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Abstract

The continuum random cluster model is defined as a Gibbs modification of the sta-
tionary Boolean model in Rd with intensity z > 0 and the law of radii Q. The formal
unormalized density is given by qNcc where q > 0 is a fixed parameter and Ncc the
number of connected components in the random germ-grain structure. In this paper
we prove the existence of the model in the infinite volume regime for a large class
of parameters including the case q < 1 or distributions Q without compact support.
In the extreme setting of non integrable radii (i.e.

∫
RdQ(dR) = ∞) and q is an

integer larger than 1, we prove that for z small enough the continuum random cluster
model is not unique; two different probability measures solve the DLR equations. We
conjecture that the uniqueness is recovered for z large enough which would provide
a phase transition result. Heuristic arguments are given. Our main tools are the
compactness of level sets of the specific entropy, a fine study of the quasi locality
of the Gibbs kernels and a Fortuin-Kasteleyn representation via Widom-Rowlinson
models with random radii.
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1 Introduction

In this paper we are interested in a continuum version of the random cluster model
usually defined on a deterministic graph. The reference model is the stationary Poisson
Boolean model with intensity z > 0 and the law of radii Q a probability measure on
R+. It is built by union of balls in Rd centred to the points of a stationary Poisson
point process with intensity z > 0 and with random independent radii following the
distribution Q. The finite volume continuum random cluster model is then defined
as a penalized Boolean model in some bounded window Λ. The unormalized density
is given by qNcc where q > 0 is a positive real number and Ncc denotes the number
of connected components of the random closed set considered. For this model, the
mean number of connected components is increasing with respect to q which provides
a clear interpretation of this parameter. For q = 1 we recover the standard Poisson
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Continuum random cluster model

Boolean model. In the infinite volume regime a global density is senseless and a
definition of the continuum random cluster model (called CRCM in the following) via
Gibbs modifications is required. Precisely a CRCM is a solution of the standard DLR
equations (2.5). Existence, uniqueness and non-uniqueness questions arise.

Originally the random cluster model is a lattice model introduced in the late 1960’
by Fortuin and Kasteleyn to unify the models of percolation as Ising and Potts models.
Most properties and results about this model, such as existence of random cluster model
on infinite graphs, percolation property and phase transition property can be found in
[10, 13]. In the continuum setting the CRCM has been also introduced for its relations
with the continuum Potts model and the Widom-Rowlinson model. It led to new proofs of
phase transition for those models, see [3] and [8]. The CRCM is also studied in stochastic
geometry and spatial statistics as an interacting random germ-grain model [15]. For a
suitable parameter q the CRCM fits as best as possible the clustering of the real dataset.
The estimation of the parameter q and the law of radii Q is studied in [16].

All these works, including those in statistical mechanics, involve only the finite vol-
ume CRCM. The infinite volume version has not really been studied and highlighted
as in its analogous on deterministic graphs. However its interests are numerous in
statistical physics and spatial statistics. Involving physical considerations, phase tran-
sition phenomenons are observable from infinite volume CRCM; it is believed that the
uniqueness of the CRCM would be violated for special critical values of z, q. Many
conjectures and open questions for the lattice models concern the continuum case as
well. In stochastic geometry, the infinite volume CRCM provides a more relevant model
than the Boolean model for the applications in material science, microemulsion mod-
elling, etc. Its macroscopic properties (mean value, conductivity, permeability) can be
studied via stationary tools as Palm theory and ergodic theory. Finally in spatial statistics,
the existence of models in infinite volume regime enables the study of the asymptotic
properties of estimators, functionals, etc. For example the maximum likelihood estimator
of the parameter q along a sequence of increasing observable windows (Λn) requires the
existence of the model in the whole space.

The existence of the infinite volume CRCM has not been proved in a general setting
of random radii, continuum parameter q > 0 and z > 0. However it is known that it
could be constructed via a colour-blind Widom Rowlinson in the setting where q is an
integer values and the radii are not random [3]. The aim of this paper is to provide the
existence of the model for the larger class of parameters as possible. In some case, the
non uniqueness is also proved. Our first theorem gives the existence of the CRCM for any
distribution Q with compact support, any q > 0 and z > 0. In the case of unbounded radii,
the existence is proved if Q has a d-moment (i.e.

∫
RdQ(dR) < +∞), q ≥ 1 and z > 0. In

the case where Q does not have a d-moment, the existence is trivial since the Poisson
Boolean model is a CRCM itself. However in a second theorem we prove the existence of
another CRCM leading to a non uniqueness Gibbs measures phenomenon. This result is
obtained in the case where q is an integer and z is small enough. Using a Pirogov-Sinai
approach, this non uniqueness result could provide an interesting tool for proving a
phase transition phenomenon in the approximation setting

∫
RdQ(dR)→∞. However

we think that it has its own interest as well since non uniqueness results are quite rare
for continuum models. We conjecture that for z large enough the uniqueness of Gibbs
measures is recovered in the non-integrable case. It would provide a phase transition
where the uniqueness is lost only for z small enough. This behaviour is unusual for Gibbs
point processes where the uniqueness is in general lost for z large enough. Heuristic
arguments of the conjecture are given.

The proof of the first theorem is based on the compactness of the level set of the
specific entropy and a fine study of the quasi locality of the Gibbs kernels. This strategy
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Continuum random cluster model

have already successfully applied for proving the existence of several Gibbs models
[5, 6, 8]. In the present paper the very long range dependence is our major problem.
Indeed the radii are not bounded and the influence of a ball can be felt far away if it
splits a large connected component when it is removed. Such long range dependence
were not dealt in the papers mentioned above. In the extreme setting of the second
Theorem, we did not succeed to manage the long range dependence of the interaction
as in the the first theorem. The non-integrability of the radii may produce balls with
too large radii. So we turned to a Fortuin-Kasteleyn representation of the CRCM via a
colour-blind Widom-Rowlinson model as in [3, 10]. In this setting the DLR equations are
simpler to obtain since the non overlapping assumption for balls with different colours
confines naturally the range of the interaction. Note that q represents the number of
colors and it is the reason why q is an integer.

Finally note that the standard FKG inequalities, which are abundantly used for the
random cluster models on graphs, are not satisfied in the present setting. In particular
the thermodynamic limit of finite volume Gibbs measures to the infinite volume Gibbs
measure can not be proved. Only the convergence of the empirical field of the finite
volume Gibbs measures is obtained.

In Section 2 we introduce the notations and give the formal definition of the CRCM
using the DLR formalism. Then we give both main theorems mentioned above in the
Section 3 devoted to the results. The proof of the first existence theorem is given
in Section 4 and the second theorem in Section 5. The Heuristic arguments of the
conjecture are presented in Section 6.

2 Notations and Results

2.1 State space and reference measure

For d at least 2, S denotes the space Rd ×R+ endowed with the Borel σ-algebra. Ω

stands for the set of non negative integer-valued measures ω on S with finite mass on
set Λ × R+ for any bounded set Λ ⊂ Rd. An element ω of Ω is called "configuration"
and can be represented as ω =

∑
i∈I δ(xi,Ri) for a finite or infinite sequence (xi, Ri)i∈I

of points in S without accumulation points for the sequence (xi)i∈I . Ω is equipped with
the classical σ-algebra F generated by the counting variables ω 7→ ω(Γ) where Γ is a
bounded Borel subset of S. We denote by Ωf the subset of finite configurations. For a
subset Λ of Rd, the configuration restricted to Λ is defined by ωΛ(.) := ω(. ∩Λ×R+) and
FΛ is the sub σ-algebra of F generated by the counting variables ω 7→ ω(Γ) where Γ is a
bounded subset of Λ×R+. We write (x,R) ∈ ω if ω({(x,R)}) > 0. For a configuration ω
and a subset Λ of Rd, ω(Λ) denotes the number of points (x,R) ∈ ω such that x ∈ Λ. At
each configuration ω we associate its germ-grain structure

L(ω) =
⋃

(x,R)∈ω

B(x,R)

where B(x,R) is the Euclidean closed ball of center x and radius R.
For a positive z > 0 and a probability measure Q on R+, let πz,Q be the distribution on

Ω of the Poisson point process of intensity measure m = zλ(d) ⊗Q. It is the distribution
of the homogeneous Poisson point process on Rd with independent marks distributed by
Q. For Λ ⊆ Rd, πz,QΛ denotes the projection of πz,Q on Λ×R+. The random closed set L
under the law πz,Q is the so-called Poisson Boolean model with intensity z > 0 and law of
radii Q.

In the following a probability P on Ω is called stationary if it is invariant under the
translations by vectors in Zd. A definition with translations by vectors in Rd could have
been considered as well.
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2.2 Interaction

For any configuration ω, the connected components in L(ω) are defined via the
graph of connections G(ω) = (V(ω), E(ω)) where the vertices are V(ω) = {(x,R) ∈ ω}
and the edges E(ω) = {{(x,R), (y,R′)} ⊂ V(ω), such that B(x,R) ∩ B(y,R) 6= ∅}. A
connected component in L(ω) is defined as the union of balls B(x,R) for (x,R) in
a connected component of G(ω). Note that it could be different from a topological
connected component in L(ω). For instance the configuration ω = δ(0,0) +

∑+∞
n=1 δ(n,n−1/n)

has two connected components in G(ω) and only one topological connected component
in L(ω). For finite configurations, both definitions are equivalent.

For q > 0 fixed, the interaction between the particles is given by the unnormalized
density

qNcc(ω), ω ∈ Ωf ,

where Ncc(ω) denotes the number of connected components of L(ω) (or equivalently in
G(ω)). This density is well defined only for finite configurations. As usual, for infinite
configurations we define a local conditional density.

Proposition 2.1. For any ω ∈ Ω and Λ ⊆ Rd bounded, the following limit

NΛ
cc(ω) = lim

∆→Rd

(
Ncc(ω∆)−Ncc(ω∆\Λ)

)
(2.1)

exists and is called local number of connected components in Λ. The limit is taken along
any increasing sequence of sets (∆n).

Proof. For a given ω ∈ Ω we are interested in the quantity cn = Ncc(ω∆n
)−Ncc(ω∆n\Λ),

where (∆n) is a given increasing sequence converging to Rd. Since the quantity cn
has integer values, the sequence (cn) converges if and only if it is constant for n large
enough. For a subset Λ ⊂ Rd, a connected component of L(ωΛc) is called a Λ-component
of ω if it is connected to L(ωΛ). For any n ≥ 1, any X = (x,R) ∈ ω∆c

n
let us introduce the

quantity

Dn(X) = Ncc(ω∆n
+ δX)−Ncc(ω∆n\Λ + δX)− [Ncc(ω∆n

)−Ncc(ω∆n\Λ)],

which gives the variation of the number of connected components when the ball B(x,R)

is added. It is not difficult to see that Dn(X) may be not zero only if one of the two
following situations occurs

• B(x,R) is connected to at least two Λ-components of ω∆n ,

• B(x,R) intersects one ball B of L(ωΛ) without intersecting any Λ-component of
ω∆n connected to B (this case happens in particular when B does not intersects
any Λ-component of ω∆n).

Show that there exists N ≥ 1, which may depend on ω, such that none of the two
situations occurs for any X ∈ ω∆c

N
. It ensures that the sequence (cn) is constant for

n ≥ N . Since the number of Λ-components is finite we can choose N large enough such
that the number of Λ-components in L(ω) is equal to the number of Λ-components in
L(ω∆N

). In other words the Λ-components in L(ω) are identifiable in ∆N . Now it remains
the problem that a ball outside ∆n may be connected to L(ωΛ) without intersecting any
Λ-component of ω∆n . But the number of such balls is finite. So for N large enough this
situation does not occur.

Let us point out that, even if NΛ
cc(ω) depends only on ω∆N

, the determination of N
involves a global knowledge of the configuration ω. This long range dependence is the
major problem in the present paper.
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The local number of connected components satisfies the following additivity proper-
ties which is a direct consequence of (2.1). For any couple of bounded sets Λ ⊆ Λ′ in Rd,
there exists a function φΛ,Λ′ such that, for all ω in Ω

NΛ′

cc (ω) = NΛ
cc(ω) + φΛ,Λ′(ωΛc). (2.2)

The function φΛ,Λ′ depends only on the configurations outside Λ. It is a crucial point
for the compatibility of the Gibbs Kernels. Let us finish this section in giving useful
bounds for NΛ

cc.

Proposition 2.2. For any configuration ω and any bounded set Λ

NΛ
cc(ω) ≤ ω(Λ). (2.3)

Moreover, for any R0 > 0 there exists K ∈ R such that for any configuration satisfying
for all points (x,R) ∈ ωΛ, R ≤ R0 then

NΛ
cc(ω) ≥ K − ω(∆R0 \ Λ), (2.4)

where ∆R0
= Λ⊕B(0, R0 + 2).

Proof. For any subset ∆ the difference Ncc(ω∆)−Ncc(ω∆\Λ) is obviously smaller than
ω(Λ) and so its limit when ∆ tends to Rd as well. The first inequality (2.3) follows.

To get the lower bound for NΛ
cc(ω), we first note that the worst case occurs when L(ωΛ)

has one connected component which intersects a lot of connected components of L(ωΛc).
So let us control this number of connected components. We consider (x,R) ∈ ω∆c

R0
such

that B(x,R) intersects a connected component of L(ωΛ). Since all balls of L(ωΛ) have a
radius smaller than R0 we have

|B(x,R) ∩∆R0 | ≥ vd,

where vd is the volume of the unit ball in dimension d. So the number of connected
components of L(ω∆c

R0
) which are connected to L(ωΛ) is bounded from above by k =

|∆R0
|

vd
. Taking into consideration the balls in ω∆R0

\Λ we have

NΛ
cc(ω) ≥ 1− k − ω(∆R0

\ Λ)

and (2.4) follows.

2.3 Continuum Random Cluster Model

The continuum random cluster model is defined via standard DLR formalism which
requires that the probability measure satisfies equilibrium equations based on Gibbs
kernels (see equations (2.5)). Before giving these equations we need to assume that these
kernels are well-defined which is the case if for any bounded set Λ and any configuration
ω the partition function

ZΛ(ωΛc) :=

∫
Ω

qN
Λ
cc(ω′Λ+ωΛc )πz,QΛ (dω′)

is non degenerate which means that 0 < ZΛ(ωΛc) < +∞. As usual, for any configura-
tion ω, ZΛ(ωΛc) ≥ πz,QΛ (0) = e−z|Λ| > 0. For the other bound, the following assumption is
required

q ≥ 1 or the probability measure Q has a compact support. (A)
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Lemma 2.3. Under the assumption (A), for any configuration ω and any bounded set Λ

the partition function ZΛ(ωΛc) is finite.

Proof. In the case q ≥ 1, thanks to (2.3)

ZΛ(ωΛc) ≤
∫

Ω

qω
′(Λ)πz,QΛ (dω′) < +∞.

If q < 1 and Q has a compact support, there exists R0 such that Q([0, R0]) = 1 and thanks
to (2.4)

ZΛ(ωΛc) ≤ qK−ω(∆R0
\Λ) < +∞.

We are now in position to give the definition of a continuum random cluster model.

Definition 2.4. Under the assumption (A), a probability measure P on (Ω,F) is called
a continuum random cluster model for parameters z, Q and q (CRCM(z,Q, q)) if for all
bounded Λ ⊆ Rd and all bounded measurable functions f we have

∫
Ω

f(ω)P (dω) =

∫
Ω

∫
Ω

f(ω′Λ + ωΛc)
1

ZΛ(ωΛc)
qN

Λ
cc(ω′Λ+ωΛc )πz,QΛ (dω′)P (dω). (2.5)

Equivalently, for P -almost every ω the conditional law of P given ωΛc is absolutely
continuous with respect to πz,QΛ with density qN

Λ
cc(.+ωΛc )/ZΛ(ωΛc).

These equations, for all Λ, are called DLR (Dobrushin, Lanford, Ruelle) equations.
The existence of such Gibbs measures is the main question of the present paper. The
non uniqueness is also considered.

3 Results

Our first result theorem ensures the existence of at least one CRCM(z,Q, q) for the
larger class of parameters (z,Q, q) as possible.

Theorem 3.1.

• If Q has a bounded support, i.e there exits R0 > 0 such that Q([0, R0]) = 1, then for
all z > 0 and q > 0 there exists at least one stationary CRCM(z,Q, q).

• If
∫
RdQ(dR) is finite, then for all z > 0 and q ≥ 1 there exists at least one stationary

CRCM(z,Q, q).

The proof of this theorem is based on the compactness of the level set of the specific
entropy (see 4.3). This tightness tool allows to build a limit point of a sequence of
stationary empirical field coming from the finite volume Gibbs measures. Then the main
difficulty is to prove that this limit point satisfies the DLR equations. This strategy has
already been successfully applied for proving the existence of several Gibbs models
[5, 6, 8]. In the present context of continuum random cluster model, the strong non-
locality of the interaction is our major problem. Indeed the radii are not bounded
which produce a long range dependency. Moreover the contribution of each ball in the
interaction can be long range if the ball is "pivotal" in the sense that it plays a crucial
role in the determination of NΛ

cc(ω). The size of the connected components has also an
influence on the range of the interaction. In particular, for proving the DLR equations, we
need to prove that the limit point has, a priori, at most one infinite connected component.
The proof of this theorem is given in Section 4.
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In the extreme setting of non-integrable radii (i.e.
∫
RdQ(dR) = +∞). First we note

that the existence of a CRCM(z,Q, q) is obvious since the Poisson point process πz,Q

solves the DLR equations (2.5).

Proposition 3.2. If
∫
RdQ(dR) = +∞ then the Poisson process πz,Q is a CRCM(z,Q, q).

Proof. It is well known that, for any bounded set Λ and πz,Q-almost all ω, the set
∪(x,R)∈ωΛcB(x,R) covers the full spaceRd [4]. Therefore the function ω′Λ 7→ NΛ

cc(ω
′
Λ+ωΛc)

is identically null for πz,Q-almost every outside configuration ωΛc . The DLR equations
follows easily.

Our second theorem ensures the existence of another CRCM(z,Q, q) different from
πz,Q when q is an integer and z is small enough. It is a non uniqueness result which
proves that the simplex of CRCM(z,Q, q) is not reduced to a singleton.

Theorem 3.3. If
∫
R+ R

dQ(dR) = +∞ and if q is an integer larger than 2, there exists
z0 > 0 such that, for all z < z0, there exists a stationary CRCM(z,Q, q) different from
πz,Q.

The reason why q must be an integer comes from the FK representation we used in
the proof. Indeed we are not able to extend the proof of 3.1 to the case

∫
R+ R

dQ(dR) =

+∞. The influence of large balls centred far away is too difficult to control and we
do not succeed to prove that the limit point satisfied the DLR equations. Using the
representation of the CRCM as a Widom-Rowlinson model (a model of non overlapping
balls with q different colors) as in [3, 10], the existence problem becomes simpler.
Actually the DLR equations of the Widom-Rowlinson are more "local" since balls with
different colors are not allowed to overlap. It produces a natural locality of the interaction.
However we think that the assumption q ∈ N is only technical and could be relaxed by
q > 1.

Involving the parameter z we believe that the assumption z small enough is crucial.
In our proof, it ensures that the CRCM(z,Q, q) we build is different from πz,Q. It is based
on specific entropy inequalities which ensure the discrimination for z small enough.
From a general point of view, we conjecture that for z large enough there exists an
unique CRCM(z,Q, q) which is πz,Q. The uniqueness would be recovered for z large
enough leading to a phase transition phenomenon.

Conjecture 3.4. If
∫
R+ R

dQ(dR) = +∞, there exists z1 > 0 such that, for all z > z1,
there exists an unique stationary CRCM(z,Q, q) which is πz,Q.

Note also that it is unusual in statistical mechanics that the non uniqueness result
is obtained for z small (and not large). The proof of the conjecture would reinforce
this curious behaviour. Let us finish this section by giving an interpretation of the
phase transition conjecture as a competition between the Poisson process and the
energy density. Recall that the CRCM on a finite window is a Poisson process with the
unormalized density qNcc. On one hand, since the Poisson process covers completely
the space Rd, it influences the CRCM to have an unique connected component which
annihilates the energy contribution. The CRCM tends to be a Poisson process and more
z is large more this influence is strong. On the other hand the energy density influences
the CRCM to have several connected components which tends to seperate the CRCM
from the Poisson process. This competition between the Poisson point process and the
energy is called Entropy-Energy competition in statistical Physics. We prove in 3.3
that the competition is well balanced for z small enough. Both forces can influence the
infinite volume phase. We believe that the Poisson process dominates the competition
when z is large enough and it is the sense of the conjecture. Heuristic arguments are
given in Section 6.
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4 Proof of 3.1

In Section 4.1 we construct a sequence of finite-volume CRCM (P̄n)n from which
we extract an accumulation point P̄ . The compactness (for the local convergence) of
level sets of the specific entropy is the main tool here. Then it remains to prove that
P̄ satisfies the DLR equations. To this end we need to show first that P̄ has at most
one unique infinite connected component. This question is addressed in Section 4.2.
Finally in Section 4.3 the DLR equations are proved. The idea is simple, since P̄n satisfies
the DLR equations and that (P̄n) tends to P̄ for the local convergence, we get the DLR
equations for P̄ in passing through the limit. However the Gibbs kernels are not local
and so a sequence of localizing events has to be introduced.

4.1 Existence of a limit point

For n a positive integer, we set Λn =]− n, n]d and we define the finite-volume Gibbs
measure with free boundary condition as follow

Pn(dω) = P z,Q,qn (dω) =
1

Zn
qNcc(ω)πz,QΛn

(dω),

where Zn =
∫

Ω
qNcc(ω)πz,Q,qΛn

(dω) is the normalizing constant. We need to define a

stationary version of Pn. Let τx be the translation of vector x. Then we define P̂n = P̂ z,Q,qn

as the probability measure ⊗
i∈Zd

P z,Q,qn ◦ τ−1
2ni and finally

P̄n = P̄ z,Q,qn =
1

(2n)d

∑
i∈In

P̂ z,Q,qn ◦ τ−1
i ,

where In =] − n, n]d ∩ Zd. Then P̄n is invariant under the translations (τi)i∈Zd (i.e.
P̄n is stationary). Our aim is to find an accumulation point of the sequence (P̄n) for the
suitable local convergence topology.

Definition 4.1. A function f is local if there exists a bounded set Λ such that f(ω) =

f(ωΛ) for all configurations ω in Ω. A sequence (µn) of measures converges to µ for the
local convergence topology if, for all bounded local functions f we have∫

Ω

fdµn −→
n→∞

∫
Ω

fdµ.

The specific entropy is a powerful tool for proving the tightness for such topology.
Let µ and ν be two probability measures on Ω. The relative entropy of µ with respect to
ν on the set Λn is defined by

IΛn
(µ|ν) =

{ ∫
f ln(f) dνΛn

if µΛn
� νΛn

, f =
dµΛn

dνΛn
,

+∞ else ,

where µΛn � νΛn means that µΛn is absolutely continuous with respect to νΛn .

Definition 4.2. Let µ be a stationary probability measure on Ω. Then

Iz(µ) = lim
n→∞

IΛn(µ|πz,Q)

|Λn|

is the specific entropy of µ with respect to πz,Q.

Note that the limit above always exists. We refer to [9] for a general presentation.
The following proposition is our tightness tool.
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Proposition 4.3 (Proposition 2.6 [7]). For every c1, c2 ≥ 0 the set

{µ stationary probability measures, Iz(µ) ≤ c1i(µ) + c2},

where i(µ) is the mean number of points in the box [0, 1]d for the probability measure µ,
is compact and sequentially compact for the local convergence topology.

So by 4.3, to ensure the existence of an accumulation point for the sequence (P̄n),
we just have to prove an uniform bound for the specific entropy Iz(P̄n).

Proposition 4.4. For all n we have,

Iz(P̄n) ≤ z + max(ln(q), 0)i(P̄n).

Proof. First, it is straightforward that by Proposition 15.52 in [9]

Iz(P̄n) =
1

|Λn|
IΛn

(Pn|πz,Q), (4.1)

with

IΛn(Pn|πz,Q) =

∫
Ω

ln

(
qNcc(ω)

Zn

)
Pn(dω)

= − ln(Zn) + ln(q)

∫
Ω

Ncc(ω)Pn(dω). (4.2)

Moreover Zn ≥ Pn(ω = 0) = exp(−z|Λn|) and

0 ≤
∫

Ω

Ncc(ω)Pn(dω) ≤
∫

Ω

ω(Rd)Pn(dω) = |Λn|i(Pn) = |Λn|i(P̄n). (4.3)

Adding together (4.1), (4.2) and (4.3) we get the result.

The existence of a an accumulation point P̄ = P̄ z,Q,q follows and for simplicity we
write that the sequence (P̄n) converges to P̄ in place of a subsequence.

For technical reasons involving the DLR(Λ) equation, the sequence (P̄n) has to be
modified by the the sequence (µΛ

n);

µΛ
n = µΛ,z,Q,q

n =
1

(2n)d

∑
i∈In

Λ⊆τi(Λn)

P z,Q,qn ◦ τ−1
i . (4.4)

This is no longer a probability measure sequence but the 4.5 below shows that the
local convergence to P̄ holds as well. Moreover each µΛ

n satisfies the DLR(Λ) equation.

Proposition 4.5. For all local bounded functions f we have

lim
n→∞

∣∣∣ ∫
M

f(ω) µΛ
n(dω)−

∫
M

f(ω) P̄n(dω)
∣∣ = 0.

and for all n ≥ 1∫
Ω

f(ω)µΛ
n(dω) =

∫
Ω

∫
Ω

f(ω′Λ + ωΛc)
1

ZΛ(ωΛc)
qN

Λ
cc(ω′Λ+ωΛc )πz,QΛ (dω′)µΛ

n(dω).

Proof. The proof of the first part is given in [5] Lemma 3.5. The proof of the DLR(Λ)
equation for µΛ

n is a standard consequence of the compatibility equations (2.2).
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4.2 Uniqueness of the infinite connected component

For k in N ∪ {∞}, we denote by {N∞cc = k} (respectively {N∞cc ≤ k}) the event of
configurations ω having k (respectively no more than k) infinite connected component(s).
This section is devoted to the proof of the following proposition.

Proposition 4.6. Under the assumption (A) we have

P̄ z,Q,q({N∞cc ≤ 1}) = 1.

The proof is based on a local modification property which claims that the configura-
tions in a finite box can be modified with positive probability.

Proposition 4.7 (Local modification). Under the assumption (A), for all Λ bounded, all
B ∈ FΛc satisfying P̄ (B) > 0 and all A ∈ FΛ satisfying πz,Q(A) > 0 we have

P̄ z,Q,q(A ∩B) > 0. (4.5)

Proof. First for any real number R0 > 0, let AR0
be the event A ∩ {ω ∈ Ω,∀(x,R) ∈

ωΛ, R ≤ R0}. By the monotone convergence Theorem, there is a finite R0 such that
πz,Q(AR0

) > 0. Since P̄ (AR0
∩B) ≤ P̄ (A ∩B) it is sufficient to prove the proposition in

the special case A = AR0
and that is what we do. By a martingale theorem, we have

1B = lim
Γ→Rd

EP̄ [1B |FΓ] P̄ − as. Moreover the function EP̄ [1B |FΓ], that we denote by φBΓ ,

is local and the local convergence can be applied.

P̄ (A ∩B) = lim
Γ→Rd

∫
Ω

1A(ωΛ)φBΓ (ωΓ\Λ)P̄ (dω)

= lim
Γ→Rd

lim
n→∞

∫
Ω

1A(ωΛ)φBΓ (ωΓ\Λ)µΛ
n(dω)

= lim
Γ→Rd

lim
n→∞

∫
Ω

∫
Ω

1A(ω′Λ)φBΓ (ωΓ\Λ)
qN

Λ
cc(ω′Λ+ωΛc )

ZΛ(ωΛc)
πz,QΛ (dω′)µΛ

n(dω). (4.6)

The second and third equalities are obtained by 4.5.
From now on we have to separate the cases q ≥ 1 and q < 1.

• Case q ≥ 1.

From (2.3) we get

ZΛ(ωΛc
) ≤ e(q−1)z|Λ|. (4.7)

From (2.4), (4.6) and (4.7), we obtain

P̄ (A ∩B) ≥ lim
Γ→Rd

lim
n→∞

∫
Ω

∫
Ω

1A(ω′Λ)φBΓ (ωΛc)
qK−ω(∆R0

\Λ)

e(q−1)z|Λ| πz,QΛ (dω′)µΛ
n(dω)

= lim
Γ→Rd

lim
n→∞

∫
Ω

φBΓ (ωΛc)
qK−ω(∆R0

\Λ)

e(q−1)z|Λ| πz,QΛ (A)µΛ
n(dω)

=
qK

e(q−1)z|Λ|π
z,Q
Λ (A)

∫
Ω

1B(ωΛc)q−ω(∆R0
\Λ)P̄ (dω). (4.8)

which gives P̄ (A ∩B) > 0.

• Case q < 1. From (2.4) and assumption (A), which bound the radii in the case q < 1

, we get

ZΛ(ωΛc) ≤ qK−ω(∆R0
\Λ). (4.9)
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From (2.3), (4.6) and (4.9) we obtain

P̄ (A ∩B) ≥ lim
Γ→Rd

lim
n→∞

∫
Ω

∫
Ω

1A(ω′Λ)φBΓ (ωΛc)
qω
′(Λ)

qK−ω(∆R0
\Λ)

πz,QΛ (dω′)µΛ
n(dω)

= lim
Γ→Rd

lim
n→∞

∫
Ω

φBΓ (ωΛc)
qω(∆R0

\Λ)

qK
µΛ
n(dω)

∫
Ω

1A q
ω′(Λ)dπz,QΛ

=

∫
Ω

1B(ωΛc)
qω(∆R0

\Λ)

q(1−K)
P̄ (dω)

∫
Ω

1A(ω′) qω
′(Λ)πz,QΛ (dω′). (4.10)

which gives P̄ (A ∩B) > 0 as well.

Using the 4.7, we are now in position to prove 4.6 in following a standard strategy in
percolation theory. We just give a sketch of the proof and we refer to [14] for details.
First we represent P̄ as a mixture of extremal ergodic stationary probability measures
P̄ =

∫
P̄θΘ(dθ) where each P̄θ satisfies the local modification (4.5) property. We show

now that for Θ-a.s. all θ, P̄θ(N∞cc ≤ 1) = 1. By ergodicity of P̄θ, the number of infinite
connected components is P̄θ-almost surely constant. The case of a finite number, larger
than one, infinite connected components is excluded thanks to the local modification
property. The case of an infinite number of infinite connected components is also
excluded by a Burton and Keane argument [2].

In the next section, the d-moment assumption (i.e.
∫
RdQ(dr) <∞) appears for the

first time in the proof of 3.1. In particular it is not required in the proof of 4.6 above
which will be usefull in the proof of 3.3 in Section 5.

4.3 DLR equations

In this section, we fix the bounded set Λ and we show the DLR(Λ) equation. To this
end sequences (Wi,j) and (Ai,j) of events are defined on which the variable NΛ

cc is local
and such that the probabilities P̄ (Wi,j) and P̄ (Ai,j) tend to one when i and j tend to
infinity in a good way. Without loss of generality we assume that the function f in the
DLR(Λ) equation is local and satisfies, for a finite R0, f(ω) = 0 as soon as there is (x,R)

in ωΛ with R > R0. The general case is obtained by standard approximations.

Definition 4.8. Let ∆i = [−i, i]d. For j > i we define

• Ai,j = {ω ∈ Ω, ∀(x,R) ∈ ω∆c
j
, B(x,R) ∩∆i = ∅},

• Wi,j the event of ω in Ω having at most one connected component of L(ω∆j\Λ)

which intersects ΛR0 and ∆c
i , where ΛR0 is the set Λ⊕B(0, R0).

Before investigating the probability of those events, the next lemma shows the
"localization" of the functional NΛ

cc.

Proposition 4.9. For all j > i large enough (depending on Λ and R0) and for all ω in
Ai,j ∩Wi,j

NΛ
cc(ω) = NΛ

cc(ω∆j
).

Proof. Since ω is in Wi,j ∩Ai,j , each balls of L(ω∆c
j
) does not hit L(ωΛ) and does not hit

two or more Λ-components of L(ω∆i
). Therefore

NΛ
cc(ω) = Ncc(ω∆j )−Ncc(ω∆j\Λ) = NΛ

cc(ω∆j ).
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The probability of the events (Wi,j) and (Ai,j) now have to be controlled. Involving
the events Wi,j we have the following proposition.

Proposition 4.10.

lim
i→∞

lim
j→∞

P̄ (Wi,j) = 1. (4.11)

Proof. We have that⋃
i∈N

⋂
j>i

Wi,j = {ω,L(ωΛc) has at most one infinite cc intersecting ΛR0}.

Then

lim
i→∞

lim
j→∞

P̄ (Wi,j) = P̄

⋃
i∈N

⋂
j>i

Wi,j


≥ P̄ (L(ωΛc) has at most one infinite cc ) = 1. (4.12)

To prove the last equality in (4.12), let suppose that with positive probability L(ωΛc) has
at least two infinite connected components, then using the local modification result (4.7),

P̄ (L(ω) has at least two infinite connected components) > 0,

which is a direct contradiction of 4.6.

The control of the probability of Ai,j is a bit harder to obtain. Since Ai,j is not a local
event, the probabilities µΛ

n(Ai,j) need to be controlled uniformly on n.

Proposition 4.11. Under the assumptions of 3.1, meaning bounded radii or q ≥ 1 and∫
R+ R

dQ(dR) < +∞, then for all i ≥ 1

lim
j→∞

max(P̄ (Aci,j), sup
n
µΛ
n(Aci,j)) = 0.

Proof. The case of bounded radii is quite simple since for j > i + R0, P̄ (Aci,j) = 0 and
µΛ
n(Aci,j) = 0. In the case q ≥ 1 and

∫
RdQ(dR) < +∞, we use stochastic comparison

results in [11] to compare µΛ
n with respect to π. Recall standard definitions on stochastic

domination for point processes. An event A is called increasing if for any X = (x,R) and
any configuration ω, then ω + δX ∈ A as soon as ω ∈ A. If µ and ν are two probability
measures on Ω, we say that ν dominates µ if µ(A) ≤ ν(A) for all increasing set A.

For any (x,R) and any finite configuration ω the difference Ncc(ω + δ(x,R))−Ncc(ω)

is at most one. Therefore, thanks to Theorem 1.1 in [11], Pn is stochastically dominated
by πzq,Q, and for any increasing event A we have µΛ

n(A) ≤ πqz,Q(A). Since the event Aci,j
is increasing, we have the inequality

µΛ
n(Aci,j) ≤ πqz,Q(Aci,j). (4.13)

In considering the events

Ai,j,k = {ω ∈ Ω, ∀(x,R) ∈ ω∆c
j∩∆k

, B(x,R) ∩∆i = ∅}

we have

P̄ (Aci,j) = lim
k
P̄ (Aci,j,k) = lim

k
lim
n
µΛ
n(Aci,j,k) ≤ lim

k
lim
n
µΛ
n(Aci,j) ≤ πqz,Q(Aci,j). (4.14)
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It is well-known that the number of balls in a Poisson boolean model (with intensity
measure m = zλ(d) ⊗Q) which intersects a bounded set ∆ is a Poisson random variable
with parameter z

∫
(λ(d)(∆⊕B(0, R))Q(dR) (See [4] for instance). Since

∫
R+ R

dQ(dR) <

+∞, this parameter is finite and the random variable is almost surely finite. We deduce
that lim

j→∞
πzq,Q(Aci,j) = 0 and the 4.11 follows from (4.13) and (4.14).

We are in position to prove the DLR(Λ) equation. Consider the quantity

δ =
∣∣∣ ∫

Ω

fdP̄ −
∫

Ω

∫
Ω

f(ω′Λ + ωΛc)
1

ZΛ(ωΛc)
qN

Λ
cc(ω′Λ+ωΛc )πΛ(dω′)P̄ (dω)

∣∣∣
where f is also assumed to be bounded by 1. Let us show that δ is arbitrary smaller than
any ε > 0.

By 4.10 and 4.11 we choose i < j large enough such that P̄ (Aci,j ∪W c
i,j) ≤ ε and

µΛ
n(Aci,j) ≤ ε for all n. So

δ ≤
∣∣∣ ∫

Ω

fdP̄ −
∫

Ω

∫
Ω

1Ai,j∩Wi,j
(ωΛc)f(ω′Λ + ωΛc)

qN
Λ
cc(ω′Λ+ωΛc )

ZΛ(ωΛc)
πΛ(dω′)P̄ (dω)

∣∣∣+ ε,

thanks to 4.9

δ ≤
∣∣∣ ∫

Ω

fdP̄ −
∫

Ω

∫
Ω

1Ai,j∩Wi,j
(ωΛc)f(ω′Λ + ωΛc)

qN
Λ
cc(ω′Λ+ω∆j\Λ)

ZΛ(ω∆j\Λ)
πΛ(dω′)P̄ (dω)

∣∣∣+ ε

≤
∣∣∣ ∫

Ω

fdP̄ −
∫

Ω

∫
Ω

1Wi,j
(ωΛc)f(ω′Λ + ωΛc)

qN
Λ
cc(ω′Λ+ω∆j\Λ)

ZΛ(ω∆j\Λ)
πΛ(dω′)P̄ (dω)

∣∣∣+ 2ε.

But since 1Wi,j is a local function, we can use the local convergence of µΛ
n to P̄ . So for a

n large enough (which depends on i and j fixed) we have

δ ≤
∣∣∣ ∫

Ω

fdµΛ
n −

∫
Ω

∫
Ω

1Wi,j
(ωΛc)f(ω′Λ + ωΛc)

qN
Λ
cc(ω′Λ+ω∆j\Λ)

ZΛ(ω∆j\Λ)
πΛ(dω′)µΛ

n(dω)
∣∣∣+ 3ε

≤
∣∣∣ ∫

Ω

fdµΛ
n −

∫
Ω

∫
Ω

f(ω′Λ + ωΛc)1Ai,j∩Wi,j (ωΛc)
qN

Λ
cc(ω′Λ+ωΛc )

ZΛ(ωΛc)
πΛ(dω′)µΛ

n(dω)
∣∣∣+ 4ε

≤
∣∣∣ ∫

Ω

fdµΛ
n −

∫
Ω

∫
Ω

1Wi,j
f(ω′Λ + ωΛc)

qN
Λ
cc(ω′Λ+ωΛc )

ZΛ(ωΛc)
πΛ(dω′)µΛ

n(dω)
∣∣∣+ 5ε.

By 4.5 µΛ
n satisfies the DLR(Λ) equation and so we get

δ ≤ 5ε+ µΛ
n(W c

i,j) ≤ 6ε.

5 Proof of 3.3

In the proof of 3.1, the assumptions of bounded radii or integrable radii are important
to localize the local conditional densities, using comparison tools. This proof can not be
adapted to the case of non integrable radii and we turn to another strategy based on a
Fortuin-Kasteleyn representation of the CRCM via a Widom-Rowlinson model. In Section
5.1 the Widom-Rowlinson model is defined as a random balls model with q different
colours such that balls with different colours are not allowed to overlap. In Section 5.2
we show that a colour blind Widom-Rowlinson model (i.e. the colours are forgotten)
is a CRCM. The uniqueness of the infinite connected component is required in this
identification. In the last Section 5.3 we show the existence of a Widom-Rowlinson model
having this uniqueness property and such that for z small enough it has almost surely at
least two different colours. This ensures that the associated CRCM is different to the
Poisson process and the 3.3 is proved.
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5.1 Widom-Rowlinson model

Starting now q is an integer larger than 1 and is the number of colours in the
model. Let S̃ denote the new state space Rd ×R+ × {1, . . . , q}. Ω̃ is the set of coloured
configurations, embedded with the classical σ-algebra F̃ . To avoid confusions we write ω̃
for a coloured configuration and π̃ = π̃z,Q,q denotes the law of a Poisson point process on
Ω̃ with intensity measure m̃ = zλ(d) ⊗Q⊗Uq where Uq stands for the uniform law on the
set {1, . . . , q}. As before, for a subset Λ of Rd, ω̃Λ, F̃Λ and π̃Λ are the restrictions on the
set Λ×R+ × {1, . . . , q} of the respective objects. The set of authorized configurations A
is defined as followed.

A = {ω̃ ∈ Ω̃,∀(x,R, k), (x′, R′, k′) ∈ ω̃, k 6= k′ ⇒ |x− x′| > R+R′}.

In this set two balls of different colours do not overlap.

Definition 5.1. A probability measure µ on Ω̃ is a Widom-Rowlinson model for parame-
ters z, Q and q (WR(z,Q, q)) if it satisfies the two following properties.

• µ(A) = 1.

• DLR equations : For all bounded set Λ, for all bounded functions f∫
Ω̃

f dµ =

∫
Ω̃

∫
Ω̃

f(ω̃′Λ + ω̃Λc)
1A(ω̃′Λ + ω̃Λc)

Z̃Λ(ω̃Λc)
π̃Λ(dω̃′)µ(dω̃),

where Z̃Λ(ω̃Λc) =
∫

Ω̃
1A(ω̃′Λ + ω̃Λc)π̃Λ(dω̃′).

In the case of deterministic radii, the Widom-Rowlinson model have been first intro-
duced in [18] and studied in [3, 10] for example. Those papers are mainly devoted to the
case of deterministic radii but can be easily extended to the case of bounded random
radii. Here we investigate the more complicated non integrable case

∫
R+ R

dQ(dR) = +∞.
Note that the Poisson point process πz/q,Q coloured by a single colour is a WR(z,Q, q).
In the following we are interested in a mixed phase which ensures almost surely the
simultaneous existence of at least two colours.

5.2 The Fortuin-Kasteleyn representation

First let us introduce the notions of colour-blind measure and colouration kernel.

Definition 5.2. From a probability measure µ on (Ω̃, F̃) we define the two following
quantities :

• The colour-blind probability measure µcb on (Ω,F) by µcb(B) = µ(B × {1, . . . , q})
for each B ∈ F .

• The colouration kernel Cµ on F̃ × Ω defined by Cµ(A|.) = Eµ[1A|F ], where F is
consider here as a sub σ-algebra of F̃ .

In other words, µcb is the law of the random balls model µ where the colours are
forgotten and Cµ is the kernel which gives the distributions of colours for the random
balls model µ given the configuration of balls. The relation between the CRCM and the
Widom-Rowlinson model is given in the following proposition.

Proposition 5.3. If µ is a WR(z,Q, q) with at most one infinite connected component,
then the colour-blind measure µcb is a CRCM(z/q,Q, q).

This result is well know in finite volume and has been used to give phase transition
result in [3] for the Widom-Rowlinson model and in [8] for the larger class of continuum
Potts models. Note also that the standard Fortuin-Kasteleyn representation gives a
colouration procedure on the CRCM(z/q,Q, q) in order to recover a WR(z,Q, q). We
ommit this part here. Note also that no assumption in 5.3 is required on Q or z.
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Proof of 5.3. One can carry out the proof using the DLR equations, but it turns out it is
slightly easier using the equivalent definition of Gibbs measures via the GNZ equations
[17].

Lemma 5.4 (GNZ equation). A probability measure µ on Ω̃ is a WR(z,Q, q) if and only if,
for all measurable bounded F∫

Ω̃

∑
X̃∈ω̃

F (ω̃ − δX̃ , X̃)µ(dω̃) =

∫
Ω̃

∫
S̃

F (ω̃, X̃)1A(ω̃ + δX̃)m̃(dX̃)µ(dω̃), (5.1)

where X̃ = (x,R, k) and m̃ = zλd ⊗Q⊗ Uq.
A probability measure ν on Ω is a CRCM(z,Q, q) if and only if, for all measurable

bounded F∫
Ω

∑
X∈ω

F (ω − δX , X)ν(dω) =

∫
Ω

∫
S

F (ω,X)qN
Λ
cc(ω+δX)−NΛ

cc(ω)m(dX)ν(dω), (5.2)

where X = (x,R), m = zλd ⊗Q and where Λ is any bounded subset of Rd containing x.

We need a standard result which describes the colouration of the finite connected
components in a WR(z,Q, q).

Lemma 5.5. Let µ be a WR(z,Q, q). For µ almost all ω̃ the colour of a given finite
connected component in Cµ(.|ω) is independent of the colours of all other finite or
infinite connected components, and its law is uniform on {1, . . . , q}.

This lemma is a straightforward consequence of the DLR equations satisfied by µ.
Details are omitted.

Now let us prove that µcb satisfies (5.2) given that µ satisfies (5.1). Let F be a
bounded measurable function from Ω× S to R and its associated extension F̃ on Ω̃× S̃
defined by F̃ (ω̃, X̃) = F (ω,X), where X̃ = (x,R, k), X = (x,R) and ω is the projection of
ω̃ on Ω the space of not-coloured configurations.∫

Ω

∑
X∈ω

F (ω − δX , X)µcb(dω) =

∫
Ω̃

∑
X̃∈ω̃

F̃ (ω̃ − δX̃ , X̃)µ(dω̃)

=

∫
Ω̃

∫
S̃

F̃ (ω̃, X̃)1A(ω̃ + δX̃)m̃(dX̃)µ(dω̃)

=

∫
Ω

∫
S

F (ω,X)

∫
Ω̃

∑
k∈{1,..q}

1

q
1A(ω̃ + δ(X,k))Cµ(dω̃|ω)m(dX)µcb(dω), (5.3)

where X̃ = (X, k) is a coloured point. The indicator function 1A(ω̃ + δ(X,k)) in (5.3) is
equal to one if and only if all connected components of L(ω̃) hitting the ball B(x,R) have
the same colour k. Now let us consider that ω and X = (x,R) are fixed and we denote
by j the number of connected components in L(ω) hitting the ball B(x,R). Since the
number of infinite connected components is at most one, two cases are possible :

• All of those j connected components are finite. Thanks to 5.5

∫
Ω̃

∑
k∈{1,..q}

1

q
1A(ω̃ + δ(X,k))Cµ(dω̃|ω) =

∑
k∈{1,..q}

1

q

∫
Ω̃

1A(ω̃ + δ(X,k))Cµ(dω̃|ω)

=
∑

k∈{1,..q}

1

q

1

qj
=

1

qj
. (5.4)
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• One of those connected components is infinite. Thanks to 5.5, the colours of finite
connected components are independent of each other and independent of the
colour of the infinite connected component. Therefore similar computations give
the same result as in (5.4).

Adding (5.4) into (5.3) we obtain

∫
Ω

∑
X∈ω

F (ω − δX , X)µcb(dω) =

∫
Ω̃

∫
S̃

F (ω,X)
1

qj
m(dX)µcb(dω)

=

∫
Ω̃

∫
S̃

F (ω,X)q1−j 1

q
m(dX)µcb(dω)

=

∫
Ω̃

∫
S̃

F (ω,X)qN
Λ
cc(ω+δX)−NΛ

cc(ω) 1

q
m(dx)µcb(dω) (5.5)

which is exactly the GNZ equation for a CRCM(z/q,Q, q). The proposition is proved.

5.3 Existence of a Widom-Rowlinson model

In order to use 5.3 for proving 3.3, we need the following existence result.

Proposition 5.6. If
∫
R+ R

dQ(dR) = +∞, there is a critical zc > 0 such that, for all z < zc,
there exists a stationary WR(z,Q, q) having at most one infinite connected component.
Moreover, with probability one there is at least two balls with different colours.

The proof of this result follows the same scheme as the proof of 3.1. First in Section
5.3.1 we construct a limit point via a finite volume approximation sequence. The
uniqueness of the infinite connected component is proved as in Section 4.2. Our strategy
for proving the DLR equations is based on a sequence of shield events presented
in Section 5.3.2. They are related to boxes containing balls with different colours
and therefore in Section 5.3.3 we prove that the limit point do not produce almost
surely an unique colour. This is done by comparing its specific entropy to the class
of monochromatic probability measures. At this point the assumption "small z" seems
crucial. Finally in Section 5.3.4 the DLR equations are proved.

5.3.1 Existence of a limit point

As in the previous section, the finite volume Widom-Rowlinson measure with free bound-
ary condition is defined as

νn(dω̃) = νz,Q,qn (dω̃) =
1A(ω̃)

Z̃n
π̃z,Q,qΛn

(dω̃).

The probability measures ν̂n = ⊗
i∈Zd

νn ◦ τ−1
2ni and ν̄n = 1

#In

∑
i∈In

ν̂n ◦ τ−1
i are defined from

νn as in Section 5.3.1. Moreover the local convergence topology, the specific entropy
and the tighness tools are similar and lead to the following result.

Proposition 5.7. For all n

Iz(ν̄z,Q,qn ) ≤ z,

which ensures the existence of an accumulation point ν̄z,Q,q = ν̄ of the sequence (ν̄n) for
the local convergence topology.
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Proof. By Proposition 15.52 in [9]

Iz(ν̄z,Q,qn ) =
1

|Λn|
IΛn

(νz,Q,qn |π̃z,Q,q)

=
1

|Λn|

∫
Ω̃

ln

(
1A(ω̃)

Zn

)
1A(ω̃)

Zn
π̃z,Q,qΛn

(dω̃)

Iz(ν̄z,Q,qn ) =
− ln(Zn)

|Λn|
≤ z.

For simplicity we suppose that (ν̄n) converges to ν̄z,Q,q = ν̄ (without taking a subse-
quence). Let us start to investigate the property of ν̄.

Proposition 5.8. ν̄(A) = 1.

Proof. The event A is not local but has the following approximation by local events : for
all ω̃, we have 1A(ω̃) = lim

k→∞
1A(ω̃Λk

). The local convergence can be used.

ν̄(A) = lim
k→∞

lim
n→∞

∫
Ω̃

1A(ω̃Λk
)ν̄n(dω̃)

= lim
k→∞

lim
n→∞

1

(2n)d

∑
i∈In

∫
Ω̃

1A(τi(ω̃Λk
))ν̃n(dω̃). (5.6)

For n > k, the configuration τi(ω̃Λk
) is ν̃n-almost surely in A as soon as i ∈ [k − n, n− k]d.

Therefore

ν̄(A) ≥ lim
k→∞

lim
n→∞

(2(n− k))d

(2n)d
= 1.

Proposition 5.9.

ν̄(N∞cc ≤ 1) = 1,

where the event {N∞cc ≤ 1} is defined as in Section 4.2.

Proof. The proof is based on the results of Section 4.2 on the uniqueness of the infi-
nite connected component for the CRCM. First note that the colour-blind probability
measure of νz,Q,qn , denoted by νz,Q,qn,cb , is the finite volume continuum random cluster

measure P z/q,Q,qn defined in Section 4.1. Therefore, in passing to the limit for a suitable
subsequence we find that P̄ z/q,Q,q = ν̄z,Q,qcb . By 4.6 P̄ z/q,Q,q produces at most one infinite

connected component and by the identification above the same occurs for ν̄z,Q,qcb .

Note that since
∫
R+ R

dQ(dR) = +∞, 3.1 can not be apply and we don’t know if P̄ is a
CRCM.

5.3.2 Shield Events

In this section a sequence (Wk) of "shield" events is introduced in order to localize the
indicator function 1A(ω̃′Λ + ω̃Λc). We define the event

Col = {ω̃ ∈ Ω̃, ω̃ has at least two balls with different colours}.
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Proposition 5.10. Let Λ be a bounded subset of Rd and let ν be a stationary probability
measure on (Ω̃, F̃) satisfying ν(Col) = 1. Then there exists a sequence (∆k)k≥1 of
compact subset of Rd, a sequence of events (Wk)k≥1, satisfying Wk ∈ F̃∆k

(in particular
they are local) such that

1. ν(Wk) −→
k→∞

1,

2. for all configurations ω̃ in A ∩Wk and ω̃′ in Ω̃, we have

1A(ω̃′Λ + ω̃Λc) = 1A(ω̃′Λ + ω̃∆k\Λ).

Proof. Let us begin with the construction of the set ∆k and the event Wk. The idea
is simple. If balls with different colours are wisely placed around Λ, then those balls
prevent those far away to hit the balls in Λ. Let us give the details.

First since Λ is bounded, it is included in a cube Λ̄ = [−α, α]d for some positive
integer α. Now for each integer k larger than α, we place in each corner of Λ̄ a cube Bkj ,
j ∈ {0, 1}d, with edge length k;

Bkj =
∏
i=1..d

(−1)ji [α, k + α],

where (−1)ji [α, k+α] = [α, k+α] if ji = 0 and [−α−k,−α] if ji = 1. We denote by W 1
k the

event of configurations ω̃ having at least two balls with different colours centred inside
each Bkj . By simple geometrical arguments there exists a positive integer D1 depending
on k such that any ball centred in Λ, hitting the set G := [−α − k − D1, α + k + D1]d,
necessary covers at least one cube Bkj for some j ∈ {0, 1}d. So the event W 1

k confines
the balls centred in Λ inside the set G. Now we need to prevent balls centred too far
away to hit the set G. We consider the following 2d cubes

Ckj =
∏
i=1..d

(−1)ji [α+ k +D1 + 1, α+ 2k +D1 + 1]

for j ∈ {0, 1}d and we denote by W 2
k the event of configurations ω̃ having at least two

balls with different colours centred inside each Ckj . By simple geometrical arguments
again, there is a positive integer D2 depending on k such that any ball centred outside

∆k = [−α− 2k −D1 − 1−D2, α+ 2k +D1 + 1 +D2]d

hitting the set G necessary covers at least one cube Ckj for some j ∈ {0, 1}d. So the
event W 2

k confines the balls centred in ∆c
k inside the set Gc.

In conclusion the event Wk := W 1
k ∩W 2

k insures that for an allowed configuration
ω̃ ∈ A the balls centred in Λ do not hit the balls centred outside ∆k. The property 2) in
5.10 follows. It remains to prove the property 1).

ν(W c
k ) = ν

 ⋃
j∈{0,1}d

{ω̃Bk
j
6∈ Col} ∪ {ω̃Ck

j
6∈ Col}


≤

∑
j∈{0,1}d

ν({ω̃Bk
j
6∈ Col}) + ν({ω̃Ck

j
6∈ Col}).

Since ν is stationary the probabilities ν({ω̃Bk
j
6∈ Col}) and ν({ω̃Ck

j
6∈ Col}) are equal for

all j and fixed k. Moreover since ν(Col) = 1 this probability tends to 0 when k tends to
infinity. The property 1) follows.
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Figure 1: Shield event Wk

5.3.3 The limit point is not monochromatic

Ideally we wanted to prove that ν̄(Col) = 1 in order to use the shield events (Wk) in
5.10. Unfortunately we didn’t success to prove it. However we show that ν̄(Col) > 0

for z small enough. It will be enough in the following by considering the probability
measure ν̄(.|Col) as the expected Widom-Rowlinson model. A probability measure µ

which satisfies µ(Col) = 0 is called monochromatic.

Proposition 5.11. There is z0 such that, for all z < z0

ν̄z,Q,q(Col) > 0.

Proof. We show that ν̄ is different from all stationary monochromatic probability mea-
sures by comparing their specific entropy. First we show a uniform lower bound for any
stationary monochromatic probability measures. Secondly we find an upper bound for
the specific entropy of ν̄ which is smaller than the lower bound above. These bounds are
detailed in the points 1) and 2) below.

1) The uniform lower Bound
Let P be a stationary monochromatic probability measure and we suppose first that

its colour is deterministic (let us call it red). For any positive integer n, we are looking
for a lower bound of I(PΛn

|π̃z,Q,qΛn
). If PΛn

is not absolutely continuous with respect to

π̃z,Q,qΛn
then I(PΛn

|π̃z,Q,qΛn
) = +∞ else

I(PΛn |π̃
z,Q,q
Λn

) =

∫
Ω̃

ln

(
dPΛn

dπ̃z,Q,q
(ω̃)

)
dPΛ(ω̃).

For each configuration ω̃ we consider ω̃R the red balls of ω̃ and ω̃NR the others. Then

dPΛn

dπ̃z,Q,q
(ω̃) = f1(ω̃NR|ω̃R)f2(ω̃R),
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where f1(.|ω̃R) is the conditional density, with respect to π̃
q−1
q z,Q,q−1

Λn
, of the non red

configurations given ω̃R and f2 the density of red configurations with respect to π̃z/q,Q,1Λn
.

Since P is monochromatic

f1(ω̃NR|ω̃R) = exp

(
q − 1

q
z|Λn|

)
1∅(ω̃

NR),

and we find

I(PΛn
|π̃z,Q,qΛn

) =

∫
Ω̃

ln(f1(ω̃NR|ω̃R))PΛn
(dω̃) +

∫
Ω̃

ln(f2(ω̃R))PΛn
(dω̃).

≥ q − 1

q
z|Λn|.

Dividing by |Λn| and taking the limit we obtain this uniform lower bound

Iz(P ) ≥ q − 1

q
z. (5.7)

Now if the colour of P is not deterministic, then P is a mixture of q monochromatic
probability measures with deterministic colour. Since the specific entropy is an affine
functional (Proposition 15.14 [9]) the inequality (5.7) is still valid for such P .

2) Upper bound for the specific entropy of ν̄
In 5.7 a first bound Iz(ν̄) ≤ z is given but it is not fine enough here since it is larger

than the lower bound in (5.7). Let us improve this bound. Recall that

Iz(ν̄n) =
1

|Λn|
I(νn|π̃z,Q,qΛn

) =
− ln(π̃z,Q,qΛn

(A))

|Λn|
.

Let y > 0 and ∆ be the cube ]0, y]d. Λn is divided into kn disjoint copies of ∆ and a
boundary term. So |Λn| = (2n)d = kn|∆|+cn = ydkn+cn where cn = o(nd). We denote by
φy = 1

yd

∫
Rd

∫
R+ 1B(x,R)⊆∆Q(dR)dx the probability that a ball centred in ∆ is completely

included inside ∆. A particular allowed configuration ω̃ ∈ A can be constructed by
forcing that all the balls centred in each copy of ∆ have the same colours and are
completely included in ∆. It leads to the following inequality.

π̃z,Q,qΛn
(A) ≥

[
exp(−zyd)

(
1 + q

∑
i∈N∗

1

i!qi
(zydφy)i

)]kn
exp(−z((2n)d − knyd))

≥ exp(−z(2n)d)×

(
1 +

∑
i∈N∗

q

i!qi
(zydφy)i

)kn
, (5.8)

and therefore

Iz(νz,Q,qn ) ≤ z − kn
(2n)d

ln

(
1− q + q exp

(
zydφy
q

))
≤ z +

1

yd

(
cn

(2n)d
− 1

)
ln

(
1− q + q exp

(
zydφy
q

))
. (5.9)

Now since cn
(2n)d

−→
n→∞

0, there is n0 such that for any n ≥ n0 we have cn
(2n)d

− 1 ≤ − 7
8 .

Proving that the upper bound (5.9) is smaller than the lower bounds in (5.7), falls to
show that the following function Ψ is negative

Ψ : z 7→ z

q
− 7

8yd
ln

(
1− q + q exp

(
zydφy
q

))
.
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The derivative is given by

Ψ′(z) =
1

q
− 7

8
φy

exp(zydφy/q)

1− q + q exp(zydφy/q)

which is null for the unique root zy = q
φyyd

ln
(
q−1
q

1
1−7φy/8

)
. This root is positive as soon

as φy >
8
7q , which is realized when y is large enough, since φy →

y→∞
1. With this settings

we have Ψ′(0) < 0 and since Ψ(0) = 0, the function Ψ is negative at least for z smaller
than zy. Hence there exists z0 > 0 such that for any 0 < z < zc there exits ε > 0 such
that for n ≥ n0

Iz(νz,Q,qn ) ≤ q − 1

q
z − ε. (5.10)

Since the specific entropy is lower semi-continuous, the inequality (5.10) holds for
ν̄z,Q,q as well. Thanks to the uniform lower bound (5.7) for monochromatic probability
measures the 5.11 is proved.

5.3.4 The DLR equations

As mentioned in Section 5.3.3 we consider the conditional probability measure ν̄Col =

ν̄z,Q,qCol = ν̄(.|Col), which is well-defined by 5.11, as the expected Widom-Rowlinson model.
Since the event Col is stationary, the probability measure ν̄Col is still stationary and
satisfies ν̄Col(A) = 1 as well. Let us show that ν̄Col satisfies the DLR equations.

As in (4.4) the sequence (ν̄n) has to be modified. Let Λ be a bounded subset of Rd.
we define

χΛ
n =

1

(2n)d

∑
i∈In

Λ⊆τi(Λn)

νn ◦ τ−1
i .

and the analogous of 4.5 holds.
Let f be a local measurable function bounded by 1. We define δ as followed.

δ =
∣∣∣ ∫

Ω̃

fdν̄Col −
∫

Ω̃

∫
Ω̃

f(ω̃′Λ + ω̃Λc)
1A(ω̃′Λ + ω̃Λc)

Z̃Λ(ω̃Λc)
π̃Λ(dω̃′)ν̄Col(dω̃)

∣∣∣.
Let ε > 0. By 5.10 there exists k satisfying ν̄Col(W c

k ) ≤ ε/2 leading to

δ ≤
∣∣∣ ∫

Ω̃

1Wk
fdν̄Col −

∫
Ω̃

∫
Ω̃

1Wk
(ω̃Λc)f(ω̃′Λ + ω̃Λc)

1A(ω̃′Λ + ω̃Λc)

Z̃Λ(ω̃Λc)
π̃Λ(dω̃′)ν̄Col(dω̃)

∣∣∣+ ε.

Since Wk ⊆ Col and since 1A and Z̃Λ are ∆k-local on Wk by 5.10 we obtain

δ ≤
∣∣∣ ∫

Ω̃

1Wk

ν̄(Col)
fdν̄ −

∫
Ω̃

∫
Ω̃

1Wk
(ω̃Λc)f(ω̃′Λ + ω̃Λc)

1A(ω̃′Λ + ω̃∆k\Λ)

Z̃Λ(ω̃∆k\Λ)ν̄(Col)
π̃Λ(dω̃′)ν̄(dω̃)

∣∣∣+ ε.

The local convergence χΛ
n → ν̄ implies that for n large enough

δ ≤
∣∣∣ ∫

Ω̃

1Wk

ν̄(Col)
fdχΛ

n −
∫

Ω̃

∫
Ω̃

1Wk
(ω̃Λc)f(ω̃′Λ + ω̃Λc)

1A(ω̃′Λ + ω̃∆k\Λ)

Z̃Λ(ω̃∆k\Λ)ν̄(Col)
π̃Λ(dω̃′)χΛ

n(dω̃)
∣∣∣+ 2ε

=
∣∣∣ ∫

Ω̃

1Wk

ν̄(Col)
fdχΛ

n −
∫

Ω̃

∫
Ω̃

1Wk
(ω̃Λc)f(ω̃′Λ + ω̃Λc)

1A(ω̃′Λ + ω̃Λc)

Z̃Λ(ω̃Λc)ν̄(Col)
π̃Λ(dω̃′)χΛ

n(dω̃)
∣∣∣+ 2ε

= 2ε,

where the last equality is due to the DLR equations satisfied by χΛ
n as in 4.5. Taking ε

as small as we want, we get δ = 0 and the result.
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6 Heuristic arguments for the conjecture

The aim of this Section is to present heuristic arguments which strengthen the
conjecture 3.4. For simplicity we assume in all the section that the radii are uniformly
bounded from below; there exists R0 > 0, Q([R0; +∞[= 1). Let us start by presenting
some rigorous results for any CRCM(z, q,Q) that we denote by P . We don’t assume for
the moment that the radii are not integrable.

Since the radii are uniformly bounded from below, the volume of the connected com-
ponents are also uniformly bounded from below by vdRd0. Therefore for any configuration
ω with radii larger than R0, any marked point X = (x,R) and any Λ ⊂ Rd containing x

NΛ
cc(ω + δX)−NΛ

cc(ω) ≥ −vd(R+ 2R0)d

vdRd0
≥ −C0R

d, (6.1)

where C0 is the constant (3/R0)d. We deduce from Theorem 1.1 in [11] that P dominates
stochastically the Poisson process πz,Q̃ where

Q̃(dR) = q−C0R
d

Q(dR).

Let us note that the measure Q̃ is no longer a probability measure (which does not
matter), but always admits a d-moment;

∫
RdQ̃(dR) < +∞. This stochastic domination

provides the general behaviour of the connected components of P . Indeed it is well
known that the germ-grain structure L(ω) = ∪(x,R)∈ωB(x,R), under πz,Q̃, percolates for
z large enough. Moreover for z very large, L(ω) is a large ocean of connected balls with
a few holes scattered in the space which possibly contain small connected components
inside. Since P dominates πz,Q̃, the same behaviour holds for P or P produces a large
ocean of connected balls without holes. In this second case, P has only one infinite
connected component. The conjecture claims that, in the non integrable setting, for z
large enough this second behaviour occurs.

Let us define the quantity NP which represents the mean number of connected
components per unit volume produced by P . Let X be an element of ω and CX(ω) the
connected components of L(ω) containing X. We say that X = (x,R) is the far left point
in CX(ω) if the first coordinate of x in Rd is smaller than any first coordinate of point
Y ∈ CX(ω). For P almost all ω, any bounded connected component in L(ω) has only one
far left point. So there is a bijection between the connected components and the far left
points. Therefore a possible definition of NP is

NP =

∫
Ω

∑
(x,R)∈ω

1[0,1]d(x)1{(x,R) is the far left point in CX(ω)}P (dω).

The behaviour of the connected components of P described above implies that NP
goes to zero when z goes to infinity. We can show rigorously an exponential decay.

Lemma 6.1. Assume that the radii are uniformly bounded from above; there exists
R0 > 0 such that Q([R0,+∞[) = 1. Then there exist C > 0 such that, for z large enough,

NP ≤ e−Cz.

Proof. Thanks to the GNZ equation (5.2) and the stationarity of P , we have

NP = z

∫
Ω

∫
[0,1]d

∫ +∞

0

qN
Λ
cc(ω+δ(x,R))−NΛ

cc(ω)

1{(x,R) is the far left point in C(x,R)(ω+δ(x,R))}Q(dR)dxP (dω)

≤ zq

∫ +∞

0

P
(

(0, R) is the far left point in C(0,R)(ω + δ(0,R))
)
Q(dR)
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Since that P dominates πz,Q̃ we get

NP ≤ zq

∫ +∞

0

πz,Q̃

(
(0, R) is the far left point in C(0,R)(ω + δ(0,R))

)
Q(dR)

≤ zq

∫ +∞

0

πz,Q̃

(
0 /∈ L(ωleft)

)
Q(dR)

= zqe−z
1
2 vd

∫ +∞
0

RdQ̃(dR), (6.2)

where ωleft is the configuration of points (x,R) ∈ ω whom the first coordinate of x is
negative. The last equality in (6.2) comes from standard computations for the Boolean
model [4]. In adjusting correctly the constant C the proof of the lemma follows.

Let us turn now to a non rigorous proof of the conjecture in the case Q(dR) =
d−1
Rd 1[1,+∞[(R)dR. Other distribution Q could have been considered as well. Let us show

that NP = 0 for z large enough which leads to P = πz,Q.
We assume that P is extremal (so ergodic) in the simplex of CRCM(z, q,Q). Since

NP is the mean number of connected components per unit volume, thanks to the ergodic
Theorem, for any x ∈ Rd and P -almost every ω

lim
R 7→∞

NΛ
cc(ω + δ(x,R))−NΛ

cc(ω)

vdRd
= −NP .

So there exists Kx,ω > 0 such that for all R > 0

NΛ
cc(ω + δ(x,R))−NΛ

cc(ω) ≥ −2vdNPR
d −Kx,ω.

Assume that this constant K can be chosen uniformly in x and ω. Obviously this is
wrong but, choosing K very large, this inequality holds with high probability which gives
a sense to this approximation. It is the unique non rigorous part of this section.

Following the same computations as in the proof of 6.1 we obtain that

NP ≤ zqe−
1
2 zvd

∫ +∞
0

Rdq−2vdNP Rd−KQ(dR)

= zqe−
1
2 zvdq

−K
∫ +∞
1

q−2vdNP Rd
dR

≤ zqe−czN
−1/d
P

where c is a non negative constant. A simple analysis of this inequality shows that for z
large enough, the only one solution is NP = 0.
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