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Abstract

We study the limiting object of a sequence of Markov chains analogous to the limits
of graphs, hypergraphs, and other objects which have been studied. Following a
suggestion of Aldous, we assign to a convergent sequence of finite Markov chains
with bounded mixing times a unique limit object: an infinite Markov chain with a
measurable state space. The limits of the Markov chains we consider have discrete
spectra, which makes the limit theory simpler than the general graph case, and
illustrates how the discrete spectrum setting (sometimes called “random-free” or
“product measurable”) is simpler than the general case.
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1 Introduction

Suppose we have a continuous time Markov chain with a very large, but finite,
number of states. (We are interested in the case where the chain is reversible and
time-homogeneous.) We would expect that the chain resembles a chain with an infinite
measurable state space. In this paper, we make this precise. To any finite continuous
time Markov chain we can associate a partially exchangeable array of random variables
by randomly sampling a sequence of points from the space and taking the transition rates.
To a sequence of finite chains we associate an infinite Markov chain whose associated
partially exchangeable array is a limit (in distribution) of the arrays of the finite chains.
We further show that (after some refinement) these infinite chains are essentially unique.

In order to ask for a sequence of Markov chains to have a limit, we need the sequence
to be “bounded” in a some sense. Following a suggestion by Aldous [1], we assume the
mixing of the sequence is uniformly bounded (that is, for each time t there is a bound Bt
such that the mixing of each chain at time t is bounded by Bt). Given such a sequence,
we identify the sequence with an infinite Markov chain and show that the statistical
behavior of the finite chains converges to the statistical behavior of this infinite chain.
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Limits of sequences of Markov chains

This confirms a conjecture of Aldous on the existence of such a compactification. Under
suitable assumptions on the infinite chain, we identify it up to isomorphism.

After some preliminaries, Theorem 3.4 states the existence half of our main result.
We prove this in Section 5. In Section 6 we show the converse, that any infinite Markov
chain of the kind we consider is the limit of some finite sequence. In Section 7 we
give the corresponding uniqueness result: we show how to refine our infinite Markov
chains to a (potentially) infinite Markov chain with additionl properties which is uniquely
determined by the corresponding partially exchangeable array.

Similar results for graphs and hypergraphs have been known for several decades [3,
14] and have recently been extensively studied [6, 18, 17, 8, 3, 14, 16, 4, 15, 11, 10, 20]
under various names, especially as graph limits or, as here, ultraproducts. For example,
a similar analysis was recently given by Elek [9] in the setting of metric measure spaces.
Gromov [12] identified convergent sequences of metric measure spaces with certain
partially exchangeable arrays of random variables. Elek identifies each such array,
essentially uniquely, with an infinitary object (a “quantum metric measure space”).

Markov chains turn out to be simpler than these other cases in one important respect:
our boundedness assumption implies that the limit has a discrete spectrum. For graphs,
sequences with discrete spectra have been a particular topic of interest (these are
the “random-free” graph limits of [13, 19], and the objects the author has called “B2,1-
measurable” in [11, 21, 22]), especially because of their connection to the Szemerédi
regularity lemma. In our case it allows us to avoid certain complications compared to
the graph case.

2 Three Descriptions

2.1 Finite State Markov Chains

We first recall the basic definitions for the finite objects we will be considering.

Definition 2.1. A finite state continuous time homogeneous Markov chain consists of a
finite state space Ω, a family of Ω-valued random variables {X(t)}t≥0, and a transition
rate matrix Q such that:

• Each non-diagonal entry Q(ω, ω′) with ω 6= ω′ is non-negative,

• The rows of Q sum to 0,

• for any ω, ω′ ∈ Ω and any s, t > 0,

P(X(s+ t) = ω | X(s) = ω′) = etQ(ω, ω′).

Given the matrix Q, we associate the family of transition probability matrices Pt =

etQ.

For the remainder of this paper we will use “finite Markov chain” to mean a finite
state continuous time homogeneous Markov chain.

Definition 2.2. A probability distribution π on Ω is a stationary distribution if for every
ω′ ∈ Ω,

∑
ω π(ω)Q(ω, ω′) = π(ω′).

Definition 2.3. We say the Markov chain is reversible if there is a stationary distribution
π on Ω such that for every ω, ω′,

π(ω)Q(ω, ω′) = π(ω′)Q(ω′, ω).

We say a Markov chain is irreducible if every entry in Pt is strictly positive for some
(equivalently, for every) t > 0.
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It is standard that an irreducible Markov chain has at most one stationary distribution
π and π(ω) > 0 for all ω ∈ Ω.

In order to have well-behaved limits, we need some type of boundedness condition.
An easy example illustrates why this is necessary: consider a sequence of reversible
Markov chains consisting of two points ω0, ω1 (each with measure 1/2 in the stationary
distribution) where the transition rate in the n-th Markov chain, Q(n)(ω0, ω1) = 1/n. That
is, as we consider later chains in the sequence, the chain mixes more slowly. In the limit,
the mixing approaches 0, and indeed, in any limit object the two points would not mix at
all, causing the limit to be reducible.1

Aldous proposes [1] that this be addressed by normalizing the mixing time:

Definition 2.4. We define G(t), the mixing at time t (relative to π) to be∑
ω

Pt(ω, ω).

We say the chain is normalized if G(1) = 2.

Note that an irreducible Markov chain is fully mixed precisely when G(t) = 1. (Even
if this doesn’t happen in any finite time, it could happen in the limit.)

Aldous points out that this is still not enough to ensure reasonable limit objects
because a sequence of normalized Markov chains might experience the L2 cutoff phe-
nomenon (see [7, 2]). If the cutoff phenomenon occurs, we have limnG(n)(t) = ∞
whenever t < 1 and limnG(n)(t) = 1 for t > 1: as n approaches infinity, the mixing
happens in a shorter and shorter window around t = 1. Following Aldous’ suggestion,
we work with sequences of chains where L2 cutoff does not occur. Equivalently:

Definition 2.5. A bounded sequence of Markov chains is a sequence of finite Markov
chains Ω(n),Q(n) such that:

• Each chain is irreducible, reversible, and normalized,

• For each t > 0 there is a Bt such that G(n)(t) ≤ Bt for all n.

Note that, other than the boundedness of G(n)(t), there are no convergence require-
ments on a bounded sequence. Thus we will pass to subsequences of a given bounded
sequence in order to have suitable limit objects.

A sequence of Markov chains can have different portions of its mixing happen at
different time scales: consider the sequence of reversible Markov chains consisting of
four points, ω00, ω01, ω10, ω11 (each with measure 1/4 in the stationary distribution) where
the transition rate in the n-th Markov chain Q(n)(ωi0, ωi1) = n while Q(n)(ω0i, ω1i) = 1

(and, for simplicity, Q(n)(ω00, ω11) = 0). If we take B0 = {ω00, ω01} and B1 = {ω10, ω11},
the mixing between B0 and B1 has a fixed rate while the mixing within the sets B0 and
B1 happens faster and faster. (Indeed, when we take the limit object, the sets B0 and B1

will each become an indistinguishable blob: in the limit, we can’t distinguish ω00 from
ω01 because they mix instantly.)

These Markov chains have the property that there is a t0 independent of n so that
G(n)(t0) ≈ 2. (In other words, they already approximately satisfy a normalization
condition of the form G(a) = b for some a > 0 and some b ∈ (1,∞).) In the limit, “some
of the mixing”—the mixing internal to B0 and B1—happens very quickly, but the “largest
scale” of mixing, the mixing between B0 and B1, happens in finite time: when t is very
small (and n large), P(n),t(ω00, ω11) is small while P(n),1/t(ω00, ω11) is close to 1/4.

1If we wish to insist on our Markov chains having a number of states approaching infinity, replace ω0 and
ω1 with blocks of states Ω(n),0,Ω(n),1 where the sets are growing as n grows, the transition rates within Ω0

and Ω1 are constant, but the transition rates between any ω0 ∈ Ω(n),0 and ω1 ∈ Ω(n),1 is shrinking quickly
enough in n.
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This is what we are ensuring by normalizing and bounding G: that this largest scale
of mixing happens at the same scale as t. If we dropped the boundedness requirement,
we would be including limits which go from a discrete collection of completely unmixed
blocks at every time t < 1 to being completely mixed at every time t > 1. If we
dropped the normalization requirement, we could have chains which never fully mix
(if limn→∞G(n)(t) → ∞ for every t) or which have already mixed at every t > 0 (if
limn→∞G(n)(t)→ 1 for every t).

(We do still retain one anomolous case: where limn→∞G(n)(t) = 2 for all times t.
In the limit, this chain must be constant (because G is not changing) and therefore
reducible. But the presence of this case will not interfere with any of our arguments; we
could get rid of it by adding the assumption that limt→∞ limn→∞G(n)(t) = 1.)

2.2 Pseudofinite Chains

Our second notion is a specific kind of infinite space Markov chains. These are in
some respects simpler to work with than arbitrary infinite space continuous time Markov
chains, so to distinguish them, we call them pseudofinite continuous time Markov chains,
or just pseudofinite Markov chains. (The term pseudofinite here comes from model
theory, where it refers to a model which has the same first-order logical properties as a
finite model. This will be true of our pseudofinite Markov chains which, as we will see,
are essentially equivalent to convergent limits of finite Markov chains.)

Definition 2.6. By a pseudofinite continuous time Markov chain, we mean a probability
space (Ω,B, π) and, for each t ∈ R>0, a measurable function

p̂t : Ω2 → R≥0

such that (taking all integrals over π):

• (Stochasticity) For every t > 0 and almost every ω,
∫
p̂t(ω, ω

′)dω′ = 1,

• (Symmetry) For every t > 0 and almost every ω, ω′, p̂t(ω, ω′) = p̂t(ω
′, ω),

• (Chapman-Kolmogorov) For every s, t > 0 and almost every ω, ω′, p̂s+t(ω, ω′) =∫
p̂s(ω, ξ)p̂t(ξ, ω

′)dξ,

• (Diagonal Chapman-Kolmogorov) For every s, t > 0 and almost every ω, p̂s+t(ω, ω) =∫
p̂s(ω, ξ)p̂t(ξ, ω)dξ,

• (Boundedness) For every t > 0,
∫
p̂t(ω, ω)dω is finite,

• (Normality)
∫
p̂1(ω, ω)dω = 2,

• (Continuity) The function t 7→ p̂t is continuous with respect to the L2 norm—that is,
for every t > 0, lims→t ||p̂t − p̂s||L2(π×π) = 0.

Given a pseudofinite continuous time Markov chain p̂t, we write G(t) =
∫
p̂t(ω, ω)dω.

Below, when discussing pseudofinite Markov chains, we will generally assume that
integrals are over π and that the L2 space of interest is L2(π × π).

Even stating the continuity property suggests that each p̂t has bounded L2 norm, and
this follows from diagonal Chapman-Kolmogorov, symmetry, and boundedness:

Lemma 2.7. ||p̂t||L2 =
√
G(2t)
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Proof.

||p̂t||2L2 =

∫∫
p̂2
t (ω, ω

′)dω′dω

=

∫∫
p̂t(ω, ω

′)p̂t(ω
′, ω)dω′dω

=

∫
p̂2t(ω, ω)dω

= G(2t).

Note that, for each t, p̂t induces an operator P̂t on the L2 functions by

P̂t(f)(ω) =

∫
f(ξ)p̂t(ω, ξ)dξ.

Stochasticity and symmetry mean that the operator preserves the L1 norm, and the
Chapman-Kolmogorov condition ensures that the action is actually a flow—P̂t ◦ P̂s = P̂s+t.

2.3 Properties of Pseudofinite Chains

In this subsection we show that the usual eigenvector decomposition can be recovered
for pseudofinite continuous space Markov chains, by essentially the usual proof.

P̂t is the Hilbert-Schmidt operator corresponding to p̂t. Since p̂t is symmetric, P̂t is
symmetric as well. The spectral theorem tells us that for each P̂t, there is a basis for the
L2 functions consisting of eigenvectors of P̂t. Clearly the function which is constantly 1

is an eigenvector, with eigenvalue 1 (by stochasticity of p̂).

Lemma 2.8. P̂t is positive semidefinite.

Proof. Let ν be any L2 function. Then∫
ν(ω)P̂t(ν)(ω)dω =

∫∫
ν(ω)ν(ξ)p̂t(ω, ξ)dξ dω

=

∫∫∫
ν(ω)ν(ξ)p̂t/2(ω, ζ)p̂t/2(ζ, ξ)dζ dξ dω

=

∫ (∫
p̂t/2(ω, ζ)ν(ω)dω

)2

dζ

≥ 0.

Lemma 2.9. Any eigenvalue of P̂t is in the interval [0, 1].

Proof. If ν is an eigenfunction with eigenvalue γ, the previous lemma tells us

0 ≤
∫
ν(ω)P̂t(ν)(ω)dω = γ||ν||2L2 ,

so 0 ≤ γ.
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On the other hand,

γ||ν||2L2 =

∫
ν(ω)P̂t(ν)ωdµ

=

∫∫
ν(ω)p̂t(ξ, ω)ν(ξ)dξ dω

=

∫∫
(ν(ω)

√
p̂t(ξ, ω))(ν(ξ)

√
p̂t(ξ, ω))dξ dω

≤

√∫∫
ν2(ω)p̂t(ξ, ω)dξ dω

∫∫
ν2(ξ)p̂t(ξ, ω)dξ dω

= ||ν||2L2 ,

so γ ≤ 1.

Lemma 2.10. For each t, p̂t(ω, ω′) =
∑
i λiνi(ω)νi(ω

′) where the νi are eigenvectors

forming an orthonormal basis for the support of P̂t and the λi are the corresponding
eigenvalues.

Proof. Let q = p̂t(ω, ω
′) −

∑
i λiνi(ω)νi(ω

′). If ||q||L2 > 0 then the operator Q(f)(ω) =∫
f(ξ)q(ω, ξ)dω has an eigenvector ν, and ν must be orthogonal to all the νi. But this

means Q(ν) = P̂t(ν), so ν is an eigenvector of p̂t, so Q(ν) must be 0.

Lemma 2.11. If p̂t(ω, ω′) =
∑
i λ

t
iνi(ω)νi(ω

′) then p̂nt(ω, ω′) =
∑
i λ

nt
i νi(ω)νi(ω

′).

Proof. By induction on n. We have

p̂(n+1)t(ω, ω
′) =

∫
p̂nt(ω, ξ)p̂t(ξ, ω

′)dξ

=

∫ ∑
i

λnti νi(ω)νi(ξ)
∑
j

λtjνj(ξ)νj(ω
′)dξ

=
∑
i,j

λnti λ
t
jνi(ω)νj(ω

′)

∫
νi(ξ)νj(ξ)dξ

=
∑
i

λ
(n+1)t
i νi(ω)νi(ω

′)

using the fact that
∫
νi(ξ)νj(ξ)dξ = 1 if i = j and 0 otherwise.

This ensures that the eigenvectors decompositions for t and qt agree when q is
rational. Continuity then gives us the same statement for all t.

Lemma 2.12. For every t > 0, lims→t ||
∑
i λ

t
iν(ω)ν(ω′)−

∑
i λ

s
iν(ω)ν(ω′)||L2 = 0.

Proof. Let t > 0 and ε > 0 sufficiently small be given. Choose k large enough that∑
i>k λ

t/2
i < ε/3. When s > t/2, we have

(
∑
i>k

λsi )
1/s ≤ (

∑
i>k

λ
t/2
i )2/t < (ε/3)2/t
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and so
∑
i>k λ

s
i < (ε/3)2s/t < ε/3. Additionally, when s is close to t, for each i ≤ k we

have 1− λs−ti < ε/3k. Then

||
∑
i

λtiν(ω)ν(ω′)−
∑
i

λsiν(ω)ν(ω′)||L2 ≤ ||
∑
i≤k

λtiνi(ω)νi(ω
′)−

∑
i≤k

λsiνi(ω)νi(ω
′)||L2

+ ||
∑
i>k

λtiνi(ω)νi(ω
′)||L2

+ ||
∑
i>k

λsiνi(ω)νi(ω
′)||L2

≤ ||
∑
i≤k

λti(1− λs−ti )νi(ω)νi(ω
′)||L2 + ε/3 + ε/3

≤
∑

0<i≤k

ε

2k
λti||νi(ω)νi(ω

′)||L2 + ε/3

≤ ε.

In particular, taking p̂1(ω, ω′) =
∑
i λiνi(ω)νi(ω

′), we have

||p̂t(ω, ω′)−
∑
i

λtiν(ω)ν(ω′)||L2 = 0

for all t: for rational t this follows from Lemma 2.10, and then for arbitrary t this follows
because for every ε > 0 we have

||p̂t(ω, ω′)−
∑
i

λtiν(ω)ν(ω′)||L2 ≤ ||p̂t(ω, ω′)−p̂s(ω, ω′)||L2+||
∑
i

λtiν(ω)ν(ω′)−
∑
i

λsiν(ω)ν(ω′)||L2 ,

which can be made arbitrarily small by choosing s to be a rational number near t.

2.4 Exchangeable Arrays

Our third notion discards the explicit description of a Markov chain to focus on the
statistical properties of the densities.

Definition 2.13. Let (Ω,B, π), p̂t be a pseudofinite Markov chain. The density array
corresponding to (Ω,B, π), p̂t is the collection of random variables (Xi,j(t))i,j∈N obtained
by selecting an i.i.d. random sequence (ωi)i∈N from Ω according to π and setting
Xi,j(t) = p̂t(ωi, ωj).

Since the ωi are i.i.d., it is easy to see that these random variables are partially
exchangeable and dissociated:

Definition 2.14. An array of random variables (Xi,j)i,j∈N is partially exchangeable if
whenever σ : [0, n] → [0, n] is a permutation, the joint distribution of (Xi,j)i,j∈[0,n] is
identical to the joint distribution of (Xσ(i),σ(j))i,j∈[0,n].

An array is dissociated if whenever S and T are disjoint, (Xi,j)i,j∈S is independent of
(Xi,j)i,j∈T .

We wish to identify those arrays of random variables which can be obtained in
this way. Unsurprisingly, most properties amount to translations of the corresponding
properties of a pseudofinite Markov chain. Some of these properties (particularly the
Chapman-Kolmogorov property) are awkward to express directly as a property of an
array of random variables; the definition is justified by Theorem 2.16 below, which shows
how each property relates to the corresponding property of a pseudofinite Markov chain.
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Definition 2.15. A Markov chain density array is an array (Xi,j)i,j∈N of
(
R>0

)R>0

-
valued random variables such that:

• (Exchangeability) The array is partially exchangeable,

• (Dissociated) The array is dissociated,

• (Stochasticity) For every t > 0, E(2X0,1(t)−X0,1(t)X0,2(t)) = 1,

• (Symmetry) For every t, with probability 1, X0,1(t) = X1,0(t),

• (Chapman-Kolmogorov) For every s, t > 0,

E(X0,1(s+ t)2 − 2X0,1(s+ t)X0,2(s)X2,1(t) + X0,2(s)X0,3(s)X2,1(t)X3,1(t)) = 0,

• (Diagonal Chapman-Kolmogorov) For every s, t > 0,

E(X0,0(s+ t)2 − 2X0,0(s+ t)X0,2(s)X2,0(t) + X0,2(s)X0,3(s)X2,0(t)X3,0(t)) = 0,

• (Boundedness) E(X0,0(t)) is finite for all t,

• (Normality) E(X0,0(1)) = 2,

• (Continuity) For every t > 0, lims→tE((X0,1(t)−X0,1(s))
2
) = 0.

If for each n, (X(n),i,j)i,j∈N is a Markov chain density array, we say (X(n),i,j) con-
verges in distribution to (X∗,i,j)i,j∈N if for every k, the finite matrix of random variables
(X(n),i,j)i,j≤k converges in distribution to (X∗,i,j)i,j≤k.

Theorem 2.16. Let (Ω,B, π), p̂t be a pseudofinite Markov chain. The density array
corresponding to (Ω,B, π), p̂t is a Markov chain density array.

Proof. As noted above, exchangeability and dissociation follows immediately from the
fact that the ωi are chosen i.i.d..

In general, suppose we take any function depending on finitely many values of the
form Xi,j(t)—that is,

f(Xi0,j0(t0), . . . ,Xim,jm(tm))

with ik, jk ≤ n for each k ≤ m. Then the expected value

E(f(Xi0,j0(t0), . . . ,Xim,jm(tm)))

is the average result of selecting ω0, . . . , ωn and calculating

f(p̂t0(ωi0 , ωj0), . . . , p̂tm(ωim , ωjm)).

That is,

E(f(Xi0,j0(t0), . . . ,Xim,jm(tm))) =

∫
· · ·
∫
f(p̂t0(ωi0 , ωj0), . . . , p̂tm(ωim , ξjm))dω0 · · · dωn.

All other properties of a Markov chain density array follow by applying this for
suitable choices of f .

Stochasticity holds since

E(2X0,1(t)−X0,1(t)X0,2(t))− 1 =

∫∫∫
2p̂t(ω0, ω1)− p̂t(ω0, ω1)p̂t(ω0, ω2)− 1dω0dω1dω2

= −
∫ [∫

p̂t(ω0, ω1)dω1 − 1

]2

dω0

= 0.
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Symmetry holds since

E((X1,0(t)−X0,1(t))2) =

∫∫
(p̂t(ω, ω

′)− p̂t(ω′, ω))2dωdω′ = 0

by the symmetry of p̂t.
Chapman-Kolmogorov holds since

E(X0,1(s+ t)2 − 2X0,1(s+ t)X0,2(s)X2,1(t) + X0,2(s)X0,3(s)X2,1(t)X3,1(t))

=

∫∫∫∫
p̂s+t(ω0, ω1)2 − 2p̂s+t(ω0, ω1)p̂s(ω0, ω2)p̂t(ω2, ω1)

+ p̂s(ω0, ω2)p̂s(ω0, ω3)p̂t(ω2, ω1)p̂t(ω3, ω1)dω0dω1dω2dω3

=

∫∫
p̂s+t(ω0, ω1)2 − 2p̂s+t(ω0, ω1)

∫
p̂s(ω0, ω2)p̂t(ω2, ω1)dω2

+

[∫
p̂s(ω0, ω2)p̂t(ω2, ω1)dω2

]2

dω0dω1

=

∫∫ [
p̂s+t(ω0, ω1)−

∫
p̂s(ω0, ω2)p̂t(ω2, ω1)dω2

]2

dω0dω1

=0

by the Chapman-Kolmogorov property of p̂t.
Diagonal Chapman-Kolmogorov holds by the same argument, replacing ω1 with ω0.
Boundedness holds since

E(X0,0(t)) =

∫
p̂t(ω, ω)dω

which is finite by the boundedness of p̂t. When t = 1, this expectation is 2 by the
normality of p̂t.

For any t > 0 and any s,

E((X0,1(t)−X0,1(s))2) =

∫∫
(p̂t(ω, ω

′)− p̂s(ω, ω′))2dωdω′ = ||p̂t − p̂s||2L2 .

Since the right side approaches 0 as s approaches t, the left side does as well.

3 Scaling Finite Markov Chains

To compare finite Markov chains to density arrays, we want to first rescale according
to the stationary distribution.

Definition 3.1. Let Ω,Q be a reversible, irreducible, finite Markov chain with stationary
distribution π. We define the scaled transition rate and probability density to be

Q̂(ω, ω′) =
Q(ω, ω′)

π(ω′)
and P̂t(ω, ω

′) =
Pt(ω, ω

′)

π(ω′)
.

Theorem 3.2. If π is the stationary distribution on a reversible, irreducible, finite
Markov chain Ω,Q with G(1) = 2 then (Ω,P(Ω), π), P̂t is a pseudofinite Markov chain.

Proof. • (Stochasticity) Remembering that all integrals are with respect to π, for any
ω ∫

P̂t(ω, ω
′)dω′ =

∑
ω′

Pt(ω, ω
′)

π(ω′)
π(ω′) =

∑
ω′

Pt(ω, ω
′) = 1

by the stochasticity of Pt.
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• (Symmetry) Since π is a stationary distribution, we have

P̂t(ω, ω
′) =

Pt(ω, ω
′)

π(ω′)
=

Pt(ω
′, ω)

π(ω)
= P̂t(ω

′, ω)

using the reversibility the original Markov chain.

• (Chapman-Kolmogorov, both forms)

P̂s+t(ω, ω
′) =

Ps+t(ω, ω
′)

π(ω′)

=

∑
ξ Ps(ω, ξ)Pt(ξ, ω

′)

π(ω′)

=
∑
ξ

Ps(ω, ξ)Pt(ξ, ω
′)

π(ξ)π(ω′)
π(ξ)

=

∫
P̂s(ω, ξ)P̂t(ξ, ω

′)dξ.

• (Boundedness) Trivial since
∫
P̂t(ω, ω)dω is a finite sum in this case.

• (Normality) By assumption we have

G(1) =
∑
ω

P1(ω, ω) =
∑
ω

π(ω)

π(ω)
P1(ω, ω) =

∑
ω

P̂1(ω, ω)π(ω) =

∫
P̂1(ω, ω)dω = 2.

• (Continuity) Observe that

||P̂t||2L2(π) =
∑
ω,ω′

(P̂t(ω, ω
′))2π(ω)π(ω′)

=
∑
ω,ω′

(Pt(ω, ω
′))2 π(ω)

π(ω′)

=

√√√√∑
ω,ω′

(Pt(ω, ω′))2
π(ω)

π(ω′)

2

.

So ||P̂t||L2(π) is a matrix norm. Therefore

||P̂t − P̂s||2L2(π) = ||Pt(ω, ω′)−Ps(ω, ω
′)||2

= ||e(s+(t−s))Q − esQ||2

≤ (t− s)2||Q||2e4s||Q||.

This approaches 0 as t approaches s.

Definition 3.3. If Ω,Q is a reversible, irreducible, finite Markov chain with stationary
distribution π we define the density array corresponding to Ω,Q to be the density array
corresponding to (Ω,P(Ω), π), P̂t.

3.1 Statement of Main Results

We are now prepared to state our main results:

Theorem 3.4. Suppose Ω(n),Q(n) is a bounded sequence of Markov chains such that
the corresponding density arrays (X(n),i,j(t))i,j∈N converge in distribution. Then there is
a pseudofinite Markov chain Ω, p̂t such that the associated Markov chain (X∗,i,j(t))i,j∈N
is the limit in distribution of the sequence (X(n),i,j(t))i,j∈N.
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Theorem 3.5. Let (X∗,i,j) be a density array. There is a bounded sequence of finite
Markov chains Ω(n),Q(n) such that, taking (X(n),i,j) to be the density array corresponding
to Ω(n),Q(n), the density arrays (X(n),i,j) converge in distribution to (X∗,i,j).

Together with Theorem 3.2, these theorems give the complete cycle of equivalences:
every bound sequence of Markov chains has a subsequence with convergent density
arrays whose limit corresponds to a pseudofinite Markov chain, every pseudofinite
Markov chain has a corresponding density array, and every density array is the limit of
some bounded sequence of Markov chains.

We will prove Theorem 3.4 in Section 5 and Theorem 3.5 in Section 6
We would also like to show that each density array corresponds to a unique pseud-

ofinite Markov chain. This is not true, but in Lemma 7.5 we will show that we can
also choose Ω, p̂t to have two additional properties—twin-freeness and saturation (both
these notions will be defined in that section)—and Theorem 7.5 shows that pseudofinite
Markov chains with these additional properties are unique.

4 Ultraproducts

Before proving that bounded sequences of Markov chains have corresponding limit
objects, we recall some basic facts about our main technique, the ultraproduct construc-
tion. Rather than reiterate that development here, we briefly describe the construction,
then state a theorem which encapsulates all needed properties of the construction and
refer the reader to [11] for a proof and a detailed exposition of the technique.

An filter on N is a collection U of subsets of N such that ∅ 6∈ U , N ∈ U , and U is
upwards closed and closed under finite intersections. A filter U is an ultrafilter if for any
A ⊆ N, either A ∈ U or (N \A) ∈ U .

Ultrafilters have the convenient property that if (rn)n∈N is a bounded sequence of
reals, there is a set A ∈ U such that limn∈A rn converges; moreover, the value of this
limit is determined by U (because U is closed under intersections). We write limU rn for
this value. The ultraproduct construction can be seen as a generalization of this idea: it
is a construction that makes essentially arbitrary limits converge.

Given a sequence Ω(n) of sets and an ultrafilter U , we consider Ω̂, the collection of
sequences 〈ω(n)〉 such that for each n, ω(n) ∈ Ω(n). We identify sequences ω ∼ ω′ if
{n | ω(n) = ω′(n)} ∈ U . We take our space to be the quotient Ω = Ω̂/∼.

If for each n we have a subset A(n) ⊆ Ω(n), we can define A = lim〈A(n)〉 to be those ω
such that {n | ω(n) ∈ A(n)} ∈ U . Subsets of this form are called internal.

Given operations on each Ω(n), we can generally lift them to Ω by considering what
happens “almost always”—that is, for a set of n belonging to U . In particular, if for
each n, π(n) is a probability measure on Ω(n), we immediately obtain a finitely additive
measure π on the internal subsets of Ω by setting π(A) = limU π

(n)(A(n)). This extends
to a measure—the Loeb measure—on the σ-algebra generated by the internal sets.

With more effort, we can show that the L2 (and more generally, Lp) spaces on (Ω, π)

are, in a suitable sense, limits of the L2 spaces on (Ω(n), π(n)). This is the content of the
following result, which summarizes the results in [11] which will be needed in this paper.

Theorem 4.1. Let {(Ω(n), π(n))} be a sequence of finite probability spaces with |Ω(n)| →
∞. For each i, n, let f (n)

i be a function on Ω(n) with L2 norm bounded by Bi (indepen-
dently of n). For any infinite set S ⊆ N, there exist:

• A probability space (Ω,B, π), and

• For every sequence of sets 〈A(n)〉 with each A(n) a subset of Ω(n), a set lim〈A(n)〉 =

A ⊆ Ω in B,

• For each i, L2 functions fi with L2 norm bounded by Bi,
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so that:

• B is generated by sets of the form lim〈A(n)〉,
• The operation lim commutes with union, intersection, and complement, so lim〈A(n)∩
B(n)〉 = lim〈A(n)〉 ∩ lim〈B(n)〉 and similarly for ∪ and complement,

• Given a finite set I, finitely many sequences 〈A(n)
1 〉, . . . , 〈A

(n)
r 〉 with each A(n)

j ⊆ Ω(n)

and setting Aj = lim〈A(n)
j 〉, there is a set S′ ⊆ S such that

lim
n∈S′

∫
⋂
j≤r A

(n)
j

∏
i∈I

f
(n)
i dπ(n) =

∫
⋂
j≤r Aj

∏
i∈I

fidπ.

In particular, taking I = ∅, the last clause implies that

lim
n∈S′

π(n)(
⋂
j≤r

A
(n)
j ) = π(

⋂
j≤r

Aj).

We call such a probability space (Ω,B, π) together with the operation lim an ultra-
product of the sequence {Ω(n)}. When we have specified a set S in the theorem, we say
the ultraproduct concentrates on S. The sets lim〈A(n)〉 are called internal subsets of Ω.

5 Limits of Bounded Sequences

In order to show convergence in distribution, we will need the following result:

Lemma 5.1. Let f : Rk → R be a function bounded by K such that whenever |x− y| < δ,
|f(x) − f(y)| < ε/2. Let X be a Rk-valued random variable, let A0, . . . ,Ad be pairwise
disjoint events and I1, . . . , Id subsets of Rk such that (writing P for the law of X):

• P(
⋃
i≤dAi) = 1,

• P(X ∈ Ii | Ai) = 1 when 1 ≤ i ≤ d,
• If x, y ∈ Ii then |x− y| < δ,

• P(A0) < ε/2K.

For each i ∈ [1, d], fix ri ∈ Ii and let αi = P(Ai). Then∣∣∣∣∣∣E(f(X))−
∑
i∈[1,d]

αiri

∣∣∣∣∣∣ < ε.

Proof. We have

E(f(X)) = E(f(X) | A0)P(A0) +
∑
i∈[1,d]

E(f(X) | Ai)P(Ai).

Since f is bounded and P(A0) < ε/2K, we have

|E(f(X) | A0)P(A0)| < K · ε/2K = ε/2.

For each i ≤ d, we have
|E(f(X) | X ∈ Ai)− ri| < ε/2.

Therefore ∣∣∣∣∣∣E(f(X))−
∑
i∈[1,d]

αiri

∣∣∣∣∣∣ < ε/2 +
∑
i∈[1,d]

αiε/2 ≤ ε.
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A consequence is the following standard fact:

Lemma 5.2. Let f be a bounded continuous function. Then for every ε > 0 there is a
δ > 0 such that ||X−Y||L2 < δ implies that

|E(f(X))− E(f(Y))| < ε.

Let Ω(n),Q(n) be a bounded sequence of Markov chains with stationary distributions
π(n). Rather than directly taking an ultraproduct, we will pass to the eigenvector

representation. We may view each P̂(n),t as an operator on the L2(π(n))-measurable
functions by

(P̂(n),tf)(ω) =

∫
P̂(n),t(ω, ω

′)f(ω′)dω′.

Since P̂(n),t is symmetric, this operator is Hermitian. Using Perron-Frobenius, we see
that the 1 is an eigenvalue with corresponding eigenvector ω 7→ 1 and that all other
eigenvalues are in the range [0, 1). It follows that if 1 = λ(n),0 > λ(n),1 ≥ · · · are

the eigenvalues of P̂(n),1 and ν(n),0, . . . , are a corresponding orthonormal sequence of
eigenvectors,

P̂(n),t(ω, ω
′) =

∑
i

λt(n),iν(n),i(ω)ν(n),i(ω
′).

Note that G(n)(t) =
∑
i λ

t
(n),i.

We apply Theorem 4.1 to the functions ν(n),i and the sequences λ(n),i (which we
may view as constant functions). We obtain a probability space (Ω,B, π), limiting values
λi ∈ [0, 1] and measurable functions νi with ||νi|| ≤ 1.

Lemma 5.3. limi→∞ λi = 0.

Proof. Suppose not. Since λi ≥ 0 for all i, it follows that limi→∞
∑
j≤i λj = ∞. Pick i

large enough that
∑
j≤i λj > 2; then there must be an infinite set S so that for n ∈ S,∑

j≤i λ(n),j > 2. But this contradicts the fact that
∑
i λ(n),i = G(n)(1) = 2.

For any i, j, n we have∫
ν(n),i(ω)ν(n),j(ω)dω =

{
1 if i = j

0 otherwise

so the νi have L2 norm 1 and are pairwise orthogonal. Also, since ν(n),0 is constantly
equal to 1 for all n, ν0 is constantly equal to 1. Therefore for i > 0,

∫
νi(ω)dω = 0.

We define
p̂t(ω, ω

′) =
∑
i

λtiνi(ω)νi(ω
′).

We will show that p̂t gives a pseudofinite Markov chain. Symmetry of p̂t(ω, ω′) follows
immediately from the definition.

Lemma 5.4 (Stochasticity of p̂t). For every t > 0 and almost every ω,
∫
p̂t(ω, ω

′)dω′ = 1.

Proof. Let t be given. We will show that for every ε > 0, ||1−
∫
p̂t(ω, ω

′)dω′||L2 < ε.
Fix ε > 0. Pick k large enough that

∑
i>k λ

t
i < ε, so

||p̂t(ω, ω′)−
∑
i≤k

λtiνi(ω)νi(ω
′)||L2 < ε.

Since
∫
νi(ω)dω = 0 for i > 0,∫ ∑

i≤k

λtiνi(ω)νi(ω
′)dπ(ω′) = 1 +

∑
0<i≤k

λtiνi(ω)

∫
νi(ω

′)dπ(ω′) = 1.
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Therefore

||1−
∫
p̂t(ω, ω

′)dπ(ω′)||L2 ≤ ||1−
∫ ∑

i≤k

λtiνi(ω)νi(ω
′)dπ(ω′)||L2

+ ||
∫

[p̂t(ω, ω
′)−

∑
i≤k

λtiνi(ω)νi(ω
′)]dπ(ω′)||L2

≤ 0 + ||p̂t(ω, ω′)−
∑
i≤k

λtiνi(ω)νi(ω
′)||L2

< ε.

Since this holds for every ε > 0, ||1−
∫
p̂t(ω, ω

′)dω′||L2 = 0, so the set of ω such that∫
p̂t(ω, ω

′)dω′ 6= 1 must have measure 0.

Lemma 5.5 (Chapman-Kolmogorov for p̂t). For any s, t > 0 and almost every ω, ω′,
p̂s+t(ω, ω

′) =
∫
p̂s(ω, ξ)p̂t(ξ, ω

′)dξ. Additionally, for almost every ω, p̂s+t(ω, ω) =
∫
p̂s(ω, ξ)p̂t(ξ, ω)dξ.

Proof. The arguments for the two parts are identical except for notation. We give the
Chapman-Kolmogorov case; for the diagonal case, simply treat ω′ as being equal to ω′

(and consider the L1 norm on Ω instead of Ω2).
Let s, t be given. We will show that for every ε > 0,

||p̂s+t(ω, ω′)−
∫
p̂s(ω, ξ)p̂t(ξ, ω

′)dξ||L1 < ε.

Fix ε > 0. Pick k large enough that
∑
i>k λ

s
i < ε/3G(2t),

∑
i>k λ

t
i < ε/3G(2s), and∑

i>k λ
s+t
i < ε/3. Then

||p̂s(ω, ξ)−
∑
i≤k

λsiνi(ω)νi(ξ)||L2 < ε/3G(2t)

and similarly for p̂t and p̂s+t. This in turn implies that

||
∫ p̂s(ω, ξ)p̂t(ξ, ω′)−

∑
i≤k

λsiνi(ω)νi(ξ)

∑
j≤k

λtjνj(ξ)νj(ω
′)

 dξ||L1

≤||p̂s(ω, ξ)p̂t(ξ, ω′)−

∑
i≤k

λsiνi(ω)νi(ξ)

∑
j≤k

λtjνj(ξ)νj(ω
′)

 ||L1

≤||

p̂s(ω, ξ)−∑
i≤k

λsiνi(ω)νi(ξ)

 p̂t(ξ, ω
′)||L1

+ ||

∑
i≤k

λsiνi(ω)νi(ξ)

p̂t(ξ, ω′)−∑
j≤k

λtjνj(ξ)νj(ω
′)

 ||L1

≤||p̂s(ω, ξ)−
∑
i≤k

λsiνi(ω)νi(ξ)||L2 ||p̂t(ξ, ω′)||L2

+ ||
∑
i≤k

λsiνi(ω)νi(ξ)||L2 ||

p̂t(ξ, ω′)−∑
j≤k

λtjνj(ξ)νj(ω
′)

 ||L2

≤ ε

3G(2t)
G(2t) +G(2s)

ε

3G(2s)

=
2ε

3
.
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Observe that∫ ∑
i≤k

λsiνi(ω)νi(ξ)

∑
j≤k

λtjνj(ξ)νj(ω
′)

 dξ =
∑
i≤k

λsiλ
t
iνi(ω)νi(ω

′)

∫
νi(ξ)

2dξ

+
∑

i 6=j,i,j≤k

λsiλ
t
jνi(ω)νj(ω

′)

∫
νi(ξ)νj(ξ)dξ

=
∑
i≤k

λs+ti νi(ω)νi(ω
′).

Therefore as in the previous lemma,

||p̂s+t(ω, ω′)−
∫
p̂s(ω, ξ)p̂t(ξ, ω

′)dξ||L1 ≤ ||p̂s+t(ω, ω′)−
∑
i≤k

λs+ti νi(ω)νi(ω
′)||L1

+ ||
∑
i≤k

λs+ti νi(ω)νi(ω
′)−

∫
p̂s(ω, ξ)p̂t(ξ, ω

′)dξ||L1

≤ ε/3 + 2ε/3

= ε.

Lemma 5.6 (Boundedness and Normalization of p̂t). For every t > 0,
∫
p̂t(ω, ω)dω is finite

and
∫
p̂1(ω, ω)dω = 2.

Proof. We have ∫
p̂t(ω, ω)dω =

∑
i

λti

by definition. Choosing k large enough that
∑
i>k λ

t
i < ε we have∫

p̂t(ω, ω)dω =
∑
i≤k

λti +
∑
i>k

λti <
∑
i≤k

λti + ε.

Since for every n,
∑
i≤k λ

t
(n),i ≤

∑
i λ

t
(n),i ≤ Bt, we have∫

p̂t(ω, ω)dω ≤ Bt + ε.

To prove equality for t = 1 rather than a bound, we have to work a bit harder. Choose k
large enough that λk < ε2/2B2

1/2. Consider any large enough n such that λ(n),k ≤ ε2/B2
1/2.

We have
∑
i>k λ

1/2
(n),i ≤

∑
i λ

1/2
(n),i ≤ B1/2 and for each i > k, λ1/2

(n),i ≤ ε/B1/2. Among

all possible values for the λ
1/2
(n),i, we maximize

∑
i>k(λ

1/2
(n),i)

2 by choosing as many as
possible as large as possible and equal, and the rest 0. But at this maximum, the
first B2

1/2/ε values of λ(n),i are each ε/B1/2, and the remainder are 0; this means that∑
i>k(λ

1/2
(n),i)

2 =
∑
i>k λ(n),i ≤ (B2

1/2/ε)(ε/B1/2)2 = ε. Since
∑
i λ(n),i = 2, it follows that

2−
∑
i≤k λ(n),i ≤ ε. Since this holds for almost every n, we have 2−

∑
i≤k λi ≤ ε. Since

this holds for every ε > 0,
∑
i λi = 2.

Lemma 5.7. For every t > 0, lims→t ||p̂t − p̂s||L2 = 0.

Proof. Immediate from the definition of p̂t and Lemma 2.12.
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Putting these together, we see that (Ω,B, π), p̂t is a pseudofinite Markov chain.
For each n, (X(n),i,j)i,j∈N be the density array corresponding to Ω(n),Q(n) and let
(X∗,i,j)i,j∈N be the density array corresponding to (Ω,B, π), p̂t. We now turn to showing
that (X∗,i,j)i,j∈N is the limit of a convergent subsequence of (X(n),i,j)i,j∈N.

Theorem 5.8. Let f : Rm+1 → R be bounded and continuous. Let i0, . . . , im, j0, . . . , jm, t0, . . . tm
be given. Then there is an infinite set S such that

lim
n∈S

E(f(X(n),i0,j0(t0), . . . ,X(n),im,jm(tm))) = E(f(X∗,i0,j0(t0), . . . ,X∗,im,jm(tm))).

Proof. To simplify notation, write X(n) for the Rm+1-valued random variable

(X(n),i0,j0(t0), . . . ,X(n),im,jm(tm))

and X∗ for the Rm+1-valued random variable

(X∗,i0,j0(t0), . . . ,X∗,im,jm(tm)).

Let M ≥ ir, jr for all r ≤ m. Let K be the bound on f and fix ε > 0. Fix a compact
subset C of Rm+1 so that P(X∗ 6∈ C) < ε/4K. Let δ be small enough that |x− y| < δ and
x, y ∈ C implies |f(x)− f(y)| < ε/2.

For each k, write Y∗,k for the random variable given by choosing ωir , ωjr randomly
according to π and taking the value

(
∑
i≤k

λt0i νi(ωi0)νi(ωj0), . . . ,
∑
i≤k

λtmi νi(ωim)νi(ωjm)).

That is Y∗,k is the approximation to X∗ using only eigenvectors up to k. Let Y(n),k be
given analogously by

(
∑
i≤k

λt0(n),iν(n),i(ωi0)ν(n),i(ωj0), . . . ,
∑
i≤k

λtm(n),iν(n),i(ωim)ν(n),i(ωjm)).

Then Y∗,k L
2 converges to X∗, so in particular we may fix a value of k large enough

that

|E(f(Y∗,k))− E(f(X∗))| < ε/2.

It will suffice to show that we can find an infinite set S such that for n ∈ S,

|E(f(Y(n),k))− E(f(X(n)))| < ε

and

|E(f(Y∗,k))− E(f(Y(n),k))| < ε.

Cover C with finitely many pairwise disjoint sets I1, . . . , Id so that x, y ∈ Ii implies
|x− y| < δ/2. For each n, let A(n),i be the event that Y(n),k ∈ Ii and A(n),0 be the event
that Y(n),k 6∈

⋃
i≤d Ii. Let Ai = lim〈A(n),i〉. Note that the event Ai for i ∈ [1, d] implies

that Y∗,k belongs to the closure of Ii.
Fix ri ∈ Ii for each i, let r = maxi |ri|, and let αi = P(Ai). There is an infinite set S

such that for each n ∈ S:

• |E(f(Y(n),k))− E(f(X(n)))| < ε,

• For each i ∈ [1, d], |P(A(n),i)− αi| < ε/2ri,

• |P(A(n),0)− α0| < ε/4K.
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Consider any n ∈ S. Since α0 < ε/4K, we have P(A(n),0) < ε/2K. Then by Lemma
5.1,

|E(f(Y(n),k))−
∑
i∈[1,d]

P(A(n),i)ri| < ε

and since
|
∑
i∈[1,d]

P(A(n),i)ri −
∑
i∈[1,d]

αiri| ≤ ε/2

we have
|E(f(Y(n),k))−

∑
i∈[1,d]

αiri| < 3ε/2.

On the other hand, by Lemma 5.1 again,

|E(f(Y∗,k))−
∑
i∈[1,d]

αiri| < ε/2

and therefore
|E(f(Y∗,k))− E(f(Y(n),k))| < 2ε.

It follows that
|E(f(X∗))− E(f(X(n)))| < 7ε/2.

Since we can find infinitely many such n for each ε > 0, we may take a countable
sequence ε1 > ε2 > · · · and corresponding n1 < n2 < · · · , and then the set S =

{n1, n2, . . .} has the property that

lim
n∈S

E(f(X(n))) = E(f(X∗)).

In particular, if the sequence (X(n),i,j) converges in distribution, for each bounded
continuous f and any infinite S,

lim
n
E(f(X(n),i0,j0(t0), . . . ,X(n),im,jm(tm))) = lim

n∈S
E(f(X(n),i0,j0(t0), . . . ,X(n),im,jm(tm)))

and so

lim
n
E(f(X(n),i0,j0(t0), . . . ,X(n),im,jm(tm))) = E(f(X∗,i0,j0(t0), . . . ,X∗,im,jm(tm))).

Therefore the sequence (X(n),i,j) converges in distribution to (X∗,i,j). This proves
Theorem 3.4.

6 Sampling

Theorem 3.5. Let (X∗,i,j) be a density array. There is a bounded sequence of finite
Markov chains Ω(n),Q(n) such that, taking (X(n),i,j) to be the density array corresponding
to Ω(n),Q(n), the density arrays (X(n),i,j) converge in distribution to (X∗,i,j).

Proof. We construct finite Markov chains Ω(n),Q(n) by taking Ω(n) to be an n point set

{ω0, . . . , ωn−1} of Ω and setting the values p̂(n)
t (ωi, ωj) according to X∗,i,j(t). When n is

large, Ω(n), p̂
(n)
t will with high probability almost define a finite Markov chain, but there

my be some error—for instance, the rows will sum to a number near 1, but not to exactly
1.

Nonetheless, we can let (Y(n),i,j) be the corresponding random variables given by

choosing ξ1, ξ2, . . . from Ω(n) uniformly at random and taking Y(n),i,j(t) = p̂
(n)
t (ξi, ξj).
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This selection induces a random function ρn : N→ N so ξi = ωρ(i), and so in particular
Y(n),i,j(t) = X∗,ρn(i),ρn(j)(t).

Fix a bounded and continuous function f : Rm+1 → R and values i0, . . . , im, j0, . . . , jm, t0, . . . , tm,
and consider the sequence of values

f(Y(n),i0,j0(t0), . . . ,Y(n),im,jm(tm)).

Note that E(f(Y(n),i0,j0(t0), . . . ,Y(n),im,jm(tm))) is the average over all choices of ρn,

E(f(Y(n),i0,j0(t0), . . . ,Y(n),im,jm(tm))) =
1

r

∑
ρn

f(X∗,ρn(i0),ρn(j0)(t0), . . . ,X∗,ρn(im),ρn(jm)(tm)).

When n is much larger than m, almost every choice of ρn is injective on the elements
{i0, . . . , im, j0, . . . , jm, t0, . . . , tm}, so

E(f(X∗,ρn(i0),ρn(j0)(t0), . . . ,X∗,ρn(im),ρn(jm)(tm))) = E(f(X∗,i0,j0(t0), . . . ,X∗,im,jm(tm))).

Since (X∗,i,j) is dissociated, the value of f(X∗,ρn(i0),ρn(j0)(t0), . . . ,X∗,ρn(im),ρn(jm)(tm))

for two different values of ρn are independent if the images of {i0, . . . , im, j0, . . . , jm, t0, . . . , tm}
are disjoint. Therefore a standard Azuma’s inequality argument shows that with proba-
bility exponentially approaching 1,

E(f(Y(n),i0,j0(t0), . . . ,Y(n),im,jm(tm))) = E(f(X∗,i0,j0(t0), . . . ,X∗,im,jm(tm)).

This shows that the countable matrix of random variables (Y(n),i,j(q)) with q rational

converges in distribution to (X∗,i,j(q)). However p̂(n)
t is not exactly a finite Markov chain

(it need only be “nearly stochastic” for instance), so it remains to find a finite Markov
chain close to p̂(n)

t . There is a natural choice—treat π(n)(ω) =
∑
ξ p̂

(n)
1 (ω, ξ) as the weight

given to ω, and normalize by multiplying by 1
π(n)(ω) . Since this should, for most ω, be very

close n, it should not be surprising that this normalization does not change the limiting
distribution. Checking this, especially checking that it does change the distribution on
large products of the matrix, occupies the remainder of the proof.

By the Chapman-Kolmogorov property and exchangeability, with probability 1, for
any i, j we have

X∗,i,j(2) = lim
n→∞

1

n

∑
k<n

X∗,i,k(1)X∗,k,j(1).

Corresponding to this, when n is sufficiently large, with very high probability we have

p̂
(n)
2 (ω, ω′) ≈ 1

n

∑
ξ∈Ω

p̂
(n)
1 (ω, ξ)p̂

(n)
1 (ξ, ω′).

More strongly, we can do the following. For any S ⊆ N, define δ(S) = limn→∞
|S∩[0,n]|

n

if this exists. When S is defined in a suitably exchangeable way (as all sets S we
consider will be), δ(S) exists with probability 1. Observe that since the second moment of
X∗,i,j(1) exists (by the same argument as for pseudofinite Markov chains), let I>B = {k |
X∗,i,k(1)X∗,k,j(1) > B} for B sufficiently big, and with probability 1, δ(I>B) < ε (where ε
depends on B). Consider, for 0 ≤ c ≤ dB/εe, Ic = {k | X∗,i,k(1)X∗,k,j(1) ∈ [cε, (c + 1)ε)}.
When ε is small,

X∗,i,j(2) ≈
∑
c

cεδ(Ic).

Further we can define I ′c = {ξ ∈ Ω | |p̂(n)
1 (ω, ξ)p̂

(n)
1 (ξ, ω′) − δ| < ε}, and with probability

exponentially approaching 1, a standard Chernoff argument ensures that when n is large,
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µ(I ′c) is very close to δ(Ic) for all ω, ω′ simultaneously. In particular, if E ⊆ Ω with |E|/n
small enough (depending on B, ε), we still have

p̂
(n)
2 (ω, ω′) ≈ 1

n

∑
ξ∈Ω\E

p̂
(n)
1 (ω, ξ)p̂

(n)
1 (ξ, ω′).

With probability 1, p̂(n)
1 is a symmetric matrix. Set π(n)(ω) =

∑
ω′∈Ω(n)

p̂
(n)
1 (ω, ω′). We

set P(n),1(ω, ω′) =
p̂
(n)
1 (ω,ω′)
π(n)(ω) . Then P(n),1 is a positive definite stochastic matrix and we

can take Q(n) to be its matrix logarithm.
Let γ =

∑
ω π(n)(ω). (With high probability, γ is close to n2.) Then 1

γπ(n) is the

stationary distribution of Q(n), so P̂(n),1(ω, ω′) =
γp̂

(n)
1 (ω,ω′)

π(n)(ω)π(n)(ω′)
. It remains to show that

the densities arrays corresponding to Ω(n),Q(n) converge in distribution to (X∗,i,j).
Let Eε be those ξ such that |π(n)(ξ)− n| ≥ ξ. By the stochasticity of (X∗,i,j), with high

probability the set of Eε has size < εn. Therefore for any ω, ω′,

P̂(n),2(ω, ω′) =
∑
ξ

P̂(n),1(ω, ξ)P̂(n),1(ξ, ω′)
1

γ
π(n)(ξ)

=
∑
ξ

γp̂
(n)
1 (ω, ξ)p̂

(n)
1 (ξ, ω′)

π(n)(ω)π(n)(ξ)π(n)(ω′)

=
γ

π(n)(ω)π(n)(ω′)

∑
ξ

p̂
(n)
1 (ω, ξ)p̂

(n)
1 (ξ, ω′)

π(n)(ξ)

≈ γ

π(n)(ω)π(n)(ω′)

∑
ξ∈Ω\Eε

p̂
(n)
1 (ω, ξ)p̂

(n)
1 (ξ, ω′)

n

≈ γp̂
(n)
2 (ω, ω′)

π(n)(ω)π(n)(ω′)
.

We can iterate the same argument and conclude that for each k, when n is sufficiently
large (depending on k), with very high probability we have

P̂(n),k(ω, ω′) ≈
γp̂

(n)
k (ω, ω′)

π(n)(ω)π(n)(ω′)
.

Similarly, P̂(n),1(ω, ω′) is close to γ
π(n)(ω)π(n)(ω′)

∑
ξ p̂

(n)
1/2(ω, ξ)p̂

(n)
1/2(ξ, ω′), so by the conti-

nuity of the matrix square root,
γp̂

(n)

1/2
(ω,ω′)

π(n)(ω)π(n)(ω′)
is close to P̂(n),1/2(ω, ω′). Iterating and

combining these two arguments, we get that p̂
(n)
t (ω,ω)

π(n)(ω,ω′)
≈ P̂(n),t(ω, ω

′) for all rational t,

and therefore with probability 1, for each t, p̂(n)
t − P̂(n),t converges to 0 as n gets large.

Therefore for rational t the sequence of random variables Y(n),i,j(t) − X(n),i,j(t)

converges in L2 (and even L∞) norm to 0, so also in distribution to 0, and therefore
X(n),i,j(t) converges in distribution to the same random variable as Y(n),i,j(t), namely
X∗,i,j(t).

To obtain convergence for all irrational s simultaneously, fix an s, a bounded continu-
ous f and an ε > 0. To simplify notation, we assume f : R→ R; the general case follows
by the same argument. Let i, j be given. There is a δ > 0 so that if ||X − X′||L2 < δ

then |E(f(X))− E(f(X′))| < ε/3. We may choose a rational t close enough to s that
||X∗,i,j(t)−X∗,i,j(s)||L2 < δ and also for sufficiently large n

||P̂(n),t − P̂(n),s||L2 = ||etQ(n) − esQ(n) ||L2 ≤ (s− t)||Q(n)||L2 ||P̂(n),t||L2 ||P̂(n),s||L2 < δ.
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Therefore when n is sufficiently large we have∣∣E(f(X∗,i,j(s)))− E(f(X(n),i,j(s)))
∣∣ ≤ |E(f(X∗,i,j(s)))− E(f(X∗,i,j(t)))|

+
∣∣E(f(X∗,i,j(t)))− E(f(X(n),i,j(t)))

∣∣
+
∣∣E(f(X(n),i,j(t)))− E(f(X(n),i,j(s)))

∣∣
< ε/3 + ε/3 + ε/3

= ε.

7 Uniqueness

We would like to additionally have the property that a pseudofinite Markov chain
is determined by its density array: that two pseudofinite Markov chains with the same
density array are actually isomorphic. This is not the case, as an easy example shows.

Consider the pseudofinite Markov chain where Ω = {a, b} with π({a}) = 2/3 and
π({b}) = 1/3 so the eigenvectors are the constant, the eigenvector ν1(a) =

√
2/2 and

ν1(b) = −
√

2 with eigenvalue λ1 = 1/2, and the eigenvector ν2 = −ν1 with eigenvalue
λ2 = 1/2. (That is, an arbitrary chain with two points with different measures.)

We could modify this chain by replacing a with an uncountable “blob” of points which
mix very rapidly: Ω′ = A ∪ {b} where (A, λ) is some probability measure space with A

uncountable, π′(S) = (2/3)λ(S) when S ⊆ A, π′({b}) = 1/3, and the eigenvectors are
the constant, ν′1(a) =

√
2/2 for a ∈ A and ν′1(b) = −

√
2 with eigenvalue λ1 = 1/2, and

ν′2 = −ν′1 with eigenvalue λ2 = 1/2. These chains have the same density array, but
are clearly not isomorphic. Moreover, by blowing up b instead of A—that is, taking
Ω′′ = {a} ∪ B and defining π′′, ν′′1 analogously—we can get two chains with the same
density array such that neither embeds in the other.

The solution is take pseudofinite Markov chains with some additional properties to be
canonical representatives of each density array. (Our approach is similar to that taken in
[5] for graph limits.)

Definition 7.1. Let (Ω,B, π), p̂t be a pseudofinite Markov chain with p̂t(ω, ω′) =
∑
i λ

t
iνi(ω)νi(ω

′).
A potential type is a function q : N→ R. We write tp(ω), the type of ω, for the function
tp(ω)(i) = νi(ω). We say ω realizes q if q(i) = νi(ω) for all i.

For I ⊆ N finite and ε > 0, the points which I, ε-almost realize q are those ω ∈ Ω such
that for every i ∈ I, |q(i)− νi(ω)| < ε. q is a wide type if for every I, ε, the set of ω which
I, ε-almost realize q has positive measure.

We say (Ω,B, π), p̂t is saturated if whenever q is a wide type, there is an ω ∈ Ω

realizing q. We say (Ω,B, π), p̂t is twin-free if whenever q is a type, there is at most one
ω ∈ Ω realizing q.

We say ω ∈ Ω has wide type exactly if tp(ω) is a wide type.
Our definition of type is motivated by the model theoretic notion of the same name

(and indeed, a type in our sense would be a partial type if we represented our Markov
chains as first-order structures in an appropriate language). Informally, a wide type is a
point which “ought to” exist, in these sense that it is a limit of many points which are
present. Saturation says that all the points which should exist are actually present, and
twin-freeness says that we don’t have multiple points which are indistinguishable.

We ignore the behavior of non-wide types because the points with non-wide type are
negligible.

Lemma 7.2. Let (Ω,B, π), p̂t be a pseudofinite Markov chain. Then almost every ω ∈ Ω,
tp(ω) is wide.
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Proof. For any finite set I and any collection {Qi}i∈I where each Qi is an interval in R
with rational endpoints, let

DI,{Qi} = {ω | ∀i ∈ I νi(ω) ∈ Qi}.

There are countably many such DI,{Qi}, so it suffices to show that if ω fails to have wide
type then it is contained in some DI,{Qi} with measure 0.

Suppose ω does not have wide type. Then there is an ε > 0 and a finite set I such that
the set of ω′ so that, for every i ∈ I, |νi(ω)− νi(ω′)| < ε, has measure 0. For each i ∈ I,
let Qi be some interval (pi, qi) with νi(ω) − ε ≤ pi < νi(ω) < qi ≤ νi(ω) + ε with pi and
qi both rational; such an interval always exists. Then ω ∈ DI,{Qi} and any ω′ ∈ DI,{Qi}
would I, ε-almost realize tp(ω), and therefore µ(DI,{Qi}) = 0.

Lemma 7.3. Let (Ω,B, π), p̂t be a pseudofinite Markov chain. Then there is a twin-
free saturated pseudofinite Markov chain (Ω′,B′, π′), p̂′t and a measurable, measure-
preserving map ρ : Ω→ Ω′ so that p̂t(ω, ω′) = p̂′t(ρ(ω), ρ(ω′)) for all ω, ω′ ∈ Ω.

Proof. We take Ω′ to be the set of types of (Ω,B, π), p̂t. We define eigenvectors ν′i(q) = q(i)

and set p̂′t(q, q
′) =

∑
i λ

t
iν
′
i(q)ν

′
i(q
′). The measurable sets B′ are generated by the level

sets of ν′i; in particular, this ensures that each ν′i, and therefore p̂′t, is measurable. We set
π′({q | ν′i(q) ≤ c}) = π({ω | νi(ω) ≤ c}).

We define ρ(ω) = tp(ω), which ensures p̂t(ω, ω′) = p̂′t(ρ(ω), ρ(ω′)). The definition of π′

ensures that this is measurable and measure-preserving.
Note that tp(q) = q, so Ω′ has exactly one element of each type, so is certainly

twin-free and saturated.

Given two twin-free pseudofinite Markov chains p̂ and p̂′ with the same density array,
we would like to simply match up points which have the same type. However to do this,
we need to show that the eigenvectors have the same distributions, and the only way
we know of to do this is to show that p̂1 and p̂′1 can both embed in the same chain p̂∗.
We therefore invoke [5] to do precisely that. The resulting approach is overkill—we are
first showing that p̂1 and p̂′1 can embed in a common object, and then starting over to
show isomorphism of p̂t and p̂′t. The alternative—repeating much of the proof from [5]
to get the result in one step—is not much simpler, and we expect that there is a direct
proof that the eigenvectors of p̂1 and p̂′1 have the same distributions, which would give a
simpler proof of the whole result.

Lemma 7.4. Suppose (Ω,B, π), p̂t and (Ω′,B′, π′), p̂′t are pseudofinite Markov chains with
the same density array. Then there is an ordering of the eigenvectors of p̂1, ν1, . . ., and
the eigenvectors of p̂′1, ν′1, . . . so that for any finite set n, the distribution of (ν1, . . . , νn) is
the same as the distribution of (ν′1, . . . , ν

′
n).

Proof. For each positive integer K, let

p̂K1 (ω, ω′) =


K if p̂1(ω, ω′) > K

−K if p̂1(ω, ω′) < −K
p̂1(ω, ω′) otherwise

.

Define p̂
′K
1 similarly. Since the distributions of p̂K1 and p̂

′K
1 are the same, they have

the same moments in the sense of [5], and so by the main result of that paper, they
are weakly isomorphic: there are measure-preserving, measurable embeddings ρ, ρ′

into some common space (ΩK∗ ,BK∗ , πK∗ ), p̂K1,∗ so that p̂K1 (ω, ω′) = p̂K1,∗(ρ(ω), ρ(ω′)) almost

everywhere and p̂
′,K
1 (ω, ω′) = p̂K1,∗(ρ

′(ω), ρ′(ω′)) almost everywhere.
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As noted above, each p̂K1,∗ has an eigenvector decomposition, and the pullbacks of the

eigenvectors of p̂1,∗ under ρ and ρ′ must be eigenvectors of p̂K1 and p̂
′,K
1 . In particular,

fixing an enumeration of the eigenvectors of p̂K1,∗, the pullback of the first n eigenvectors
to p̂K1 has the same distribution as the pullback of the first n eigenvectors eigenvector to

p̂
′,K
1 .

By choosing K larger and larger, the i-th eigenvector of p̂K1 converges in L2 norm, so
also in distribution, to the i-th eigenvector of p̂1, and similarly for p̂′1. This means that for
any n, the first n eigenvectors of p̂1 have the same distribution as the first n eigenvectors
of p̂′1.

Theorem 7.5. Suppose (Ω,B, π), p̂t and (Ω′,B′, π′), p̂′t are twin-free saturated pseudofi-
nite Markov chains with the same density array. Suppose B and B′ are, respectively,
the smallest σ-algebras which make p̂t and p̂′t measurable. Then there is a measure-
preserving φ : Ω→ Ω′ which is a bijection up to sets of measure 0.

Proof. By the previous lemma, we may order the eigenvectors of (Ω,B, π), p̂t and
(Ω′,B′, π′), p̂′t so that for each n, the first n eigenvectors of p̂1 have the same distri-
bution as the first n eigenvectors of p̂′1. (Note that φ need not be unique: there could be
multiple ways of ordering the eigenvectors so the distributions match up.)

In particular, this means that a type is wide in p̂1 iff it is wide in p̂′1. Almost every point
ω of Ω is a point with a wide type, and there is exactly one point ω′ ∈ Ω′ with the same
type, so we set φ(ω) = ω′. This is injective (distinct points have distinct types by the twin-
freeness of Ω) and surjective up to measure 0 (almost every point in Ω′ has wide type).
Measurability and the measure-preserving property follows since the inverse image of
the set of I, ε-almost realizers in Ω′ of some wide type is precisely the the I, ε-almost
realizers in Ω. Since νi(φ(ω)) = νi(ω) for all i and almost all ω, p̂t(ω, ω′) = p̂′t(φ(ω), φ(ω′))

almost everywhere as desired.

References

[1] Aldous, D.: Note: a conjectured compactification of some finite reversible MCs. http:
//www.stat.berkeley.edu/users/aldous/Talks/MCcompact.pdf

[2] Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Amer. Math. Monthly 93(5),
333–348 (1986). DOI 10.2307/2323590. URL http://dx.doi.org/10.2307/2323590 MR-
0841111

[3] Aldous, D.J.: Representations for partially exchangeable arrays of random variables. J.
Multivariate Anal. 11(4), 581–598 (1981). DOI 10.1016/0047-259X(81)90099-3. URL http:
//dx.doi.org/10.1016/0047-259X(81)90099-3 MR-0637937

[4] Austin, T., Tao, T.: Testability and repair of hereditary hypergraph properties. Random
Structures Algorithms pp. 376–463 (2010). DOI 10.1002/rsa.20300. URL http://doi.wiley.
com/10.1002/rsa.20300. 10.1002/rsa.20300 MR-2666763

[5] Borgs, C., Chayes, J., Lovász, L.: Moments of two-variable functions and the uniqueness of
graph limits. Geom. Funct. Anal. 19(6), 1597–1619 (2010). DOI 10.1007/s00039-010-0044-0.
URL http://dx.doi.org/10.1007/s00039-010-0044-0 MR-2594615

[6] Borgs, C., Chayes, J.T., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent sequences of
dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math. 219(6),
1801–1851 (2008). DOI 10.1016/j.aim.2008.07.008. URL http://dx.doi.org/10.1016/j.
aim.2008.07.008 MR-2455626

[7] Chen, G.Y., Saloff-Coste, L.: The cutoff phenomenon for ergodic Markov processes. Electron.
J. Probab. 13, no. 3, 26–78 (2008). DOI 10.1214/EJP.v13-474. URL http://dx.doi.org/10.
1214/EJP.v13-474 MR-2375599

[8] Diaconis, P., Janson, S.: Graph limits and exchangeable random graphs. Rend. Mat. Appl. (7)
28(1), 33–61 (2008) MR-2463439

EJP 20 (2015), paper 77.
Page 22/23

ejp.ejpecp.org

http://www.stat.berkeley.edu/users/aldous/Talks/MCcompact.pdf
http://www.stat.berkeley.edu/users/aldous/Talks/MCcompact.pdf
http://dx.doi.org/10.2307/2323590
http://www.ams.org/mathscinet-getitem?mr=0841111
http://www.ams.org/mathscinet-getitem?mr=0841111
http://dx.doi.org/10.1016/0047-259X(81)90099-3
http://dx.doi.org/10.1016/0047-259X(81)90099-3
http://www.ams.org/mathscinet-getitem?mr=0637937
http://doi.wiley.com/10.1002/rsa.20300
http://doi.wiley.com/10.1002/rsa.20300
http://www.ams.org/mathscinet-getitem?mr=2666763
http://dx.doi.org/10.1007/s00039-010-0044-0
http://www.ams.org/mathscinet-getitem?mr=2594615
http://dx.doi.org/10.1016/j.aim.2008.07.008
http://dx.doi.org/10.1016/j.aim.2008.07.008
http://www.ams.org/mathscinet-getitem?mr=2455626
http://dx.doi.org/10.1214/EJP.v13-474
http://dx.doi.org/10.1214/EJP.v13-474
http://www.ams.org/mathscinet-getitem?mr=2375599
http://www.ams.org/mathscinet-getitem?mr=2463439
http://dx.doi.org/10.1214/EJP.v20-4188
http://ejp.ejpecp.org/


Limits of sequences of Markov chains

[9] Elek, G.: Samplings and observables. Invariants of metric measure spaces. ArXiv e-prints
(2012)

[10] Elek, G., Szegedy, B.: A measure-theoretic approach to the theory of dense hypergraphs. Adv.
Math. 231(3-4), 1731–1772 (2012). DOI 10.1016/j.aim.2012.06.022. URL http://dx.doi.
org/10.1016/j.aim.2012.06.022 MR-2964622

[11] Goldbring, I., Towsner, H.: An approximate logic for measures. Israel Journal of Mathematics
199(2), 867–913 (2014). DOI 10.1007/s11856-013-0054-3. URL http://dx.doi.org/10.
1007/s11856-013-0054-3 MR-3219561

[12] Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, english edn.
Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2007). Based on the 1981
French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the
French by Sean Michael Bates MR-2307192

[13] Hatami, H., Norine, S.: The entropy of random-free graphons and properties. Combin.
Probab. Comput. 22(4), 517–526 (2013). DOI 10.1017/S0963548313000175. URL http:
//dx.doi.org/10.1017/S0963548313000175 MR-3073488

[14] Hoover, D.: Relations on probability spaces and arrays of random variables. Preprint, Institute
for Advanced Study, Princeton, NJ (1979)

[15] Hrushovski, E.: Stable group theory and approximate subgroups. J. Amer. Math. Soc. 25(1),
189–243 (2012). DOI 10.1090/S0894-0347-2011-00708-X. URL http://dx.doi.org/10.
1090/S0894-0347-2011-00708-X MR-2833482

[16] Kallenberg, O.: Probabilistic symmetries and invariance principles. Probability and its
Applications (New York). Springer, New York (2005) MR-2161313

[17] Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Combin. Theory Ser. B 96(6),
933–957 (2006). DOI 10.1016/j.jctb.2006.05.002. URL http://dx.doi.org/10.1016/j.jctb.
2006.05.002 MR-2274085

[18] Lovász, L., Szegedy, B.: Szemerédi’s lemma for the analyst. Geom. Funct. Anal. 17(1),
252–270 (2007). DOI 10.1007/s00039-007-0599-6. URL http://dx.doi.org/10.1007/
s00039-007-0599-6 MR-2306658

[19] Lovász, L., Szegedy, B.: Regularity partitions and the topology of graphons. In: An ir-
regular mind, Bolyai Soc. Math. Stud., vol. 21, pp. 415–446. János Bolyai Math. Soc., Bu-
dapest (2010). DOI 10.1007/978-3-642-14444-8_12. URL http://dx.doi.org/10.1007/
978-3-642-14444-8_12 MR-2815610

[20] Tao, T.: A correspondence principle between (hyper)graph theory and probability theory,
and the (hyper)graph removal lemma. J. Analyse Math. 103, 1–45 (2007). URL http:
//dx.doi.org/10.1007/s11854-008-0001-0. 10.1007/s11854-008-0001-0 MR-2373263

[21] Towsner, H.: An analytic approach to sparse hypergraphs: Hypergraph removal (2012).
Submitted

[22] Towsner, H.: Sigma-Algebras for Quasirandom Hypergraphs (2013). Submitted

EJP 20 (2015), paper 77.
Page 23/23

ejp.ejpecp.org

http://dx.doi.org/10.1016/j.aim.2012.06.022
http://dx.doi.org/10.1016/j.aim.2012.06.022
http://www.ams.org/mathscinet-getitem?mr=2964622
http://dx.doi.org/10.1007/s11856-013-0054-3
http://dx.doi.org/10.1007/s11856-013-0054-3
http://www.ams.org/mathscinet-getitem?mr=3219561
http://www.ams.org/mathscinet-getitem?mr=2307192
http://dx.doi.org/10.1017/S0963548313000175
http://dx.doi.org/10.1017/S0963548313000175
http://www.ams.org/mathscinet-getitem?mr=3073488
http://dx.doi.org/10.1090/S0894-0347-2011-00708-X
http://dx.doi.org/10.1090/S0894-0347-2011-00708-X
http://www.ams.org/mathscinet-getitem?mr=2833482
http://www.ams.org/mathscinet-getitem?mr=2161313
http://dx.doi.org/10.1016/j.jctb.2006.05.002
http://dx.doi.org/10.1016/j.jctb.2006.05.002
http://www.ams.org/mathscinet-getitem?mr=2274085
http://dx.doi.org/10.1007/s00039-007-0599-6
http://dx.doi.org/10.1007/s00039-007-0599-6
http://www.ams.org/mathscinet-getitem?mr=2306658
http://dx.doi.org/10.1007/978-3-642-14444-8_12
http://dx.doi.org/10.1007/978-3-642-14444-8_12
http://www.ams.org/mathscinet-getitem?mr=2815610
http://dx.doi.org/10.1007/s11854-008-0001-0
http://dx.doi.org/10.1007/s11854-008-0001-0
http://www.ams.org/mathscinet-getitem?mr=2373263
http://dx.doi.org/10.1214/EJP.v20-4188
http://ejp.ejpecp.org/


Electronic Journal of Probability

Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS1)

• Non profit, sponsored by IMS2, BS3, PKP4

• Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Three Descriptions
	Finite State Markov Chains
	Pseudofinite Chains
	Properties of Pseudofinite Chains
	Exchangeable Arrays

	Scaling Finite Markov Chains
	Statement of Main Results

	Ultraproducts
	Limits of Bounded Sequences
	Sampling
	Uniqueness
	References

