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Concentration inequalities for Markov chains by
Marton couplings and spectral methods
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Abstract

We prove a version of McDiarmid’s bounded differences inequality for Markov chains,
with constants proportional to the mixing time of the chain. We also show variance
bounds and Bernstein-type inequalities for empirical averages of Markov chains. In
the case of non-reversible chains, we introduce a new quantity called the “pseudo
spectral gap", and show that it plays a similar role for non-reversible chains as the
spectral gap plays for reversible chains.

Our techniques for proving these results are based on a coupling construction of
Katalin Marton, and on spectral techniques due to Pascal Lezaud. The pseudo spectral
gap generalises the multiplicative reversiblication approach of Jim Fill.
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1 Introduction

Consider a vector of random variables
X = (X1, Xo,..., X,)

taking values in A := (A; x ... X A,), and having joint distribution P. Let f : A - R be a
measurable function. Concentration inequalities are tail bounds of the form

P(f(X1,...,Xn) —Ef(Xy1,..., X)) > 1) <g(t),

with g(t) typically being of the form 2 exp(—t2/C) or 2exp(—t/C) (for some constant C,
which might depend on n).

Such inequalities are known to hold under various assumptions on the random
variables Xi,...,X,, and on the function f. With the help of these bounds able to
get information about the tails of f(X) even in cases when the distribution of f(X) is
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Concentration inequalities for Markov chains

complicated. Unlike limit theorems, these bounds hold non-asymptotically, that is for
any fixed n. Our references on concentration inequalities are [24], and [3].

Most of the inequalities in the literature are concerned with the case when X1,..., X,
are independent. In that case, very sophisticated, and often sharp bounds are available
for many different types of functions. Such bounds have found many applications in
discrete mathematics (via the probabilistic method), computer science (running times of
randomized algorithms, pattern recognition, classification, compressed sensing), and
statistics (model selection, density estimation).

Various authors have tried to relax the independence condition, and proved concen-
tration inequalities under different dependence assumptions. However, unlike in the
independent case, these bounds are often not sharp.

In this paper, we focus on an important type of dependence, that is, Markov chains.
Many problems are more suitably modelled by Markov chains than by independent
random variables, and MCMC methods are of great practical importance. Our goal
in this paper is to generalize some of the most useful concentration inequalities from
independent random variables to Markov chains.

We have found that for different types of functions, different methods are needed to
obtain sharp bounds. In the case of sums, the sharpest inequalities can be obtained using
spectral methods, which were developed by [28]. In this case, we show variance bounds
and Bernstein-type concentration inequalities. For reversible chains, the constants in the
inequalities depend on the spectral gap of the chain (if we denote it by ~, then the bounds
are roughly 1/~ times weaker than in the independent case). In the non-reversible case,
we introduce the “pseudo spectral gap"”,

Yps := maximum of (the spectral gap of (P*)* P* divided by k) for k > 1,

and prove similar bounds using it. Moreover, we show that just like 1/, 1/v,s can also
be bounded above by the mixing time of the chain (in total variation distance). For
more complicated functions than sums, we show a version of McDiarmid’s bounded
differences inequality, with constants proportional to the mixing time of the chain. This
inequality is proven by combining the martingale-type method of [4] and a coupling
structure introduced by Katalin Marton.

An important feature of our inequalities is that they only depend on the spectral gap
and the mixing time of the chain. These quantities are well studied for many important
Markov chain models, making our bounds easily applicable.

Now we describe the organisation of the paper.

In Section 1.1, we state basic definitions about general state space Markov chains.
This is followed by two sections presenting our results. In Section 2, we define Marton
couplings, a coupling structure introduced in [35], and use them to show a version
of McDiarmid’s bounded differences inequality for dependent random variables, in
particular, Markov chains. Examples include m-depedent random variables, hidden
Markov chains, and a concentration inequality for the total variational distance of
the empirical distribution from the stationary distribution. In Section 3, we show
concentration results for sums of functions of Markov chains using spectral methods,
in particular, variance bounds, and Bernstein-type inequalities. Several applications
are given, including error bounds for hypothesis testing. In Section 4, we compare our
results with the previous inequalities in the literature, and finally Section 5 contains the
proofs of the main results.

This work grew out of the author’s attempt to solve the “Spectral transportation cost
inequality" conjecture stated in Section 6.4 of [22].
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1.1 Basic definitions for general state space Markov chains

In this section, we are going to state some definitions from the theory of general state
space Markov chains, based on [43]. If two random elements X ~ P and Y ~ @ are
defined on the same probability space, then we call (X,Y) a coupling of the distributions
P and @. We define the total variational distance of two distributions P and @ defined
on the same state space (2, F) as

drv(P, Q) == sup |[P(A) — Q(A)], (1.1)
AeF
or equivalently
drv(P,Q) = ()lgg)lP(X #Y), (1.2)

where the infimum is taken over all couplings (X,Y) of P and Q. Couplings where this
infimum is achieved are called maximal couplings of P and @ (their existence is shown,
for example, in [30]).

Note that there is also a different type of coupling of two random vectors called maxi-
mal coupling by some authors in the concentration inequalities literature, introduced
by [16]. We will call this type of coupling as Goldstein’s maximal coupling (which we
will define precisely in Proposition 2.6). Let {2 be a Polish space. The transition kernel
of a Markov chain with state space (2 is a set of probability distributions P(z,dy) for
every x € (). A time homogenous Markov chain Xy, Xi,... is a sequence of random
variables taking values in () satisfying that the conditional distribution of X; given
Xo = z0y...,X;—1 = x;—1 equals P(z;_1,dy). We say that a distribution 7 on 2 is a
stationary distribution for the chain if

/ m(dx)P(z,dy) = n(dy).
z€Q

A Markov chain with stationary distribution = is called periodic if there exist d > 2,
and disjoints subsets Q1,...,Q4 C Q with 7(Q;) > 0, P(z,9Q;41) = 1 for all x € Q,,
1<i<d-1,and P(z,Q) =1 for all z € Q. If this condition is not satisfied, then we
call the Markov chain aperiodic.

We say that a time homogenous Markov chain is ¢-irreducible, if there exists a non-
zero o-finite measure ¢ on {2 such that for all A C 2 with ¢(A4) > 0, and for all z € Q,
there exists a positive integer n = n(x, A) such that P"(z, A) > 0 (here P"(z,-) denotes
the distribution of X, conditioned on Xy = z).

The properties aperiodicity and ¢-irreduciblility are sufficient for convergence to a
stationary distribution.

Theorem (Theorem 4 of [43]). If a Markov chain on a state space with countably
generated o-algebra is ¢-irreducible and aperiodic, and has a stationary distribution 7,
then for w-almost every x € (2,

lim dpy(P"(x,-),m) =0.

n—oo
We define uniform and geometric ergodicity.

Definition 1.1. A Markov chain with stationary distribution w, state space ), and
transition kernel P(z,dy) is uniformly ergodic if

supdpy (P™(z,-),m) < Mp", n=1,23,...
e

for some p < 1 and M < oo, and we say that it is geometrically ergodic if
dTV (Pn(x7')77r) SM($>P”7 n= 152737"'

for some p < 1, where M (x) < oo for m-almost every z € ).

EJP 20 (2015), paper 79. ejp.ejpecp.org
Page 3/32


http://dx.doi.org/10.1214/EJP.v20-4039
http://ejp.ejpecp.org/

Concentration inequalities for Markov chains

Remark 1.2. Aperiodic and irreducible Markov chains on finite state spaces are uni-
formly ergodic. Uniform ergodicity implies ¢-irreducibility (with ¢ = 7), and aperiodicity.

The following definitions of the mixing time for Markov chains with general state
space are based on Sections 4.5 and 4.6 of [26].

Definition 1.3 (Mixing time for time homogeneous chains). Let X, X5, X3,... be a time
homogeneous Markov chain with transition kernel P(x,dy), Polish state space (), and
stationary distribution w. Then t.,, the mixing time of the chain, is defined by

d(t) :== 8161?2 drv (P*(z,-),7), tmix(€) :== min{t : d(t) < €}, and

tmix = tmix(1/4)-

The fact that t.,ix(€) is finite for some ¢ < 1/2 (or equivalently, tyx is finite) is
equivalent to the uniform ergodicity of the chain, see [43], Section 3.3. We will also use
the following alternative definition, which also works for time inhomogeneous Markov
chains.

Definition 1.4 (Mixing time for Markov chains without assuming time homogeneity). Let
X1,..., XN be a Markov chain with Polish state space )y X ... x Qu (that is X; € ;).
Let L(X,4¢|X; = z) be the conditional distribution of X,, given X; = x. Let us denote
the minimal t such that £(X,¢|X; = x) and L£(X,1+|X; = y) are less than ¢ away in total
variational distance for every 1 <i < N —t and z,y € ; by 7(¢), that is, for0 < e < 1, let

d(t) == ety A drv (L£(Xiwe| Xs = @), L(Xie| Xs = y))

7(€) :==min {t € N: d(t) < €} .

Remark 1.5. One can easily see that in the case of time homogeneous Markov chains,
by triangle inequality, we have

7(2€) < timix(€) < 7(e). (1.3)

§imilarly to Lemma 4.12 of [26] (see also proposition 3.(e) of [43]), one can show that

d(t) is subadditive
d(t+s) < d(t) +d(s), (1.4)

and this implies that forevery k €¢ N, 0 <e <1,

7(¥) < k7(€), and thus #p;, ((QE)k) < ktmix(€). (1.5)

2 Marton couplings

In this section, we are going to prove concentration inequalities using Marton cou-
plings. First, in Section 2.1, we introduce Marton couplings (which were originally
defined in [35]), which is a coupling structure between dependent random variables. We
are going to define a coupling matrix, measuring the strength of dependence between the
random variables. We then apply this coupling structure to Markov chains by breaking
the chain into blocks, whose length is proportional to the mixing time of the chain.

2.1 Preliminaries

In the following, we will consider dependent random variables X = (Xi,..., Xy)
taking values in a Polish space

AZ:A1X...XAN.
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Let P denote the distribution of X, that is, X ~ P. Suppose that Y = (Y1,...,Yy)
is another random vector taking values in A, with distribution Q. We will refer to
distribution of a vector (Xy, ..., Xy) as £(X1,...,X}), and

£(Xk+1,...,XN|X1 :Zl,...,Xk :.’tk)

will denote the conditional distribution of Xj,;,..., Xy under the condition X; =
x1,..., X = xp. Let [N] := {1,..., N}. We will denote the operator norm of a square
matrix I" by ||T'||. The following is one of the most important definitions of this paper. It
has appeared in [35].

Definition 2.1 (Marton coupling). Let X := (X1, ..., Xx) be a vector of random variables
taking valuesin A = Ay x...xAy. We define a Marton coupling for X as a set of couplings

(X(;cl,.“,wi,w;)7X/(wlx--wwi@//i)) c 0 x Q,

for every i € [N], every x1 € O4,...,x; € Q;, x} € Q;, satisfying the following conditions.

’ ’
(Z) Xf Lseeeslidy 1) =$1, e X"L( Lyeeosliy 1) :xi,

/(wl,...,wi,z;) /(wl,...,;m,z,:-) /(zl,...,xi,xé) o
X5 X X! —

€.

=T1, .-, = Ti—1, i i

(i) (Xi(fl"“’“’g”;),...,X](\‘fl""’““;))
~L(Xiv1, - XN|Xr =21, X = @),
(X/z(ilfm’%w;)’ o 7X/5$1,4..,11,cc;))
~L( X1, XX =2, Xl =i, X = ah).

(iii) If z; = o, then X (@1s2i20) = X/(@152i,27)

For a Marton coupling, we define the mixing matrix I' := (I'; ;); j<n as an upper diagonal
matrix withT'; ; :== 1 fori < N, and

i=0T;;:= sup P [X](IIZI) # X’Eml""’xi’xi) for1<i<j<N.
B2y,

Remark 2.2. The definition says that a Marton coupling is a set of couplings the
‘C(Xi—i-h N ,XN|X1 = X1y... 7Xi = .’Ei) and E(Xi+1a AN 7XN‘X1 = X1y..., Xi—l = Ti—1,
X; = ) for every z1,...,2;,2;, and every ¢ € [N]. The mixing matrix quantifies how
close is the coupling. For independent random variables, we can define a Marton
coupling whose mixing matrix equals the identity matrix. Although it is true that

Fi,j > sup dTV [E(Xj‘Xl :xl,...,Xi:xi),

’
L1,.--,T4,T;

,C(XJ|X1 =T1,y... 7Xi—1 = iL’i_l,Xi = I’i)] s

the equality does not hold in general (so we cannot replace the coefficients I'; ; by the
right hand side of the inequality). At first look, it might seem to be more natural to make
a coupling between £(X;t1,...,Xn|X1 = z1,...,X; = x;) and L(X;41,...,XN| X1 =
x},...,X; = x}). For Markov chains, this is equivalent to our definition. The requirement
in this definition is less strict, and allows us to get sharp inequalities for more dependence
structures (for example, random permutations) than the stricter definition would allow.

We define the partition of a set of random variables.

Definition 2.3 (Partition). A partition of a set S is the division of S into disjoint non-
empty subsets that together cover S. Analogously, we say that X := (X1,...,X,,) isa

EJP 20 (2015), paper 79. ejp.ejpecp.org
Page 5/32


http://dx.doi.org/10.1214/EJP.v20-4039
http://ejp.ejpecp.org/

Concentration inequalities for Markov chains

partition of a vector of random variables X = (X;,..., Xn) if (X;)1<i<n is a partition of
the set {Xy,...,Xy}. For a partition X of X, we denote the number of elements off(i
by s(X;) (size of X;), and call s(X) := max;<;<, s(X;) the size of the partition.

Furthermore, we denote the set of indices of the elements of X’i by I(Xl) that is,
X; € X; ifand only if j € Z(X;). For a set of indices S C [N], let X := {X, :j € S}. In
particular, Xi = XI(Xi)‘ Similarly, if X takes values in the set A := A; x ... x Ay, then
X will take values in the set A := Al X ... X An, with Ai = AI(Xi)'

Our main result of this section will be a McDiarmid-type inequality for dependent
random variables, where the constant in the exponent will depend on the size of a
particular partition, and the operator norm of the mixing matrix of a Marton coupling for
this partition. The following proposition shows that for uniformly ergodic Markov chains,
there exists a partition and a Marton coupling (for this partition) such that the size of
the partition is comparable to the mixing time, and the operator norm of the coupling
matrix is an absolute constant.

Proposition 2.4 (Marton coupling for Markov chains). Suppose that Xi,...,Xy is a
uniformly ergodic Markov chain, with mixing time 7(¢) for any ¢ € [0,1). Then there is a

partition X of X such that s(X) < 7(e), and a Marton coupling for for this partition X
whose mixing matrix I" satisfies

1 1 € & €
01 1 € € ...
I'=(Ts;)ij<n < L. ) ) (2.1)
000 0 ... 1
with the inequality meant in each element of the matrices.
Remark 2.5. Note that the norm of I' now satisfies that ||| <1+ 1 = 2=¢,

This result is a simple consequence of Goldstein’s maximal coupling. The following

proposition states this result in a form that is convenient for us (see [16], equation (2.1)
on page 482 of [12], and Proposition 2 on page 442 of [45]).
Proposition 2.6 (Goldstein’s maximal coupling). Suppose that P and () are probability
distributions on some common Polish space A, x ... x A,, having densities with respect
to some underlying distribution v on their common state space. Then there is a coupling
of random vectors X = (X1,...,X,),Y = (Y1,...,Y,,) such that L(X) = P, L(Y) = Q,
and

Remark 2.7. [32] assumes maximal coupling in each step, corresponding to

2 3

1 a a° a
01 a da® ...
I'={ij)ij<n < | . . . . , with
00 o0 ... 1
a = sup dTV(P($7 ')7 P(y7 )) (2.2)

z,ycd

The papers [45], [4], [5], [22] use the Marton coupling generated by Proposition 2.6.
[35] shows that Marton couplings different from those generated by Proposition 2.6
can be also useful, especially when there is no natural sequential relation between the
random variables (such as when they satisfy some Dobrushin-type condition). [42], and
[8] generalise this coupling structure to bounded metric spaces. Our contribution is the
introduction of the technique of partitioning.
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Remark 2.8. In the case of time homogeneous Markov chains, Marton couplings
(Definition 2.1) are in fact equivalent to couplings (X, X’') between the distributions
L(X1,...,XNn|Xo =) and L(X1,..., Xn|Xo = (). Since the seminal paper [9], such
couplings have been widely used to bound the convergence of Markov chains to their
stationary distribution in total variation distance. If T' is a random time such that for
every i > T, X; = X/ in the above coupling, then

drv (Pt(it()7 '),Pt($6, )) < ]P(T > t).

In fact, even less suffices. Under the so called faithfulness condition of [44], the same
bound holds if X7 = X/, (that is, the two chains are equal at a single time).

2.2 Results

Our main result in this section is a version of McDiarmid’s bounded difference
inequality for dependent random variables. The constants will depend on the size of the
partition, and the norm of the coupling matrix of the Marton coupling.

Theorem 2.1 (McDiarmid’s inequality for dependent random varlables) Let X =
(X1,...,Xy) be a sequence of random variables, X € A,X ~ P. Let X = (X;,...,X,,)
be a part1t1on of this sequence, X el X~ P. Suppose that we have a Marton coupling
for X with mixing matrix T'. Let c € RY, and define C(c) € R" as

> ¢ fori<n. (2.3)
FET(Xy)
If f : A — R is such that
Z [z: # il (2.4)
for every x,y € A, then for any A € R,
2. . 2 2, 2 A2 f ¥
g (700-100)  XAD-CEOE X TPIPD)

In particular, this means that for anyt > 0,

P (500~ BF(X)| > 0 < 200 (1 ) 2.6)

Remark 2.9. Most of the results presented in this paper are similar to (2.6), bounding
the absolute value of the deviation of the estimate from the mean. Because of the
absolute value, a constant 2 appears in the bounds. However, if one is interested in the
bound on the lower or upper tail only, then this constant can be discarded.

A special case of this is the following result.

Corollary 2.10 (McDiarmid's inequality for Markov chains). Let X := (X3, ..., Xx) be a
(not necessarily time homogeneous) Markov chain, taking values in a Polish state space
A =A; x...x Ay, with mixing time 7(¢) (for0 < e <1). Let

wim it 70 (226 2.7)
Tin = oé13<176 =) - .

Suppose that f : A — R satisfies (2.4) for some c € ]Rf. Then for anyt > 0,

642
P (|£(X) — Ef(X)] > t) < 2exp (”) . 2.8)

||C|| Tmin
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Remark 2.11. It is easy to show that for time homogeneous chains,

2
2—c¢
< i . < . .
Tmin > O%Eiltmlx(6/2) (1 6) >~ 9trmx (2 9)

In many situations in practice, the Markov chain exhibits a cutoff, that is, the total
variation distance decreases very rapidly in a small interval (see Figure 1 of [31]). If this
happens, then Ty ~ 4tmix.

Remark 2.12. This corollary could be also obtained as a consequence of theorems in
previous papers ([45], [4], [42], [22]) applied to blocks of random variables. Note that by
directly applying these theorems on X, Xo,..., Xn, we would only obtain bounds of the

form 2 exp (—O (Hd\éizt?))

Remark 2.13. In Example 2.17, we are going to use this result to obtain a concentration
inequality for the total variational distance between the empirical measure and the
stationary distribution. Another application is given in [17], Section 3, where this
inequality is used to bound the error of an estimate of the asymptotic variance of MCMC
empirical averages.

In addition to McDiarmid’s inequality, it is also possible to use Marton couplings to
generalise the results of [45] and [35], based on transportation cost inequalities. In the
case of Markov chains, this approach can be used to show Talagrand’s convex distance
inequality, Bernstein’s inequality, and self-bounding-type inequalities, with constants
proportional to the mixing time of the chain. We have decided not to include them here
because of space considerations.

2.3 Applications

Example 2.14 (m-dependence). We say that Xi,..., Xy are m-dependent random vari-
ables if foreach 1 <i < N —m, (Xy,...,X;) and (X;4m,...,Xn) are independent. Let
n:=[X], and

Xl = (Xh NN 7Xm), ey XN = (X(n—1)7n+17 ey XN)
We define a Marton coupling for X as follows.
is constructed by first defining
(Fefrsndh | goreetetl) = oy,

o (B1yes @i, E7) o (1,0, E5) . N N
(Xll 7...,X/lv = (1’1,...,%1'_1,1'-),

and then defining
(X(il """ 2i,5) - 7,X»,(Lil"”'702,i’i;’)) ~ ,C(XZ‘+1, - ,anXl = i‘h - 7Xz' = ;i'z)
After this, we set

o (81,0%0,3) 5, (@150 En,2]) 5 (21,0 ydi, ) 5 (81,0 yd0,8))
(Xg+2 X ;:(X, SN ¢ Gt )

n i+2
5 (B1,..,84,87) . .
and then define X', such that for any (Z;49,...,%&n),
. ("L‘lv"'vzﬂ' 1) ('L‘lv"'vzﬂ'%'/i) ~ % (il ,il,i;) ~
‘C(X/i-i-l |Xlz+2 = Ti42, 7X7l - n) -
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Because of the m-dependence condition, this coupling is a Marton coupling, whose
mixing matrix satisfies

1 1.0 0 0 0

0110 0 0
I'=Tij)ijen < CoL

00 00 ... 0 1

We can see that ||I|| < 2, and s(X) = m, thus the constants in the exponent in McDi-
armid’s inequality are about 4m times worse than in the independent case.

Example 2.15 (Hidden Markov chains). Let Xl, . ,XN be a Markov chain (not necessar-
ily homogeneous) taking values in A= /~\1 X ... X AN, with distribution P. Let X1,..., XN
be random variables taking values in A = A; x ... x Ay such that the joint distribution
of (X, X) is given by

H(dZ,dz) := P(di) - [ [ Pi(dwi|ds),
i=1
that is, X; are conditionally independent given X. Then we call Xi,..., Xy a hidden
Markov chain.

Concentration inequalities for hidden Markov chains have been investigated in [21],
see also [22], Section 4.1.4. Here we show that our version of McDiarmid’s bounded
differences inequality for Markov chains in fact also implies concentration for hidden
Markov chains.

Corollary 2.16 (McDiarmid’s inequality for hidden Markov chains). Let 7(¢) denote the
mixing time of the underlying chain Xi,..., Xy, then Corollary 2.10 also applies to
hidden Markov chains, with 7(¢) replaced by 7(e) in (2.7).

Proof. It suffices to notice that (X, X;), (X, X5),... is a Markov chain, whose mixing
time is upper bounded by the mixing time of the underlying chain, 7(¢). Since the function
f satisfies (2.4) as a function of X7,..., Xy, and it does not depends on X, ..., Xy, it
also satisfies this condition as a function of (X7, Xl), (X, Xg), oo (XN, XN). Therefore
the result follows from Corollary 2.10. O

Example 2.17 (Convergence of empirical distribution in total variational distance). Let
Xq,..., X, be auniformly ergodic Markov chain with countable state space 2, unique sta-
tionary distribution 7, and mixing time t¢,,;x. In this example, we are going to study how
fast is the empirical distribution, defined as 7em (z) := 1 3" | 1[X; = ] for = € , con-
verges to the stationary distribution 7 in total variational distance. The following propo-
sition shows a concentration bound for this distance, d(X, ..., X,) := drv(7em (), 7).

Proposition 2.18. For anyt > 0,

t2-

Proof. The result is an immediate consequence of Corollary 2.10, by noticing that the
function d satisfies (2.4) with ¢; = 1/n for 1 <i < n. O

This proposition shows that the distance drv (7em (), 7) is highly concentrated around
its mean. In Example 3.15 of Section 3, we are going to bound the expectation E(d) in
terms of spectral properties of the chain. When taken together, our results generalise the
well-known Dvoretzky-Kiefer-Wolfowitz inequality (see [11], [37]) to the total variational
distance case, for Markov chains.
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Note that a similar bound was obtained in [20]. The main advantage of Proposition
2.18 is that the constants in the exponent of our inequality are proportional to the mixing
time of the chain. This is sharper than the inequality in Theorem 2 of [20], where the
constants are proportional to t2

mix*

3 Spectral methods

In this section, we prove concentration inequalities for sums of the form f;(X;) +
oo+ fu(X,), with X3,..., X, being a time homogeneous Markov chain. The proofs are
based on spectral methods, due to [28].

Firstly, in Section 3.1, we introduce the spectral gap for reversible chains, and explain
how to get bounds on the spectral gap from the mixing time and vice-versa. We then
define a new quantity called the “pseudo spectral gap”, for non-reversible chains. We
show that its relation to the mixing time is very similar to that of the spectral gap in the
reversible case.

After this, our results are presented in Section 3.2, where we state variance bounds
and Bernstein-type inequalities for stationary Markov chains. For reversible chains, the
constants depend on the spectral gap of the chain, while for non-reversible chains, the
pseudo spectral gap takes the role of the spectral gap in the inequalities.

In Section 3.3, we state propositions that allow us to extend these results to non-
stationary chains, and to unbounded functions.

Finally, Section 3.4 gives some applications of these bounds, including hypothesis
testing, and estimating the total variational distance of the empirical measure from the
stationary distribution.

In order to avoid unnecessary repetitions in the statement of our results, we will
make the following assumption.

Assumption 3.1. Everywhere in this section, we assume that X = (X;,...,X,) is a
time homogenous, ¢-irreducible, aperiodic Markov chain. We assume that its state space
is a Polish space (2, and that it has a Markov kernel P(x,dy) with unique stationary
distribution 7.

3.1 Preliminaries

We call a Markov chain Xi, X»,... on state space 2 with transition kernel P(z, dy)
reversible if there exists a probability measure 7« on (2 satisfying the detailed balance
conditions,

m(dx)P(z,dy) = w(dy)P(y,dx) for every x,y € Q. (3.1)

In the discrete case, we simply require 7(z)P(x,y) = 7(y)P(y, x). It is important to note
that reversibility of a probability measures implies that it is a stationary distribution of
the chain.

Let L?(7) be the Hilbert space of complex valued measurable functions on (2 that

are square integrable with respect to 7. We endow L?(w) with the inner product
(,9), = [ fg*dx, and norm | f||2.r := (f, f)/* = (E. (f?))"/%. P can be then viewed
as a linear operator on L?(r), denoted by P, defined as (Pf)(z) := Ep(, . (f), and
reversibility is equivalent to the self-adjointness of P. The operator P acts on measures
to the left, creating a measure p.P, that is, for every measurable subset A of Q, uP(A) :=

fx co P(z, A)u(dz). For a Markov chain with stationary distribution 7, we define the
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spectrum of the chain as
Sy = {)\ € C\0: (M — P)! does not exist as
a bounded linear operator on L? (71')}

For reversible chains, S, lies on the real line. We define the spectral gap for reversible
chains as

v:=1—sup{A: € Sy, A\#1} ifeigenvalue 1 has multiplicity 1,
v:=0 otherwise.

For both reversible, and non-reversible chains, we define the absolute spectral gap as

v :=1—sup{|A\| : A € So, A\ # 1} if eigenvalue 1 has multiplicity 1,
~*:=0 otherwise.

In the reversible case, obviously, v > +*. For a Markov chain with transition kernel
P(z,dy), and stationary distribution 7, we defined the time reversal of P as the Markov

kernel Py, dz)
* y7 xz
P*(x,dy) .= ——= - 7(dy). 3.2
(1 dy) i= = - w(dy) (3.2)
Then the linear operator P* is the adjoint of the linear operator P, on L?(r). We define
a new quantity, called the pseudo spectral gap of P, as

Yos i= max {y((P")"P*)/k}, (3.3)

where v((P*)* P*) denotes the spectral gap of the self-adjoint operator (P*)* P*.

Remark 3.2. The pseudo spectral gap is a generalization of spectral gap of the multi-
plicative reversiblization (y(P*P)), see [13]. We apply it to hypothesis testing for coin
tossing (Example 3.19). Another application is given in [41], where we estimate the
pseudo spectral gap of the Glauber dynamics with systemic scan in the case of the Curie-
Weiss model. In these examples, the spectral gap of the multiplicative reversiblization is
0, but the pseudo spectral gap is positive.

If a distribution ¢ on €2 is absolutely continuous with respect to =, we denote

N, =T, ((jjr)Q) _ /GQ j—i(x)q(dx). (3.4)

If we ¢ is not absolutely continuous with respect to 7, then we define N, := co. If ¢ is
localized on z, that is, ¢(z) = 1, then N, = 1/n(z).

The relations between the mixing and spectral properties for reversible, and non-
reversible chains are given by the following two propositions (the proofs are included in
Section 5.2).

Proposition 3.3 (Relation between mixing time and spectral gap). Suppose that our
chain is reversible. For uniformly ergodic chains, for 0 < e < 1,

1 1

*

> , in particular, v* > ———————. 3.5
T =T 70/ log(1e) P 7= T e/ 10g(2) (55
For arbitrary initial distribution q, we have
1
dry (gP™,m) < 5(1 — )"/ Ng— 1, (3.6)
EJP 20 (2015), paper 79. ejp.ejpecp.org
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implying that for reversible chains on finite state spaces, for() <e <1,

21og(1/(2¢€)) + log(1/mmin)

tmix(€) < e , in particular, (3.7)
~
21 2 1 1/Tmin
b < og( )"’2 o*g( /7 )7 (3.8)
v

With Tyin = mingeq m(x).
Proposition 3.4 (Relation between mixing time and pseudo spectral gap). For uniformly
ergodic chains, for0 < e < 1,

1- 1
Vps > Te)ﬁ’ in particular, vps > TR (3.9)

tmix

For arbitrary initial distribution q, we have
1
dry (¢P",m) < 5 (1 - Fps) WY /2 /NS (3.10)

implying that for chains with finite state spaces, for0 <e <1,

1+ 2 10g(1/(2€)) + log(l/ﬂ'min)
Vps
1+ 2log(2) + log(1/mmin)

tmix < 5 . (3.12)
ps

tmix (6) S

, in particular;, (3.11)

3.2 Results

In this section, we are going to state variance bounds and Bernstein-type concen-
tration inequalities, for reversible and non-reversible chains (the proofs are included in
Section 5.2). We state these inequalities for stationary chains (that is, X; ~ =), and use
the notation P, and I, to emphasise this fact. In Proposition 3.10 of the next section,
we will generalise these bounds to the non-stationary case.

Theorem 3.1 (Variance bound for reversible chains). Let Xi,...,X,, be a stationary,
reversible Markov chain with spectral gap v, and absolute spectral gap v*. Let f be a
measurable function in L?(r). Define V; := Var.(f), and define the asymptotic variance

2
oZs as

o Jim N~War, (f(X1) + ...+ f(XnN)). (3.13)

Then
Varg [f(X1) + ...+ f(X,)] < 2"7Vf, (3.14)
[Var, [f(X1) + ...+ f(Xn)] — no?| < 4Vy /42 (3.15)

More generally, let fi, ..., f, be functions in L?(r), then

Vary [f1(X1) + ...+ fn(X,)] < ~ > Varg [£i(X;)] . (3.16)

2 n

i=1
Remark 3.5. For empirical sums, the bound depends on the spectral gap, while for
more general sums, on the absolute spectral gap. This difference is not just an artifact
of the proof. If we consider a two state (2 = {0,1}) periodical Markov chain with
0 1

transition matrix P = ( 10

), then m = (1/2,1/2) is the stationary distribution, the
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chain is reversible, and —1,1 are the eigenvalues of P. Now v = 2, and v* = 0. When
considering a function f defined as f(0) = 1, f(1) = —1, then }_." , f(X;) is indeed highly
concentrated, as predicted by (3.14). However, if we define functions f;(z) := (—1)? f(z),
then for stationary chains, ), fi(X;) will take values n and —n with probability 1/2,
thus the variance is n2. So indeed, we cannot replace v* by + in (3.16).

Theorem 3.2 (Variance bound for non-reversible chains). Let X, ..., X,, be a stationary

Markov chain with pseudo spectral gap 7ps. Let f be a measurable function in L*(r). Let

V¢ and o2, be as in Theorem 3.1. Then

Vary [f(X1) + ...+ f(X0)] < 4:Vf, and (3.17)
ps
[Var, [f(X1) + ...+ f(Xn)] — nol| <16V /3. (3.18)

More generally, let fi, ..., f, be functions in L?(r), then

4 n
Varg [f1(X1) + ...+ fu(X0)] < S > Var [£i(Xi)] . (3.19)
PS =1
Theorem 3.3 (Bernstein inequality for reversible chains). Let X1,..., X,, be a stationary

reversible Markov chain with spectral gap v, and absolute spectral gap ~v*. Let f € L?(r),
with |f(z) — E.(f)| < C for every z € Q. Let V; and o2, be as in Theorem 3.1. Let
S:=3>", f(X;), then

t2
P, (IS — E(S)] > 1) <2 - ’ 520
(1S (S)=1) eXP( gn(ggs+o.svf)+10t0/7> o2
and we also have
P (]S —E(S)| >t) < 2e S g 620
™ W= = 2P Ty 10t ) '

More generally, let fi,..., f, be L?(r) functions satisfying that |f;(z) — E.(f;)] < C for
everyx € Q. Let 8" := 3" | fi(X;), and Vs, := > | Var(f;), then

2 (29" - (v*)z’)) ,

.22
8Vs +20tC (3.22)

P(|S —E (S| >t) <2exp (—

Remark 3.6. The inequality (3.20) is an improvement over the earlier result of [28],
because it uses the asymptotic variance 2. In fact, typically 0% > V}, so the bound
—%) for small values of ¢, which is the best possible given the

asymptotic normality of the sum. Note that a result very similar to (3.20) has been
obtained for continuous time Markov processes by [29].

roughly equals 2 exp (

Theorem 3.4 (Bernstein inequality for non-reversible chains).

Let X1,..., X, be a stationary Markov chain with pseudo spectral gap yps. Let f € L?(m),
with | f(x)—E(f)| < C foreveryx € Q. Let V; be as in Theorem 3.1. Let S := "' | f(X;),
then

t2 * Yps
P,(S — Ex(S)| > 1) < 2exp (—8(n T e 20t0) . (3.23)
ps

More generally, let f1,. .., f, be L?(r) functions satisfying that |f;(z) — E.(f;)| < C for
everyz € Q. Let S" := """ | fi(X;), and Vg := "' | Var,(f;). Suppose that ks is a the
smallest positive integer such that

Yps = ’7((P*)kpspkps)/kp5'
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For1<i < ks, let Vi == Y000 Var (£, 54, ), and let

M = V-1/2 min V-l/z.
1<iz<:l€l)s Z ISiSkPS l
Then
P.(|S' —E.(S")| > t) < 2e £ s (3.24)
T — L, = S X — . .
P\ 78V +206C - Mk

Remark 3.7. The bound (3.24) is of similar form as (3.23) (nV} is replaced by Vs'), the
main difference is that instead of 20¢tC, now we have 20tC - M/ kps in the denominator.
We are not sure whether the M /k,s term is necessary, or it can be replaced by 1. Note
that the bound (3.24) also applies if we replace V; by V/ > V; for each 1 < i < n. In such
a way, M /kys can be decreased, at the cost of increasing V.

Remark 3.8. Theorems 3.3 and 3.4 can be applied to bound the error of MCMC simula-
tions, see [17] for more details and examples. The generalisation to sums of the form
f1(X1) + ... fn(X,) can be used for “time discounted” sums, see Example 3.17.

Remark 3.9. The results of this paper generalise to continuous time Markov processes
in a very straightforward way. To save space, we have not included such results in this
paper, the interested reader can consult [40].

3.3 Extension to non-stationary chains, and unbounded functions

In the previous section, we have stated variance bounds and Bernstein-type inequali-
ties for sums of the form f;(Xy) + ... + f,(X,), with X3, ..., X,, being a stationary time
homogeneous Markov chain. Our first two propositions in this section generalise these
bounds to the non-stationary case, when X; ~ ¢ for some distribution ¢ (in this case,
we will use the notations IP,, and IE,). Our third proposition extends the Bernstein-type
inequalities to unbounded functions by a truncation argument. The proofs are included
in Section 5.2.

Proposition 3.10 (Bounds for non-stationary chains). Let X, ..., X,, be a time homoge-
nous Markov chain with state space (2, and stationary distribution m. Suppose that
9(X1,...,X,) is real valued measurable function. Then
Py(9(X1,..., Xn) > 1) S N2 [Po(g(Xa,..., X)) > 8)]'/7, (3.25)
for any distribution ¢ on 2 (N, was defined in (3.4)). Now suppose that we “burn” the
first ty observations, and we are interested in bounds on a function h of X, 1,...,X,.
Firstly,
P, (h(Xtys1,. .-, Xn) > 1) < N;ﬁﬂ PR (R(Xy, ..., Xn) > )], (3.26)
moreover,
Py(h(Xigt1s---, Xn) 2 1) < Pr(h(Xg41, ..., Xp) > t) +dry (¢P™, 7). (3.27)

Proposition 3.11 (Further bounds for non-stationary chains). In Proposition 3.10, N,pt,
can be further bounded. For reversible chains, we have

N,

pro <1+ (Ng—1) - (1—7")", (3.28)
while for non-reversible chains,

Nypto <14 (Ny—1) - (1 — ypg)2to=1/70e), (3.29)
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Similarly, dry (¢P"™, ) can be further bounded too. For reversible chains, we have, by
(3.6),

dry (gP",m) <

1 *\ 7
_5(1_7) "V Ng = 1.

For non-reversible chains, by (3.10),
1 _
dpy (P, 7) < 5(1 _ ,Yps)(n 1/vps)/2 N, — 1.
Finally, for uniformly ergodic Markov chains,

doy (qP", ) < inf el™/7(O) < g=ln/tm (3.30)
0<e<1

The Bernstein-type inequalities assume boundedness of the summands. In order to
generalise such bounds to unbounded summands, we can use truncation. For a,b € R,
a < b, define

Tiap)(x) =2 L[z € [a,b]] +a- Lz <a] +b- L[z > b],
then we have the following proposition.

Proposition 3.12 (Truncation for unbounded summands).
Let X1,Xs,...,X, be a stationary Markov chain. Let f : {0 — R be a measurable
function. Then for any a < b,

P, (Z fx) 2 t)

<P, (il Tia) (f(X3)) > t) + P, (lgignf(Xi) < a) + P, (max f(X5) > b)

1<i<n

<P, (Z T (f(Xi)) > t) + Z P,(f(X;) <a)+ Z P (f(X;) >b).

1<i<n 1<i<n

Remark 3.13. A similar bound can be given for sums of the form " , f;(X;). One
might think that such truncation arguments are rather crude, but in the Appendix of
[40], we include a counterexample showing that it is not possible to obtain concentration
inequalities for sums of unbounded functions of Markov chains that are of the same form
as inequalities for sums of unbounded functions of independent random variables.

Remark 3.14. Note that there are similar truncation arguments in the literature for
ergodic averages of unbounded functions of Markov chains, see [1], [2], and [38]. These
rely on regeneration-type arguments, and thus apply to a larger class of Markov chains.
However, our bounds are simpler, and the constants depend explicitly on the spectral
properties of the Markov chain, whereas the constants in the previous bounds are less
explicit.

3.4 Applications

In this section, we state four applications of our results, to the convergence of the
empirical distribution in total variational distance, “time discounted” sums, bounding
the Type-I and Type-II errors in hypothesis testing, and finally to coin tossing.

Example 3.15 (Convergence of empirical distribution in total variational distance re-

visited). Let X;,...,X,, be a uniformly ergodic Markov chain with countable state
space A, unique stationary distribution 7. We denote its empirical distribution by
Tem(2) == 2 31 | 1[X; = 2. In Example 2.17, we have shown that the total variational

distance of the empirical distribution and the stationery distribution, drv (7em, ), is
highly concentrated around its expected value. The following proposition bounds the
expected value of this quantity.
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Proposition 3.16. For stationary, reversible chains,

B (drv (em, T me< ) (m)) . (3.31)

ny

For stationary, non-reversible chains, (3.31) holds with v replaced by ~ps/2.

Proof. It is well known that the total variational distance equals
dTV(ﬂ-emvﬂ-) = Z(W(.’L‘) - ﬂ-em(x))Jr'
zEA
Using (3.14), we have
2 1-—
By (7(2) = Tom(@))2) < Vary(1(z) — Tom(2)) < W

By Jensen’s inequality, we obtain that

2
B [(7(2) — Tem(2))4] < min ( me), w(sc)) 7
ny
and the statement follows by summing up. The proof of the non-reversible case is similar,
using (3.17) to bound the variance. O

It is easy to see that for any stationary distribution 7, our bound (3.31) tends to 0
as the sample size n tends to infinity. In the particular case of when 7 is an uniform
distribution on a state space consisting of N elements, we obtain that

2N

Eﬂ' (dTV (776771; 77)) S ny 5

thus n > N/v samples are necessary.

Example 3.17 (A vineyard model). Suppose that we have a vineyard, which in each year,
depending on the weather, produces some wine. We are going to model the weather
with a two state Markov chain, where 0 corresponds to bad weather (freeze destroys
the grapes), and 1 corresponds to good weather (during the whole year). For simplicity,
assume that in bad weather, we produce no wine, while in good weather, we produce
1$ worth of wine. Let X, X5, ... be a Markov chain of the weather, with state space
Q = {0, 1}, stationary distribution 7, and absolute spectral gap v* (it is easy to prove that
any irreducible two state Markov chain is reversible). We suppose that it is stationary,
that is, X1 ~ .

Assuming that the rate of interest is r, the present discounted value of the wine
produced is

W= Xi(1+r)" (3.32)
i=1
It is easy to see that E(W) = E,(X;)/r. We can apply Bernstein’s inequality for reversible
Markov chains (Theorem 3.3) with f;(X;) = X;(1+r)~% and C = 1, and use a limiting
argument, to obtain that

IP(|W—]Ew(X1)/T|Zt)S2€Xp( 4Varﬂ(;(1)(z; f?/f)mm)

_ (= (
= Zexp <_ 4Varw(X1)(1 +7)2/

7)?) )
(r2+2r)+10t /)"
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If the price of the vineyard on the market is p, satisfying p < E,(X;)/r, then we can
use the above formula with ¢ = E,(X;)/r — p to upper bound the probability that the
vineyard is not going to earn back its price.

If we would model the weather with a less trivial Markov chain that has more than
two states, then it could be non-reversible. In that case, we could get a similar result
using Bernstein’s inequality for non-reversible Markov chains (Theorem 3.4).

Example 3.18 (Hypothesis testing). The following example was inspired by [18]. Sup-
pose that we have a sample X = (X3, Xs,...,X,,) from a stationary, finite state Markov
chain, with state space 2. Our two hypotheses are the following.

Hj := {transition matrix is Py, with stationary dist. mp, and X; ~ m},

H, := {transition matrix is P;, with stationary dist. =1, and X; ~ m }.

Then the log-likelihood function of X given the two hypotheses are

n—1
lo(X) :=logmo(X1) + Z log Po(Xi, Xit1),
i=1
n—1
ll(X) = 10g7T1(X1) + ZlogPI(Xi7Xi+1)-
i=1
Let
n—1
PO XzyXH—l))
TX) =1lp(X)—-1;(X)=1o + log | —————=
() 1= o) =) = 1o ( 20ty ) + 3o B

The most powerful test between these two hypotheses is the Neyman-Pearson likelihood
ratio test, described as follows. For some ¢ € R,

T(X)/(n—1)>¢= Stand by Hy, T(X)/(n—1) <& = Reject Hy.

Now we are going to bound the Type-I and Type-II errors of this test using our Bernstein-
type inequality for non-reversible Markov chains.

LetY; := (X;, X;+1) for i > 1. Then (Y;);>1 is a Markov chain. Denote its transition
matrix by Qg, and @1, respectively, under hypotheses H, and H; (these can be easily
computed from P, and P;). Denote

- S () - S (BRe8).

i=1
then R
T(X) _ log(mo(X1)/m1(X1)) + () (3.34)
n—1 n—1 n—1 '
Let

8o = log P — min log P,
0 = max log Py(z,y) — min log o(z: ),

and similarly,
01 := log P; — min log P ,
1 := max log 1(2,Y) min log 1(z,9y)

and let § := 0y + 01. Suppose that § < co. Then |2emX/m X)) | < —2_, implying that

|T(X)/(n—1)=T(Y)/(n—1)| < §/(n—1). Moreover, we alZo have |log Py(Y;)—log P (Y;)] <
J.
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It is easy to verify that the matrices Qo and @, except in some trivial cases, always
correspond to non-reversible chains (even when Py and P, are reversible). Let

PO(X1,X2)>
Py (X1,X2))

Py(X1, Xz)

Jo =g | log ———M—=~
0 O(ngl(xl,xz)

) ,and J; =1, <log

Note that Jy can be written as the relative entropy of two distributions, and thus it is

positive, and J; is negative. By the stationary assumption, E¢(7(Y)) = (n — 1)Jy and
E(T(Y)) = (n—1)J;. )
By applying Theorem 3.4 on 7(Y'), we have the following bounds on the Type-I and

Type-II errors. Assuming that Jo —§/(n—1) > &> J1 +6/(n—1),

T(X) (Jo—6/(n—1) = §)*(n — 1)7s(Qo)
Po (n—l = 5) = o <_ Vo200 (o= d/n—1)=8) ) o B9

T(X) (€= 1= 6/(n—1)*(n— 1)7%:(Q1)
7 <n —1° 5) = o <_ SVA 1206 (€~ J1—6/(n - 1)) > - 6599

Here Vy = Vary (1og (%)) Vi = Var; (log (%)) and 7,5(Qo) and v,5(Q1)
are the pseudo spectral gaps of Qg and Q.

Example 3.19 (Coin tossing). Let X;,...,X,, be the realisation of n coin tosses (1
corresponds to heads, and 0 corresponding to tails). It is natural to model them as i.i.d.
Bernoulli random variables, with mean 1/2. However, since the well-known paper of
[7]1, we know that in practice, the coin is more likely to land on the same side again
than on the opposite side. This opens up the possibility that coin tossing can be better
modelled by a two state Markov chain with a non-uniform transition matrix. To verify
this phenomenon, we have performed coin tosses with a Singapore 50 cent coin (made
in 2011). We have placed the coin in the middle of our palm, and thrown it up about
40-50cm high repeatedly. We have included our data of 10000 coin tosses in the Appendix
of [40]. Using Example 3.18, we can make a test between the following hypotheses.

Hy -i.i.d. Bernoulli trials, i.e. transition matrix P, := < 1;3 i?; > and

H, - stationary Markov chain with transition matrix P; = < 0.6 0.4 >

0.4 0.6

For these transition matrices, we have stationary distributions 7 (0) = 7y(1) = 1/2 and
7m1(0) = 1—m(1) = 1/2. A simple computation gives that for these transition probabilities,
using the notation of Example 3.18, we have §; = 0, §; = log(0.6) — log(0.4) = 0.4055,
Jo =2.0411-1072, J; = —2.0136- 1072, and § = &y + 61 = 0.4055. The matrices Qo and Q1
are

05 05 0 0 06 04 0 0

0 0 05 05 0 0 04 06

Q=105 05 0 o |"™@=| 0604 0 o0

0 0 05 05 0 0 04 06

We can compute @ and Q7 using (3.2),

05 0 05 0 06 0 04 0

. o5 0o o5 0 . 06 0 04 o

QD=1 0 05 0 o5 |"™I=| o 04 0 06

0 05 0 05 0 04 0 06

As we can see, )y and (); are non-reversible. The spectral gap of their multiplica-
tive reversiblization is v(Q;Qo) = 7(QiQ1) = 0. However, 7((Q})?Q3) = 1 and
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Figure 1: Hypothesis testing for different values of the parameter p
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v(Q3)?Q%) = 0.96, thus v,5(Qo) = 0.5, 7ps(Q1) = 0.48. The stationary distributions for
Qo is [0.25,0.25,0.25,0.25], and for @, is [0.3,0.2,0.2,0.3] (these probabilities correspond
to the states 00,01, 10, and 11, respectively). A simple calculation gives V = 4.110 - 1072,
Vi = 3.946 - 10~2. By substituting these to (3.35) and (3.36), and choosing £ =0, we
obtain the following error bounds.

Type-I error. Po(T(X)/(n—1) < &) < exp(—4.120) = 0.0150, (3.37)
Type-II error. P(T(X)/(n —1) > &) < exp(—4.133) = 0.0160. (3.38)
The actual value of T(X)/(n — 1) on our data is T)/(n — 1) = —7.080 - 10-3. Since

T/(n—1) < €, we reject HO (Bernoulli i.i.d. trials).

The choice of the transition matrix P; was somewhat arbitrary in the above argu-
ment. Indeed, we can consider a more general transition matrix of the form P, =
( 1 f » 1 ;p ) . We have repeated the above computations with this transition matrix,
and found that for the interval p € (0.5,0.635), HO is rejected, while outside of this
interval, we stand by HO. Three plots in Figure 1 show the log-likelihood differences,
and the absolute value of the logarithm of the Bernstein bound on the Type-I and Type-II
errors, respectively, for different values of p (in the first plot, we have restricted the
range of p to [0.4,0.7] for better visibility). As we can see, the further away p is from 0.5,
the smaller our error bounds become, which is reasonable since it becomes easier to
distinguish between HO and H1. Finally, from the first plot we can see that maximal
likelihood estimate of p is p = 0.57.

4 Comparison with the previous results in the literature

The literature of concentration inequalities for Markov chains is quite large, with
many different approaches for both sums, and more general functions.

The first result in the case of general functions satisfying a form of the bounded
differences condition (2.4) is Proposition 1 of [32], a McDiarmid-type inequality with
constants proportional on 1/(1 — a)? (with a being the total variational distance con-
traction coefficient of the Markov chain in on steps, see (2.2)). The proof is based on
the transportation cost inequality method. [33, 34, 36] extends this result, and proves
Talagrand’s convex distance inequality for Markov chains, with constants 1/(1 — a)?
times worse than in the independent case. [45] extends Talagrand’s convex distance
inequality to more general dependency structures, and introduces the coupling matrix
to quantify the strength of dependence between random variables. Finally, [35] further
develops the results of [45], and introduces the coupling structure that we call Marton
coupling in this paper. There are further extensions of this method to more general
distances, and mixing conditions, see [42], [8], and [46]. Alternative, simpler approaches
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to show McDiarmid-type inequalities for dependent random variables were developed
in [4] (using an elementary martingale-type argument) and [23] (using martingales and
linear algebraic inequalities). For time homogeneous Markov chains, their results are
similar to Proposition 1 of [32].

In this paper, we have improved upon the previous results by showing a McDiarmid-
type bounded differences inequality for Markov chains, with constants proportional to
the mixing time of the chain, which can be much sharper than the previous bounds.

In the case of sums of functions of elements of Markov chains, there are two dominant
approaches in the literature.

The first one is spectral methods, which use the spectral properties of the chain. The
first concentration result of this type is [14], which shows a Hoeffding-type inequality
for reversible chains. The method was further developed in [28], where Bernstein-type
inequalities are obtained. A sharp version of Hoeffding’s inequality for reversible chains
was proven in [25].

The second popular approach in the literature is by regeneration-type minorisation
conditions, see [15] and [10] for Hoeffding-type inequalities, and [2] for Bernstein-type
inequalities. Such regeneration-type assumptions can be used to obtain bounds for a
larger class of Markov chains than spectral methods would allow, including chains that
are not geometrically ergodic. However, the bounds are more complicated, and the
constants are less explicit.

In this paper, we have sharpened the bounds of [28]. In the case of reversible chains,
we have proven a Bernstein-type inequality that involves the asymptotic variance, making
our result essentially sharp. For non-reversible chains, we have proven Bernstein-type
inequalities using the pseudo spectral gap, improving upon the earlier bounds of [28].

5 Proofs

5.1 Proofs by Marton couplings
Proof of Proposition 2.4. The main idea is that we divide the index set into mixing time
sized parts. We define the following partition of X. Let n = [%—‘ and

X = (Xy,...,X)
(X1, X @) s (Xro415 -5 X (@) 5o (Xne1yr(e)r - - XN)) -

Such a construction has the important property that X 1. ,Xn is now a Markov chain,
with e-mixing time 7(e) = 2 (the proof of this is left to the reader as an exercise). Now
we are going to define a Marton coupling for X, that is, for 1 < ¢ < n, we need to

(Z1,..-, &4,2%)

define the couplings ( X @1-&.80) X7 . These couplings are simply defined

according to Proposition 2.6. Now using the Markov property, it is easy to show that for

any 1 < < j < n, the total variational distance of E(Xj, e XH|X1 =T1,... ,Xi = &;) and
C(Xj, .. Xn\Xl =31, Xjo1 =R, X = #}) equals to the total variational distance
of L(X;| |X1 = &1,...,Xi = &) and L(X;|X1 = &1,...,Xi1 = #_1, X; = &}), and this
can be bounded by ¢/ 7“7, so the statement of the proposition follows. O

We will use the following Lemma in the proof of Theorem 2.1 (due to [6]).
Lemma 5.1. Suppose F is a sigma-field and Z,, Z,,V are random variables such that

1. 2, <V < Z
2. BE(V|F)=0

3. Z, and Z, are F-measurable.
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Then for all A € R, we have
E(e’\v|}') < exz(zz—zlﬁ/s.

Proof of Theorem 2.1. We prove this result based on the martingale approach of [4] (a
similar proof is possible using the method of [22]). Let f(X) := f(X), then it satisfies
that for every z,9 € A,

F@) = F@) <D 1[&i # 9] - Cio).
i=1
Because of this property, we are going to first show that
2 2
log I (er(X)—Ef(X))) AT f® 5.1)
- 8
under the assumption that there is a Marton coupling for X with mixing matrix I'. By
applying this inequality to X, (2.5) follows.
Now we will show (5.1). Let us define 7; = o(Xy,...,X;) for i < N, and write
N .
F(X) = Ef(X) = 3,2, Vi(X), with

Vi(X) == E(f(X)[F) — E(f(X)|Fi-1)
:/ ]P(Xi+1Edzi+1,...,XNGdzn‘Xl,...,Xi)

'f(Xla"'7Xi7zi+1a"'7ZN)
7/ P(XiGdzi,...,XN6d2n|X1,...,Xi_1)
ZiyeesEN
(X, Xion Zi o, 2N)
:/ P(Xiy1 € dzigr,..., Xy €dzn|Xy,..., Xy)
Zi41y--32N

. f(Xl,.. -7Xi7zi+1a-~-7ZN)

*/ P(X; € dz| Xy, .., Xio1)-

23

/ P(X;11 €dz, ..., Xy €dz,| X1, .., X1, X = 2)-
Zig1senZN

f(Xa, o Xio1, 24,0, 2N)

< sup / IP(XiJrl €dzi41,...,XN € dzn|X1, X, X = a)-
A€A; Jzip1,...,2N

-f(Xl,...,Xi_l,a,z,-_i_l,... ,ZN)

— bin{f / ]P(Xi+1 S dZi+1, . ,XN € dZn|X1, [N 7Xi—1>Xi = b)
€AiJzit1,zN

: f(X1>"‘7X7§717b72i+17' "aZN)

=: Ml(X) - ml(X),
here M;(X) is the supremum, and m;(X) is the infimum, and we assume that these values
are taken at a and b, respectively (one can take the limit in the following arguments if

they do not exist).
After this point, [4] defines a coupling between the distributions

‘C(Xi-‘rla' "7XN|X1a"'7Xi—1aXi = a)a
L:(XH-M'"aXN|X17"'7Xi—17Xi = b)
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as a maximal coupling of the two distributions. Although this minimises the probability
that the two sequences differ in at least one coordinate, it is not always the best choice.
We use a coupling between these two distributions that is induced by the Marton coupling

for X, that is
(X(Xl,...,X,-,l,a,b) X/(Xl ,-<~7X¢71,a=b))_

From the definition of the Marton coupling, we can see that

M;(Y)=m;(Y) = (f(X(Xl,...,X,:_l,a,b)) _ f(X/(Xlw--,XiflyC%b)) Xi,... 7Xi—1>

Now using Lemma 5.1 with V = V;, Z; = m(X) — E(f(X)|Fic1), Z2 = M;(X) —
E(f(X)|Fi-1), and F = F;_1, we obtain that

2
. A2 n
E (exw(X)‘ fi_1> Sexp | = ;Fi,jcj

By taking the product of these, we obtain (5.1), and as a consequence, (2.5). The tail
bounds follow by Markov’s inequality. O

Proof of Corollary 2.10. We use the Marton coupling of Proposition 2.4. By the simple
fact that |T']] < /|IT11IT]|co, We have ||| < 2/(1 — ¢€), so applying Theorem 2.1 and
taking infimum in € proves the result. O

5.2 Proofs by spectral methods

Proof of Proposition 3.3. The proof of the first part is similar to the proof of Proposition
30 of [39]. Let L°°(7) be the set of m-almost surely bounded functions, equipped with the
| - [loo norm (|| f|| oo := esssup,cq |f(2)]). Then L>°(7) is a Banach space. Since our chain
is reversible, P is a self-adjoint, bounded linear operator on L?(7). Define the operator 7
on L%(r) as w(f)(z) := E,(f). This is a self-adjoint, bounded operator. Let M := P — m,
then we can express the absolute spectral gap v* of P as

v =1—sup{|A : A € So(M)}, with So(M) :=
{AeC\0: (M- M) does not exists as a bounded lin. op. on L?(7)}.

Thus 1 —~* equals to the spectral radius of M on L?(r). It is well-known that the Banach
space L>=(r) is a dense subspace of the Hilbert space L?(r). Denote the restriction of
M to L*°(w) by M. Then this is a bounded linear operator on a Banach space, so
by Gelfand’s formula, its spectral radius (with respect to the ||| norm) is given by
limy_y o0 ||M§o||<1,ék For some 0 < € < 1, it is easy to see that ||M§<>(€)HOO < 2¢ and for! > 1,
7(é)) < Ir(e), thus | MZ9| o < 2¢!. Therefore, we can show that

Jim | ME |2k < et/Tle), (5.2)
—00

For self-adjoint, bounded linear operators on Hilbert spaces, it is sufficient to control
their spectral radius on a dense subspace, and therefore M has the same spectral radius
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as M. This implies that

* 1/7(e) __ 1
7> 11—/ =1 — exp(—log(1/e)/7(€)) > 1570 Tog(1/)"

Now we turn to the proof of (3.6). For Markov chains on finite state spaces, (3.6) is
a reformulation of Theorem 2.7 of [13] (using the fact that for reversible chains, the
multiplicative reversiblization can be written as P?). The same proof works for general
state spaces as well. O

Proof of Proposition 3.4. In the non-reversible case, it is sufficient to bound
(PO PTO) = (PP,

for some 0 < ¢ < 1. This is done similarly as in the reversible case. Firstly, note
that 7*((P*)"(9P7(9)) can be expressed as the spectral radius of the matrix Q, :=
(P*)"©P7(9) — 7. Denote the restriction of Q, to L>(7) by Q.. Then by Gelfand’s

formula, Q.. has spectral radius limy_,., | Q% || /k which can be upper bounded by e.
Again, it is sufficient to control the spectral radlus on a dense subspace, thus Q- has
the same spectral radius as Q.., and therefore ~((P*)"(9 P7()) > 1 — ¢. The result now
follows from the definition of .

Finally, we turn to the proof of (3.10). Note that for any £ > 1,

drv (¢P"(),m) < dav (a(PH)H ().
Now using Theorem 2.7 of [13] with M = (P*)* P*, we obtain

(1 =y (P PR )2 /N, 1.

dry (@P"(),m) < 3

Finally, we choose the k such that y((P*)* P*) = k~,, then
1
drv (@P"(),7) < S(1— k) /42 /N, =T
_ 1 ne
(1 - SR/ /N, —1< (1 — ’Yps)( 1/7s)/2 N, — 1. 0

Proof of Theorem 3.1. Without loss of generality, we assume that E.(f) =0, and E.(f;) =
0, for 1 <+ < n. For stationary chains,

Ex(f(X:)f(X;)) = Ex(fP'(f)) = Ex(f(P — 7} 7' (f)),

for 1 <i¢ < j <n. By summing up in j from 1 to n, we obtain

X»anf(Xj) < Xn:P )~ f>, (5.3)

l\D\H

where

Since P is reversible, the eigenvalues of P —  lie in the interval [—-1,1 — ~]. It is easy to
show that for any k > 1 integer, the function z — (1 — 2*)/(1 — z) is non-negative on the
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interval [-1,1 — 4], and its maximum is less than or equal to max(1/~,1). This implies
that forx € [-1,1 — ], for 1 <i < mn,

—1<(1—-2)/1—2)+ 1 —2""/(1—-2)—1<2max(1/y,1) — 1.
Now using the fact that 0 < v < 2, we have |(1—2%)/(1—2)+(1—2" ") /(1—2)—-1] < 2/7,

and thus

Ex (f?).

zn:P )il gthusIE Zf

2,7

2
’Y

Summing up in ¢ leads to (3.14).
Now we turn to the proof of (3.15). Summing up (5.3) in 7 leads to

n 2

I <(Zf<Xi>> ) = <fv [(@nd —2(I = (P —m)"")(I - (P—m)~") (5.4)
=1

I (P ) —nI]f> ,

s

so by the definition of o2, we can see that

as’

= (f,2 - (P—m))"" =1 f),, and

Var (Zf ) —no’,
=[(f, 2 = (P—m)"" ") - (I = (P—m))"?] [), | <4Vy/+%
Now we turn to the proof of (3.16). For stationary chains, for 1 <,5 < n,
B (fi(Xi) f;(X;)) = Ex(fiP?7'(f;)) = Ew(fi(P - 7T)j_"(fj))
<IIf 1< SER(fE A=),

and thus for any 1 < 4,5 < n, E(fi(X;)f;(X;)) < 3E-(f? + f2)(1 — y*)l"=7!. Summing up
in ¢ and j proves (3.16). O

Proof of Theorem 3.2. Without loss of generality, we assume that E,.(f) =0, and E,(f;) =
Ofor1 <i:<n.Nowforl<ij<n,

Ex(f(X:)f(X;)) = Ex(fP7(f)) = Ex(f(P = m) () <V (P = m)" 7],

and for any integer k£ > 1, we have

H[“ :H(P*_ﬂ_)k(P [‘J 1‘]

H(p )l =il H2

<HP )

Let kps be the smallest positive integer such that kysyps = 7 ((P*)Fe=Phes) = 1 —

P — )P —m)"| , then E(f(X;)f(X;)) <V l—kfyséri;si]. By summing up
2, J f p
in ¢ and 7, and noticing that

S 3 el _ 2k 2
S0 k)] <23 (1 k) 7 = e 2
1=0 P ps 1=0 b /ps kpstS P)/ps

we can deduce (3.17). By the definition of o2, it follows that

as’

or={(f,[2—(P—m)""' 1] f)_,
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and by comparing this with (5.4), we have

Var, (Zf )—na
=, 2d-(P-m)" ) -I-(P-m)"?]f).|

(I —(P—m)""1)|2.. <2 and forany k > 1,

I = (P =) low Y NP = 7)lam <k NP —m)F|f5,
i=0 i=0
k - 2%
1—/1—~((P)FP*) ~ y((P*)kPF)’

Optimizing in & gives ||(I — (P — m))"!||2,x < 2/7ps, and (3.18) follows. Finally, the proof
of (3.19) is similar, and is left to the reader as exercise. O

Before starting the proof of the concentration bounds, we state a few lemmas that
will be useful for the proofs.

Lemma 5.2. Let X;,..., X, be a time homogeneous, stationary Markov chain, with state
space (), and stationary distribution . Suppose that f : Q2 — R is a bounded function in
L?(r), and let S := f(X1) + ...+ f(X,). Then for any 0,

Ex(exp(65)) = (1, (e"P/ P)"1) < ||"P1/2Pe"Pr/2|3 4|23 (5.5)

here 1 is the constant 1 function on (2, and Dy is the bounded linear operator on L*(r)
corresponding to D (g)(x) = f(z)g(z) for every z € Q, g € L*(r).

More generally, if f1,. .., f, are bounded functions in L?(w), and S’ := f1(X1) + ...+
fn(Xy), then for any 6,

E.(exp(05) = (1, (e"PhP) ... (e"PmP)1) (5.6)
:< (PeeDfl)~...-(P69Df")1>7r
< PP g - [P PIn |

Proof. This result is well known, it follows by a straightforward application of the Markov
property. O

Lemma 5.3. Suppose that f € L?(7), -1 < f <1, E.(f) = 0, then for reversible P, for
0 < 8 < /10, we have

AV, 100\ !
721 PP 5 < 14 —L .67 (1 - ) , and ©.7)
Y Y
100
||69DfP€9Df H277T S 1 + 2(U§S + 08Vf) 9 (1 — fy) 5 (58)

where Vy := E.(f?) and 02 := limn_,00 + Vary (f(X1) + ... + f(Xn)).

Proof. (5.7) is proven in [27] (pages 47 and 97), see also [28]. We prove (5.8) using
a refinement of the same argument. Let us assume, without loss of generality, that
our Markov chain has a finite state space (the general state space case can be proven
analogously, see page 97 of [27]). We start by noting that the positive definite matrix
e?Pi PefPs is similar to the matrix P(26) := Pe?’Ps. Using the Ferron-Probenius
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theorem, it follows that P(26) has real eigenvalues, and ||e?Ps PefPs ||y« = \pax (P(26))
(the maximal eigenvalue).
Define the operator w on L?(7) as w(f)(z) = E,(f) for any = € 2. Denote

Z = Z(P” —-7) = Z(P—ﬂ')” =[I-P+m) !
n=0 n=0

Z©) := -z, and Z® := Z* for k > 1. Then we have || Z||, = 1/v. By page 46 of [27],
using the theory of linear perturbations, for 0 < r < /3, we have

AIrla,x(P)(T)) =1+ Z ﬁ(")rn, with

-y -1 3 %tr [PD;IZ(M) . ..pD;prp)} ,
e e R CLLRRE (3
ki4...4+kp=p—1

v;>1,k; >0

Now for every integer valued vector (k1,...,k,) satisfying k1 + ...+ k, =p—1, k; > 0,
at least one of the indices must be 0. Suppose that the lowest such index is ¢, then we

define (ki,...,k,) := (kiy1,...,kp, k1,..., ki), (@ “rotation" of the original vector). We
define (v{,..., p) analogously Using the fact that such rotation of matrices does not
change the trace, and that Z® ) = Z() = _x, we can write
]_ ’ ’ ’ ’
n)_ v (k1) vy g(k,_q) Yp
S S mplriatenpztioer) oo

vit...+vp=n
ki+...+kp=p—1
’Uizl,k}j ZO

After a simple calculation, we obtain (V) = 0, and 8® = (f,Zf)_ — (1/2)(f,f),. By
page 48-49 of [27], (f, Zf), = o2 + (1/2) (f, f),., thus B?) = ¢%. For n = 3, after some
calculations, using the fact that Z and P commute, we have

49 = (1. ZPD,ZPY)_ + (1. ZP%), + SE-(f)

1
= <Zl/2f, Zl/ZPDszl/z(Zl/2f)> + <f, ZPf2>7r + G (f,Dyf),_,
and we have (f,ZPf?)_ < 7 s, Dsf), < V5,
(27,2 °PD;PZ'X(2'7f)) <223, 112"/ *PDPZ" |50
1 1
< - <f, Zf), = 5 (02 + V1 /2),

thus |,B(3)| <o /v+ (3/2)Vs/v+ (1/6)Vs. Suppose now that n > 4. First, if p = n, then
vy = ... =1, = 1, thus each such term in (5.9) looks like

<f, PDf Z(kizfl)ppfz(k'nfl)pf>

T

- <f’ Z*)PD; - - Z(kfn,—l)PDfPZ(k/n—l)f>

s

If k) or k/,_, are 0, then such terms equal zero (since 7 (f) = 0). If they are at least one,
then we can bound the absolute value of this by

‘<Zl/2f, Zk"l—l/2pr . Z(’filfl)prka’iLq—1/2(21/2f)>7r

2
<<f7Zf>7T<0-aS+Vf.
- Q,Yn—Q — 2'Yn_2
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It is easy to see that there are (2(7:’__11)) such terms. For 1 < p < n, we have
’ k/ k‘/ ’ Vf
H<f”1 zE)ppy ... 7( pfl)pfvp> <
9 f <l = ')/pil )

and there are (Z:i) (2(17”:11)) such terms. By summing up, and using the fact that

vil---vp! > 2777, and 2/ > 1, we obtain

n—1
|5<n>|<l 2(n —1) o—§s+vf+zl n—1\(2p-1)\ 1 V;
“n\ n—1 2yn—2 p\p—1 p—1 Jan—p ~p—l

p=1
1/2n—1)\ o2 +V; Vi s=1/n—1\/2p-1\ (2"
<= —as TS - = :
“n\ n-—-1 2yn—2 2”*1p:1p p—1 p—1 ~y
2(n—1) 41 —
Now by (1.11) on page 20 of [27], we have ("7 ") < Joor Define D(n) :=

22:1 %(;:i) (2(1;”__11)), then by page 47 of [27], for n > 3, D(n) < 5"~2. Thus for n > 4, we

have
|6(n)‘ < At Ugs + Vi + 5n3
~n (n — 1)7T' 27n72 27n72

- 572 (o2 +V; _1+ Vi < 5772 (o2 + 0.8V .
yn—2 2 4 10 yn—2 2

v (5.10)

By comparing this with our previous bounds on 5 and 3(®), we can see that (5.10)
holds for every n > 2. By summing up, we obtain

0§S+0.8Vf r?
2 1—5r/y’

Amax(P(r)) =14 0" <14

n=1
and substituting » = 20 gives (5.8). O

Proof of Theorem 3.3. We can assume, without loss of generality, that C' = 1. First, we
will prove the bounds for S, then for S".
By (5.5), we have

E,(exp(0S)) < ||?Pr/2pefPs/2||n=1 . 5, (7). (5.11)

By (5.7), and (5.8), we have that for 0 < 0 < /5,

-1
|?P1/2PefPir/2||, < exp (Vf 6. (1 - 50) ) , and (5.12)
' v v
2 o\ !
€727/ P12, . < exp (”*208‘/]‘ 02 (1 - 5) ) . (5.13)
R

Now using the fact that —1 < f(z) < 1, E.(f) = 0, it is easy to show that for any
0 >0,
E, (egf) < exp (Vf(eo -6-1)),
and it is also easy to show that this can be indeed further bounded by the right hand
sides of (5.12) and (5.13). Therefore, we obtain that for 0 < 6 < ~/5,

-1
E(exp(6S)) < exp <n7Vf 0% (1 - 53) ) , and
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2.+0. AN
E (exp(65)) < exp <W 6. (1 - ‘:) ) .

Now the bounds (3.21) and (3.20) follow by Markov’s inequality, for the optimal
choice

ty t
0 = , and 6 = )
V(1 +5t/Vy 4 /1 +5t/V5) 5t/y+ K(1+/1+5t/(vK))

with K = 0.502, + 0.4V;.
Now we are going to prove (3.22). Firstly, by (5.6), we have

E, (exp(0S") < |[Pe’Pri|jgp - ... - [|[PePin||y . (5.14)

Now for 0 < 6 < v(P?)/10, each of these terms can be further bounded by (5.7) as

eon(Be (o))

By taking the product for 1 < i < n, we obtain that for 0 < 6 < (P?)/10,

-1
E,(exp(0S”)) < exp <72(‘1/f;) 6% (1 - %) ) : (5.15)

GDfi P2 e@Dfi

| Pets:

2, — ||€

and (3.22) follows by Markov’s inequality. O

Proof of Theorem 3.4. We will treat the general case concerning S’ first. The proof is
based on a trick of [19]. First, we divide the sequence f1(X1), ..., fn(X,) into kps parts,

(fl(X1)7fkps+1(kas+1)7 i '7) PR ((fkps(kas)7f2kps(X2kps)7 .- 7)) .

Denote the sums of each part by 57,...,5; , then §' = fol S!. By Yensen's inequality,
for any weights 0 < py,...,pg,, < 1 with fol pi=1,
Kps
E,exp(09') < Zpi]E,r exp((8/p;) - S}). (5.16)

i=1

Now we proceed the estimate the terms I exp(6.S;).
Notice that X;, Xitk,., -+, Xitky.|(n—i)/ky. 1S @ Markov chain with transition kernel
P*v»_ Using (5.6) on this chain, we have

B (exp(05])) < | PP ePsi g r .o [[PRree" P ritinton i |

Now
1/2

— |
2,7

= H69ij (P*)kes phvs 9D

2,7

By (5.7), and using the assumption E.(f;) =0,

feree:

2,

2Var,(f;) 100 -1
< ||e?Pr PefPr||y » < exp | ———Ttde 2. (1 — ) :
| 2, Y ((P*)kes Phos) ~((P*)kvs Phos )
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By taking the product of these, we have
E(exp(05;))

n—1i)/kps -
. 22}(:0 )/ Fps] Varr(fivjk,.) 02 (11— e 1

These bounds hold for every 1 < i < kys. Setting p; in (5.16) as

k
o= (S 0).
i=1
and using the inequality (Zf:l Vil/ )2 < ke 321, Vi, we obtain

2kps 31 Varx(f;) 'y <1 100 M >1
(P P A((P=)fw Phor)

“ exp (22?_1 Vare(f;) o (1 106 M)1> |

Vps kps Vps

E. (exp(0S’)) < exp (

and (3.24) follows by Markov’s inequality. In the case of (3.23), we have
E, (exp(65;))

2[n/kps| 106 h

which implies that

E, (exp(6S)) < exp <2kps[n/k$s1\/ar7r(f) 02 <1 B }yo@)_ ) .

Now (3.23) follows by Markov’s inequality and kps[n/kps| < n+ 1/79ps. O

Proof of Proposition 3.10. Inequalities (3.25) and (3.26) follow by writing

T, (i‘i Ag(Xy,. .., X)) > t]) )

and then applying Cauchy-Schwartz inequality. Inequality (3.27) follows by noticing that
by the Markov property, the two distributions

c(Xt0+1, e ,Xn|X1 ~ q) and ,C(XtOJrl, N 7Xn‘X1 ~ ’/T)
have total variational distance equal to the total variational distance of
‘C(Xto—‘rl‘Xl ~ q) and AC(XtOJ,-l‘Xl ~ 71'). O

Proof of Proposition 3.11. Inequalities (3.28) and (3.29) follow from (2.11) on page 68
of [13], similarly to the proof of Proposition 3.4 (by noticing that the x? distance can be
written as N, — 1). Finally, (3.30) follows from the definition of 7(¢) and tumix. O

Proof of Proposition 3.12. This follows by a straightforward coupling argument. The
details are left to the reader. O
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