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First passage percolation
on nilpotent Cayley graphs
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Abstract

We prove an asymptotic shape theorem for the standard first-passage perco-
lation on Cayley graphs of virtually nilpotent groups. By a theorem of Pansu,
the asymptotic cone of a finitely generated nilpotent group is isometric to
a simply connected nilpotent Lie group equipped with some left-invariant
Carnot-Caratheodory metric. Our main result is an extension of Pansu’s
theorem to random metrics, where the edges of the Cayley are i.i.d. random
variable with some finite exponential moment. Based on the companion
work [24], the proof relies on Talagrand’s concentration inequality, together
with Pansu’s theorem. Adapting an argument from [3] we prove a sublinear
estimate on the variance for virtually nilpotent groups which are not virtually
isomorphic toZ. We further discuss the asymptotic cones of first-passage per-
colation on general infinite connected graphs: we prove that the asymptotic
cones are a.e. deterministic if and only the volume growth is subexponential.
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1 Introduction

First passage percolation is a model of random perturbation of a given
geometry. In this paper, we shall restrict to the simplest model, where random
i.i.d lengths are assigned to the edges of a fixed graph. We refer to [15, 20] for
background and references. A fundamental result (the shape theorem) states
that the random metric on Euclidean lattices when rescaled by 1/n, almost surely
converges to a deterministic invariant metric on the Euclidean space [11, 20].
Underlying this theorem is the simple fact that the graph metric associated to
the Euclidean grid when rescaled, converges to the euclidean space equipped
with the `1-norm. In the world of Cayley graphs, a version of this last fact holds
and characterizes polynomial growth: by a theorem of Gromov [16], groups
of polynomial growth are virtually nilpotent, and by a theorem of Pansu [22],
the rescaled sequence converges in the pointed Gromov-Hausdorff topology
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First passage percolation on nilpotent Cayley graphs

to a simply connected nilpotent Lie group equipped with some left-invariant
Carnot-Caratheodory metric. It is therefore natural to ask if when assigning
random i.i.d. lengths to a Cayley graph of polynomial growth, the rescaled metric
almost surely converges to a deterministic metric on the Lie group. Establishing
this was the original goal of this note. Besides proving it, we also obtain a
general statement on the fluctuations of the distance obtained by first-passage
percolation (FPP for short) on general graphs with bounded degree.

Before stating our results, let us describe our general set up. Consider a
connected non-oriented graph X, whose set of vertices (resp. edges) is denoted
by V (resp. E). We first define the notion of weighted graph metric on V . For
every function ω : E → (0,∞), we equip V with the weighted graph metric
dω, where each edge e has weight ω(e). In other words, for every x, y ∈ V ,
dω(x, y) is defined as the infimum over all path p = (e1, . . . , em) joining x to y of
`f (p) :=

∑m
i=1 ω(ei). Denote by d the graph metric on V , corresponding to the

constant function ω = 1.
Let ν be a probability measure supported on [0,∞). The random metric of

first passage percolation consists in choosing the weight ω(e) independently
according to ν. Note that Edω(x, y) defines a distance on V , that we call the
average distance and denote by d̄(x, y).

A central result in FPP is the following Gaussian concentration inequality
due to Talagrand.

Theorem. [23, Proposition 8.3]). Suppose that ω(e) has an exponential moment:
i.e. there exists c > 0 such that E exp(cω(e)) < ∞. Then there exists C1 and
C2 such that for every graph X = (V,E), for every pair of vertices x, y, and for
every u ≥ 0,

P
(
|dω(x, y)− d̄(x, y)| ≥ u

)
≤ C1 exp

(
−C2 min

{
u2

d(x, y)
, u

})
. (1.1)

Basic assumptions. In order to avoid useless repetitions, let us once and for
all list the technical assumptions on the edge’s length distribution ν, that will be
required in most of our statements.

• (A1) We assume that ν has an exponential moment, and therefore satisfies
(1.1) for some constants C1 and C2 (this assumption can probably relaxed
but we choose not to focus on this aspect here).

• (A2) We also suppose that there exists a > 0 such that d̄(x, y) ≥ ad(x, y)

for all x, y ∈ V .

When one works with the standard Cayley graph ofZd, the second assumption
is satisfied exactly when ν({0}) < pc, where pc is the critical probability of
percolation on Zd [20]. For more general graphs, we shall also suppose that
ν({0}) < 1/k, where k is an upper bound on the degree of the graph. Indeed,
by [24, Corollary A2], this implies condition (A2). Observe that by triangular
inequality, d̄ ≤ (Eω(e))d. In the sequel we denote b := Eω(e). It follows that
under our second assumption, d and d̄ are actually bi-Lipschitz equivalent, more
precisely,

ad ≤ d̄ ≤ bd. (1.2)

We shall adopt the following notation: given v ∈ V and r > 0, let B̄(v, r) (resp.
Bω(v, r)) denote the ball of radius r for the average distance d̄ (resp. for the
random distance dω).

Since this paper addresses to probabilists as well as to geometric group
theorists, we start recalling some basic (and less basic) notions of geometric
group theory.
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First passage percolation on nilpotent Cayley graphs

1.1 Cayley graphs and nilpotent groups

Let G be a finitely generated group, and let S be a finite generating subset of
G such that S−1 = S. Recall that the Cayley graph (G,S) is defined as follows:
the vertex set is G itself, and an edge joins two vertices g and g′ if there exists
s ∈ S such that g′ = gs. We denote by dS the distance on G, obtained by
restricting the graph distance to the vertex set G. Observe that this distance is
left-invariant: if g, g, k ∈ G, then dS(kg, kg′) = dS(g, g′). We shall generally refer
to dS as the word metric associated to S.

For group elements y and z, let [y, z] denote the commutator element yzy−1z−1.
Given two subgroups A and B of the same group G, we shall denote by [A,B]

the subgroup generated by [a, b] where a ∈ A and b ∈ B. Let Cj(G) be the
descending central series of G, i.e. let C0(G) = G, and Cj+1(G) = [G,Cj(G)]. G
is l-step nilpotent if Cl = {1} and Cl−1 6= {1}.

Finally, a group is said to be virtually nilpotent if it has a finite index nilpotent
subgroup.

1.2 Nilpotent Lie groups and Carnot-Caratheodory metrics

We let N be a connected nilpotent Lie group. Examples of such groups are
abelian connected Lie groups such as Rd, but also compact abelian groups such
as the d-dimensional torus Td ' Rd/Zd. In the sequel we shall only consider
simply connected nilpotent Lie groups, meaning that we exclude the possibility
that there is a compact subgroup. This condition is equivalent to requiring
that N is homeomorphic to Rk for some k. The simplest example of a nilpotent
connected simply connected Lie group which is not abelian is the Heisenberg
group, whose definition is recalled in the next subsection.

Any connected Lie group N (not necessarily nilpotent) can be endowed with
a left-invariant geodesic metric as follows: pick a norm ‖ · ‖ on the tangent space
at the neutral element (which identifies with the Lie algebra n of N ). Now given
a smooth path γ on N , define the length of γ with respect to ‖ · ‖ as

l(γ) =

∫ 1

0

‖γ(t)−1 · γ′(t)‖dt. (1.3)

The distance on N is then defined by

d(x, y) = inf
γ
{l(γ); γ(0) = x, γ(1) = y}. (1.4)

Example 1.1. In case ‖ · ‖ is euclidean, this actually defines a left-invariant
Riemannian metric on N .

Example 1.2. When N = Rn, the distance defined above is simply the distance
induced by the norm ‖ · ‖. Observe that an important property of this special
case is its “scale invariance", namely if x, y ∈ Rd, and if t > 0, then d(tx, ty) =

‖tx− ty‖ = td(x, y).

In order to obtain a suitable generalization of the "scale invariance" on a
non-abelian connected simply connected nilpotent Lie group, one needs to work
with another natural family of left-invariant geodesic distances on N , called
Carnot-Caratheory metrics. The idea is to start with a norm which is only defined
on a subspace of n and to consider only paths which are tangent to this subspace.
More precisely, let n be the Lie algebra of N , and let m be a vector subspace
supplementing [n, n] equipped with a norm ‖ · ‖. A smooth path γ : [0, 1] → N

is said to be horizontal if γ(t)−1 · γ′(t) belongs to m for all t ∈ [0, 1]. The length
of γ with respect to ‖ · ‖ is then defined by (1.3). It can be shown that since m

generates the Lie algebra n, every pair of points can be joined by a horizontal
path (see [17]). The Carnot-Caratheodory metric associated to ‖ · ‖ is defined so
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that the distance between two points in N is given by (1.4), where the infimum is
taken over all piecewise horizontal paths γ. Note that if N = Rm, so that m = n,
then the Carnot-Caratheodory metric is just the distance associated to the norm
‖ · ‖. We shall see in the next section that in the case of the Heisenberg group,
the Carnot Caratheodory metric enjoys some "scale invariance" property, which
explains its relevance for the study of limit shape theorems.

Before stating our main results for nilpotent groups, let us illustrate it in a
concrete case.

1.3 A limit shape theorem for the Heisenberg group

Recall that the real Heisenberg group H(R) is defined as the matrix group

H(R) =


 1 u w

0 1 v

0 0 1

 ;u, v, w ∈ R

 ,

and that the discrete Heisenberg H(Z) sits inside H(R) as the cocompact dis-
crete subgroup consisting of unipotent matrices with integral coefficients. The
group H(R) (resp. H(Z)) is 2-step nilpotent: indeed, its center, which coincides
with its derived subgroup is isomorphic to R (resp. Z), and consists in matri-
ces whose only non-zero coefficient is the top right coefficient. It follows that
H(R)/[H(R),H(R)] ' R2 (and similarly H(Z)/[H(Z),H(Z)] ' Z2).

We equip the group H(Z) with the word metric associated with the finite
generating set S = {a±1, b±1}, where

a =

 1 1 0

0 1 0

0 0 1

 , b =

 1 0 0

0 1 1

0 0 1

 .

Consider the one-parameter group (δt)t∈R∗
+

of automorphisms of H(R) defined
as follows

δt

 1 u w

0 1 v

0 0 1

 =

 1 tu t2w

0 1 tv

0 0 1

 .

Given a norm ‖·‖ on R2, there exists a unique left-invariant Carnot-Caratheodory
dcc metric on H(R) that projects to ‖ · ‖ and that is scaled by δt, i.e. such that
dcc(e, δt(g)) = tdcc(e, g) for all t ∈ R∗+ and all g ∈ H(R). Such an automorphism
δt (for t > 1) is called a dilation. In this sense, we can say that dcc is “scale
invariant".

We shall denote by BS(g, r) the ball of radius r centered at g ∈ H(Z) for
the word metric dS . Given a left-invariant Carnot-Caratheodory distance dcc on
H(R), we let Bcc(g, r) denote the ball of radius r centered at g for this distance.
Recall that the Hausdorff distance dH(A,A′) between two compact subsets A
and A′ of H(R) is defined as the minimum over all r ≥ 0 such that A ⊂ [A′]r and
A′ ⊂ [A]r, where [A]r = {x ∈ H(R), dcc(x,A) ≤ r}. A sequence An is said to
Hausdorff converges to A if dH(An, A)→ 0. This notion of convergence does not
depend on a particular left-invariant Carnot-Caratheodory metric on H(R).

The following theorem is a special case of a theorem of Pansu that we shall
recall in complete generality in the next subsection.

Theorem 1.3. [22](Limit shape for the rescaled discrete Heisenberg group)
ConsiderH(Z) equipped with its metric dS . Denote by dcc the Carnot-Caratheodory
metric associated to the `1-norm on R2. Then for every r > 0, and every ε > 0,
there exists n0 such that for all n ≥ n0,

Bcc(e, nr(1− ε)) ∩H(Z) ⊂ BS(e, rn) ⊂ Bcc(e, nr(1 + ε)).
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In particular, δ1/n (BS(e, rn)) Hausdorff converges to Bcc(e, r), as n→∞.
Our result is a version of the previous theorem for FPP metrics.

Theorem 1.4. (Limit shape for First Passage Percolation on Heisenberg)
Consider FPP on the Cayley graph (H(Z), S) associated to some measure ν

satisfying both conditions (A1) and (A2). Then there exists a (deterministic)
Carnot-Caratheodory metric dcc on H(R) such that for every r > 0, every ε > 0,
and a.e. every ω, there exists n0 such that for all n ≥ n0,

Bcc(e, nr(1− ε)) ∩H(Z) ⊂ Bω(e, rn) ⊂ Bcc(e, nr(1 + ε)).

In particular, δ1/n (Bω(e, rn)) a.e. Hausdorff converges to Bcc(e, r), as n→∞.

1.4 A general result for virtually nilpotent groups

In order to state a version of Theorems 1.3 and 1.4 for general virtually nilpo-
tent groups, it will be useful to use the notion of Gromov-Hausdorff convergence
(see e.g. [6, 7, 18] for background on this notion).

Definition 1.5. Given a sequence Xn of compact metric spaces we will say that
Xn GH-converges to X if the Xn have uniformly bounded diameter and if there
exist maps φn : Xn → X such that for all ε, then for n large enough,

• every point of X is at ε-distance of a point of φn(Xn);

• (1− ε)d(x, y)− ε ≤ d(φn(x), φn(y)) ≤ (1 + ε)d(x, y) + ε for all x, y ∈ Xn.

A sequence of maps φn satisfying these two conditions is called a sequence of
GH-approximations of the space X.

GH-convergence naturally extends to (not necessarily compact) locally com-
pact pointed metric spaces (see [18, Section 3]).

Definition 1.6. Given a sequence (Xn, on) of locally compact pointed metric
spaces, (Xn, on) is said to converge to the locally compact pointed metric space
(X, o) if for every R > 0, the sequence of balls B(on, R) GH-converges to B(o,R).

A sufficient condition for the sequence (Xn, on) to converge to (X, o) is the
existence of a pointed GH-approximations, i.e. a sequence of maps φn : Xn → X

such that for all ε, for n large enough

• d(φn(on), o) ≤ ε

• every point of B(o, 1/ε) lies at ε-distance of a point of φn(B(on, 1/ε));

• (1 − ε)d(x, y) − ε ≤ d(φn(x), φn(y)) ≤ (1 + ε)d(x, y) + ε for all x, y ∈
(B(on, 1/ε)).

Let us first reformulate Theorem 1.3 in this framework: consider the se-
quence of embeddings of δ1/n ◦ i : H(Z) → H(R), where i is the standard
embedding of H(Z) in H(R). This can be interpreted as a sequence of maps
φn of pointed metric spaces (H(Z), dS/n, e) to (H(R), dcc, e). Pansu’s Theorem
can be reformulated by saying that the sequence of maps φn is a sequence of
(pointed) GH-approximations.

In the sequel, we let G be a finitely generated group, S be a finite generating
subset, and (G,S) be the corresponding Cayley graph of G.

Theorem 1.7. [22] Let G be a finitely generated virtually nilpotent group
equipped with some finite generating set S. Then (G, dS/n, 1G) converges in the
pointed Gromov-Hausdorff topology to some simply connected (Carnot) nilpotent
Lie group NR equipped with some left-invariant Carnot-Caratheodory metric dcc.
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Here is our generalization of the previous theorem in the context of FPP.

Theorem 1.8. (Asymptotic shape theorem for nilpotent groups) LetG be a
finitely generated virtually nilpotent group equipped with some finite generating
set S. Consider FPP on the Cayley graph (G,S) associated to some measure ν
satisfying both conditions (A1) and (A2). Let (NR, dcc) be the limit of (G, d/n, 1G)

from Theorem 1.7. There exists a left-invariant Carnot-Caratheodory metric
d′cc on NR, which is bi-Lipschitz equivalent to dcc such that for a.e. ω ∈ Ω,
(G, dω/n, 1G) converges in the pointed Gromov-Hausdorff topology to (NR, d

′
cc).

Giving a formulation of Theorems 1.7 and 1.8 in the spirit of Theorem 1.3
is possible (see [22, 5] for the deterministic case, and it is straightforward to
obtain the relevant FPP statement from our arguments). However, this would
require a much longer and tedious introduction which we choose to avoid here.
The reason for this is that in general, G does not sit as a cocompact discrete
subgroup inside its rescaled limit NR. First of all, one would need to pass to a
finite index nilpotent and torsion-free subgroup H. Such a group indeed sits as a
cocompact discrete subgroup in its Malcev completion HR, which is a connected
simply connected nilpotent Lie group. But even then, it is not always true that
HR is isomorphic to NR. This subtle issue is addressed for instance in [22].

The proof of Theorem 1.8 goes in two steps: first we use Talagrand’s con-
centration inequality to show that the obvious map (G, dω/n, 1G)→ (G, d̄/n, 1G)

is almost surely a sequence of Gromov-Hausdorff approximation. This step is
completely general: the only geometric property that is used is the fact that
the volume of balls in (G,S) grows subexponentially (see Proposition 2.2). The
second step consists in showing that d̄ is sufficiently close to being geodesic
to apply Pansu’s theorem to the sequence (G, d̄/n, 1G). Let us be more specific
about this last point.

Definition 1.9. [22, 5] A metric space X is called asymptotically geodesic (or
inner), if for all ε > 0, there exists α such that for all x, y ∈ X, there is a sequence
x = x0, x1, . . . , xm = y such that d(xi, xi+1) ≤ α for all 0 ≤ i < m, and such that

m−1∑
i=0

d(xi, xi+1) ≤ (1 + ε)d(x, y).

Note that a word metric on a finitely generated group is asymptotically
geodesic. This notion is motivated by the following strengthening of Theorem
1.7. Recall that a left-invariant distance on a group G is called proper if for all
r > 0, the ball B(e, r) is finite.

Theorem 1.10. [22, 5] Let G be a finitely generated virtually nilpotent group
equipped with some left-invariant proper asymptotically geodesic distance δ on
G. Then (G, δ/n, 1G) converges in the pointed Gromov-Hausdorff topology to
some simply connected (Carnot) nilpotent Lie group NR equipped with some
left-invariant Carnot-Caratheodory metric dcc.

Theorem 1.8 now results from the following fact.

Theorem 1.11. Let G be a finitely generated virtually nilpotent group equipped
with some finite generating set S. Consider FPP on the Cayley graph (G,S)

associated to some measure ν satisfying both conditions (A1) and (A2). Then
the metric space (G, d̄) is asymptotically geodesic.

This is an immediate consequence of the (stronger) [24, Proposition 1.7].
However for the sake of completeness and since the latter article is not yet
published, we reproduce the argument here.
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1.5 Asymptotic cone of FPP on graphs with bounded degree

The first condition to obtain a limit shape theorem is to have relative com-
pactness for the Gromov-Hausdorff topology, which restricts our investigations
to graphs with polynomial growth. In order to treat more general situations, one
needs the notion of asymptotic cone, which is some way of forcing the scaling
limit to exist (using some non-principal ultrafilter). These notions are recalled in
§5. One can then prove a very general result which in some (weak) sense is a
far-reaching generalization of the phenomenon observed in Theorem 1.8.

Theorem 1.12. Let X = (V,E) be a graph with degree at most k ∈ N, let
on be a sequence of vertices, rn ∈ N be an increasing sequence, and let η
be a non-principal ultrafilter. We assume that ν is supported on [a, b], with
0 < a < b < ∞ < and that ν({a}) < 1/k. Then “the asymptotic cone is almost
surely deterministic", i.e. for a.e. ω,

lim
η

(X, dω/rn, on) = lim
η

(X, d̄/rn, on),

if and only if for every ε > 0,

lim
η

log |B(on, rn/ε)|
rn

= 0.

Saying that the asymptotic cone is almost surely deterministic amounts to
saying that the fluctuations of the metric in the ball of radius r are almost surely
“sublinear", i.e. in o(r). For those who do not like ultrafilters and asymptotic
cones, we recommend to read the statements of Propositions 2.2 and 5.7 which
are written in terms of fluctuations.

Theorem 1.12 is the combination of two independent statements: one dealing
with the subexponential growth case, and one with the exponential growth
case (see Remark 5.10). The first statement (Corollary 5.5) is a consequence of
Talagrand’s Theorem, while the second one (Corollary 5.8) is completely elemen-
tary. The conclusion of Corollary 5.8 is actually stronger than the statement of
Theorem 1.12: roughly speaking it says that the ω-distance in the ball B(on, rn)

a.s. admits fluctuations of size of the order of rn about the average distance. We
do not know whether this remains true for the distance to the origin.

1.6 Sublinear upper bound on the variance

A straightforward and well-known consequence of Talagrand’s theorem is a
linear bound on the variance var(dω(x, y)) = O(d(x, y)) valid for any graph, and
sharp for Z (Kesten first proved it for FPP on Zd using martingales [21]). In [3],
the authors manage to improve this linear bound on Zd, for d ≥ 2:

var(dω(x, y)) ≤ C d(x, y)

1 + log d(x, y)
.

To be more precise, they prove it under the assumption that ν({a}) = ν({b}) =

1/2. This condition on the distribution has been relaxed in subsequent papers [9,
13]. This geometric trick has also been used to obtain concentration inequalities
[8, 14]. All these results rely on the same idea from [3], but also on some refined
results due to Kesten, which are only known currently for Zd. It is likely though
that they should all be generalized to the setting of Theorem 1.13 below.

Theorem 1.13. Assume that ν({a}) = ν({b}) = 1/2 and consider FPP on some
Cayley graph (G,S). Assume that G has a finite index subgroup G′ < G whose
center Z(G′) satisfies the following property: there exists δ > 1 and c > 0 such
that for all n

|Z(G′)| ∩BS(e, n) ≥ cnδ. (1.5)
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Then there exists C > 0 such that for all x, y ∈ G, one has

var(dω(x, y)) ≤ C d(x, y)

1 + log(1 + d(x, y))
. (1.6)

Let us examine the case of the Heisenberg group: its center is isomorphic to
the cyclic subgroup generated by the matrix

c =

 1 0 1

0 1 0

0 0 1

 .

Note that [ak, bn] = a−kb−nakbn = cnk, from which one easily deduces that
|Z(H(Z))| ∩ BS(e, n)| ≥ αn2 for some constant α > 0. Therefore the previous
theorem applies to H(Z). More generally, it is well-known (see e.g. [19]) that
non-virtually abelian nilpotent groups satisfy (1.5) with some δ ≥ 2. So Theorem
1.13 applies to Cayley graphs of virtually nilpotent groups which are not virtually
isomorphic to Z.

2 Fluctuations of the rescaled distance

In the sequel, we implicitly assume that we perform FPP on a graph with
respect to some measure ν satisfying (A1) and (A2). We start by a very simple
estimate resulting by union bound from Talagrand’s concentration inequality.

Lemma 2.1. Let X = (V,E) be a graph, and let on be a sequence of vertices.
Let rn ≥ 0 be a increasing sequence of integers. For all 0 < ε < 1, there exists
n0 > 0 such that for all n ≥ n0, the probability that for all x, y ∈ B(on, rn/ε), one
has

|dω(x, y)− d̄(x, y)| ≤ εrn,

is at least 1− C1|B(on, rn/ε)|2 exp
(
−C2ε

3rn/2
)
.

Proposition 2.2. (Graphs with subexponential growth) Let X = (V,E) be
a graph, and let on be a sequence of vertices. Let rn ≥ 0 be an increasing
sequence of integers such that for all ε > 0,

log |B(on, rn/ε)| = o(rn) (2.1)

There exists a measurable subset of full measure Ω′ ⊂ Ω such that for all
0 < ε ≤ min{a/2, 1/2}, and all ω ∈ Ω′, there exists n0 = n0(ω, ε) such that for all
n ≥ n0, for all x, y ∈ B(on, rn/ε) with d(x, y) ≥ εrn one has

|dω(x, y)− d̄(x, y)| ≤ εrn, (2.2)

and
Bω(on, rn) ∪ B̄(on, rn) ⊂ B(on, rn/ε). (2.3)

In particular, the sequence of (tautological) maps (X, dω/rn, on)→ (X, d̄/rn, on)

is a sequence of pointed GH-approximations.

Proof. Note that (2.1) is equivalent to the condition that for all C, c > 0,∑
n

|B(on, Crn)|2e−crn <∞.

Hence (2.2) follows by Borel Cantelli’s lemma from Lemma 2.1. Let us check
(2.3). Since ad ≤ d̄, we have that B̄(on, rn) ⊂ B(on, rn/a) ⊂ B(on, rn/ε). It is
therefore enough to show thatBω(on, rn) ⊂ B(on, rn/ε). Assume by contradiction
that there exists y ∈ Bω(on, rn) which does not belong to B(on, rn/ε). Let γ be
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an ω-geodesic from on to y, and let z ∈ γ be such that d(on, z) = rn/ε (assume
for simplicity that rn/ε is an integer). On the one hand, we have

d̄(on, z) ≥ arn/ε ≥ 2rn.

Which contradicts the following inequality which results from (2.2):

d̄(on, z) ≤ dω(on, z) + εrn < 2rn.

Hence we are done.

We immediately deduce the following statement.

Corollary 2.3. Under the assumptions of Proposition 2.2, there exists a measur-
able subset of full measure Ω′ ⊂ Ω such that for all ε > 0, and all ω ∈ Ω′, there
exists n0 = n0(ω, ε) such that for all n ≥ n0,

B̄(on, (1− ε)rn) ⊂ Bω(on, rn) ⊂ B̄(on, (1 + ε)rn).

We now examine the case of graphs with polynomial growth, for which a
more quantitative statement will be needed.

Proposition 2.4. (Graphs with polynomial growth) Let q > 0 and K > 0,
and let rn ∈ N be an increasing sequence. Then there exists D > 0, E > 0,
C > 0, and n0 ∈ N such that the following holds. Let X = (V,E) be a graph and
let on be a sequence of vertices such that |B(on, rn)| ≤ Krqn. Then

• for all n ≥ n0,

P

(
sup

x,y∈B(on,rn)

|dω(x, y)− d̄(x, y)|2 ≥ Drn log rn

)
≤ Er−2

n . (2.4)

• for a.e. ω, there exists n1 = n1(ω) such that for n ≥ n1,

sup
x,y∈B(on,rn)

|dω(x, y)− d̄(x, y)| ≤ C(rn log rn)1/2. (2.5)

Proof. The second statement follows from the first one via Borel Cantelli’s
lemma. Let D be a constant to be determined later. Applying Talagrand’s
theorem, we obtain that for all large enough r, and all x, y such that d(x, y) ≤ 2r,

P
(
|dω(x, y)− d̄(x, y)|2 ≥ Dr log r

)
≤ C1 exp

(
−C2D log r

2

)
.

Now, letting D = 2(2q + 2)/(C2b
2), we deduce that for all large enough r, and all

x, y such that d(x, y) ≤ 2r,

P
(
|dω(x, y)− d̄(x, y)|2 ≥ Dr log r

)
≤ C1r

−2q−2.

Hence for n large enough,

P

(
sup

x,y∈B(on,rn)

|dω(x, y)− d̄(x, y)|2 ≥ Drn log rn

)
≤ C1r

−2q−2
n |B(on, rn)|2 ≤ C1K

2r−2
n .

Hence the first statement follows.
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3 The average distance is asymptotically geodesic: proof of
Theorem 1.11

This technical section is essentially extracted from [24]. The proofs are
repeated in order to make the present paper self-contained. Throughout this
section, we implicitly assume that we perform FPP on a graph with respect to
some measure ν satisfying (A1) and (A2).

We start proving the following

Lemma 3.1. [24, Proposition 3.1] Let q > 0 and K > 0, and let rn ∈ N be an
increasing sequence. Then there exists C > 0 and n0 such that the following
holds. Let X = (V,E) be a graph and let on be a sequence of vertices such that
|B(on, rn)| ≤ Krqn. Then for all x, y ∈ B(on, arn/(32b)) and for all 0 ≤ λ ≤ 1, there
exists a vertex z ∈ B(on, rn) such that for n ≥ n0,∣∣λd̄(x, y)− d̄(x, z)

∣∣ ≤ C(rn log rn)1/2,

and ∣∣(1− λ)d̄(x, y)− d̄(z, y)
∣∣ ≤ C(rn log rn)1/2.

Proof. By Proposition 2.4, we have

P

(
sup

x,y∈B(on,rn)

|dω(x, y)− d̄(x, y)|2 ≥ Drn log rn

)
≤ Er−2

n ,

with D = 2(2d+2)/(C2b
2) (remember that C1 and C2 are the constants appearing

in the conclusion of Talagrand’s theorem). Let n0 be the smallest integer so that
Er−2

n < 1. Then for all n ≥ n0, there exists ω (depending on n) such that

sup
z1,z2∈B(o,rn)

∣∣dω(z1, z2)− d̄(z1, z2)
∣∣ ≤ D(rn log rn)1/2. (3.1)

Assume in addition that n0 is large enough so that D(rn log rn)1/2 ≤ arn/16 for
all n ≥ n0. Let γ be some ω-geodesic between x and y. First of all, note that
γ cannot escape from the ball B(on, rn). Indeed, suppose there is 1 ≤ i ≤ k

such that d(on, γ(i)) = rn, then by triangular inequality, d(x, γ(i)) ≥ rn/2, hence
d̄(x, γ(i) ≥ ar/2. So (3.1) implies that

dω(x, γ(i)) ≥ d̄(x, γ(i))−D(rn log rn)1/2 ≥ arn/2− arn/16 ≥ arn/4.

which contradicts the fact that

dω(x, γ(i)) ≤ dω(x, y) ≤ d̄(x, y) + arn/16 ≤ arn/8.

By (3.1), the maximum of ω(e) over all edges on γ is at most b+D(rn log rn)1/2 ≤
D′(rn log rn)1/2 for some D′ > 0. Therefore, one can find a vertex z in γ such
that

|λdω(x, y)− dω(x, z)| ≤ D′(rn log rn)1/2,

and
|(1− λ)dω(x, y)− dω(z, y)| ≤ D′(rn log rn)1/2.

But then combining these inequalities with (3.1), we get∣∣λd̄(x, y)− d̄(x, z)
∣∣ ≤ 4D′(rn log rn)1/2,

and ∣∣(1− λ)d̄(x, y)− d̄(z, y)
∣∣ ≤ 4D′(rn log rn)1/2,

so that the proposition follows with c = 1/(4D′).
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We immediately deduce the following corollary.

Corollary 3.2. Let q > 0 and K > 0. Then there exists C > 0 and α0 > 0 such
that the following holds. Let X = (V,E) be a graph such that |B(o, r)| ≤ Krq for
all o ∈ V and all r > 0. Then for all x, y ∈ V such that r = d(x, y) ≥ α0, and for
all 0 ≤ λ ≤ 1, there exists a vertex z ∈ V such that∣∣λd̄(x, y)− d̄(x, z)

∣∣ ≤ C(r log r)1/2,

and ∣∣(1− λ)d̄(x, y)− d̄(z, y)
∣∣ ≤ C(r log r)1/2.

Lemma 3.3. [24, Lemma 4.3] Let q > 0 and K > 0. Then there exists C > 0

and α0 > 0 such that the following holds. Let X = (V,E) be a graph such that
|B(o, r)| ≤ Krq for all o ∈ V and all r > 0. For all integer k ≥ 1, and for all x, y ∈
X such that α = d̄(x, y)/2k ≥ α0, there exists a sequence x = x0 . . . , x2k = y

satisfying, for all 0 ≤ i ≤ 2k − 1,(
1− C

(
logα

α

)1/2
)
α ≤ d̄(xi, xi+1) ≤

(
1− C

(
logα

α

)1/2
)
α,

Proof. We let r0 = r′0 := d̄(x, y). We let n ∈ N be such that 2n < r0 ≤ 2n+1.
Assuming that n is large enough so that 2n ≥ α0, where α0 is the parameter of
Corollary 3.2, there exists z such that

r0/2− C(r0 log r0)1/2 ≤ d̄(x, z), d̄(z, y) ≤ r0/2 + C(r0 log r0)1/2,

for some constant C. We let r1 = max{d̄(x, z), d̄(z, y)} and r′1 = min{d̄(x, z), d̄(z, y)}
and apply Corollary 3.2 to (x, z) and (z, y). Continuing this subdivision process
as long as r′k−1 ≥ β, we find a sequence r1, . . . , rk, . . . , satisfying

rk ≤
1

2

(
rk−1 + C(rk−1 log rk−1)1/2

)
, (3.2)

and

r′k ≥
1

2

(
r′k−1 − C(r′k−1 log r′k−1)1/2

)
, (3.3)

and a sequence of finite sequences of vertices x = z0(k), . . . , z2k(k) = y such that

r′k ≤ d(zi(k), zi+1(k)) ≤ rk,

for all 0 ≤ i < 2k − 1.

Claim 3.4. There exists a constant A such that for all k such that r′k ≥ β,

A−12−kr0 ≤ r′k ≤ rk ≤ A2−kr0.

Proof. Let us first prove the right inequality, the other one being similar. Let
k ≥ 2, and observe that

rk ≤
1

2

(
rk−1 + Cr

2/3
k−1

)
.

We do the following change of variable: Ak = 2−krk (note that Ak ≥ 1). We have

Ak ≤ Ak−1 + CA
2/3
k−12−k/3 ≤ Ak−1

(
1 + C2−k/3

)
,

from which we easily deduce that Ak is bounded by some A only depending on
C.
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In what follows, we assume that k is such that r′k ≥ β. We deduce from the
lemma and from the fact that rk ≥ r0/2

k ≥ 2n−k (which follows by triangular
inequality) that

rk ≤ 1

2

(
rk−1 + C(rk−1 log rk−1)1/2

)
≤ rk−1

2

(
1 + C

(
log rk−1

rk−1

)1/2
)

≤ rk−1

2

(
1 + C(n− k +A+ 1)1/22−(n−k)/2

)
≤ rk−1

2

(
1 + C ′(n− k)1/22−(n−k)/2

)
for some constant C ′. Taking the log and using that log(1 + x) ≤ x for x ≥ 0, we
have

log(2krk/r0) ≤ C ′
k∑
i=1

(n− i)1/22−(n−i)/2

≤ C ′
∑

j≥n−k

j1/22−j/2

≤ C”(n− k)1/22−(n−k)/2,

for some constant C” > 0. Remember that r′k, and therefore A2n−k is supposed
to be larger than α0. Up to enlarging α0 if necessary we can assume that
C”(n − k)1/22−(n−k)/2 ≤ 1. Then, using that exp(x) ≤ 1 + 2x, for all 0 ≤ x ≤ 1,
we deduce that there exists a constant C such that

rk ≤ 2−k
(

1 + 2C”(n− k)1/22−(n−k)/2
)
r0 ≤ α

(
1 + C

(
logα

α

)1/2
)
, (3.4)

where α = r0/2
k. We prove similarly that

r′k ≥ α

(
1− C

(
logα

α

)1/2
)
. (3.5)

We let x = x0 = z0(k), . . . , x2k = z2k(k) = y. We deduce from (3.4) and (3.5) that
there exists a constant C such that for every 0 ≤ i ≤ 2k − 1,(

1− C
(

logα

α

)1/2
)
α ≤ d(xi, xi+1) ≤

(
1− C

(
logα

α

)1/2
)
α,

where α = d̄(x, y)/2k. So Lemma 3.3 follows.

Proof of Theorem 1.11. Gven 0 < ε ≤ 1, choose α large enough so that

C

(
logα

α

)1/2

≤ ε.

Then it follows from Lemma 3.3 that there exists a sequence x = x0 . . . , x2k = y

satisfying

• d(xi, xi+1) ≤ 2α, for all 0 ≤ i ≤ 2k − 1;

•
∑2k−1
i=0 d(xi, xi+1) ≤ d̄(x, y)(1 + ε).

So we are done.
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4 Asymptotic shape theorem for FPP on nilpotent groups

We give the concluding steps of the proof of Theorem 1.8. As explained in
the introduction, it will result from Proposition 2.2, Theorem 1.10 and Theorem
1.11.

Proof of Theorem 1.8. By Proposition 2.2, for a.e. ω, the sequence of tautological
maps (G, dω/n, e) → (G, d̄/n, e) is a sequence of GH-approximation. Hence
it is enough to show that there exists a left-invariant Carnot-Caratheodory
metric d′cc on NR, which is bi-Lipschitz equivalent to dcc such that (G, d̄/n, 1G)

converges in the pointed Gromov-Hausdorff topology to (NR, d
′
cc). Note that by

(A1), the distances d̄ and d are bi-Lipschitz equivalent, so that if it exists, d′cc
is automatically bi-Lipschitz equivalent to dcc. On the other hand, by Theorem
1.11, (G, d̄) is asymptotically geodesic, so Theorem 1.10 ensures the existence
of d′cc.

We now turn to the proof of Theorem 1.4. Let us first recall its deterministic
counterpart which is due to Pansu (see also [5]).

Theorem 4.1. [22] Consider H(Z) equipped with a left-invariant, proper, asymp-
totically geodesic metric δ. Then there exists a Carnot-Caratheodory dcc on H(R)

such that for every r > 0, and every ε > 0, there exists n0 such that for all
n ≥ n0,

Bcc(e, nr(1− ε)) ∩H(Z) ⊂ Bδ(e, rn) ⊂ Bcc(e, nr(1 + ε)).

Proof of Theorem 1.4. We first deduce from Theorem 1.11 that Theorem 4.1
applies to the average distance d̄. Theorem 1.4 therefore follows from Corollary
2.3.

5 Asymptotic cones of FPP on graphs with bounded degree

5.1 Ultralimits, asymptotic cone, and Gromov-Hausdorff convergence

First recall that an ultrafilter (see [12]) is a map from η : P(N)→ {0, 1}, such
that η(N) = 1, and which is “additive" in the sense that η(A ∪B) = η(A) + η(B)

for all A and B disjoint subsets of N. Ultrafilters are used to “force" convergence
of bounded sequences of real numbers. Namely, given such a sequence an, its
limit is the only real number a such that for every ε > 0 the subset A of N of
integers n such that |an − a| < ε satisfies η(A) = 1. In this case, we denote
limη an = a. An ultrafilter is called non-principal if it vanishes on finite subsets
of N. Non-principal ultrafilters are known to exist but this requires the axiom of
choice. In the sequel, let us fix some non-principal ultrafilter η.

Definition 5.1. Given a sequence of pointed metric spaces (Xn, on), its ultra-
limit with respect to η is the quotient of

{(xn) ∈ ΠnXn, ∃C > 0, ∀n, d(xn, on) ≤ C}

by the equivalence relation xn ∼ yn if limη d(xn, yn) = 0. It is equipped with a
distance defined by d((xn), (yn)) = limη d(xn, yn).

It is a basic fact that a sequence an ∈ R converging to a satisfies limη an = a.
This fact actually extends to ultralimits of metric spaces:

Lemma 5.2. [6, Exercice 5.52] If a sequence of pointed metric spaces converges
in the pointed GH sense to X, then its ultralimit with respect to η is isometric to
X.

In this sense, ultralimits generalize the notion of (pointed) GH-limits. To see
why the latter is much more restrictive, recall the following
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Proposition 5.3. (Gromov’s compactness criterion, [6, Theorem 5.41]) A se-
quence of compact metric spaces (Xn) is relatively Gromov Hausdorff compact
if and only if the Xn’s have bounded diameter, and are “equi-relatively compact":
for every ε > 0, there exists N ∈ N such that for all n ∈ N, Xn can be covered
by at most N balls of radius ε.

Let us close this short discussion with the notion of asymptotic cone, which
formalizes the idea of “scaling ultralimit" of a metric space.

Definition 5.4. Given a metric space X, a sequence of points on ∈ X, an in-
creasing sequence rn going to∞, and a non-principal ultrafilter η, the asymptotic
cone of X relative to this data is the ultralimit limη(X, d/rn, on).

5.2 Graphs with subexponential growth: “fluctuations vanish in the
asymptotic cone".

Let us mention an immediate consequence of Proposition 2.2.

Corollary 5.5. Under the assumption of Proposition 2.2, there exists a mea-
surable subset Ω′ of full measure such that for all ω ∈ Ω′ and all non-principal
ultrafilter η,

“ lim
η

(X, dω/rn, on) = lim
η

(X, d̄/rn, on)”,

in the sense that, for all xn, yn ∈ V such that d(on, xn) = O(rn) and d(on, yn) =

O(rn),

lim
η
dω(xn, yn)/rn = lim

η
d̄(xn, yn)/rn.

In other words, “the asymptotic cone is almost surely deterministic".

As a special case of the previous corollary, we deduce that the asymptotic
cone of FPP on a Cayley graph with subexponential growth is almost surely
deterministic.

It is important to make a clear distinction between the strong statement of
Corollary 5.5, and the following much weaker one, which is true on any graph.

Proposition 5.6. Let X = (V,E) be any graph, and for every n ∈ N, let on ∈ V
and rn ≥ 0, and let η be a non-principal ultrafilter. Then for all xn, yn ∈ V such
that d(on, xn) = O(rn) and d(on, yn) = O(rn), there exists a measurable subset
of full measure Ω′ (depending on the sequence) such that for all ω ∈ Ω′,

lim
η
dω(xn, yn)/rn = lim

η
d̄(xn, yn)/rn.

Proof. This is a consequence of the Lemma 2.1.

5.3 Graphs with exponential growth: “fluctuations remain non-trivial
in the asymptotic cone".

In this subsection, we shall make the assumption that ν is supported on an
interval [a, b] with 0 < a < b <∞.

Note that for first-passage percolation on the r-regular tree for r ≥ 3, it is
easy to see that the asymptotic cone of FPP is not deterministic. We can use
the fact that the random distance between two vertices x, y in the tree is only
determined by the edges along the unique geodesic between them: this distance
is therefore the sum of n := d(x, y) independent random variables. The average
distance d̄(x, y) is equal to cd(x, y), where c ∈ (a, b) is the expected length of a
given edge. The probability that dω(x, y) is less than –say (a+ c)d(x, y)/2 (resp.
more than (c+ b)d(x, y)/2) decays (at most) exponentially with n. On the other
hand, there are at least exponentially many pairs of disjoint geodesics of length
n in a ball of radius kn, for k ≥ 2. Moreover, the exponential exponent can be
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made as large as we want by increasing k: for instance, for all x in the sphere of
radius (k − 1)n, pick a geodesic joining x to a point of the sphere of radius kn. It
follows for a.e. ω, one can find in the asymptotic cone a pair of distinct points
whose ω-distance is strictly less (or strictly larger) than the average distance1.

For general graphs of exponential growth (even Cayley graphs), we do not
know whether it is possible to exhibit fluctuations above the average distance in
the asymptotic cone. However, it is possible to show that it always has fluctua-
tions below the average distance: More precisely, the following proposition says
that if the growth is exponential, then a.s. one can find in the asymptotic cone
pairs of distinct points whose ω-distance are “as close as possible to the minimal
possible distance a(dx, y)". Provided that the average distance is bounded away
from this minimal distance (see Lemma 5.9), this implies that FPP admits “ran-
dom fluctuations of linear size", which are therefore visible in the asymptotic
cone.

Proposition 5.7. Let X = (V,E) be a (not necessarily connected) graph with
bounded degree, let on be a sequence of vertices. Assume that there exists an
increasing sequence rn ∈ N such that log |B(on, rn)| ≥ crn for some constant
c > 0. Then there exists a measurable subset Ω” of full measure with the
following properties. For all ω ∈ Ω”, for all ε > 0, there exists τ > 0 and
xn, yn ∈ V such that d(on, xn) = O(rn) and d(on, yn) = O(rn) and such that for
all n large enough,

τrn ≤ dω(xn, yn) ≤ (a+ ε)d(xn, yn).

Moreover, if ν({a}) > 0, then one can take ε = 0.

Before proving this proposition, let us restate it in terms of asymptotic cones.

Corollary 5.8. Let X = (V,E) be a (not necessarily connected) graph with
bounded degree, let on be a sequence of vertices and let η be a non-principal
ultrafilter. Assume that there exists an increasing sequence rn ∈ N such that
log |B(on, rn)| ≥ crn for some constant c > 0. Then there exists a measurable
subset Ω” of full measure with the following properties. For all ω ∈ Ω”, for all
ε > 0, there exist xn, yn ∈ V such that d(on, xn) = O(rn) and d(on, yn) = O(rn)

such that
0 < lim

η
dω(xn, yn)/rn ≤ (a+ ε) lim

η
d(xn, yn)/rn.

Moreover, if ν({a}) > 0, then one can take ε = 0.

Proof. Note that since the degree of X is bounded, there exists C such that

ecrn ≤ |B(on, rn)| ≤ eCrn . (5.1)

Let λ = c/2C, so that |B(on, λrn| ≤ ecrn/2. We now consider a subset Xn of
B(on, rn) whose points are pairwise at distance at least (c/4C)rn apart and
which is maximal for this property. It follows that

B(on, rn) ⊂
⋃
x∈Xn

B(x, (c/2C)rn),

from which we deduce that

|B(on, rn)| ≤ |Xn|ecrn/2.
1The same argument adapts to non-elementary hyperbolic graphs. To generalize the previous

argument, one uses the fact that there exists C > 0 such that for all ω and for every pair of points
x, y, there is a geodesic (say for the word metric) γ between x and y whose C-neighborhood contains
any dω-geodesic between x and y. To conclude that there exist fluctuations of linear size (both
above and below the average distance), one needs to produce exponentially many “independent"
pairs of points at distance n in a ball of radius . n: this follows for instance by considering a
quasi-isometrically embedded 3-regular tree.
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Thus we deduce that
|Xn| ≥ ecrn/2.

We let 0 < λ < 1 to be determined later and let kn = [λ(c/8C)rn]. Observe that
the balls B(x, kn), for x ∈ Xn are pairwise disjoint. So one can pick for every
x ∈ Xn a point yx at distance kn from x, and a geodesic (for d) γx between them.
The probability that all edges of γx have ω-length at most (1 + ε)a is at least
ν([a, a(1 + ε)])kn . Since the paths γx are disjoint, these events are independent,
so that the probability that one of them has ω-length at most (a+ ε)kn is at least

1− (1− ν([a, a(1 + ε)])kn)|Xn| ≥ 1− (1− ν([a, a(1 + ε)])λ(c/8C)rn)exp(crn/2).

Recall that given two sequences such that un → 0 and vn → ∞, one has
(1−un)vn ≤ exp(−unvn). On the other hand, by taking λ small enough (depending
on ε, unless ν({a}) > 0), one can ensure that ecrn/2ν([a, a(1 + ε)])λ(c/8C)rn ≥
exp(c′rn) for some c′ > 0. Therefore for this choice of λ, the above probability
tends to 1 as n tends to infinity very quickly (in particular the probability of the
complement event is summable). This is enough to ensure the existence of a
measurable subset of full measure Ω” such that for all ω ∈ Ω”, there is a sequence
xn ∈ Xn such that for n large enough, dω(yxn

, xn) ≤ (a+ε)k′n = a(1+ε)d(yxn
, xn).

This proves the first part of the proposition with yn = yxn
.

To finish the proof of Theorem 1.12, we need the following lemma.

Lemma 5.9. [24, Lemma A.1] Let X = (V,E) be a graph of degree ≤ q. Assume
that ν is supported on [a,∞) and that ν({a}) < 1/q. Then there exists a′ > a and
r0 such that d̄(x, y) ≥ a′d(x, y) for all x, y ∈ V such that d(x, y) ≥ r0.

Remark 5.10. To conclude the proof of Theorem 1.12, let us remark that in the
proof of Corollary 5.5 (resp. in Corollary 5.8) the condition log |B(on, rn)| = o(rn)

(resp. log |B(on, rn)| ≥ crn) only needs to hold η-almost surely.

6 Upper bound on the variance

The proof of Theorem 1.13 is a simple generalization of the proof of [3,
Theorem 1] (which deals with the case of Zd, d ≥ 2). We shall sketch its proof,
following the same order as in [3], but only providing justifications when the
argument needs to be adapted to our more general setting. To simplify the
exposition, we shall assume that δ ≥ 2: for δ > 1, the idea is the same but the
details are slightly more tedious. Moreover, in the case of nilpotent groups we
are interested in, one can always assume δ ≥ 2 as recalled in the introduction. In
this section, we will denote 1G for the neutral element of G, keeping the letter e
for the edges. Remember, since this will play a crucial role in this proof that the
graph structure on (G,S) is defined by saying that two elements (i.e. vertices) g
and g′ and joined by an edge if there exists s ∈ S such that g′ = gs±1. Hence,
the action by left-translations of G on itself preserves the graph structure and
thus the metric.

Following [3], let us fix g ∈ G, and consider the random variable f(ω) := |g|ω,
where |g|ω denotes the ω-distance from the neutral element to g. We shall also
denote |g| = d(1G, g), where d is the word metric on G. For every ω, we pick
some ω-geodesic γ from 1G to g. For every ω and every edge e ∈ E we denote
σeω the configuration which is different from ω only in the e-coordinate. We start
remarking that ∑

e∈E
P (e ∈ γ) ≤ (b/a)|g|. (6.1)

We then fix m = [d(1G, g)1/4] and consider the function gm : {a, b}m2 →
{1, . . . ,m} constructed in [3, Lemma 3]. Let Σ = {0, 1}×{1, . . . ,m2}, Ω̃ := {a, b}Σ.
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We define an injective map ψ : Ω̃→ {1, . . . ,m}2 by

ψ(x) =
(
gm(x0,1, . . . , x0,m2), gm(x1,1, . . . , x1,m2)

)
.

We let C ≥ 1 be large enough so that |Z(G′)∩BS(1G, Cm)| ≥ m2, and we pick
some injective map from j : {1, . . . ,m}2 → Z(G′) ∩ BS(1G, Cm). Let z := j ◦ ψ.
We can now define f̃ as a map from {a, b}Σ × {a, b}E to Z(G′) ∩BS(1G, Cm) by

f̃(x, ω) = dω(z(x), z(x)g).

The first important estimate from [3] is

var(f) ≤ var(f̃) +O

(
m

√
varf̃

)
+O(m2). (6.2)

If z commutes with g, as d(1G, z) = d(g, gz) ≤ Cm, we deduce by triangular
inequality that |f − f̃ | ≤ 2bCm, which implies (6.2). More generally, one needs
that gz = z′g, for some z′ ∈ Z(G′) such that dS(e, z′) = O(m). This is guaran-
teed by the following lemma, after noticing that up to replacing G′ with the
intersection of all its images by automorphisms of G, we can assume that G′ is
a characteristic subgroup of G, whose center is therefore normal in G: hence
z′ = gzg−1 ∈ Z(G′).

Lemma 6.1. Assume G′ is characteristic. There exists some constant C, such
that for all g ∈ G and z ∈ Z(G′), dS(e, gzg−1) ≤ CdS(e, z).

Proof. Note that the action by conjugation of G on Z(G′) factors through G/G′

which is finite. Let F ⊂ G be a set of representatives of G/G′, and let C =

maxg∈F,s∈S dS(e, gsg−1). Let z ∈ Z(G′) of length n, and let z = s1 . . . , sn, where
si ∈ S. Given g ∈ G, there exists h ∈ F such that gzg−1 = hzh−1. Thus we have

g−1zg = (hs1h
−1) . . . (hsnh

−1),

so the lemma follows by triangular inequality.

Define

Ie(f̃) := P
(
f̃(x, ω) 6= f̃(x, σe(ω)

)
= 2P

(
f̃(x, ω) < f̃(x, σe(ω)

)
.

Then one needs to show that

Ie(f̃) = O(d(1G, g)−1/4), (6.3)

and ∑
e

Ie(f̃) = O(d(1G, g)). (6.4)

The rest of the proof is identical to [3] so we will not repeat it. Note that if the
pair (x, ω) ∈ Ω̃ satisfies f̃(x, σeω) > f̃(x, ω), then e must belong to every geodesic
between z (= z(x)) and zg. Hence conditioning on z and translating both ω and
e by z−1 gives

Ie(f̃) ≤ 2P
(
z−1e ∈ γ

)
. (6.5)

Let Q be the set of edges e′ such that P (z−1e = e′) > 0. Note that e′ lies in the
B(1G, Cm)-orbit of e, so that once again the lemma ensures that Q has diameter
in O(m). It results that γ ∩Q contains O(m) edges. We now need the following
property of gm ([3, Lemma 3]):

max
y

P (gm(x) = y) = O(1/m),
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from which we deduce that

max
z0

P (z = z0) = O(1/m2).

Conditioning on γ and summing over the edges in γ ∩Q, we get

P (e ∈ zγ|γ) = O(1/m).

Consequently (6.5) and the choice of m give (6.3). Also, (6.1) implies∑
e∈E

P
(
z−1e ∈ γ|z

)
≤ (b/a)|g|.

Combining this with (6.5) gives (6.4), so we are done.

7 Remarks and questions

7.1 More general distributions

It would be interesting to investigate whether our results survive to non-
trivial correlations between edges lengths. Note that in some sense, Talagrand’s
exponential concentration estimate is far too strong for Theorem 1.8: actually a
polynomial decay with a large exponent would be enough to beat the (polynomial)
growth rate of the group. This suggests that one should be able to use weaker
estimates possibly allowing some weak correlations.

For groups, one can consider a different type of generalization: given an
ergodic G-probability space (Ω, P ), an invariant random metric (IRM) on G is a
measurable map G×G× Ω→ R+, (g, h, ω)→ dω(g, h), such that for a.e. ω ∈ Ω,
dω(·, ·) is a distance on G, and that satisfies the equivariance condition: for a.e.
ω, and all g, h1, h2 ∈ G,

dgω(gh1, gh2) = dω(h1, h2).

Clearly FPP is a special case of IRM, where the space Ω is [a, b]E equipped with
the product probability. Observe that in this case, the action of G on Ω, induced
by its action of E, is ergodic (actually even mixing).

One may wonder under what conditions on an IRM is the asymptotic cone
of (G, dω, e) almost surely deterministic. In the special case of virtually nilpo-
tent groups, one may ask whether (G, dω, e) converges in the pointed Gromov-
Hausdorff topology to a connected Lie group equipped with an invariant Carnot-
Caratheodory metric. Classical proofs of the limit shape theorem for Zd are
based on the subadditive ergodic theorem, which allows to treat very general
IRM (see [2] for the most general known statement). Unfortunately, we were not
able to exploit the subadditive ergodic theorem for non-virtually abelian nilpotent
groups: this only gives us that distances along certain “horizontal" directions
are asymptotically deterministic, but for instance in the case of Heisenberg, it is
not clear under what conditions distances in the direction of the center do not
have large fluctuations.

Let us discuss this in more details. Recall that the proof of Theorem 1.8 splits
into two independent parts: one consists in proving a concentration phenomenon,
namely that the identity map (G, dω/n, e) → (G, d̄/n, e) induces a sequence of
Gromov-Hausdorff approximations (recall that d̄ = Edω). This might remain true
under very general assumptions on dω, and in particular it may not require dω
to be geodesic, not even asymptotically. This contrasts with the second step,
consisting in proving that (G, d̄/n, e) converges, which does require d̄ to be
asymptotically geodesic: indeed, conversely, if (G, d̄/n, e) converges to some
geodesic metric space, then d̄ must be asymptotically geodesic. On the other
hand one can exhibit invariant metrics on the Heisenberg group which are not
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asymptotically geodesic and yet quasi-isometric to the word metric. Moreover
such a metric d can be chosen so that (G, d/n, e) does not converge at all [10,
Remark A.6.].

7.2 Sublinear variance

The proof of the sublinear estimate on the variance (Theorem 1.13) uses the
fact that the group has a large center. By contrast, we know that for Z, or more
generally on a tree, the variance grows linearly (this can easily be extended to
Gromov-hyperbolic graphs). We suspect that –at least in the context of Cayley
graph– the fact that the variance is sublinear might be related to the fact that
no asymptotic cone has cut points (a cut point has the property that when we
remove it, the space becomes disconnected). We propose the following more
modest conjecture

Conjecture 7.1. Suppose G is the direct product of two infinite finitely gener-
ated groups, then (1.6) is satisfied for all Cayley graphs of G.

A particularly interesting case is the direct product of the 3-regular tree T
with Z: in this case, [4] have managed to prove that E(|dω − d̄|) is tight in the
Z-direction. There is some reason to believe that in the T -direction the variance
should behave as for Z2 (since geodesics are likely to remain at bounded distance
from the direct product of a geodesic in T times Z). Overall, the variance should
be even smaller for T × Z than for Z2, where it is classically conjectured to
be of the order of n2/3 (we refer to [3] and [15] for a more detailed discussion
concerning Z2). Another interesting example is the product of two 3-regular
trees, for which no sublinear estimate is known at the moment.

7.3 RWRE on virtually nilpotent Cayley graphs

The FPP shape theorem and the rate of convergence are statements regard-
ing large scale metric homogenization of local random metric perturbations.
Similarly to the path we took here for FPP, it is of interest to consider the random
walk, heat kernel and Green functions homogenization in the context of virtually
nilpotent Cayley graphs. Extending the work from lattices in Euclidean spaces,
studied in PDE under the name of homogenization and in probability theory
under the name RWRE (random walk in random environment).
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