this paper, one may observe from Lemma 5.1

below that whenever ψ is the Laplace transform of the measure 1
N

∑N−1
`=0 P 2

` dµ, then

2Nλψ = ϕ′ − λϕ. In the limit under the scaling σ2 ∼ 1
4N , λΨ = 2Φ′ = 2J ′1 so that, by

(10), Ψ = J3 the Laplace transform of the semicircular law.

b) The Laguerre case. Let

ϕ(λ) =

∫
eλxP 2

Ndµ, Re(λ) < 1,

where µ = µγ is the Gamma distribution with parameter γ > −1 on (0,+∞) and

PN = P γ
N the N -th (normalized) Laguerre polynomial for µγ . As in the Hermite case,

we apply the general conclusions of Section 3. Choose h = x so that A = x− (γ + 1),

B = x, and p = q = PN so that ρp = ρq = N . Since

Γ(h, p) = xP ′N = −
√
N
√
γ +N PN−1 +NPN ,

we also have that dp = dq = N − 1 and D = 2N . Hence s = 0, t = −1, and T4 = −x2,

T3 = −3x, T2 = x2 − 2(γ + 1 + 2N)x + γ2 − 1, T1 = x − (γ + 1 + 2N) and T0 = 0.

Therefore, by Corollary 3.3,

−λ4ϕ′′ − 3λ3ϕ′ + λ2
[
ϕ′′ − 2(γ + 1+ 2N)ϕ′ + (γ2 − 1)ϕ

]
+ λ
[
ϕ′ − (γ + 1+ 2N)ϕ

]
= 0,

that is

λ(1− λ2)ϕ′′ +
[
1− 3λ2 − 2(γ + 1 + 2N)λ

]
ϕ′ −

[
(γ + 1 + 2N)− (γ2 − 1)λ

]
ϕ = 0.

Changing λ into σ2λ, σ > 0, ϕσ2(λ) = ϕ(σ2λ) solves the differential equation

λ(1−σ4λ2)ϕ′′σ2+
[
1−3σ4λ2−2(γ+2N+1)σ2λ

]
ϕ′σ2−σ2

[
(γ+1+2N)−(γ2−1)σ2λ

]
ϕσ2 = 0.

Whenever ϕσ2 and its derivatives converge as σ2 ∼ 1
4N and γ = γN ∼ c′N , N → ∞,

c′ ≥ 0, the limiting function Φ satisfies the differential equation

λΦ′′ +
[
1− c′ + 2

2
λ
]
Φ′ −

[c′ + 2

4
− c′2

16
λ
]
Φ = 0.

In other words, by (11), Φ(λ) = evλJ1(uλ) with

v =
c′ + 2

4
and u2 = v2 − c′2

16
=
c′ + 1

4
. (23)

Precisely, let VN = V γ
N , N ∈ N, be random variables with distributions P 2

Ndµ. Recall

we denote by ξ a random variable with the arcsine distribution on (−1,+1) and Laplace

transform J1. Using the recurrence equation

xPN = −
√
N + 1

√
γ +N + 1PN+1 + (γ + 2N + 1)PN −

√
N
√
γ +N PN−1
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of the (normalized) Laguerre polynomials of parameter γ, it is easily checked that,

for example, supN E((V γ
N )4/N4) < ∞, γ = γN ∼ c′N , c′ ≥ 0. Extracting a weakly

convergent subsequence, it follows by uniform integrability that, along the imaginary

axis, the Fourier transform ϕσ2 of σ2VN (σ2 ∼ 1
4N , γ = γN ∼ c′N , c′ ≥ 0), as well

as its first and second derivatives ϕ′σ2 and ϕ′′σ2 , converge pointwise as N → ∞ to Φ,

Φ′ and Φ′′ respectively. As we have seen, Φ(λ) = evλJ1(uλ) so that VN/4N converges

weakly to uξ + v where u and v are given by (23).

To investigate spectral measures of random matrices and their equilibrium distri-

butions, we are actually interested in the measures 1
N

∑N−1
`=0 P 2

` dµ. We proceed as in

the Hermite case, with however the additional dependence of µ = µγ and P` = P γ
` on

the varying parameter γ = γN ∼ c′N , N → ∞, c′ ≥ 0. For f : R → R bounded and

continuous, write

∫
f
( x

4N

) 1

N

N−1∑

`=1

(P γN
` )2dµγN =

1

N

N−1∑

`=1

∫
f

(
`

N
· x
4`

)
(P γN

` )2dµγNdt

=

∫ 1

1/N

E

(
f

(
UN (t) ·

V γN
NUN (t)

4NUN (t)

))
dt

where UN (t) = `/N for `/N < t ≤ (` + 1)/N , ` = 0, 1, . . . , N − 1 (UN (0) = 0). Since

UN (t)→ t, t ∈ [0, 1], and V γN
N /4N converges weakly to

1

2

√
c′ + 1 ξ +

1

4
(c′ + 2)

as γN/N → c′, it follows that

lim
N→∞

∫
f
( x

4N

) 1

N

N−1∑

`=0

(P γN
` )2dµγN = E

(
f

(
U

[
1

2

√
c′

U
+ 1 ξ +

1

4

( c′
U

+ 2
)]))

= E
(
f
(1
2

√
U(c′ + U) ξ +

1

4
(c′ + 2U)

))

where U is uniform on [0, 1] and independent from ξ.

We obtain in this way convergence of the mean spectral measure µ̂Nσ , as σ2 ∼ 1
4N

and M = M(N) ∼ cN , N → ∞, c > 0, of the Hermitian Wishart matrix

Y = Y N = G∗G presented in the introduction. By appropriate operations on (4),

we conclude to the following statement.

Proposition 4.2. Let µ̂Nσ be the mean spectral measure of the random matrix

Y N from the LUE with parameter σ. Whenever σ2 ∼ 1
4N and M = M(N) ∼ cN ,

N →∞, c > 0, then µ̂Nσ converges weakly to

(1− c)+δ0 + (c ∧ 1)ν
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where ν is the law of

(c ∧ 1)
(1
2

√
U(c′ + U) ξ +

1

4
(c′ + 2U)

)
,

c′ = |c− 1|/(c ∧ 1), with ξ an arcsine random variable on (−1,+1) and U uniform on

[0, 1] and independent from ξ.

Now of course, the law νc′ of the random variable 1
2

√
U(c′ + U) ξ + 1

4 (c
′ + 2U) is

the classical Marchenko-Pastur distribution [M-P] given by

dνc′(x) = const. x−1
√(

x− (v − u)
)(
(v + u)− x

)
dx (24)

on (v − u, v + u) ⊂ (0,+∞) where u and v are described by (23) so that

v ± u =
1

4

(√
c′ + 1± 1

)2
.

This may be checked directly, although at the expense of some tedious details.

Alternatively, more in the context of this paper, one may observe from Lemma 5.3

below that whenever ψ is the Laplace transform of the measure 1
N

∑N−1
`=0 P 2

` dµ, then

2N(ϕ+ λψ′) = (1− λ)ϕ′ − (γ + 1)ϕ.

In the limit under the scaling σ2 ∼ 1
4N , γ = γN ∼ c′N , N →∞, c′ ≥ 0,

2λΨ′ = Φ′ − c′ + 4

2
Φ.

Since Φ = evλJ1(uλ) (with u and v given by (23)), it must be, by (10), that

Ψ′ = const. evλJ3(uλ). Now, assuming a priori that Ψ is the Laplace transform

Ψ(λ) =
∫
eλxdνc′ of some (probability) distribution νc′ on (0,+∞), we have that

Ψ′(λ) =

∫
x eλxdνc′ = const.

∫ +1

−1

eλ(ux+v)
√

1− x2 dx.

Changing the variable,

∫
x eλxdνc′ = const.

∫ v+u

v−u
eλx
√[

x− (v − u)
][
(v + u)− x

]
dx.

In other words, νc′ is the Marchenko-Pastur distribution (24). Note that when c′ = 0,

then v − u = 0 and ν0 is simply the distribution of ζ2 where ζ has the semicircle law.

c) The Jacobi case. Let

ϕ(λ) =

∫
eλxP 2

Ndµ, λ ∈ C,
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where µ = µα,β is the Beta distribution with parameters α, β > −1 on (−1,+1) and

PN = Pα,β
N the N -th (normalized) Jacobi polynomial for µα,β . As in the Hermite

and Laguerre cases, we apply the general conclusions of Section 3. Choose h = x

so that A = (α + β + 2)x + α − β, B = 1 − x2, and p = q = PN so that

ρp = ρq = ρN = N(α+ β +N + 1). Since Γ(h, p) = (1− x2)P ′N and

(α+ β + 2N)(1− x2)P ′N = −N
[
β − α+ (α+ β + 2N)x

]
PN

+ 2(α+N)(β +N)κN−1κ
−1
N PN−1

(where κN is defined below), we also have that dp = dq = ρN−(α+β) and D = −4ρNx.
Hence s = 0, t = −(α+ β), and

T4 = −x4 + 2x2 − 1,

T3 = −6x3 + 6x,

T2 =
[
(α+ β)(α+ β + 2) + 4ρN − 6

]
x2 + 2(α2 − β2)x

+ (α− β)2 − 2(α+ β)− 4ρN + 2,

T1 =
[
(α+ β)(α+ β + 2) + 4ρN

]
x+ α2 − β2,

T0 = 0.

By Corollary 3.3,

− λ3ϕ(4) − 6λ2ϕ′′′ + λ
[
2λ2 + (α+ β)(α+ β + 2) + 4ρN − 6

]
ϕ′′

+
(
6λ2 + 2(α2 − β2)λ+

[
(α+ β)(α+ β + 2) + 4ρN

])
ϕ′

+
(
− λ3 +

[
(α− β)2 − 2(α+ β)− 4ρN + 2

]
λ+ (α2 − β2)

)
ϕ = 0.

When α = αN ∼ a′N , β = βN ∼ b′N , a′, b′ ≥ 0, as N → ∞, whenever ϕ and its

derivatives converge, the limiting function Φ solves the differential equation

λ(a′ + b′ + 2)2Φ′′ +
[
(a′ + b′ + 2)2 − 2(b′2 − b′2)λ

]
Φ′

−
(
(b′2 − a′2)−

[
(a′ − b′)2 − 4(a′ + b′ + 1)

]
λ
)
Φ = 0.

In other words, by (11), Φ(λ) = evλJ1(uλ) where

v =
b′2 − a′2

(a′ + b′ + 2)2
,

u2 = v2 − (a′ − b′)2 − 4(a′ + b′ + 1)

(a′ + b′ + 2)2
=

16(a′ + b′ + 1)(a′b′ + a′ + b′ + 1)

(a′ + b′ + 2)4
.

(25)

Precisely, let VN = V α,β
N , N ∈ N, be random variables with distributions P 2

Ndµ. Recall

we denote by ξ a random variable with the arcsine distribution on (−1,+1) and Laplace

transform J1. Using the recurrence equation

(α+ β + 2N)(α+β + 2N + 1)(α+ β + 2N + 2)xPN

= 2(N + 1)(α+ β +N + 1)(α+ β + 2N)κ−1
N κN+1PN+1

+ (α+ β + 2N + 1)(β2 − α2)PN

+ 2(α+N)(β +N)(α+ β + 2N + 2)κ−1
N κN−1PN−1
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where

κ2
N =

Γ(α+ β + 2)Γ(α+N + 1)Γ(β +N + 1)

Γ(α+ 1)Γ(β + 1)(α+ β + 2N + 1)Γ(N + 1)Γ(α+ β +N + 1)

of the (normalized) Jacobi polynomials of parameter α, β, it is easily checked that, for

example, supN E((V α,β
N )4) <∞, α = αN ∼ a′N , β = βN ∼ b′N , a′, b′ ≥ 0. Extracting

a weakly convergent subsequence, it follows by uniform integrability that, along the

imaginary axis, ϕ, ϕ′, ϕ′′, converge pointwise as α = αN ∼ a′N , β = βN ∼ b′N ,

N → ∞, a′, b′ ≥ 0, to Φ, Φ′ and Φ′′ respectively. As we have seen, Φ(λ) = evλJ1(uλ)

so that VN converges weakly to uξ + v where u and v are given by (25). (Note that

when a′ = b′ = 0, Φ = J1 recovering the result of [M-N-T] in this particular case.)

Cesaro means of orthogonal polynomials are studied as in the Hermite and Laguerre

cases so to yield the following conclusion. Recall the mean spectral measure µ̂N of the

Beta random matrix

Z = ZN = Id− 2Y2(Y1 + Y2)
−1 = (Y1 − Y2)(Y1 + Y2)

−1

presented in the introduction for M1 = M1(N) ∼ aN , a > 0, M2 = M2(N) ∼ bN ,

b > 0, a+b ≥ 1, as N →∞. Together with (5), we conclude to the following statement.

Proposition 4.3. Let µ̂N be the mean spectral measure of the random matrix

ZN from the JUE. Whenever M1 = M1(N) ∼ aN , a > 0, M2 = M2(N) ∼ bN , b > 0,

a+ b ≥ 1, as N →∞, then µ̂N converges weakly to

(1− a)+δ−1 + (a ∧ 1 + b ∧ 1− 1)νa′,b′ + (1− b)+δ+1

where νa′,b′ is the law of

4
√
U(a′ + b′ + U)

√
a′b′ + U(a′ + b′ + U)

(a′ + b′ + 2U)2
ξ +

b′2 − a′2
(a′ + b′ + 2U)2

a′ = |a− 1|/(a∧ 1+ b∧ 1− 1), b′ = |b− 1|/(a∧ 1+ b∧ 1− 1), with ξ an arcsine random

variable on (−1,+1) and U uniform on [0, 1] and independent from ξ.

The distribution νa′,b′ may be identified, however after some tedious calcultations,

with the distribution put forward in [Co] and [C-C] (see also [K-VA]) given by

dνa′,b′(x) = const. (1− x2)−1
√(

x− (v − u)
)(
(v + u)− x

)
dx (26)

on (v− u, v+ u) ⊂ (−1,+1) where u and v are described in (25). In the context of the

differential equations for Laplace transforms studied here, it might be observed from

Lemma 5.6 below that the limiting Laplace transform Ψ of the measures 1
N

∑N−1
`=0 P 2

` dµ

as α = αN ∼ a′N , β = βN ∼ b′N , satisfies

2λ(Ψ−Ψ′′) = (a′ + b′ + 2)Φ′ +
a′2 − b′2
a′ + b′ + 2

Φ.
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Since Φ(λ) = evλJ1(uλ), it must be by (10) that Ψ − Ψ′′ = const. evλJ3(uλ). Now,

assuming a priori that Ψ is the Laplace transform Ψ(λ) =
∫
eλxdνa′,b′ of some

(probability) distribution νa′,b′ on (−1,+1), we have that

Ψ(λ)−Ψ′′(λ) =

∫
(1− x2) eλxdνa′,b′ = const.

∫ +1

−1

eλ(ux+v)
√

1− x2 dx.

Changing the variable,
∫

(1− x2) eλxdνa′,b′ = const.

∫ v+u

v−u
eλx
√[

x− (v − u)
][
(v + u)− x

]
dx

yielding (26). Note in particular that when a′ = b′ = 0, Φ = J1 and λ(Ψ − Ψ′′) = Φ′

so that, by (10), Ψ = Φ = J1.

5. Moment equations and small deviation inequalities

In this section, we draw from the general framework developed in Section 3 moment

recurrence formulas for the spectral measures of Hermite, Laguerre and Jacobi random

matrix ensembles to obtain sharp small deviation bounds, for fixed N , on the largest

eigenvalues. As presented in the introduction, in the three basic examples under study,

the largest eigenvalue λNmax of the random matrices XN , Y N and ZN is known to

converge almost surely to the right endpoint of the support of the corresponding

limiting spectral measure. Universality of the Tracy-Widom arises in the fluctuation

of λNmax at the common rate N2/3 and has been established in [TW] for the GUE (cf.

also [De]), in [Joha1] and [John] for the LUE, and recently in [Co] for the JUE. We

present here precise non asymptotic deviation inequalities at the rate N 2/3. Classical

measure concentration arguments (cf. [G-Z]) do not apply to reach the rate N 2/3. We

use to this task a simple induction argument on the moment recurrence relations of

the orthogonal polynomial ensembles

As in the preceding section, we investigate successively the Hermite, Laguerre and

Jacobi Unitary Ensembles.

a) GUE random matrices. In order to describe the moment relations for the

measure 1
N

∑N−1
`=0 P 2

` dµ, where µ is the standard normal distribution and P`, ` ∈ N,

are the (normalized) orthogonal Hermite polynomials for µ, the following alternate

formulation of the classical Christoffel-Darboux (cf. [Sz]) formula will be convenient.

Lemma 5.1. For any smooth function g on R, and each N ≥ 1,

∫
g′

N−1∑

`=0

P 2
` dµ =

∫
g
√
N PNPN−1dµ.

Proof. Let L be the first order operator

Lf = f ′ − xf
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acting on smooth functions f on the real line R. The integration by parts formula

indicates that for smooth functions f and g,

∫
g(−Lf)dµ =

∫
g′fdµ.

The recurrence relation for the (normalized) Hermite polynomials PN , N ∈ N, is given

by

xPN =
√
N + 1PN+1 +

√
N PN−1.

We also have that P ′N =
√
N PN−1. Hence,

L(P 2
N ) = PN

[
2P ′N − xPN

]

=
√
N PNPN−1 −

√
N + 1PN+1PN .

Therefore,

(−L)
(N−1∑

`=0

P 2
`

)
=
√
N PNPN−1

from which the conclusion follows.

We now address recurrence equations for moments. Set ak =
∫
xkPNPN−1dµ,

k ∈ N. By Corollary 3.2 with θ(x) = xk, p = PN , q = PN−1,

−k(k − 1)(k − 2)(k − 3)ak−4 + k(k − 1)[ak − 4Nak−2] + kak − ak = 0,

that is

(k + 1)ak − 4Nkak−2 − k(k − 2)(k − 3)ak−4 = 0, k ≥ 4.

While a0 = a2 = 0, note that the proof of Proposition 3.1 cannot produce the value of

a1. To this task, simply use the recurrence relation of the Hermite polynomials to see

that a1 =
√
N . Then a3 = 3N3/2. Now, by Lemma 5.1,

k

∫
xk−1

N−1∑

`=0

P 2
` dµ =

∫
xk
√
N PNPN−1dµ =

√
N ak.

Set now

bp = bNp =

∫
(σx)2p

1

N

N−1∑

`=0

P 2
` dµ, p ∈ N,

so that

a2p+1 = const.σ−2p(2p+ 1)bp.

(It is an easy matter to see that the odd moments of the measure
∑N−1

`=0 P 2
` dµ are all

zero.) Hence,

(2p+ 2)bp − 4Nσ2(2p− 1)bp−1 − σ4(2p− 1)(2p− 2)(2p− 3)bp−2 = 0.
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In other words, for every integer p ≥ 2,

bp = 4Nσ2 2p− 1

2p+ 2
bp−1 + 4σ4p(p− 1)

2p− 1

2p+ 2
· 2p− 3

2p
bp−2 (27)

(b0 = 1, b1 = σ2N2). This recurrence equation, reminiscent of the three step recurrence

equation for orthogonal polynomials, was first put forward in an algebraic context by

J. Harer and D. Zagier [H-Z]. It is also discussed in the book by M. L. Mehta [Me].

The proof above is essentially the one of [H-T].

It may be noticed that bNp → χp as σ2 ∼ 1
4N , N → ∞, for every p, where χp is

the 2p-moment of the semicircle law. It may actually even be observed from (27) that

when σ2 = 1
4N , for every fixed p and every N ≥ 1,

χp ≤ bNp ≤ χp +
Cp
N2

where Cp > 0 only depends on p.

Let now X = XN be a GUE matrix with σ2 = 1
4N . As we have seen, the mean

spectral measure µ̂Nσ of XN then converges weakly as N → ∞ to the semicircle

law on (−1,+1). The largest eigenvalue λNmax of XN is known (cf. [Bai], [H-T])

to converge almost surely to the right endpoint +1 of the support of the limiting

semicircle law. (By symmetry, the smallest eigenvalue converges to −1.) Actually, the

fact that lim supN→∞ λNmax ≤ 1 almost surely will follow from the bounds we provide

next and the Borel-Cantelli lemma. To prove the lower bound for the liminf requires a

quite different set of arguments, namely the classical strengthening of the convergence

of the mean spectral measure into almost sure convergence of the spectral measure
1
N

∑N
i=1 λ

N
i . (This is shown in [H-T] via a measure concentration argument.) C.

Tracy and H. Widom [T-W1] proved that (some multiple of) N 2/3(λNmax−1) converges

weakly to the distribution F of (6). We bound here, for fixed N , the probability that

λNmax exceeds 1+ ε for small ε’s in accordance with the rate N 2/3 and the asymptotics

at infinity of the Airy function.

Fix thus σ2 = 1
4N . By (3), for every ε > 0,

P
(
{λNmax ≥ 1 + ε}

)
≤ Nµ̂Nσ

(
[1 + ε,∞)

)
=

∫ ∞

2
√
N(1+ε)

N−1∑

k=0

P 2
k dµ .

Hence, for every p ≥ 0,

P
(
{λNmax ≥ 1 + ε}

)
≤ (1 + ε)−2pNbp

where we recall that bp = bNp are the 2p-moments of the mean spectral measure µ̂Nσ
(that is of the trace of XN ). Now, by induction on the recurrence formula (27) for bp,

it follows that, for every p ≥ 0,

bp ≤
(
1 +

p(p− 1)

4N2

)p
χp

197



where, by (12),

χp =
2p− 1

2p+ 2
χp−1 =

(2p)!

22pp!(p+ 1)!

is the 2p-moment of the semicircular law. By Stirling’s formula, χp ∼ p−3/2 as p→∞.

Hence, for 0 < ε ≤ 1 and some numerical constant C > 0,

P
(
{λNmax ≥ 1 + ε}

)
≤ CNp−3/2 e−εp+p

3/4N2

.

Therefore, optimizing in p ∼ √εN , 0 < ε ≤ 1, yields the following sharp tail inequality.

By symmetry, a similar bound holds for the smallest eigenvalue.

Proposition 5.2. In the preceding setting, for every 0 < ε ≤ 1 and N ≥ 1,

P
(
{λNmax ≥ 1 + ε}

)
≤ C e−Nε3/2/C

where C > 0 is a numerical constant.

A slightly weaker inequality, involving some polynomial factor, is established in

[Le1] using hypercontractivity of the Hermite operator. For an argument using integral

bounds, see [Au].

b) LUE random matrices. The following is the analogue of Lemma 5.1 for Laguerre

polynomials. It is again a version of the Christoffel-Darboux formula. Here µ = µγ is

the Gamma distribution with parameter γ and P` = P γ
` , ` ∈ N, are the (normalized)

orthogonal Laguerre polynomials for µ.

Lemma 5.3. For any smooth function g on R, and each N ≥ 1,

∫
xg′

N−1∑

`=0

P 2
` dµ = −

∫
g
√
N
√
γ +N PNPN−1dµ.

Proof. Let L be the first order operator

Lf = xf ′ + (γ + 1− x)f,

γ > −1, acting on smooth functions f on (0,+∞). The integration by parts formula

indicates that for smooth functions f and g,

∫
g(−Lf)dµ =

∫
xg′fdµ.

The recurrence relation for the (normalized) Laguerre polynomials PN , N ∈ N, is given

by

xPN = −
√
N + 1

√
γ +N + 1PN+1 + (γ + 2N + 1)PN −

√
N
√
γ +N PN−1
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We also have that xP ′N = −
√
N
√
γ +N PN−1 +NPN . Hence,

L(P 2
N ) = PN

[
2xP ′N + (γ + 1− x)PN

]

=
√
N + 1

√
γ +N + 1PN+1PN −

√
N
√
γ +N PNPN−1.

Therefore,

(−L)
(N−1∑

`=0

P 2
`

)
= −

√
N
√
γ +N PNPN−1

from which the conclusion follows.

Together with this lemma, we consider as in the Hermite case, recurrence equations

for moments. Set ak =
∫
xkPNPN−1dµ, k ∈ Z, k > −γ − 1. By Corollary 3.2 with

θ(x) = xk, p = PN , q = PN−1,

− k(k − 1)(k − 2)(k − 3)ak−2 − 3k(k − 1)(k − 2)ak−2

+ k(k − 1)
[
ak − 2(γ + 2N)ak−1 + (γ2 − 1)ak−2

]

+ k
[
ak − (γ + 2N)ak−1

]
− ak = 0,

that is

(k + 1)(k − 1)ak − (γ + 2N)k(2k − 1)ak−1 + k(k − 1)
[
γ2 − k(k − 2)− 1

]
ak−2 = 0

for each k−2 > γ−1. Note that a0 = 0 and, by the recurrence relation of the Laguerre

polynomials, a1 = −
√
N
√
γ +N . As we have seen in Lemma 5.3,

k

∫
xk

N−1∑

`=0

P 2
` dµ = −

∫
xk
√
N
√
γ +N PNPN−1dµ = −

√
N
√
γ +N ak.

Set now

bp = bNp =

∫
(σ2x)p

1

N

N−1∑

`=0

P 2
` dµ, p ∈ N,

so that

ap = const.σ−2ppbp.

Hence

(p+ 1)bp − (γ + 2N)σ2(2p− 1)bp−1 +
[
γ2 − p(p− 2)− 1

]
σ4(p− 2)bp−2 = 0.

In other words, for p− 2 > −γ − 1, p 6= −1,

bp = 2(γ + 2N)σ2 2p− 1

2p+ 2
bp−1 −

[
γ2 − (p− 1)2

]
σ4 p− 2

p+ 1
bp−2 (28)
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(b0 = 1, b1 = (γ +N)σ2). As for (27), this recurrence relation already appeared, with

the same proof, in the paper [H-T] by U. Haagerup and S. Thorbjørnsen.

Note that, for every fixed p, the moment equations (28) converge as σ2 ∼ 1
4N ,

γ = γN ∼ c′N , N →∞, c′ ≥ 0, to the moment equations

χc
′

p =
c′ + 2

2
· 2p− 1

2p+ 2
χc

′

p−1 −
c′2

16
· p− 2

p+ 1
χc

′

p−2

(χc
′

0 = 1, χc
′

1 = c+1
4 ). The moments χc

′

p may be recognized as the moments of the

Marchenko-Pastur distribution νc′ of (24). It may actually even be observed from (28)

that when σ2 = 1
4N and γ = γN = c′N , for every fixed p and every N ≥ 1,

|bNp − χc
′

p | ≤
Cp
N2

where Cp > 0 only depends on p and c′ (use that bN0 = χc
′

0 and bN1 = χc
′

1 ).

We turn to the Laguerre ensemble, and consider now the Wishart matrix Y = Y N

from the LUE with σ2 = 1
4N andM =M(N) = [cN ], c ≥ 1. As we have seen, the mean

spectral measure µ̂Nσ of Y N then converges weakly as N →∞ to the Marchenko-Pastur

distribution νc′ of (24), c′ = c − 1 ≥ 0, with support (v − u, v + u) where u > 0 and

v are given by (23). The largest eigenvalue λNmax of Y N is known to converge almost

surely to the right endpoint v + u of the support of νc while the smallest eigenvalue

λNmin converges almost surely towards v − u (cf. [Bai]). As for the GUE, the fact that

lim supN→∞ λNmax ≤ 1 almost surely will follow from the bounds we provide next and

the Borel-Cantelli lemma. The lower bound on the liminf follows from the almost sure

convergence of the spectral measure. K. Johansson [Joha1] and I. Johnstone [John]

independently proved that (some multiple of) N 2/3(λNmax − (v + u)) converges weakly

to the Tracy-Widom distribution F . We bound here, for fixed N , the probability that

λNmax exceeds v + u+ ε for small ε’s at the appropriate rate and dependence in ε.

Fix thus σ2 = 1
4N and γ = [cN ]−N , c ≥ 1. For simplicity, we assume throughout

the argument below that γ = c′N , c′ = c−1 ≥ 0, the general case being easily handled

along the same line. By (4), we have that

P
({
λNmax ≥ (v + u)(1 + ε)

})
≤ (u+ v)−p(1 + ε)−pNbp

for every ε > 0 and p ≥ 0, where bp = bNp is the p-th moment of the mean spectral

measure µ̂Nσ (that is of the trace of Y N ) and u > 0 and v are given by (23). The

recurrence equation (28) for bp indicates that

bp = 2v
2p− 1

2p+ 2
bp−1 −

(
(v2 − u2)− (p− 1)2

16N2

)
p− 2

p+ 1
bp−2.

Two cases have to be distinguished. If u = v = 1
2 (c′ = 0), the argument leading

to Proposition 5.2 may essentially be repeated. Assume thus in the following that
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v > u > 0. We show by recurrence that for some constant C > 0 only depending on

c ≥ 1 and possibly varying from line to line below, for every 1 ≤ p ≤ N/C,

bp ≤ (v + u)

(
1 +

C

p
+
Cp2

N2

)
2p− 1

2p+ 2
bp−1. (29)

To this task, it suffices to check that

2v
2p− 1

2p+ 2
bp−1 −

(
(v2 − u2)− (p− 1)2

16N2

)
p− 2

p+ 1
bp−2

≤ (v + u)

(
1 + +

C

p
+
Cp2

N2

)
2p− 1

2p+ 2
bp−1

holds as a consequence of the recurrence hypothesis (29) for p−1. Hence, by iteration,

for every p ≤ N/C,

bp ≤ (v + u)p
(
1 +

C

p
+
Cp2

N2

)p
χp.

We thus conclude as for the proof of Proposition 5.2 to the next sharp small deviation

inequality.

Proposition 5.4. In the preceding setting, for every 0 < ε ≤ 1 and N ≥ 1,

P
({
λNmax ≥ (v + u)(1 + ε)

})
≤ C e−Nε3/2/C .

where C > 0 only depends on c.

For c = 1 (c′ = 0), a slightly weaker inequality, involving some polynomial factor,

is established in [Le1] using hypercontractivity of the Laguerre operator.

Interestingly enough, the same argument may be developed to establish the same

exponential bound on the smallest eigenvalue λNmin of Y = Y N in case v > u > 0, that

is the so-called “soft wall” in the physicist language as opposed to the “hard wall” 0

(since all the eigenvalues are non-negative). Fluctuation results for λNmin at the soft

edge have been obtained in [B-F-P] (see also [Fo]) in a physicist language, with again

the limiting Tracy-Widom law (for the hard wall with a Bessel kernel, cf. [T-W2],

[Fo]). Assume thus that v > u > 0. For any 0 < ε < 1,

P
({
λNmin ≤ (v − u)(1− ε)

})
≤ Nµ̂Nσ

([
0, (v − u)(1− ε)

])

=

∫ 4N(v−u)(1−ε)

0

N−1∑

`=0

P 2
` dµ .

Hence, for every p ≥ 0,

P
({
λNmin ≤ (v − u)(1− ε)

})
≤ (v − u)p(1− ε)pNb−p .

201



Setting b̃p = b−p, the recurrence equations (28) (with γ = c′N , c′ = c−1 > 0), amount

to (
(v2 − u2)− (p− 1)2

16N2

)
p

p− 3
b̃p = 2v

2p− 3

2p− 6
b̃p−1 − b̃p−2

for every (4 ≤) p < c′N +1. Arguing as for the largest eigenvalue shows that for some

constant C > 0 only depending on c,

b̃p ≤
1

v − u

(
1 +

C

p
+
Cp2

N2

)
2p− 3

2p
b̃p−1.

By iteration,

b̃p ≤ (v − u)−p
(
1 +

C

p
+
Cp2

N2

)p
χp

for p ≤ N/C. As for Propositions 5.2 and 5.4, we thus conclude to the following.

Proposition 5.5. In the preceding setting, for every 0 < ε ≤ 1 and N ≥ 1,

P
({
λNmin ≤ (v − u)(1− ε)

})
≤ C e−Nε3/2/C .

where C > 0 only depends on c.

c) JUE random matrices. The following lemma is the analogue of Lemmas 5.1 and

5.3, and is one further instance of the Christoffel-Darboux formula. Here µ = µα,β is

the Beta distribution with parameter α, β and P` = Pα,β
` , ` ∈ N, are the (normalized)

orthogonal polynomials for µ.

Lemma 5.6. For any smooth function g on R, and each N ≥ 1,

∫
(1− x2)g′

N−1∑

`=0

P 2
` dµ =

∫
geNPNPN−1dµ

where eN is a constant.

Proof. Let L be the first order operator

Lf = (1− x2)f ′ +
[
β − α− (α+ β + 2)x

]
f,

α, β > −1, acting on smooth functions f on (−1,+1). The integration by parts formula

indicates that for smooth functions f and g,

∫
g(−Lf)dµ =

∫
(1− x2)g′fdµ.
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The recurrence relation for the (normalized) Jacobi polynomials PN , N ∈ N, is given

by

(α+ β + 2N)(α+β + 2N + 1)(α+ β + 2N + 2)xPN

= 2(N + 1)(α+ β +N + 1)(α+ β + 2N)κ−1
n κN+1PN+1

+ (α+ β + 2N + 1)(β2 − α2)PN

+ 2(α+N)(β +N)(α+ β + 2N + 2)κ−1
N κN−1PN−1.

We also have that

(α+ β + 2N)(1− x2)P ′N = −N
[
β − α+ (α+ β + 2N)x

]
PN

+ 2(α+N)(β +N)κN−1κ
−1
N PN−1.

Hence,

L(P 2
N ) = PN

(
2(1− x2)P ′N +

[
β − α− (α+ β + 2)x

]
PN

)

= PN

(
4(α+N)(β +N)

α+ β + 2N
κN−1κ

−1
N PN−1

− (α+ β + 2N + 2)(α+ β + 2N)x+ α2 − β2

α+ β + 2N
PN

)

= 2PN

(
(α+N)(β +N)

α+ β + 2N + 1
κN−1κ

−1
N PN−1

− (N + 1)(α+ β +N + 1)

α+ β + 2N + 1
κ−1
N κN+1PN+1

)
.

By definition of κN , it follows that

L(P 2
N ) = eNPNPN−1 − eN+1PN+1PN

so that

(−L)
(N−1∑

`=0

P 2
`

)
= eNPNPN−1.

The conclusion follows.

Turning to moment equations, set ak =
∫
xkPNPN−1dµ, k ∈ N. By Corollary 3.2

with θ(x) = xk, p = PN , q = PN−1,

k(k − 1)(k − 2)(k − 3)(−ak + 2ak−2 − ak−4)

+ k(k − 1)(k − 2)(−6ak + 6ak−2)

+ k(k − 1)
([

(α+ β)(α+ β + 2) + 2(ρN + ρN−1)− 6
]
ak + 2(α2 − β2)ak−1

+
[
(α− β)2 − 2(α+ β)− 2(ρN + ρN−1) + 2

]
ak−2

+ k
([

(α+ β)(α+ β + 2) + 2(ρN + ρN−1)
]
ak + (α2 − β2)ak−1

)

− (α+ β + 2N)2ak = 0,
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that is
[
(k2 − 1)(α+ β + 2N)2 − k(k − 1)(k − 2)(k + 3)− 6k(k − 1)

]
ak

− k(2k − 1)(β2 − α2)ak−1

− k(k − 1)
[
4N(α+ β +N)− (α− β)2 − 2k(k − 2)− 2

]
ak−2

− k(k − 1)(k − 2)(k − 3)ak−4 = 0

(30)

for k ≥ 4. Here a0 = 0, a1 = eN
α+β+2N by the recurrence relation of the Jacobi

polynomials. As we have seen in Lemma 5.6,

k

∫
(xk−1 − xk+1)

N−1∑

`=0

P 2
` dµ =

∫
xkeNPNPN−1dµ = eNak.

Set

bk = bNk =

∫
xk

1

N

N−1∑

`=0

P 2
` dµ, k ∈ N,

with b0 = 1 and

b1 =
β2 − α2

N

N−1∑

`=0

(α+ β + 2`+ 2)−1(α+ β + 2`)−1.

Therefore,

ak = const. k(bk−1 − bk+1), k ≥ 1.

Hence, by (30), for every p ≥ 2,

R(b2p − b2p+2) = S(b2p − b2p−2) + T (b2p−2 − b2p−4) + U(b2p−1 − b2p+1)

where

R = (2p+ 2)(α+ β + 2N)2 − (2p+ 1)(2p− 1)(2p+ 4)− 6(2p+ 1),

S = (2p− 1)
[
4N(α+ β +N)− (α− β)2 − 2(2p+ 1)(2p− 1)− 2

]
,

T = (2p− 1)(2p− 2)(2p− 3),

U = (4p+ 1)(β2 − α2).

In other words, provided that R 6= 0,

b2p − b2p+2 =
S

R
(b2p − b2p−2) +

T

R
(b2p−2 − b2p−4) +

U

R
(b2p−1 − b2p+1). (31)

Note that the moment equations (31) converge, as α = αN ∼ a′N , β = βN ∼ b′N ,

N →∞, a′, b′ ≥ 0, to the moment equations

χa
′,b′

2p − χa
′,b′

2p+2 = (u2 − v2)
2p− 1

2p+ 2

(
χa

′,b′

2p−2 − χa
′,b′

2p

)
+ v

4p+ 1

2p+ 2

(
χa

′,b′

2p−1 − χa
′,b′

2p+1

)
.
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The moments χa
′,b′

2p may be recognized to be the moments of the distribution νa′,b′

given in (26).

Let finally Z = ZN a random matrix from the JUE with M1 = M1(N) = [aN ],

a ≥ 1, and M2 = M2(N) = [bN ], b ≥ 1. As we have seen, the mean spectral measure

µ̂Nσ of ZN converges weakly as N →∞ to the distribution νa′,b′ of (26), a
′ = a−1 ≥ 0,

b′ = b − 1 ≥ 0, with support (v − u, v + u) where u > 0 and v are given by (25).

The behavior of the largest and smallest eigenvalues of ZN has been settled recently

in [Co] (see also [Fo], [T-W2] and the references therein). We prove here some sharp

tail inequalities similar to the ones for the GUE and LUE at the rate N 2/3 at the soft

edges. We actually only deal with the symmetric case a = b. Therefore v = 0 in (25).

All the eigenvalues of ZN take values between −1 and +1. We assume that u2 < 1

and concentrate thus on a “soft wall” analysis.

As in the Laguerre case, fix thus for simplicity α = a′N , β = b′N , a′ = b′ 6= 0, so

that u2 < 1. By (5),

P
({
λNmax ≥ u(1 + ε)

})
≤ u−2p(1 + ε)−2pNb2p

for every ε > 0 and p ≥ 0 where b2p = bN2p are the 2p-moments of the mean spectral

measure µ̂N (that is of the trace of ZN ). Set cp = b2p − b2p+2 ≥ 0. Since α = β, the

recurrence equations (31) for b2p = bN2p indicate that

cp =
S

R
cp−1 +

T

R
cp−2 (32)

where

R = (2p+ 2)4N2(a′ + 1)2 − (2p+ 1)(2p− 1)(2p+ 4)− 6(2p+ 1),

S = (2p− 1)
[
4N2(2a′ + 1)− 2(2p+ 1)(2p− 1)− 2

]
,

T = (2p− 1)(2p− 2)(2p− 3).

¿From (32), there exists a constant D > 0, depending on u, such that for every (2 ≤)
p ≤ N/D,

cp ≤ u2 2p− 1

2p+ 2

(
1 +

Dp2

N2

)
cp−1 +

Dp2

N2
cp−2.

Arguing by induction, it follows that there exists a constant C > 0 only depending on

u, and possibly changing from line to line below, such that for every p ≤ N/C,

cp ≤ u2p

(
1 +

Cp2

N2

)p
χp

where we recall that χp is the 2p-moment of the semicircle law. Now, cp = b2p − b2p+2

and b2p → 0 as p→∞ (for every fixed N). Therefore, for every p ≤ N/C,

b2p ≤
∞∑

`=p

u2`
(
1 +

Cp2

N2

)`
χ`

=

∞∑

`=p

∫ (
1 +

Cp2

N2

)`
(u2x2)

`
dµ3(x).
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As a consequence, provided that u2(1 + Cp2

N2 ) ≤ d < 1,

b2p ≤
1

1− d

(
1 +

Cp2

N2

)p
χp.

We may then conclude, as in the Hermite and Laguerre cases, to the following result.

By symmetry, a similar bound holds for the smallest eigenvalue.

Proposition 5.7. In the preceding setting, for every 0 < ε ≤ 1 and N ≥ 1,

P
({
λNmax ≥ u(1 + ε)

})
≤ C e−Nε3/2/C .

where C > 0 only depends on u.

The hypercontractive method of [Le1] may be used similarly on the Jacobi operator

to prove a slightly weaker inequality, involving some polynomial factor.

As a consequence of Proposition 5.7 and the Borel-Cantelli lemma, it immediately

follows that lim supN→∞ λNmax ≤ u almost surely. Almost sure convergence of the

spectral measure is established in [Co].

The arguments developed here do not seem to yield at this point bounds at fixed N

on the largest eigenvalues of the GUE, LUE or (symmetric) JUE under their limiting

values (and similarly for the smallest eigenvalues). This would be of particular interest

in case of the “hard walls” v − u = 0 for the LUE and v ± u = ±1 for the JUE where

the Airy kernel is replaced by the Bessel kernel [T-W2] at the rate N 1/2.
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