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Abstract

The limits of scaled relative entropies between probability distributions associated
with N -particle weakly interacting Markov processes are considered. The conver-
gence of such scaled relative entropies is established in various settings. The analysis
is motivated by the role relative entropy plays as a Lyapunov function for the (linear)
Kolmogorov forward equation associated with an ergodic Markov process, and Lya-
punov function properties of these scaling limits with respect to nonlinear finite-state
Markov processes are studied in the companion paper [6].
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1 Introduction

We consider a collection of N weakly interacting particles, in which each particle
evolves as a continuous time pure jump càdlàg stochastic process taking values in a
finite state space X = {1, . . . , d}. The evolution of this collection of particles is described
by an N -dimensional time-homogeneous Markov process XN = {Xi,N}i=1,...,N , where
for t ≥ 0, Xi,N (t) represents the state of the ith particle at time t. The jump intensity
of any given particle depends on the configuration of other particles only through the
empirical measure

µN (t)
.
=

1

N

N∑
i=1

δXi,N (t), t ∈ [0,∞), (1.1)

where δa is the Dirac measure at a. Consequently, a typical particle’s effect on the
dynamics of the given particle is of order 1/N . For this reason the interaction is referred
to as a “weak interaction.”
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Relative Entropy Limits for Particle Systems

Note that µN (t) is a random variable with values in the space PN (X )
.
= P(X ) ∩ 1

NZ
d,

where P(X ) is the space of probability measures on X , equipped with the usual topology
of weak convergence. In the setting considered here, at most one particle will jump, i.e.,
change state, at a given time, and the jump intensities of any given particle depend only
on its own state and the state of the empirical measure at that time. In addition, the
jump intensities of all particles will have the same functional form. Thus, if the initial
particle distribution of XN (0) = {Xi,N (0)}i=1,...,N is exchangeable, then at any time
t > 0, XN (t) = {Xi,N (t)}i=1,...,N is also exchangeable.

Such mean field weakly interacting processes arise in a variety of applications
ranging from physics and biology to social networks and telecommunications, and have
been studied in many works (see, e.g., [1, 2, 3, 15, 19, 27, 32]). The majority of this
research has focused on establishing so-called “propagation-of-chaos” results (see, e.g.,
[20, 18, 15, 21, 22, 27, 29, 32]). Roughly speaking, such a result states that on any
fixed time interval [0, T ], the particles become asymptotically independent as N →∞,
and that for each fixed t the distribution of a typical particle converges to a probability
measure p(t), which coincides with the limit in probability of the sequence of empirical
measures {µN (t)}N∈N as N →∞. Under suitable conditions, the function t 7→ p(t) can
be characterized as the unique solution of a nonlinear differential equation on P(X ) of
the form

d

dt
p(t) = p(t)Γ(p(t)), (1.2)

where for each p ∈ P(X ), Γ(p) is a rate matrix for a Markov chain on X . This differential
equation admits an interpretation as the forward equation of a “nonlinear” jump Markov
process that represents the evolution of the typical particle. In the context of weakly
interacting diffusions, this limit equation is also referred to as the McKean-Vlasov limit.

Other work on mean field weakly interacting processes has established central limit
theorems [34, 33, 28, 24, 7] or sample path large deviations of the sequence {µN}
[8, 5, 12]. All of these results are concerned with the behavior of the N -particle system
over a finite time interval [0, T ]. Based on the sample path results, large deviation
asymptotics of the invariant distribution have been studied for interacting diffusions in
[9] and finite-state jump Markov processes in [4].

1.1 Discussion of main results

An important but difficult issue in the study of nonlinear Markov processes is stability.
Here, what is meant is the stability of the P(X )-valued deterministic dynamical system
{p(t)}t≥0. For example, one can ask if there is a unique, globally attracting fixed point
for the ordinary differential equation (ODE) (1.2). When this is not the case, all the usual
questions regarding stability of deterministic systems, such as existence of multiple fixed
points, their local stability properties, etc., arise here as well. One is also interested in
the connection between these sorts of stability properties of the limit model and related
stability and metastability (in the sense of small noise stochastic systems) questions for
the prelimit model.

There are several features which make stability analysis particularly difficult for these
models. One is that the state space of the system, being the set of probability measures
on X , is not a linear space (although it is a closed, convex subset of a Euclidean space). A
standard approach to the study of stability is through construction of suitable Lyapunov
functions. We refer the reader to the Appendix for a formal definition of a Lyapunov
function. Obvious first choices for Lyapunov functions, such as quadratic functions, are
not naturally suited to such state spaces. Related to the structure of the state space is
the fact that the dynamics, linearized at any point in the state space, always have a zero
eigenvalue, which also complicates the stability analysis.
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Relative Entropy Limits for Particle Systems

The purpose of the present paper and the companion paper [6] is to introduce and
develop a systematic approach to the construction of Lyapunov functions for nonlinear
Markov processes. The starting point is the observation that given any ergodic Markov
process, the mapping q 7→ R(q‖π), where R is relative entropy and π is the stationary
distribution, in a certain sense always defines a Lyapunov function for the distribution
of the Markov process [30]. We discuss this point in some detail in Section 3. For an
ergodic Markov process the dynamical system describing the evolution of the law of
the process (i.e., the associated Kolmogorov’s forward equation) is a linear ODE with
a unique fixed point. In contrast, for a nonlinear Markov process the corresponding
ODE (1.2) can have multiple fixed points which may or may not be locally stable, and
this is possible even when the jump rates given by the off diagonal elements of Γ(p) are
bounded away from 0 uniformly in p. Furthermore, as is explained in Section 3, due to
the nonlinearity of Γ(·) relative entropy typically cannot be used directly as a Lyapunov
function for (1.2).

The approach we take for nonlinear Markov processes is to lift the problem to the
level of the pre-limit N -particle processes that describe a linear Markov process. Under
mild conditions the N -particle process will be ergodic, and thus relative entropy can
be used to define a Lyapunov function for the joint distribution of these N particles.
The scaling properties of relative entropy and convergence properties of the weakly
interacting system then suggest that the limit of suitably normalized relative entropies
for the N -particle system, assuming it exists, is a natural candidate Lyapunov function
for the corresponding nonlinear Markov process. Specifically, denoting the unique
invariant measure of the N -particle Markov process XN by πN ∈ P(XN ), the function
F : P(X )→ R defined by

F (q) = lim
N→∞

F̃N (q)
.
= lim
N→∞

1

N
R
(
⊗Nq

∥∥πN) , q ∈ P(X ) (1.3)

is a natural candidate for a Lyapunov function. The aim of this paper is the calculation
of quantities of the form (1.3). In the companion paper [6] we will use these results to
construct Lyapunov functions for various particular systems.

Of course for this approach to work, we need the limit on the right side in (1.3) to
exist and to be computable. In Section 4 we introduce a family of nonlinear Markov
processes that arises as the large particle limit of systems of Gibbs type. For this family,
the invariant distribution of the corresponding N -particle system takes an explicit form
and we show that the right side of (1.3) has a closed form expression. In Section 4 of [6]
we show that this limiting function is indeed a Lyapunov function for the corresponding
nonlinear dynamical system (1.2).

The class of models just mentioned demonstrates that the approach for constructing
Lyapunov functions by studying scaling limits of the relative entropies associated with
the corresponding N -particle Markov processes has merit. However, for typical nonlinear
systems as in (1.2), one does not have an explicit form for the stationary distribution of
the associated N -particle system, and thus the approach of computing limits of F̃N as in
(1.3) becomes infeasible. An alternative is to consider the limits of

FNt (q)
.
=

1

N
R(⊗Nq‖pN (t)), (1.4)

where pN (t) is the (exchangeable) probability distribution of XN (t) with some exchange-
able initial distribution pN (0) on XN . Formally taking the limit of FNt , first as t→∞ and
then as N →∞, we arrive at the function F introduced in (1.3). Since as we have noted
this limit cannot in general be evaluated, one may instead attempt to evaluate the limit
in the reverse order, i.e., send N →∞ first, followed by t→∞.
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A basic question one then asks is whether the limit limN→∞ FNt (q) takes a useful
form. In Section 5.1 we will answer this question in a rather general setting. Specifically,
we show that under suitable conditions the limit of 1

NR(⊗Nq‖QN ) as N → ∞ exists
for every q ∈ P(X ) and exchangeable sequence {QN}N∈N, QN ∈ P(XN ). The main
condition needed is that the collection of empirical measures of N random variables with
joint distribution QN satisfies a locally uniform large deviation principle (LDP) on P(X ).
We show in this case that the limit of 1

NR(⊗Nq‖QN ) is given by J(q), where J is the rate
function associated with the LDP. Applying this result to QN = pN (t), we then identify
the limit as N → ∞ of FNt (q) as Jt(q), where Jt is the large deviations rate function
for the collection of P(X )-valued random variables {µN (t)}N∈N introduced in (1.1). In
the companion paper we will show that the limit of Jt(q) as t → ∞ yields a Lyapunov
function for (1.2) for interesting models, including a class we call “locally Gibbs,” which
generalizes those obtained as limits of N -particle Gibbs models.

While in this work we use relative entropy as a starting point for constructing Lya-
punov functions, there are of course alternative approaches. Specifically, for stochastic
dynamical systems with a small Gaussian noise there are classical results which show,
under suitable conditions, that the Freidlin-Wentzell quasipotential(cf. [13, Chapter 4])
serves as a local Lyapunov function for the associated noiseless dynamical system. One
can similarly view the Markov process {µN (t)} as a small noise stochastic dynamical
system with the associated noiseless dynamical system given by the nonlinear equation
(1.2). Thus in analogy with the classical Freidlin-Wentzell theory one may propose the
“quasipotential” associated with the Markov process {µN (t)} as a candidate Lyapunov
function. Although the scaled relative entropies and the Freidlin-Wentzell quasipotential
a priori have no obvious connections, we will see in Section 5.2 that these two approaches
are related. Indeed, for the non-interacting N -particle system (i.e., Γ(p) is independent
of p) the quasipotential is the same as the relative entropy function q 7→ R(q‖π). Also,
although not pursued here, for the systems of Gibbs type one can show along the lines
of [9], which treats the case of weakly interacting diffusions, that if there is a single
global attractor for (1.2) then the limit of scaled relative entropies studied in Theorem
4.2 agrees with the quasipotential up to translation by a constant. For the general
(non-Gibbs case), under suitable structural assumptions on the ω-limit sets of (1.2) one
can show [4, Theorem 2.2] that the limit of Jt(q) as t → ∞ exists and our candidate
Lyapunov function limt→∞ Jt(q) agrees with the quasipotential. However, in general this
limit does not have a useful closed form and our approach for constructing Lyapunov
functions does not rely on the existence of the above limit or its connection with the
quasipotential.

1.2 Outline of the paper and common notation

The paper is organized as follows. In Section 2 we describe the interacting particle
system model and the ODE that characterizes its scaling limit. Section 3 recalls the
descent property of relative entropy for (linear) Markov processes. Section 4 studies
systems of Gibbs type and shows how a Lyapunov function can be obtained by evaluating
limits of F̃N (q) as N → ∞. Next, in Section 5 we consider models more general than
Gibbs systems. In Section 5.1, we carry out an asymptotic analysis of 1

NR(⊗Nq‖QN )

as N → ∞ for an exchangeable sequence {QN}N∈N. The results of Section 5.1 are
then used in Section 5.2 to evaluate limN→∞ FNt (q). Section 5.2 also contains remarks
on relations between the constructed Lyapunov functions and the Freidlin-Wentzell
quasipotential and metastability issues for the underlying N -particle Markov process.

The following notation will be used. Given any Polish space E, D([0,∞) : E) denotes
the space of E-valued right continuous functions on [0,∞) with finite left limits on (0,∞),
equipped with the usual Skorohod topology. Weak convergence of a sequence {Xn}
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of E-valued random variables to a random variable X is denoted by Xn ⇒ X. The
cardinality of a finite set C is denoted by |C|.

2 Background and Model Description

2.1 Description of the N-particle system

In this section, we provide a precise description of the time-homogeneous XN -valued
Markov process XN = (X1,N , . . . , XN,N ) that describes the evolution of the N -particle
system. We assume that at most one particle can change state at any given time. Models
for which more than one particle can change state simultaneously are also common
[1, 14, 12]. However, under broad conditions the limit (1.2) for such models also has an
interpretation as the forward equation of a model in which only one particle can change
state at any time [12], and so for purposes of stability analysis of (1.2) this assumption is
not much of a restriction.

Recall that X is the finite set {1, . . . , d}. The transitions of XN are determined by a
family of matrices {ΓN (r)}r∈P(X ), where for each r ∈ P(X ), ΓN (r) = {ΓNx,y(r), x, y ∈ X}
is a transition rate matrix of a continuous time Markov chain on X . For y 6= x, ΓNxy(r) ≥ 0

represents the rate at which a single particle transitions from state x to state y when
the empirical measure has value r. More precisely, the transition mechanism of XN is
as follows. Given XN (t) = x ∈ XN , an index i ∈ {1, . . . , N} and y 6= xi, the jump rate at
time t for the transition

(x1, . . . , xi−1, xi, xi+1, . . . , xN )→ (x1, . . . , xi−1, y, xi+1, . . . , xN )

is ΓNxiy(rN (x)), where rN (x) ∈ PN (X ) is the empirical measure of the vector x ∈ XN ,
which is given explicitly by

rNy (x)
.
=

1

N

N∑
i=1

1{xi=y}, y ∈ X . (2.1)

Moreover, the jump rates for transitions of any other type are zero. Note that rN· (XN (t))

equals the empirical measure µN (t)(·), defined in (1.1).
The description in the last paragraph completely specifies the infinitesimal generator

or rate matrix of the XN -valued Markov processXN , which we will denote throughout by
ΨN . Note that the sample paths of XN lie in D([0,∞) : XN ), where XN is endowed with
the discrete topology. The generator ΨN , together with a collection of X -valued random
variables {Xi,N (0)}i=1,...,N whose distribution we take to be exchangeable, determines
the law of XN .

2.2 The jump Markov process for the empirical measure

As noted in Section 1, exchangeability of the initial random vector

{Xi,N (0), i = 1, . . . , N}

implies that the processes {Xi,N}i=1,...,N are also exchangeable. From this, it follows
that the empirical measure process µN = {µN (t)}t≥0 is a Markov chain taking values in
PN (X ). We now describe the evolution of this measure-valued Markov chain. For x ∈ X ,
let ex denotes the unit coordinate vector in the x-direction in Rd. Since almost surely at
most one particle can change state at any given time, the possible jumps of µN are of
the form v/N, v ∈ V, where

V .
= {ey − ex : x, y ∈ X : x 6= y} . (2.2)
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Moreover, if µN (t) = r for some r ∈ PN (X ), then at time t, Nrx of the particles are in the
state x. Therefore, the rate of the particular transition r → r + (ey − ex)/N is NrxΓNxy(r).
Consequently the generator LN of the jump Markov process µN is given by

LNf(r) =
∑

x,y∈X :x 6=y

NrxΓNxy(r)

[
f

(
r +

1

N
(ey − ex)

)
− f(r)

]
(2.3)

for real-valued functions f on PN (X ).

2.3 Law of large numbers limit

We now characterize the law of large numbers limit of the sequence {µN}N∈N. It will
be convenient to identify P(X ) with the (d− 1)-dimensional simplex S in Rd, given by

S .
=

{
x ∈ Rd :

d∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , d

}
, (2.4)

and identify PN (X ) with SN
.
= S ∩ 1

NZ
d. We use P(X ) and S (likewise, PN (X ) and SN )

interchangeably. We endow S with the usual Euclidean topology and note that this
corresponds to P(X ) endowed with the topology of weak convergence. We also let S◦
denote the relative interior of S.

Condition 2.1. For every pair x, y ∈ X , x 6= y, there exists a Lipschitz continuous
function Γxy : S → [0,∞) such that ΓNxy → Γxy uniformly on S.

We will find it convenient to define Γxx(r)
.
= −

∑
y∈X ,y 6=x Γyx(r), so that Γ(r) can be

viewed as a d× d transition rate matrix of a jump Markov process on X .
Laws of large numbers for the empirical measures of interacting processes can be

efficiently established using a martingale problem formulation, see for instance [29].
Since X is finite, in the present situation we can rely on a classical convergence theorem
for pure jump Markov processes with state space contained in a Euclidean space.

Theorem 2.2. Suppose that Condition 2.1 holds, and assume that µN (0) converges in
probability to q ∈ P(X ) as N tends to infinity. Then {µN (·)}N∈N converges uniformly on
compact time intervals in probability to p(·), where p(·) is the unique solution to (1.2)
with p(0) = q.

Proof. The assertion follows from Theorem 2.11 in [23]. In the notation of that work,
E = P(X ), EN = PN (X ), N ∈ N,

FN (p) =
∑
x,y∈X

N · px
(

1
N ey −

1
N ex

)
ΓNx,y(p), p ∈ EN ,

F (p) =
∑
x,y∈X

px(ey − ex)Γx,y(p), p ∈ E,

and we recall ex is the unit vector in Rd with component x equal to 1. Note that if f is
the identity function f(p̃)

.
= p̃ ∈ Rd, then FN (p) = LNf(p), p ∈ PN (X ), where LN is the

generator given in (2.3). Moreover, the z-th component of the d-dimensional vector F (p)

is equal to
∑
x:x 6=z pxΓx,z(p) −

∑
y:y 6=z pzΓz,y(p), which in turn is equal to

∑
x pxΓx,z(p),

the z-th component of the row vector pΓ(p). The ODE d
dtp(t) = F (p(t)) is therefore the

same as (1.2). Since F is Lipschitz continuous by Condition 2.1, this ODE has a unique
solution. The proof is now immediate from Theorem 2.11 in [23].

The solution to (1.2) has a stochastic representation. Given a probability measure
q(0) ∈ P(X ), one can construct a process X with sample paths in D([0, T ] : X ) such that
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for all functions f : X → R,

f(X(t))− f(X(0))−
∫ t

0

∑
y∈X

ΓX(s)y(q(s))f(y)ds

is a martingale, where q(t) denotes the probability distribution of X(t), t ≥ 0. Further-
more, X is unique in law. Note that the rate matrix of X(t) is time inhomogeneous and
equal to Γ(q(t)), with qx(t) = P {X(t) = x}. Because the evolution of X at time t depends
on the distribution of X(t), this process is called a nonlinear Markov process. Note that
q(t) also solves (1.2), and so if q(0) = p(0), by uniqueness px(t) = P {X(t) = x}. One can
show that, under the conditions of Theorem 2.2, X(·) is the limit in distribution of Xi,N (·)
for any fixed i, as N →∞ (see Proposition 2.2 of [32]).

A fundamental property of interacting systems that will play a role in the discus-
sion below is propagation of chaos; see [16] for an exposition and characterization.
Propagation of chaos means that the first k components of the N -particle system over
any finite time interval will be asymptotically independent and identically distributed
(i.i.d.) as N tends to infinity, whenever the initial distributions of all components are
asymptotically i.i.d. In the present context, propagation of chaos for the family (XN )N∈N
(or {ΨN}N∈N) means the following. For t ≥ 0 denote the probability distribution of
(X1,N (t), . . . , Xk,N (t)) by pN,k(t). If q ∈ P(X ) and if for all k ∈ N pN,k(0) converges
weakly to the product measure ⊗kq as N → ∞, then for all k ∈ N and all t ≥ 0 pN,k(t)

converges weakly to ⊗kp(t), where p(·) is the solution to (1.2) with p(0) = q. Instead of
a particular time t a finite time interval may be considered. Under the assumptions of
Theorem 2.2, propagation of chaos holds for the family of N -particle systems determined
by {ΨN}N∈N. See, for instance, Theorem 4.1 in [17].

3 Descent Property of Relative Entropy for Markov Processes

We next discuss an important property of the usual (linear) Markov processes. As
noted in the introduction, various features of the deterministic system (1.2) make
standard forms of Lyapunov functions that might be considered unsuitable. Indeed,
one of the most challenging problems in the construction of Lyapunov functions for
any system is the identification of natural forms that reflect the particular features and
structure of the system.

The ODE (1.2) is naturally related to a flow of probability measures, and for this
reason one might consider constructions based on relative entropy. It is known that for
an ergodic linear Markov process relative entropy serves as a Lyapunov function. Specif-
ically, relative entropy has a descent property along the solution of the forward equation.
The earliest proof in the setting of finite-state continuous-time Markov processes the
authors have been able to locate is [30, pp. I-16-17]. Since analogous arguments will be
used elsewhere (see Section 2 of [6]), we give the proof of this fact. Let G = (Gx,y)x,y∈X
be an irreducible rate matrix over the finite state space X , and denote its unique station-
ary distribution by π. The forward equation for the family of Markov processes with rate
matrix G is the linear ODE

d

dt
r(t) = r(t)G. (3.1)

Define ` : [0,∞) → [0,∞) by `(z)
.
= z log z − z + 1. Recall that the relative entropy of

p ∈ P(X ) with respect to q ∈ P(X ) is given by

R (p‖q) .
=
∑
x∈X

px log

(
px
qx

)
=
∑
x∈X

qx`

(
px
qx

)
. (3.2)
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Lemma 3.1. Let p(·), q(·) be solutions to (3.1) with initial conditions p(0), q(0) ∈ P(X ).
Then for all t > 0,

d

dt
R (p(t)‖q(t)) = −

∑
x,y∈X :x6=y

`

(
py(t)qx(t)

px(t)qy(t)

)
px(t)

qy(t)

qx(t)
Gy,x ≤ 0.

Moreover, d
dtR (p(t)‖q(t)) = 0 if and only if p(t) = q(t).

Proof. It is well known (and easy to check) that ` is strictly convex on [0,∞), with `(0) = 1

and `(z) = 0 if and only if z = 1. Owing to the irreducibility of G, for t > 0 p(t) and q(t)
have no zero components and hence are equivalent probability vectors. By assumption,
p′x(t)

.
= d

dtpx(t) =
∑
y∈X py(t)Gy,x for all x ∈ X and all t ≥ 0, and similarly for q(t). Thus

for t > 0

d

dt
R (p(t)‖q(t))

=
d

dt

∑
x∈X

px(t) log

(
px(t)

qx(t)

)
=
∑
x∈X

p′x(t) log

(
px(t)

qx(t)

)
+
∑
x∈X

p′x(t)−
∑
x∈X

px(t)
q′x(t)

qx(t)

=
∑
x,y∈X

(
py(t) + py(t) log

(
px(t)

qx(t)

)
− px(t)

qy(t)

qx(t)

)
Gy,x

−
∑
x,y∈X

py(t) log

(
py(t)

qy(t)

)
Gy,x,

where the last equality follows from the fact that, since G is a rate matrix,
∑
x∈X Gy,x = 0

for all y ∈ X . Rearranging terms we have

d

dt
R (p(t)‖q(t))

=
∑
x,y∈X

(
py(t)− py(t) log

(
py(t)qx(t)

px(t)qy(t)

)
− px(t)

qy(t)

qx(t)

)
Gy,x

=
∑
x,y∈X

(
py(t)qx(t)

px(t)qy(t)
− py(t)qx(t)

px(t)qy(t)
log

(
py(t)qx(t)

px(t)qy(t)

)
− 1

)
px(t)

qy(t)

qx(t)
Gy,x

= −
∑

x,y∈X :x 6=y

`

(
py(t)qx(t)

px(t)qy(t)

)
px(t)

qy(t)

qx(t)
Gy,x.

Recall that ` ≥ 0, that for t > 0 qx(t) > 0 and px(t) > 0 for all x ∈ X , and that Gy,x ≥ 0

for all x 6= y. It follows that d
dtR(p(t)‖q(t)) ≤ 0.

It remains to show that d
dtR(p(t)‖q(t)) = 0 if and only if p(t) = q(t). We claim

this follows from the fact that ` ≥ 0 with `(z) = 0 if and only if z = 1, and from the

irreducibility of G. Indeed, p(t) = q(t) if and only if py(t)qx(t)
px(t)qy(t) = 1 for all x, y ∈ X with

x 6= y. Thus p(t) = q(t) implies d
dtR(p(t)‖q(t)) = 0. If d

dtR(p(t)‖q(t)) = 0 then immediately
py(t)qx(t)
px(t)qy(t) = 1 for all x, y ∈ X such that Gy,x > 0. If y does not directly communicate with
x then, by irreducibility, there is a chain of directly communicating states leading from y

to x, and using those states it follows that py(t)qx(t)
px(t)qy(t) = 1.

If q(0) = π then, by stationarity, q(t) = π for all t ≥ 0. Lemma 3.1 then implies that
the mapping

p 7→ R (p‖π) (3.3)
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is a local (and also global) Lyapunov function (cf. Definition 2.4 in [6]) for the linear
forward equation (3.1) on any relatively open subset of S that contains π.

This is, however, just one of many ways that relative entropy can be used to define
Lyapunov functions. For example, Lemma 3.1 also implies

p 7→ R (π‖p) (3.4)

is a local and global Lyapunov function for (3.1). Yet a third can be constructed as
follows. Let T > 0 and consider the mapping

p 7→ R (p‖qp(T )) , (3.5)

where qp(·) is the solution to (3.1) with qp(0) = p. Lemma 3.1 also implies that the map-
ping given by (3.5) is a Lyapunov function for (3.1). This is because R

(
p(t)‖qp(t)(T )

)
=

R (p(t)‖q(t)), where q(·) is the solution to (3.1) with q(0) = p(T ), thus q(t) = p(T + t) =

qp(t)(T ). Note that (3.3) arises as the limit of (3.5) as T goes to infinity.
The proof of the descent property in Lemma 3.1 crucially uses the fact that p(·) and

q(·) satisfy a forward equation with respect to the same fixed rate matrix, and therefore
for general nonlinear Markov processes one does not expect relative entropy to serve
directly as a Lyapunov function. However, one might conjecture this to be true if the
nonlinearity is in some sense weak, and a result of this type is presented in the companion
paper [6] (see Section 3 therein). For more general settings our approach will be to
consider functions such as those in (3.3) and (3.5) associated with the N -particle Markov
processes and then take a suitable scaling limit as N →∞. The issue is somewhat subtle,
e.g., while this approach is feasible with the form (3.3) it is not feasible when the form
(3.4) is used, even though both define Lyapunov functions in the linear case. For further
discussion on this point we refer to Remark 4.4.

4 Systems of Gibbs Type

In this section we evaluate the limit in (1.3) for a family of interacting N -particle
systems with an explicit stationary distribution. This limit is shown to be a Lyapunov
function in [6]. Section 4.1 introduces the class of weakly interacting Markov processes
and the corresponding nonlinear Markov processes. The construction starts from the
definition of the stationary distribution as a Gibbs measure for the N -particle system. In
Section 4.2 we derive candidate Lyapunov functions for the limit systems as limits of
relative entropy.

4.1 The prelimit and limit systems

Recall that X is a finite set with d ≥ 2 elements. Let K : X ×Rd → R be such that for
each x ∈ X , K(x, ·) is twice continuously differentiable. For (x, p) ∈ X × Rd, we often
write K(x, p) as Kx(p). Consider the probability measure πN on XN defined by

πN (x)
.
=

1

ZN
exp (−UN (x)) , x ∈ XN , (4.1)

where ZN is the normalization constant,

UN (x)
.
=

N∑
i=1

K(xi, r
N (x)), x = (x1, . . . xN ) ∈ XN , (4.2)

and rN (x) is the empirical measure of x and was defined in (2.1) (recall we identify an
element of P(X ) with a vector in S).
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A particular example of K that has been extensively studied is given by

K(x, p)
.
= V (x) + β

∑
y∈X

W (x, y)py, (x, p) ∈ X ×Rd, (4.3)

where V : X → R is referred to as the environment potential, W : X × X → R the
interaction potential, and β > 0 the interaction parameter. In this case UN , referred to
as the N -particle energy function, takes the form

UN (x) =

N∑
i=1

V (xi) +
β

N

N∑
i=1

N∑
j=1

W (xi, xj).

There are standard methods for identifying XN -valued Markov processes for which
πN is the stationary distribution. The resulting rate matrices are often called Glauber
dynamics; see, for instance, [31] or [26]. To be precise, we seek an XN -valued Markov
process which has the structure of a weakly interacting N -particle system and is re-
versible with respect to πN .

Let (α(x, y))x,y∈X be an irreducible and symmetric matrix with diagonal entries equal
to zero and off-diagonal entries either one or zero. A will identify those states of a single
particle that can be reached in one jump from any given state. For N ∈ N, define a matrix
AN = (AN (x,y))x,y∈XN indexed by elements of XN according to AN (x,y) = α(xl, yl) if
x and y differ in exactly one index l ∈ {1, . . . , N}, and AN (x,y) = 0 otherwise. Then AN

determines which states of the N -particle system can be reached in one jump. Observe
that AN is symmetric and irreducible with values in {0, 1}. There are many ways one can
define a rate matrix ΨN such that the corresponding Markov process is reversible with
respect to πN . Three standard ones are as follows. Let a+ = max{a, 0}. For x,y ∈ XN ,
x 6= y, set either

ΨN (x,y)
.
= e−(UN (y)−UN (x))+AN (x,y) (4.4a)

or ΨN (x,y)
.
=
(

1 + eUN (y)−UN (x)
)−1

AN (x,y) (4.4b)

or ΨN (x,y)
.
=

1

2

(
1 + e−(UN (y)−UN (x))

)
AN (x,y). (4.4c)

In all three cases set ΨN (x,x)
.
= −

∑
y:y 6=x ΨN (x,y), x ∈ XN . The model defined by

(4.4a) is sometimes referred to as Metropolis dynamics, and (4.4b) as heat bath dynamics
[26]. The matrix ΨN is the generator of an irreducible continuous-time finite-state
Markov process with state space XN . In what follows we will consider only (4.4a), the
analysis for the other dynamics being completely analogous.

Define H : X ×Rd → R by

H(x, p) = Hx(p)
.
= Kx(p) +

∑
z∈X

(
∂

∂px
Kz(p)

)
pz (4.5)

and Ψ : X × X ×Rd → R by

Ψ(x, y, p)
.
= Hy(p)−Hx(p), (x, y, p) ∈ X × X ×Rd.

The following lemma shows that each ΨN in (4.4) is the infinitesimal generator of a
family of weakly interacting Markov processes in the sense of Section 2.1. For example,
with the dynamics (4.4a) it will follow from Lemma 4.1 that ΓNx,y(r)→ e−(Ψ(x,y,r))+α(x, y)

as N →∞.
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Lemma 4.1. There exists C <∞ and for each N ∈ N a function BN : X ×X ×P(X )→ R

satisfying

sup
(x,y,p)∈X×X×P(X )

|BN (x, y, p)| ≤ C

N
(4.6)

such that the following holds. Let x,y ∈ XN be such that AN (x,y) = 1, and let
l ∈ {1, . . . , N} be the unique index such that xl 6= yl. Then

UN (y)− UN (x) = Ψ(xl, yl, r
N (x)) +BN (xl, yl, r

N (x)).

Proof. Using the definition of UN we have

UN (y)− UN (x) =

N∑
i=1

Kyi(rN (y))−
N∑
i=1

Kxi(rN (x))

=

N∑
i=1,i6=l

(
Kyi

(
rN (x) +

1

N
(eyl − exl)

)
−Kxi(rN (x))

)

+Kyl

(
rN (x) +

1

N
(eyl − exl)

)
−Kxl(rN (x)). (4.7)

Let ‖p‖ .
=
∑
x |px| for p ∈ Rd. From the C2 property of K it follows that there are

A : X ×Rd ×Rd → R and c1 ∈ (0,∞) such that for all p, q ∈ Rd, y ∈ X ,

Ky(q)−Ky(p) = ∇pKy(p) · (q − p) +A(y, p, q),

and
sup

y∈X ,‖p‖≤2,‖q‖≤2

|A(y, p, q)| ≤ c1‖p− q‖2. (4.8)

Also note that for some c2 ∈ (0,∞)

sup
y∈X ,‖p‖≤2,‖q‖≤2

|Ky(q)−Ky(p)| ≤ c2‖p− q‖, (4.9)

and since rNz (x) is the empirical measure 1
N

∑N
i=1 1{xi=z},

∑
z∈X

(
∂

∂pyl
Kz(rN (x))

)
rNz (x) =

1

N

N∑
i=1

(
∂

∂pyl
Kxi(rN (x))

)
.

Using the various definitions and in particular (4.5) and (4.7) we have

UN (y)− UN (x)−Ψ(xl, yl, r
N (x)) = BN (xl, yl, r

N (x)),

where for (x, y, p) ∈ X × X × S

BN (x, y, p) = N
∑
z∈X

A

(
z, p, p+

1

N
(ey − ex)

)
pz −A

(
x, p, p+

1

N
(ey − ex)

)
− 1

N
∇pKx(p) · (ey − ex)−Ky(p) +Ky

(
p+

1

N
(ey − ex)p

)
.

Using the bounds (4.8) and (4.9), we have that (4.6) is satisfied for a suitable C <∞.

From Lemma 4.1 we have that the jump rates of the Markov process governed by
ΨN in each of the three cases in (4.4) depend on the components xj , j 6= l, only through
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the empirical measure rN (x). For example, with ΨN as in (4.4a), for x,y ∈ XN such
that xl 6= yl for some l ∈ {1, . . . , N}, xj = yj for j 6= l,

ΨN (x,y)
.
= e−(Ψ(xl,yl,r

N (x))+BN (xl,yl,r
N (x)))

+

AN (x,y).

Thus ΨN as in (4.4) is the generator of a family of weakly interacting Markov processes
in the sense of Section 2. Indeed for (4.4a), in the notation of that section, ΨN is defined
in terms of the family of matrices {ΓN (r)}r∈P(X ), where for x, y ∈ X , x 6= y,

ΓNx,y(r) = e−(Ψ(x,y,r)+BN (x,y,r)))
+

α(x, y). (4.10)

The rate matrix ΨN in (4.4) has πN defined in (4.1) as its stationary distribution.
To see this, let x,y ∈ XN . By symmetry, AN (x,y) = AN (y,x). Taking into account
(4.1), it is easy to see that for any of the three choices of ΨN according to (4.4) we have
πN (x)ΨN (x,y) = πN (y)ΨN (y,x). Thus ΨN satisfies the detailed balance condition
with respect to πN , and since ΨN is irreducible, πN is its unique stationary distribution.

Hence by (4.6), the family {ΓN (r)}r∈P(X ) defined by (4.10) satisfies Condition 2.1
with

Γx,y(r) = e−(Ψ(x,y,r))+α(x, y), x 6= y, r ∈ P(X ). (4.11)

With XN and µN associated with ΓN (·) as in Section 2.1, Theorem 2.2 implies the
sequence {µN}N∈N of D([0,∞),P(X ))-valued random variables satisfies a law of large
numbers with limit determined by (1.2), and with Γ(·) as in (4.11). More precisely, if
µN (0) converges in distribution to q ∈ P(X ) as N goes to infinity then µN (·) converges
in distribution to the solution p(·) of (4.11) with p(0) = q. Thus Γ(·) describes the limit
model for the families of weakly interacting Markov processes of Gibbs type introduced
above. If p ∈ P(X ) is fixed then Γ(p) is the generator of an ergodic finite-state Markov
process, and the unique invariant distribution on X is given by π(p) with

π(p)x
.
=

1

Z(p)
exp (−Hx(p)) , (4.12)

where

Z(p)
.
=
∑
x∈X

exp (−Hx(p)) .

4.2 Limit of relative entropies

We will now evaluate the limit in (1.3) for the family of interacting N -particle systems
introduced in Section 4.1. As noted earlier, the paper [6] will study the Lyapunov function
properties of the limit.

Theorem 4.2. For N ∈ N, define F̃N : P(X )→ [0,∞] by

F̃N (p)
.
=

1

N
R
(
⊗Np

∥∥πN) . (4.13)

Then there is a constant C ∈ R such that for all p ∈ P(X ),

lim
N→∞

F̃N (p) =
∑
x∈X

(Kx(p) + log px)px − C. (4.14)
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Proof. Let p ∈ P(X ). By the definition of relative entropy in (3.2), (4.13), (4.1) and (4.2),

F̃N (p) =
1

N

∑
x∈XN

(
N∏
i=1

pxi

)
log

(∏N
i=1 pxi
πN (x)

)

=
1

N

∑
x∈XN

(
N∏
i=1

pxi

)(
N∑
i=1

log pxi

)
+

1

N
logZN

+
1

N

∑
x∈XN

(
N∏
i=1

pxi

)(
N∑
i=1

K(xi, r
N (x))

)
.

Let {Xi}i∈N be a sequence of i.i.d. X -valued random variables with common distribution
p defined on some probability space. Then

1

N

∑
x∈XN

(
N∏
i=1

pxi

)(
N∑
i=1

log pxi

)
= E

[
1

N

N∑
i=1

log pXi

]
= E [log pX1

] , (4.15)

and

1

N

∑
x∈XN

(
N∏
i=1

pxi

)
N∑
j=1

K(xj , r
N (x)) = E

 1

N

N∑
j=1

K(Xj , r
N (X1, . . . , XN ))


= E

[
K(X1, r

N (X1, . . . , XN ))
]
,

which converges to E [K(X1, p)] as N →∞ due to the strong law of large numbers and
continuity of K.

In order to compute the limit of 1
N logZN , define a bounded and continuous mapping

Φ: P(X )→ R by

Φ(q)
.
=
∑
x∈X

K(x, q)qx.

Let {Yi}i∈N be i.i.d. X -valued random variables with common distribution ν given by
νx

.
= 1
|X | , x ∈ X . Then again using that rN (x) is the empirical measure of x,

ZN =
∑

x∈XN
exp

(
−

N∑
i=1

K(xi, r
N (x))

)

= |X |NE

[
exp

(
−

N∑
i=1

K(Yi, r
N (Y1, . . . , YN ))

)]
= |X |NE

[
exp

(
−NΦ(rN (Y1, . . . , YN ))

)]
.

Thus by Sanov’s theorem and Varadhan’s theorem on the asymptotic evaluation of
exponential integrals [11], it follows that

lim
N→∞

1

N
logZN = − inf

q∈P(X )
{R(q‖ν) + Φ(q)}+ log |X | .= −C.

Note that C is finite and does not depend on p.
Recalling that X1 is a random variable with distribution p, we have on combining

these observations that

lim
N→∞

F̃N (p) = E [log pX1
] + E [K(X1, p)]− C

=
∑
x∈X

px log px +
∑
x∈X

K(x, p)px − C.

This proves (4.14) and completes the proof.
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As an immediate consequence we get the following result for K as in (4.3).

Corollary 4.3. Suppose that K is defined by (4.3) and let F̃N be as in (4.13). Then

lim
N→∞

F̃N (p) =
∑
x∈X

V (x) +
∑
y∈X

W (x, y)py + log px

 px − C. (4.16)

Remark 4.4. In Section 4 of [6] it will be shown that the function F (p) defined by the
right side of (4.14) satisfies a descent property: d

dtF (p(t)) ≤ 0, where p(·) is the solution
of (1.2) with Γ as in (4.11). Furthermore d

dtF (p(t)) = 0 if and only if p(t) is a fixed point
of (1.2), i.e., p(t) = π(p(t)). One may conjecture that an analogous descent property
holds for the function F̂ obtained by taking limits of relative entropies computed in the
reverse order, namely for the function

F̂ (p)
.
= lim
N→∞

1

N
R
(
πN‖ ⊗N p

)
, p ∈ P(X ). (4.17)

However, in general, this is not true, as the following example illustrates.

Consider the setting where K is given by (4.3) with environment potential V ≡ 0,
β = 1, and non-constant symmetric interaction potential W with W ≥ 0 and W (x, x) = 0

for all x ∈ X . Then, by (4.12), the invariant distributions are given by

π(p)x =
1

Z(p)
exp

−2
∑
y∈X

W (x, y)py

 ,

and the family of rate matrices (Γ(p))p∈P(X ) are of the form (4.11), with Ψ(x, y, p)
.
=

2
∑
z∈X (W (y, z)−W (x, z)) pz. Suppose W is such that there exists a unique solution

π∗ ∈ P(X ) to the fixed point equation π(p) = p. Then using the same type of calculations
as those used to prove Theorem 4.2, one can check that F̂ is well defined and takes the
form

F̂ (p) = R (π∗‖p) + C, p ∈ P(X )

for some finite constant C ∈ R that depends on π∗ (but not on p). Thus the proposed
Lyapunov function is relative entropy with the independent variable in the second
position, and the dynamics are of the form (1.2) for Γ that is not a constant. While
R (π∗‖p) satisfies the descent property for constant ergodic matrices Γ such that π∗Γ = 0,
this property is not valid in any generality when Γ depends on p, and one can then easily
construct examples for which the function F̂ defined above does not enjoy the descent
property.

5 General Weakly Interacting Systems

The analysis of Section 4 crucially relied on the fact that the stationary distributions
for systems of Gibbs type take an explicit form. In general, when the form of πN is not
known, evaluation of the limit in (1.3) becomes infeasible. A natural approach then is to
consider the function in (1.4) and to evaluate the quantity limt→∞ limN→∞ FNt (q). In this
section we will consider the problem of evaluating the inner limit, i.e. limN→∞ FNt (q).
We will show that this limit, denoted by Jt(q), exists quite generally. In [6] we will study
properties of the candidate Lyapunov function limt→∞ Jt(q).

To argue the existence of limN→∞ FNt (q) and to identify the limit we begin with a
general result.
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5.1 Relative entropy asymptotics for an exchangeable collection

Let QN be an exchangeable probability measure on XN . We next present a result
that shows how to evaluate the limit of

1

N
R(⊗Nq‖QN )

as N → ∞, where q ∈ S. Recall that rN : XN → PN (X ) defined in (2.1) returns the
empirical measure of a sequence in XN .

Definition 5.1. Let J : S → [0,∞] be a lower semicontinuous function. We say that rN

under the probability law QN satisfies a locally uniform LDP on P(X ) with rate function
J if, given any sequence {qN}N∈N, qN ∈ PN (X ), such that qN → q ∈ P(X ),

lim
N→∞

1

N
logQN

({
y ∈ XN : rN (y) = qN

})
= −J(q).

The standard formulation of a LDP is stated in terms of bounds for open and closed
sets. In contrast, a locally uniform LDP (which implies the standard LDP with the same
rate function) provides approximations to the probability that a random variable equals
a single point. Under an appropriate communication condition, such a strengthening is
not surprising when random variables take values in a lattice.

The following is the main result of this section. Together with a large deviation result
stated in Theorem 5.4 below, it will be used to characterize limN→∞ FNt (q).

Theorem 5.2. Suppose that rN under the exchangeable probability law QN satisfies
a locally uniform LDP on P(X ) with rate function J . Suppose that J(q) < ∞ for all
q ∈ P(X ). Then for all q ∈ P(X ),

lim
N→∞

1

N
R
(
⊗Nq

∥∥∥QN
)

= J(q).

Proof. We follow the convention that x log x equals 0 when x = 0. Fix q ∈ P(X ) and note
that relative entropy can be decomposed as

1

N
R
(
⊗Nq

∥∥∥QN
)

(5.1)

=
1

N

∑
y∈XN

(
N∏
i=1

qyi

)
log

(
N∏
i=1

qyi

)
− 1

N

∑
y∈XN

(
N∏
i=1

qyi

)
logQN (y).

Let {Xi}i∈N be an i.i.d. sequence of X -valued random variables with common probability
distribution q. Then exactly as in the proof of Theorem 4.2, for each N ∈ N

1

N

∑
y∈XN

(
N∏
i=1

qyi

)
log

(
N∏
i=1

qyi

)
= E [log qX1

] =
∑
x∈X

qx log qx. (5.2)

Next, consider the second term on the right side of (5.1). Since QN is exchangeable
there is a function GN : PN (X ) → [0, 1] such that QN (y) = GN (rN (y)) for all y ∈ XN .
Then for r ∈ PN (X ) we can write

QN (
{
y ∈ XN : rN (y) = r

}
) =

∣∣{y ∈ XN : rN (y) = r
}∣∣GN (r).

For notational convenience, let CN (r) =
∣∣{y ∈ XN : rN (y) = r

}∣∣, r ∈ PN (X ). Rearrang-
ing the last expression gives

GN (r) =
QN (

{
y ∈ XN : rN (y) = r

}
)

CN (r)
. (5.3)
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Since QN (y) = GN (rN (y)),

1

N

∑
y∈XN

(
N∏
i=1

qyi

)
logQN (y) =

1

N

∑
y∈XN

(
N∏
i=1

qyi

)
logGN (rN (y)). (5.4)

Let ΘN : PN (X ) → R ∪ {−∞} be defined by ΘN (r)
.
= 1

N logGN (r). Using the fact

that P ((X1, X2, . . . , XN ) = (y1, . . . , yN )) =
∏N
i=1 qyi , we can express the term on the

right-hand side of (5.4) in terms of the i.i.d. sequence {Xi}i∈N:

1

N

∑
y∈XN

(
N∏
i=1

qyi

)
logQN (y) = E

[
ΘN (rN (X1, . . . , XN ))

]
= E

[
ΘN

(
1

N

N∑
i=1

δXi

)]
. (5.5)

Let Θ : S → R be defined by Θ(r)
.
=
∑
x∈X rx log rx − J(r). We now show that

if qN → q, qN ∈ PN (X ), then ΘN (qN )→ Θ(q). (5.6)

Fix ε > 0. By the assumption that rN under QN satisfies a locally uniform LDP with rate
function J , and that J(q) <∞, there exists N0 <∞ such that for all N ≥ N0,

e−N(J(q)+ε) ≤ QN (
{
y : rN (y) = qN

}
) ≤ e−N(J(q)−ε). (5.7)

Next, as in Theorem 4.2, let ν denote the uniform measure on X and let QN
0 = ⊗NνN .

We claim that under QN
0 , rN satisfies a locally uniform LDP with rate function

J̃(p) =
∑
x∈X

px log px + log |X |, p ∈ P(X ). (5.8)

Indeed, elementary combinatorial arguments (see, for example, Lemma 2.1.9 of [10])
show that for every N ∈ N,

(N + 1)−|X|e−NR(qN‖ν) ≤ QN
0 (
{
y : rN (y) = qN

}
) ≤ e−NR(qN‖ν). (5.9)

Since ν is the uniform measure on X ,

R(qN‖ν) =
∑
x∈X

qNx log qNx −
∑
x∈X

qNx log
1

|X |
= J̃(qN ).

The locally uniform LDP of rN under QN
0 then follows from the continuity of J̃ and that

1
N log (N + 1)−|X| → 0 as N →∞.

The relation

QN
0 (
{
y : rN (y) = qN

}
) =

CN (qN )

|X |N

implies there exists Ñ0 <∞ such that for all N ≥ Ñ0,

e−N(J̃(q)+ε) ≤ CN (qN )

|X |N
≤ e−N(J̃(q)−ε).

Combining the last display with (5.7) and (5.3), we conclude that for N ≥ max{N0, Ñ0}

e−N(J(q)+ε)eN(J̃(q)−ε)e−N log|X | ≤ GN (qN ) ≤ e−N(J(q)−ε)eN(J̃(q)+ε)e−N log|X |,
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and thus for such N , recalling that ΘN (r) = logGN (r)

J̃(q)− J(q)− log |X | − 2ε ≤ ΘN (qN ) ≤ J̃(q)− J(q)− log |X |+ 2ε.

Recalling Θ(r) =
∑
x∈X rx log rx − J(r) and (5.8), for all such N , |ΘN (qN ) − Θ(q)| ≤ 2ε.

This proves (5.6).

By the strong law of large numbers rN (X1, . . . , XN ) = 1
N

∑N
i=1 δXi converges weakly

to q almost surely with respect to P . Thus by (5.6)

lim
N→∞

ΘN
(
rN (X1, . . . , XN )

)
= Θ(q) (5.10)

almost surely. Using (5.6) again, the property that Θ(r) < ∞ for r ∈ P(X ), and the
compactness of P(X ), it follows that

lim sup
N→∞

sup
r∈PN (X )

|ΘN (r)| <∞.

Thus by (5.10) and the bounded convergence theorem,

lim
N→∞

E

[
ΘN

(
1

N

N∑
i=1

δXi

)]
= Θ(q).

When combined with (5.5), this implies

lim
N→∞

1

N

∑
y∈XN

(
N∏
i=1

qyi

)
logQN (y) = lim

N→∞
E

[
ΘN

(
1

N

N∑
i=1

δXi

)]
= Θ(q).

Recalling Θ(q) =
∑
x∈X qx log qx − J(q) and using (5.1)–(5.2), the last display implies

1

N
R
(
⊗Nq

∥∥∥QN
)
→ J(q)

and completes the proof.

5.2 Evaluation of the limit, Freidlin-Wentzell quasipotential, and metastability

We saw in Theorem 5.2 that the limit of the relative entropies 1
NR(⊗Nq‖QN ) is just

the rate function J of the empirical measure under QN , evaluated at the marginal of the
initial product distribution ⊗Nq. We next state a condition and a theorem that imply the
LDP holds for the empirical measure µN (t), t ≥ 0, introduced in Section 2.2.

Condition 5.3. Suppose that for each r ∈ S, Γ(r) = {Γxy(r), x, y ∈ X}, is the transition
rate matrix of an ergodic X -valued Markov chain.

We will use the following locally uniform LDP for the empirical measure process. The
LDP has been established in [25, 4], while the locally uniform version used here is taken
from [12].

Theorem 5.4. Assume Conditions 2.1 and 5.3. For t ∈ [0,∞) let pN (t) be the distribution
of XN (t) = (X1,N (t), . . . , XN,N (t)), where XN is the XN -valued Markov process from
Section 2.1 with exchangeable initial distribution pN (0). Recall the mapping rN : XN →
PN (X ) given by (2.1), i.e., rN (x) is the empirical measure of x . Assume that rN under
the distribution pN (0) satisfies a LDP with a rate function J0. Then for each t ∈ [0,∞), rN

under the distribution pN (t) satisfies a locally uniform LDP on P(X ) with a rate function
Jt. Furthermore, Jt(q) <∞ for all q ∈ P(X ).
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The rate function Jt takes the form,

Jt(q) = inf

{
J0(φ(0)) +

∫ t

0

L(φ(s), φ̇(s))ds : φ(t) = q

}
, (5.11)

where the infimum is over all absolutely continuous φ : [0, t] → S and L takes an
explicit form. The large deviation principle is established in [25] for deterministic initial
conditions and in [4] for random initial conditions. The locally uniform version stated
above is established in [12], for a more general class of jump Markov processes with
simultaneous jumps.

As an immediate consequence of Theorems 5.2 and 5.4, we have the following
characterization of limN→∞ FNt (q).

Theorem 5.5. Assume all the conditions of Theorem 5.4. For N ∈ N and t ∈ [0,∞), let
FNt be defined as in (1.4) and Jt be as in Theorem 5.4. Then

lim
N→∞

FNt (q) = Jt(q), q ∈ P(X ).

Proof. Recall that pN (0) is an exchangeable distribution on XN , which implies that
pN (t) is exchangeable for all t ≥ 0. From Theorem 5.4 rN under pN (t) satisfies a locally
uniform LDP with rate function Jt such that Jt(q) is finite for all q ∈ P(X ). The result
now follows from Theorem 5.2.

Recall that the ideal candidate Lyapunov function based on the descent property of
Markov processes would be

lim
N→∞

lim
t→∞

1

N
R(⊗Nq‖pN (t)),

where by ergodicity the limit is independent of pN (0). If this is not possible, another
candidate is found by interchanging the order of the limits. In this case we can apply
Theorem 5.5, and then send t→∞ to evaluate the inverted limit. Note that in general,
this limit will depend on pN (0) through J0. We will use this limit, and in particular the
form (5.11), in two ways. The first is to derive an analytic characterization for the limit
as t→∞ of Jt(q). This characterization will be used in [6], together with insights into
the structure of candidate Lyapunov functions obtained from the Gibbs models of Section
4, to identify and verify that candidate Lyapunov functions for various classes of models
actually are Lyapunov functions. The second use is to directly connect these limits of
relative entropies with the Freidlin-Wentzell quasipotential related to the processes{
µN
}

. The quasipotential provides another approach to the construction of candidate
Lyapunov functions, but one based on notions of “energy conservation” and related
variational methods, and with no a priori connection with the descent property of relative
entropies for linear Markov processes. In the rest of this section we further compare
these approaches.

Suppose that π∗ is a (locally) stable equilibrium point for p′ = pΓ(p), so that for some
relatively open subset D ⊂ S with π∗ ∈ D and if p(0) ∈ D then the solution to p′ = pΓ(p)

satisfies p(t)→ π∗ as t→∞. From [25, 4, 12] it follows that if a deterministic sequence
µN (0) converges to p(0) ∈ S, then for each T ∈ (0,∞) {µN (t)}0≤t≤T satisfies a LDP in
D([0, T ] : S) with the rate function∫ T

0

L(φ(s), φ̇(s))ds

if φ(·) is absolutely continuous with φ(0) = p(0), and equal to∞ otherwise. The Freidlin-
Wentzell quasipotential associated with the large time, large N behavior of {µN (t)} and
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with respect to the initial condition π∗ is defined by

V π
∗
(q) = inf

{∫ T

0

L(φ(s), φ̇(s))ds : φ(0) = π∗, φ(T ) = q, T ∈ (0,∞)

}

where the infimum is over all absolutely continuous φ : [0, T ]→ S.
Next suppose J0 is a rate function that is consistent with the weak convergence of

rN under pN (0) to π∗ as N → ∞. One example is J̄0(r) = R(r‖π∗), which corresponds
to pN (0) equal to product measure with marginals all equal to π∗. A second example is
Jπ

∗

0 (r) = 0 when r = π∗ and∞ otherwise, which corresponds to a “nearly deterministic”
initial condition pN (0). To simplify we will consider just Jπ

∗

0 . All other choices of J0

bound Jπ
∗

0 from below and, while leading to other candidate Lyapunov functions, they
will also bound the one corresponding to Jπ

∗

0 from below. Using the fact that

t 7→ Jπ
∗

t (q)
.
= inf

{
Jπ

∗

0 (φ(0)) +

∫ t

0

L(φ(s), φ̇(s))ds : φ(t) = q

}
is monotonically decreasing, it follows that

Fπ
∗
(q)

.
= lim
t→∞

Jπ
∗

t (q) = V π
∗
(q).

Thus for a particular choice of J0 these two different perspectives lead to the same
candidate Lyapunov function. However, this connection does not seem a priori obvious,
and we note the following distinctions. For example, the distributions involved in the
construction of Fπ

∗
via limits of relative entropy are the product measures ⊗N1 q on XN

with marginal q, and an a priori unrelated distribution pN (t) which is the joint distribution
of N particles at time t. In contrast, the distribution relevant in the construction via the
quasipotential is the measure induced on path space by {µN (·)}N∈N and with a sequence
of initial conditions µn(0) which converge super-exponentially fast to π∗, and V π

∗
(q) is

defined in terms of a sample path rate function for {µN (·)}N∈N constrained to hit q at
the terminal time.

For both of these approaches there is a need to consider a large time limit. When using
relative entropy, to guarantee a monotone nonincreasing property both distributions
appearing in the relative entropy must be advanced by the same amount of time. Hence
it will serve as a Lyapunov function for all q only if pN (t) is essentially independent
of t, which requires sending t → ∞. When using a variational formulation to define a
Lyapunov function via “energy storage” a time independent function is produced only
if one allows an arbitrarily large amount of time to go from π to q, and thus we only
construct the quasipotential by allowing T ∈ (0,∞) in the definition of V π

∗
.

It is also interesting to ask what is lost by inverting the limits on t and N . To discuss
this point we return to a particular model described in Section 4. Let V : X → R,
W : X × X → R be given functions, β > 0, and associate interacting particle systems as
in Section 4. Recall that for this family of models F (q), as introduced in (1.3), is given as

F (q) =
∑
x∈X

qx log qx +
∑
x∈X

V (x)qx + β
∑
x,y∈X

W (x, y)qxqy. (5.12)

It is easy to check that F is C1 on S◦. One can show that in general multiple fixed points
of the forward equation (1.2) exist and the function F serves as a local Lyapunov function
at all those fixed points which correspond to local minima. In contrast, local Lyapunov
functions constructed by taking the limits in the order N →∞ and then t→∞ lose all
metastability information, and hence serve as local Lyapunov functions for the point π∗

used in their definition.
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A Lyapunov Function

Definition A.1. A point π∗ ∈ S is said to be a fixed point of the ODE (1.2) if the
right-hand side of (1.2) evaluated at p = π∗ is equal to zero, namely,

π∗Γ(π∗) = 0.

Definition A.2. A fixed point π∗ ∈ S◦ of the ODE (1.2) is said to be locally stable if
there exists a relatively open subset D of S that contains π∗ and has the property that
whenever p(0) ∈ D, the solution p(t) of (1.2) with initial condition p(0) converges to π∗

as t→∞.

We introduce the following notion of positive definiteness.

Definition A.3. Let π∗ ∈ S◦ be a fixed point of (1.2) and let D be a relatively open
subset of S that contains π∗. A function J : D→ R is called positive definite if for some
K∗ ∈ R, the sets MK = {r ∈ D̄ : J(r) ≤ K} decrease continuously to {π∗} as K ↓ K∗.

In Definition A.3, by “decrease continuously to {π∗}” we mean that: (i) for every
ε > 0, there exists Kε ∈ (K∗,∞) such that MKε ⊂ Bε(π∗) ∩D, where Bε(π∗) is the open
Euclidean ball of radius ε, centered at π∗, and (ii) for every K > K∗, there exists ε > 0

such that Bε(π∗) ∩ S ⊂MK .

Definition A.4. Let π∗ ∈ S◦ be a fixed point of (1.2), and letD be a relatively open subset
of S that contains π∗. A positive definite, C1 and uniformly continuous function J : D→ R

is said to be a local Lyapunov function associated with (D, π∗) for the ODE (1.2) if,
given any p(0) ∈ D, the solution p(·) to the ODE (1.2) with initial condition p(0) satisfies
d
dtJ(p(t)) < 0 for all 0 ≤ t < τ such that p(t) 6= π∗, where τ

.
= inf{t ≥ 0 : p(t) ∈ Dc}. In

the case D = S◦, we refer to J as a Lyapunov function.

We note that the existence of a local Lyapunov function implies local stability. For a
proof of this statement we refer the reader to Proposition 2.6 of [6].
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