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Abstract

We consider weighted graphs satisfying sub-Gaussian estimate for the natural random
walk. On such graphs, we study symmetric Markov chains with heavy tailed jumps. We
establish a threshold behavior of such Markov chains when the index governing the
tail heaviness (or jump index) equals the escape time exponent (or walk dimension) of
the sub-Gaussian estimate. In a certain sense, this generalizes the classical threshold
corresponding to the second moment condition.
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1 Introduction

This work concerns a new threshold behavior of random walks on graphs driven by
low moment measures. As the title suggests, this work combines two lines of research
that have been actively pursued: anomalous random walks and long range random walks.
The graphs were are interested in have a nearest neighbor random walk that satisfies
sub-Gaussian estimates. Sub-Gaussian estimates for nearest neighbor random walks are
typical of many regular fractals like Sierpinski gaskets, carpets and the Viscek graphs.
See [22] for a recent survey on such anomalous random walks. Another line of work
that has received much attention recently is the long term behavior of random walks
with heavy tailed jumps. For example [5], [10], [11], [2], [4] are just a few works in this
direction. In much of the existing literature the ‘jump index’ β is assumed to be in (0, 2).
Our work is a modest attempt to understand the behavior of such random walks when
β ∈ (0,∞).

The motivation for our work comes from a recent work by the second author and
Zheng [24]. In [24], the behavior of long range random walks on groups was investigated
for the full range of the jump index β ∈ (0,∞). For random walks on groups there is a
threshold behavior at β = 2. For graphs satisfying a sub-Gaussian heat kernel estimate,
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Anomalous threshold behavior of random walks

we show that the threshold behavior happens when the jump index β equals the escape
time exponent.

Let Γ be an infinite, connected, locally finite graph endowed with a weight µxy. The
elements of the set Γ are called vertices. Some of the vertices are connected by an edge,
in which case we say that they are neighbors. The weight is a symmetric non-negative
function on Γ× Γ such that µxy > 0 if and only if x and y are neighbors (in which case
we write x ∼ y). We call the pair (Γ, µ) a weighted graph. The weight µxy on the edges
induces a weight µ(x) on the vertices and a measure µ on subsets A ⊂ Γ defined by

µ(x) :=
∑
y:y∼x

µxy and µ(A) :=
∑
x∈A

µ(x).

Let d(x, y) be the graph distance between points x, y ∈ Γ, that is the minimal number of
edges in any edge path connecting x and y. Denote the metric balls and their measures
as follows

B(x, r) := {y ∈ Γ : d(x, y) ≤ r} and Vµ(x, r) := µ(B(x, r))

for all x ∈ Γ and r ≥ 0. We assume that the measure µ is comparable to the counting
measure in the sense that there exists Cµ ∈ [1,∞) such that µx = µ ({x}) satisfies

C−1
µ ≤ µx ≤ Cµ (1.1)

We consider weighted graphs (Γ, µ) satisfying the following uniform volume doubling
assumption: there exists V : [0,∞)→ (0,∞), a strictly increasing continuous function
and constants CD, Ch > 1 such that

V (2r) ≤ CDV (r) (1.2)

for all r > 0 and
C−1
h V (r) ≤ Vµ(x, r) ≤ ChV (r) (1.3)

for all x ∈ Γ and for all r > 0. It can be easily seen from (1.2) that

V (R)

V (r)
≤ CD

(
R

r

)α
(1.4)

for all 0 < r ≤ R and for all α ≥ log2 CD. For the rest of the work, we will assume that
our weighted graph (Γ, µ) satisfies (1.1), (1.2) and (1.3).

Remark 1.1. If (Γ, µ) satisfies (1.2) and (1.3), we may assume that V (n) = Vµ(x0, n) for
some fixed x0 and for all natural numbers n. For non-integer values we can extend it by
linear interpolation. Since the graph is connected, infinite and locally finite, the function
V defined above is continuous, strictly increasing on [0,∞).

There is a natural random walk Xn on (Γ, µ) associated with the edge weights µxy.
The Markov chain is defined by the following one-step transition probability

P (x, y) = Px(X1 = y) =
µxy
µ(x)

.

We will assume that there exists p0 > 0 such that

P (x, y) ≥ p0 (1.5)

for all x, y such that x ∼ y. We also consider P as a Markov operator which acts on
functions of Γ by

Pf(x) =
∑
y∈Γ

P (x, y)f(y).
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Anomalous threshold behavior of random walks

We will denote non-negative integers by N = {0, 1, 2, . . .} and positive integers by
N∗ = {1, 2, 3, . . .}. For any non-negative integer n, the n-step transition probability Pn
is defined by Pn(x, y) = P(Xn = y | X0 = x) = Px(Xn = y). Define the heat kernel of
weighted graph (Γ, µ) by

pn(x, y) :=
Pn(x, y)

µ(y)
.

This Markov chain is symmetric with respect to the measure µ, that is pn(x, y) = pn(y, x)

for all x, y ∈ Γ and for all n ∈ N. We assume that there exists γ > 1 such that the
following sub-Gaussian estimates are true for the heat kernel pn. There exist constants
c, C > 0 such that, for all x, y ∈ Γ

pn(x, y) ≤ C

V (n1/γ)
exp

[
−
(
d(x, y)γ

Cn

) 1
γ−1

]
,∀n ≥ 1 (1.6)

and

(pn + pn+1)(x, y) ≥ c

V (n1/γ)
exp

[
−
(
d(x, y)γ

cn

) 1
γ−1

]
,∀n ≥ 1 ∨ d(x, y). (1.7)

Let 〈·, ·〉 denote the inner product in `2(Γ, µ). For the Markov operator P , define the
corresponding Dirichlet form EP by

EP (f) := 〈(I − P )f, f〉 =
1

2

∑
x,y∈Γ

(f(x)− f(y))2µxy

for all f ∈ `2(Γ, µ). For any two sets A,B ⊂ Γ, the resistance RP (A,B) is defined by

RP (A,B)−1 = inf
{
EP (f, f) : f ∈ RΓ, f

∣∣
A
≡ 1, f

∣∣
B
≡ 0
}

where inf ∅ = +∞. By [21, Theorem 3.1], we have the following estimate for the
resistance. There exist constants CR, A > 1 such that

C−1
R

rγ

V (r)
≤ RP (B(x, r), B(x,Ar)c) ≤ CR

rγ

V (r)
(1.8)

for all x ∈ Γ and for all r ≥ 1. Other related work that characterizes the sub-Gaussian
estimates (1.6) and (1.7) are [20] and [3].

The parameter γ in (1.6) and (1.7) is sometimes called the ‘escape time exponent ’ or
‘anomalous diffusion exponent ’ or ‘walk dimension’. It is known that γ ≥ 2 necessarily
(see for instance [13, Theorem 4.6]). For any α ∈ [1,∞) and for any γ ∈ [2, α + 1],
Barlow constructs graphs of polynomial volume growth satisfying V (x, r) ' (1 + r)α

and sub-Gaussian estimates (1.6) and (1.7) (see [1, Theorem 2] and [21, Theorem 3.1]).
Moreover, these are the complete range of α and γ for which sub-Gaussian estimates
with escape rate exponent γ could possibly hold for graphs of polynomial growth with
growth exponent α.

Let φ : [0,∞)→ [1,∞) be a continuous, regularly varying function of positive index.
We say a Markov operator K satisfies (Jφ) if it has symmetric kernel k with respect to
the measure µ and if there exists a constant Cφ > 0 such that

C−1
φ

1

V (d(x, y))φ(d(x, y))
≤ k(x, y) = k(y, x) ≤ Cφ

1

V (d(x, y))φ(d(x, y))
(Jφ)

for all x, y ∈ Γ. Let kn(x, y) denote the kernel of the iterated power Kn with respect
to the measure µ. If K satisfies (Jφ) and if φ is regularly varying with index β > 0,
then we say that β is the jump index of the random walk driven by K. Here by random
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walk driven by K, we mean the discrete time Markov chain (Yn)n∈N with transition
probabilities given by

P(Y1 = y|Y0 = x) = K1y(x) = k(x, y)µ(y).

We demonstrate threshold behavior as the jump index β varies by analyzing the
function

ψK(n) =
∥∥K2n

∥∥
1→∞ = ‖Kn‖21→2 = sup

x∈Γ
k2n(x, x) = sup

x,y∈Γ
k2n(x, y) (1.9)

as n→∞ (see [17] for a proof of (1.9)). The following theorem gives bounds on ψK(n)

that are sharp up to constants.

Theorem 1.2. Let (Γ, µ) be a weighted graph satisfying (1.1), (1.2), (1.3), (1.5) and
suppose that its heat kernel pn satisfies the sub-Gaussian bounds (1.6) and (1.7) with
escape time exponent γ. Let K be a Markov operator symmetric with respect to the
measure µ satisfying (Jφ), where φ : [0,∞) → [1,∞) is a continuous regularly varying
function of positive index. Then there exists a constant C > 0 such that

C−1

V (ζ(n))
≤ ψK(n) ≤ C

V (ζ(n))
(1.10)

for all n ∈ N, where ζ : [0,∞)→ [1,∞) is a continuous non-decreasing function which is

an asymptotic inverse of t 7→ tγ/
∫ t

0
sγ−1 ds
φ(s) .

Example 1.3. We write φ in Theorem 1.2 as φ(t) = ((1 + t)l(t))
β where l is a slowly

varying function (we refer the reader to [8, Chap. I] for a textbook introduction on slowly
and regularly varying functions). The function ζ of Theorem 1.2 can be described more
explicitly as follows:

• If β > γ, ζ(t) ' t1/γ .

• If β < γ, we have tγ/
∫ t

0
sγ−1 ds
φ(s) ' φ(t) and ζ is essentially the asymptotic inverse of

φ, namely

ζ(t) ' t1/βl#(t1/β)

where l# is the de Bruijn conjugate of l. For instance, if l has the property that
l(ta) ' l(t) for all a > 0, then l# ' 1/l.

• If β = γ, the situation is more subtle. The function η(t) = tγ/
∫ t

0
sγ−1 ds
φ(s) is regularly

varying of index γ and η(t) ≤ C1φ(t) for some constant C1. For example if l ≡ 1, we
have η(t) ' tγ/ log t and ζ(t) ' (t log t)1/γ . When l(t) ' (log t)ρ/γ with ρ ∈ R, then

– If ρ > 1, η(t) ' tγ and ζ(t) ' t1/γ .
– If ρ = 1, η(t) ' tγ/ log log t and ζ(t) ' (t log log t)1/γ .

– If ρ < 1, η(t) ' tγ/(log t)1−ρ and ζ(t) '
(
t(log t)1−ρ)1/γ .

Remark 1.4.

(a) The conclusion of Theorem 1.2 holds if K is symmetric with respect to a different
measure ν that is comparable to the counting measure in the sense described by
(1.1). This can be seen by comparing ψK with ψQφ where Qφ will be defined in (2.10).
We simply use the definition (1.9) along with the fact that Lp(Γ, ν) and Lp(Γ, µ) have
comparable norms.

(b) The condition (1.5) is required only for the lower bound on ψK .
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(c) Let φ in Theorem 1.2 be regularly varying with index β > 0. If β ∈ (0, 2) we know
matching two sided estimates on kn(x, y) for all n ∈ N and for all x, y ∈ Γ. Assume
that φ(t) = ((1 + t)l(t))β where l is a slowly varying function. The main result of [15]
states that

kn(x, y) '
(

1

V (n1/βl#(n1/β))
∧ n

V (d(x, y))φ(d(x, y))

)
, (1.11)

where l# is the de Bruijn conjugate of l.

(d) We conjecture that the two-sided estimate (1.11) is true for any β ∈ (0, γ), where
γ is the escape time exponent for the sub-Gaussian estimate in (1.6) and (1.7).lem
The proof of (1.11) in [15] doesn’t seem to work if β ∈ [2, γ). In particular, the use of
Davies’ method to prove off-diagonal upper bounds does not seem to work directly.

(e) The conclusion of Theorem 1.2 can be strengthened for random walks on groups for
all values of β (γ is necessarily 2 for random walks on groups). See [24, Theorem
1.5] for more.

(f) Another intriguing question is to find matching two-sided estimates kn(x, y) for the
case β ≥ γ for appropriate range of d(x, y). In light of [24, Theorem 1.5] for random
walks on groups, we conjecture that

kn(x, y) ' 1

V (ζ(n))

for all n ∈ N∗ and for all x, y ∈ Γ such that d(x, y) ≤ ζ(n).

(g) It is a technically challenging open problem to replace the homogeneous volume dou-
bling assumptions (1.2) and (1.3) by the more general volume doubling assumption:
there exists CD > 0 such that V (x, 2r) ≤ CDV (x, r) for all x ∈ Γ and for all r > 0.

Theorem 1.2 indicates a possible moment threshold behavior. We define moment of
random walk as follows.

Definition 1.5. For a Markov operator K on Γ and any number r > 0, we define the
r-moment of random walk driven by K as

Mr,K := sup
x∈Γ

Exd(X0, X1)r = sup
x∈Γ

(K(drx)) (x)

where (Xn)n∈N is a random walk driven by the Markov operator K and drx : Γ → R

denotes the function y 7→ (d(x, y))r.

Here is a corollary of Theorem 1.2 that illustrates moment threshold behavior of
random walks. It states that the asymptotic behavior of ψK is same as ψP corresponding
to the natural random walk if and only if K has finite γ-moment.

Corollary 1.6. Let (Γ, µ) be an infinite, weighted graph satisfying (1.1), (1.2), (1.3),
(1.5) and its heat kernel pn satisfies the sub-Gaussian bounds (1.6) and (1.7) with escape
time exponent γ. Let K be a Markov operator symmetric with respect to the measure µ
satisfying (Jφ), where φ : [0,∞) → [1,∞) is a continuous regularly varying function of
positive index. Then the following are equivalent:

(a) K has finite γ-moment, that is Mγ,K <∞.

(b) There exists a constant C > 0 such that

C−1

V (n1/γ)
≤ ψK(n) ≤ C

V (n1/γ)
(1.12)

for all n ∈ N.
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Remark 1.7. For random walks on groups one must have γ = 2 and such a second
moment threshold behavior is known in greater generality [16, Theorem 1.4 and Corollary
1.5]. See [6], [7] and [24] for extensions and generalizations of such moment threshold
behavior for random walks on groups. It is an interesting open problem to formulate and
prove a γ-moment threshold in greater generality without the assumption (Jφ).

Proof of Corollary 1.6. By Theorem 1.2, (b) holds if and only if
∫∞

0
sγ−1 ds
φ(s) <∞. Therefore

(b) holds if and only if
∞∑
n=1

nγ−1

φ̃(n)
<∞, (1.13)

where φ̃(x) = supt∈[0,x] φ(x). The above statement follows from Potter’s bounds [8,
Theorem 1.5.6], continuity of φ, Theorem 1.5.3 of [8] and uniqueness of asymptotic
inverse up to asymptotic equivalence.

By (Jφ) and Theorem 1.5.3 of [8], the condition Mγ,K <∞ holds if and only if∑
y∈Γ

d(x, y)γ

V (d(x, y))φ(d(x, y))
<∞ (1.14)

for some fixed x ∈ Γ. It is well-known that the volume doubling property (1.2) and (1.3)
implies a reverse volume doubling property which has the following consequence: There
exists an integer A ∈ N∗ and c1 > 0 such that

V (x,Ar)− V (x, r) ≥ c1V (r) (1.15)

for all r ≥ 1/2 (Proof of [19, Proposition 3.3] goes through with minor modifications).
There exists c2, c3 > 0 such that∑

y∈Γ

d(x, y)γ

V (d(x, y))φ(d(x, y))

≥ c2
∞∑
n=0

∑
y∈B(x,An+1/2)\B(x,An/2)

Anγ

V (An+1/2)φ̃(An+1/2)

≥ c3
∞∑
n=0

Anγ

φ̃(An)
(1.16)

for all x ∈ Γ.
Now we show a reverse inequality of (1.16).There exists C1, C2 > 0 such that

∑
y∈Γ

d(x, y)γ

V (d(x, y))φ(d(x, y))
≤ C1

∞∑
n=0

∑
y∈B(x,2n)\B(x,2n−1)

2nγ

V (2n−1)φ̃(2n−1)

≤ C2

∞∑
n=0

2nγ

φ̃(2n)
(1.17)

for all x ∈ Γ. The second line above follows from (1.2) and Potter’s bound [8, Theorem
1.5.6].

To show (a) implies (b), we use (1.14), (1.16) and a generalization of Cauchy conden-
sation test due to Schlömilch to obtain (1.13). To show (b) implies (a), we use (1.13),
Cauchy condensation test and (1.17) to obtain (1.14) which implies (b).

Theorem 1.2 and Corollary 1.6 suggests that for spaces with sub-Gaussian estimates
and a scaling structure (for example regular fractals), one might be able to formulate
and prove a central limit theorem with a γ + ε moment condition.
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1.1 Analytic preliminaries on Markov operator and Dirichlet form

Let (Γ, µ) be a countable, weighted graph. Let K be a Markov operator, symmetric
with respect to the measure µ. Denote the kernel of the iterated operator Kn with
respect to µ by kn(x, y), that is Knf(x) =

∑
y∈Γ kn(x, y)f(y)µ(y). We will collect some

useful facts about the operator K. For any p ∈ [1,∞], we denote by ‖f‖p the norm of f
in `p(Γ, µ) and by 〈·, ·〉 the inner product in `2(Γ, µ). A fundamental property of K is that
it is a contraction in `p(Γ) for any p ∈ [1,∞], that is

‖Kf‖p ≤ ‖f‖p

for all p ∈ [1,∞] and for all f ∈ `p(Γ, µ). By the symmetry k1(x, y) = k1(y, x), we have
that K is self-adjoint in `2(Γ, µ), that is

〈Kf, g〉 = 〈f,Kg〉 (1.18)

for all f, g ∈ `2(Γ, µ). For any n ∈ N, we denote by EKn(f, f) = 〈(I−Kn)f, f〉 the Dirichlet
form associated with Kn.

The following useful lemma compares Dirichlet form of a Markov operator K with its
iterated power Kn.

Lemma 1.8 (Folklore). Let K be a Markov operator on Γ symmetric with respect to the
measure µ. Then for any f ∈ `2(Γ, µ) and for any n ∈ N∗

EKn(f, f) ≤ nEK(f, f). (1.19)

Proof. We verify this using spectral theory. Let Eλ be the spectral resolution of K.
Therefore

EKn(f, f)− nEK(f, f) =

∫ 1

−1

(1− λn − n+ nλ)dEλ(f, f).

The result follows from the observation that 1− λn − n+ nλ ≤ 0 for all λ ∈ [−1, 1] and
for all n ∈ N∗.

Lemma 1.9 (Folklore). Let K be a Markov operator on Γ symmetric with respect to
the measure µ and let f ∈ `2(Γ, µ) be a non-zero function. Then the function i 7→∥∥Kif

∥∥
2
/
∥∥Ki−1f

∥∥
2

is non-decreasing.

Proof. We use self-adjointness (1.18) and Cauchy-Schwarz inequality to obtain∥∥Kif
∥∥2

2
= 〈Ki−1f,Ki+1f〉 ≤

∥∥Ki−1f
∥∥

2

∥∥Ki+1f
∥∥

2
,

which gives the desired result.

2 Pseudo-Poincaré inequality using Discrete subordination

Pseudo-Poincaré inequality provides an efficient way to prove Nash inequality which
in turn gives upper bounds on ψK(n). For a function f : Γ→ R and R > 0, we define a
function fR : Γ→ R by

fR(x) :=
1

V (x,R)

∑
y∈B(x,R)

f(y)µ(y).

In other words, fR(x) is the µ-average of f in B(x,R). The main result of the section is
the following pseudo-Poincaré inequality.
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Proposition 2.1 (Pseudo-Poincaré inequality). Let (Γ, µ) be a weighted graph satisfying
(1.1), (1.2), (1.3) and suppose that its heat kernel pn satisfies the sub-Gaussian bounds
(1.6) and (1.7) with escape time exponent γ. Let K be a Markov operator symmetric
with respect to the measure µ satisfying (Jφ), where φ : [0,∞)→ [1,∞) is a continuous
regularly varying function of positive index. There exists a constant C > 0 such that

‖f − fR‖22 ≤ C

 Rγ∫ R
0

sγ−1 ds
φ(s)

 EK(f, f) (2.1)

for all R > 0 and for all f ∈ `2(Γ, µ).

We introduce a discrete subordination of the natural random walk on (Γ, µ) whose
kernel is comparable to the kernel of K in Proposition 2.6. We introduce a new Markov
operator

Q :=
1

2
(P + P 2) (2.2)

which has a symmetric kernel q(x, y) = 1
2 (p1(x, y) + p2(x, y)) with respect to µ. Let qk

denote the kernel of the Markov operator Qk. For a Markov operator Qk, let EQk(f, f) :=

〈(I −Qk)f, f〉 denote the corresponding Dirichlet form. Let RQ denote the resistance
defined using the Dirichlet form EQ. We will now compare kernels of P k and Qk.

Remark 2.2. The advantage of working with the kernel qn is that it satisfies as stronger
sub-Gaussian lower estimate (2.4) in comparison to (1.7) satisfied by pn. This makes
subordination of kernel Q preferable(as opposed to P ) and technically easier.

Lemma 2.3. The kernel qk satisfies the following improved sub-Gaussian estimates:
there exist constants c, C > 0 such that, for all x, y ∈ Γ

qn(x, y) ≤ C

V (n1/γ)
exp

[
−
(
d(x, y)γ

Cn

) 1
γ−1

]
,∀n ≥ 1 (2.3)

and

qn(x, y) ≥ c

V (n1/γ)
exp

[
−
(
d(x, y)γ

cn

) 1
γ−1

]
,∀n ≥ 1 ∨ d(x, y). (2.4)

Proof. Observe that qn(x, y) =
∑n
k=0 2−n

(
n
k

)
pn+k(x, y). This along with (1.6), (1.2) gives

the desired upper bound (2.3).
Note that, there exists C1 > 1 such that

C−1
1 ≤

(
n
k

)(
n
k+1

) ≤ C1 (2.5)

for all n ∈ N∗ and for all k ∈ N such that bn4 c ≤ k ≤ b
3n
4 c. There exists c1, c2 > 0

qn(x, y) ≥
b 3n4 c+1∑
k=bn4 c

2−n
(
n

k

)
pn+k(x, y)

≥ 2−n−1C−1
1

b 3n4 c∑
k=bn4 c

(
n

k

)
(pn+k(x, y) + pn+k+1(x, y))

≥ 2−n−1c1C
−1
1 C−1

D

1

V (n1/γ)
exp

[
−
(
d(x, y)γ

c1n

) 1
γ−1

] b 3n4 c∑
k=bn4 c

(
n

k

)

≥ c2
1

V (n1/γ)
exp

[
−
(
d(x, y)γ

c1n

) 1
γ−1

]
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for all x, y ∈ Γ and for all n ∈ N such that n ≥ 1 ∨ d(x, y). The second line above follows
from (2.5), the third line follows from (1.7) and (1.2) and the last line follows from weak
law of large numbers.

The operators P and Q have comparable Dirichlet forms and resistances.

Lemma 2.4. The resistances RQ and RP are comparable by the following inequality

1

2
RP (f, f) ≤ RQ(A,B) ≤ 2RP (A,B)

for all subsets A,B ⊂ Γ.

Proof. It suffices to compare the corresponding Dirichlet forms EQ and EP . Note that
EQ(f, f) = 1

2 (EP (f, f) + EP 2(f, f)) ≥ 1
2EP (f, f). However by Lemma 1.8, we have

EQ(f, f) =
1

2
(EP (f, f) + EP 2(f, f)) ≤ 3

2
EP (f, f) ≤ 2EP (f, f).

We have the following pseudo-Poincaré inequality for iterated powers of Q.

Lemma 2.5. Under the assumptions of Proposition 2.1, there exists C1 > 0 such that

‖f − fR‖22 ≤ C1

(
R

k

)γ
EQ2bkγc(f, f)

for all f ∈ `2(Γ, µ) and for all k ∈ N and R ∈ R satisfying 1 ≤ k ≤ R.

Proof. There exists C2 > 0 such that

‖f − fR‖2 ≤
∑
x∈Γ

∑
y∈B(x,R)

(f(x)− f(y))2

V (x,R)
µ(y)µ(x)

≤ C2

∑
x∈Γ

∑
y∈Γ

(f(x)− f(y))2q2bRγc(x, y)µ(y)µ(x)

= 2C2

(
‖f‖22 −

∥∥∥QbRγcf∥∥∥2

2

)
. (2.6)

The first line follows from Jensen’s inequality, the second line follows from the lower
bound (2.4) of Lemma 2.3, (1.4) and (1.3), the last line follows from the µ-symmetry of
Q. Since Q is a contraction on `2(Γ, µ), we have

‖f‖22 −
∥∥∥QbRγcf∥∥∥2

2
≤ ‖f‖22 −

∥∥∥Qlbkγcf∥∥∥2

2
=

l−1∑
m=0

(∥∥∥Qmbkγcf∥∥∥2

2
−
∥∥∥Q(m+1)bkγcf

∥∥∥2

2

)
(2.7)

where l = dbRγc / bkγce.
Since Q is a contraction on `2(Γ, µ), we have∥∥∥Q(m+1)bkγcf

∥∥∥2

2
−
∥∥∥Q(m+2)bkγcf

∥∥∥2

2
=
∥∥∥Q(m+1)bkγc(I −Q2bkγc)1/2f

∥∥∥2

2

≤
∥∥∥Qmbkγc(I −Q2bkγc)1/2f

∥∥∥2

2

=
∥∥∥Qmbkγcf∥∥∥2

2
−
∥∥∥Q(m+1)bkγcf

∥∥∥2

2
. (2.8)

By (2.7) and (2.8), we get

‖f‖22 −
∥∥∥QbRγcf∥∥∥2

2
≤ l
(
‖f‖22 −

∥∥∥Qbkγcf∥∥∥2

2

)
≤ 4

Rγ

kγ

(
‖f‖22 −

∥∥∥Qbkγcf∥∥∥2

2

)
. (2.9)

Combining (2.6) and (2.9) gives the desired inequality.
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The following subordinated kernel satisfying (Jφ) is a useful tool to study the behavior
of long range random walks.

Proposition 2.6. Let φ : [0,∞)→ [1,∞) be a continuous regularly varying function of
positive index. Let (Γ, µ) be a weighted graph satisfying the assumptions of Proposition
2.1 and let Q be defined by (2.2). Define the subordinated Markov kernel

Qφ :=

∞∑
n=1

cφ
1

nφ(n)
Q2bnγc (2.10)

where cφ =
(∑∞

n=1
1

nφ(n)

)−1

. Then Qφ has a symmetric kernel qφ with respect to µ and

there exists C > 0 such that

C−1 1

V (d(x, y))φ(d(x, y))
≤ qφ(x, y) = qφ(y, x) ≤ C 1

V (d(x, y))φ(d(x, y))
. (2.11)

for all x, y ∈ Γ. In other words, Qφ satisfies (Jφ).

Proof. The symmetry of Qφ follows from the symmetry of Q since

qφ(x, y) :=
∞∑
n=1

cφ
1

nφ(n)
q2bnγc(x, y). (2.12)

Let φ be regularly varying of index β > 0. By Potter’s bounds [8, Theorem 1.5.6] and
using that φ is a positive continuous function, there exists C1 > 0 such that

φ(s)

φ(t)
≤ C1 max

((s
t

)3β/2

,
(s
t

)β/2)
(2.13)

for all s, t ∈ [1,∞).
It suffices to assume that x, y ∈ Γ and x 6= y. The case x = y follows trivially from

Lemma 2.3. Combining nγ/2 ≤ bnγc ≤ nγ , (2.12), (1.2) and (2.3) of Lemma 2.3, there
exists C2 > 0 such that

qφ(x, y) ≤
∞∑

n=d(x,y)+1

C2

nφ(n)V (n)
+

d(x,y)∑
n=1

C2

nφ(n)V (n)
exp

[
−
(
d(x, y)

C2n

)γ/(γ−1)
]

(2.14)

for all x, y ∈ Γ with x 6= y. We bound the first term in (2.14) by

∞∑
n=d(x,y)+1

1

nφ(n)V (n)
≤ 1

V (d(x, y))

∞∑
n=d(x,y)+1

1

nφ(n)

≤ C3
1

V (d(x, y))

∫ ∞
d(x,y)

ds

sφ(s)

≤ C4
1

V (d(x, y))φ(d(x, y))
(2.15)

where C3, C4 > 0 are constants. In the first line above, we used that V is non-decreasing.
The second line above follows from (2.13) and the third line follows from [8, Proposition
1.5.10].

Let 1 ≤ n ≤ d(x, y). To estimate second term in (2.14), we use (2.13) and (1.4) to
obtain

1

nφ(n)V (n)
=

1

d(x, y)φ(d(x, y))V (d(x, y))

d(x, y)φ(d(x, y))V (d(x, y))

nφ(n)V (n)

≤ C1CD
d(x, y)φ(d(x, y))V (d(x, y))

(
d(x, y)

n

)α+((3β)/2)+1

. (2.16)
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Since the function t 7→ tα+((3β)/2)+1 exp
[
−(C−1

2 t)γ/(γ−1)
]

is uniformly bounded (by say
C5) in [1,∞), by (2.16), there exists a constant C6 > 0 such that

d(x,y)∑
n=1

C2

nφ(n)V (n)
exp

[
−
(
d(x, y)

C2n

)γ/(γ−1)
]
≤ C6

V (d(x, y))φ(d(x, y))
(2.17)

for all x, y ∈ Γ with x 6= y. Combining (2.14), (2.15) and (2.17) gives the desired upper
bound in (2.11).

For the lower bound in (2.11), we use (2.12), (2.4) of Lemma 2.3 along with (1.4) to
obtain, a constant c1 > 0 such that

qφ(x, y) ≥
2d(x,y)∑
n=d(x,y)

cφ
nφ(n)

q2bnγc(x, y)

≥
2d(x,y)∑
n=d(x,y)

c1
nφ(n)V (n)

≥
C−1
D c1

2d(x, y)V (d(x, y))φ(d(x, y))

2d(x,y)∑
n=d(x,y)

1

3C1

for all x, y ∈ Γ with x 6= y. In the last line, we used, (1.2), n−1 ≥ (2d(x, y))−1 and the
Potter’s bound (2.13).

Proof of Proposition 2.1. By Proposition 2.6, the Markov operators K and Qφ have com-
parable Dirichlet forms. Hence it suffices to consider the case K = Qφ. If R < 1, then
f ≡ fR which in turn implies the pseudo-Poincaré inequality (2.1).

Hence we assume that R ≥ 1. There exists c1 > 0 such that

EQφ(f, f) = cφ

∞∑
k=1

1

kφ(k)
EQ2bkγc(f, f)

≥ cφC−1
1 ‖f − fR‖22R

−γ
bRc∑
k=1

kγ−1

φ(k)

≥ c1 ‖f − fR‖22R
−γ
∫ R

0

sγ−1 ds

φ(s)
(2.18)

for all f ∈ `2(Γ, µ) and for all R > 0 which is the desired inequality. In the second line
above, we used Lemma 2.5 and in the last line we used that φ is a positive continuous
regularly varying function which satisfies the Potter’s bound (2.13).

3 Nash inequality and Ultracontractivity.

In this section, we use pseudo-Poincaré inequality (2.1) to obtain a Nash inequality
and on-diagonal upper bounds. A polished treatment of the relationship between Nash
inequalities and ultracontractivity is presented in [9]. It is well-known that pseudo-
Poincaré inequality along with assumptions on volume growth gives a Sobolev-type
inequality (see [23, Theorem 2.1] for an early reference to this approach).

The following function η which appears in (2.1) plays a crucial role in this work.
Define the function η : [0,∞)→ (0,∞)

η(R) :=
Rγ∫ R

0
sγ−1 ds
φ(s)

(3.1)
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for R > 0 and η(0) = γφ(0) so that η is a continuous function. We also need the following
modification of η defined as η̃ : [0,∞)→ (0,∞)

η̃(R) := sup{η(t) : t ∈ [0, R]} (3.2)

so that η̃ is a non-decreasing function. It is known that [8, Theorem 1.5.3] η̃ is asymptoti-
cally equivalent to η, that is limt→∞ η̃(t)/η(t) = 1. If φ is regularly varying with positive
index, so is η. We now compute the index of η and list some of its basic properties.

Lemma 3.1. If φ : [0,∞)→ [1,∞) is a continuous regularly varying function with index
β > 0, then

(a) The function η defined by (3.1) is continuous, positive and regularly varying with
index β ∧ γ.

(b) There exists C1 > 0 such that η(x) ≤ C1φ(x) for all x ≥ 0.

(c) The function η has an asymptotic inverse ζ : [0,∞)→ [1,∞) satisfying the following
properties: ζ is continuous, non-decreasing and regularly varying with index 1/(β∧γ).
Moreover, there exists C > 0 such that

C−1t ≤ ζ(η(t)) ≤ ζ(η̃(t)) ≤ Ct and C−1t ≤ η(ζ(t)) ≤ η̃(ζ(t)) ≤ Ct (3.3)

for all t ≥ 1.

Proof. (a) and (b): The cases β < γ, β = γ and β > γ follow from Proposition 1.5.8,
Proposition 1.5.9a and Proposition 1.5.10 in [8] respectively.

(c) The existence of an asymptotic inverse which is regularly varying of index 1/(β∧γ)

follows from (a) and [8, Proposition 1.5.12]. The fact that ζ can be chosen to be con-
tinuous, bounded below by 1 and non-decreasing follows from Theorem 1.8.2, Propo-
sition 1.5.1 and Theorem 1.5.3 of [8] respectively. The existence of C > 0 satisfying
(3.3) follows from the definition of asymptotic inverse and continuity of ζ,η and η̃ and
limt→∞ η̃(t)/η(t) = 1.

Theorem 3.2 (Nash inequality). Let φ : [0,∞) → [1,∞) be a continuous, regularly
varying function of positive index. Let K be Markov operator satisfying (Jφ) with
symmetric kernel k with respect to the measure µ. Then there exist constants C1, C2 > 0

such that

‖f‖22 ≤ C1EK2(f, f)η̃

(
V −1

(
C2
‖f‖21
‖f‖22

))
(3.4)

for all f ∈ `1(Γ, µ), where η̃ is given by (3.1) and (3.2).

Proof. Let R > 0 and f ∈ `1(Γ, µ).

By (1.3) and triangle inequality, we have

‖fR‖∞ ≤ Ch ‖f‖1 /V (R) and ‖fR‖1 ≤ C
2
h ‖f‖1 .

Hence by Hölder’s inequality

‖fR‖22 ≤ ‖fR‖∞ ‖fR‖1 ≤ C
3
h

‖f‖21
V (R)

(3.5)
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for all f ∈ `1(Γ, µ) and for all R > 0. By (3.5) and Proposition 2.1, there exists C3 > 0

such that

‖f‖22 ≤ 2 ‖f − fR‖22 + 2 ‖fR‖22

≤ C3

(
η(R)EK(f, f) +

‖f‖21
V (R)

)

≤ C3

(
η̃(R)EK(f, f) +

‖f‖21
V (R)

)
. (3.6)

To minimize (3.6), we want to chooseR = R0 > 0 such that (η̃(R0)V (R0))
−1 ' EK(f, f)/ ‖f‖21.

Note that R 7→ (η̃(R)V (R))
−1 is a strictly decreasing continuous function with

lim
R→0+

(η̃(R)V (R))
−1

= (η(0)V (0))
−1

and lim
R→∞

(η̃(R)V (R))
−1

= 0.

Therefore the equation
(η̃(R)V (R))

−1
= t (3.7)

has an unique solution for all t ∈
(

0, (η(0)V (0))
−1
]
.

Since K is a contraction in `2(Γ, µ), we have

EK(f, f) = 〈(I −K)f, f〉 ≤ ‖f‖22 + |〈Kf, f〉| ≤ ‖f‖22 + ‖f‖2 ‖Kf‖2 ≤ 2 ‖f‖22 .

By (1.1) and using `p inequalities for counting measure, we have ‖f‖21 ≥ C−3
µ ‖f‖

2
2.

Combining these observations gives

EK(f, f)/ ‖f‖21 ≤ 2C3
µ (3.8)

for all f ∈ `1(Γ, µ). By (3.7) and (3.8), for any f ∈ `1(Γ, µ) with f 6= 0, there exists an
unique solution R0 to the equation

(η̃(R0)V (R0))
−1

= c1
EK(f, f)

‖f‖21
, (3.9)

where c1 =
(
2C3

µη(0)V (0)
)−1

. Substituting the above solution R0 in (3.6) gives ‖f‖22 ≤
C3(1 + c−1

1 ) ‖f‖21 /V (R0) or equivalently,

R0 ≤ V −1
(
C2 ‖f‖21 / ‖f‖

2
2

)
(3.10)

where C2 := C3(1 + c−1
1 ). Since η̃ is a non-decreasing function, by (3.9) and (3.10) we

have
‖f‖21
EK(f, f)

≤ c1C2
‖f‖21
‖f‖22

η̃

(
V −1

(
C2
‖f‖21
‖f‖22

))
.

Hence we obtain the Nash inequality

‖f‖22 ≤ c1C2EK(f, f)η̃

(
V −1

(
C2
‖f‖21
‖f‖22

))
. (3.11)

By (Jφ) and (1.1), there exists α > 0 such that infx∈Γ k1(x, x)µ(x) ≥ α. Since k2(x, y) ≥
k1(x, y)k1(y, y)µ(y) ≥ αk1(x, y), we have

EK(f, f) ≤ α−1EK2(f, f)

for all f ∈ `2(Γ, µ). This along with (3.11) gives the desired Nash inequality.
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Theorem 3.3 (Ultracontractivity). Let (Γ, µ) be a weighted graph satisfying (1.1), (1.2),
(1.3) and its heat kernel pn satisfies the sub-Gaussian bounds (1.6) and (1.7) with escape
time exponent γ. Let K be a Markov operator symmetric with respect to the measure µ
satisfying (Jφ), where φ : [0,∞) → [1,∞) is a continuous regularly varying function of
positive index. Then there exists a constant C > 0 such that

ψK(n) ≤ C

V (ζ(n))

for all n ∈ N, where ζ : [0,∞)→ [1,∞) is a continuous non-decreasing function which is

an asymptotic inverse of t 7→ tγ/
∫ t

0
sγ−1 ds
φ(s) .

Proof. Let µ∗ = infx∈Γ µ(x). Define g : (0, 1/µ∗]→ [0,∞) by

g(t) :=

∫ 1/t

µ∗

C1η̃
(
V −1(C2s)

) ds
s

and m : [0,∞) → (0, 1/µ∗] as the inverse of g, where C1, C2 are constants from (3.4).
Since g is a decreasing, surjective, continuous function, so is m. Observe that we can
increase the constant C2 in (3.4) without affecting the Nash inequality. We choose C2

such that C2 ≥ V (1)/µ∗, so that
V −1(C2s) ≥ 1 (3.12)

for all s ≥ µ∗.
By a standard ultracontractivity estimate using Nash inequality (3.4) (see [17, Theo-

rem 2.2.1] or [9, Proposition IV.1]), we obtain

ψK(n) ≤ m(n) (3.13)

for all n ∈ N∗.
We now estimate the functions g(t) and its inverse m(t). For t−1 ≥ µ∗, choose L ∈ N

such that CLDµ∗ ∈ [t−1, CDt
−1). We have

g(t) ≤
∫ CLDµ∗

µ∗

C1η̃
(
V −1(C2s)

) ds
s

= C1

∫ CLDC2µ∗

C2µ∗

η̃
(
V −1(s)

) ds
s

≤ C1

L∑
k=1

∫ CkDC2µ∗

Ck−1
D C2µ∗

η̃(V −1(s)) ds

s

≤ C1

L∑
k=1

η̃(V −1(CkDC2µ∗))

Ck−1
D C2µ∗

(
(CD − 1)Ck−1

D C2µ∗
)

≤ C3

L∑
k=1

η̃(V −1(CkDC2µ∗)) (3.14)

where C3 = C1(CD − 1). In the third line above, we used that η̃ ◦V −1 is a non-decreasing
function.

By Lemma 3.1 and [8, Theorem 1.5.3], η̃ is regularly varying of positive index. Hence
by Potter’s bounds [8, Theorem 1.5.6] and using that η̃ is a positive continuous function,
there exists C4 > 1, β1 > β2 > 0 such that

η̃(s)

η̃(t)
≤ C4 max

((s
t

)β1

,
(s
t

)β2
)

(3.15)

for all s, t ∈ [1,∞). By (1.2), (3.12) and (3.15) , we get

η̃(V −1(CkDC2µ∗)) ≤ η̃(2k−LV −1(CLDC2µ∗)) ≤ C42β2(k−L)η̃(V −1(CLDC2µ∗)) (3.16)
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for all k = 1, 2, . . . , L. By (3.14) and (3.16),

g(t) ≤ C5η̃(V −1(CDC2/t))

for all t ≤ µ−1
∗ , where C5 := C3C4(1− 2−β2)−1. Therefore

t = g(m(t)) ≤ C5η̃(V −1(CDC2/m(t)))

for all t ≥ 0.
We use an asymptotic inverse ζ of the function η as described in Lemma 3.1. Hence

by Potter’s theorem [8, Theorem 1.5.6]) and (3.3) , there exists C6, C7 > 0 such that

ζ(t) ≤ C6ζ(t/C5) ≤ C6ζ(η(V −1(CDC2/m(t)))) ≤ C7V
−1(CDC2/m(t)) (3.17)

for all t ≥ 1. By (1.4), there exists C8 > 0 such that

m(t) ≤ CDC2/V (ζ(t)/C7) ≤ C8

V (ζ(t))
. (3.18)

The conclusion follows from (3.13).

4 Lower bound on ψK

The lower bound on ψK follows from a test function argument due to Coulhon and
Grigor’yan [13, Theorem 4.6]. However we need a good test function for that argument
to work. Such a test function can be obtained from the resistance estimate in (1.8).

Theorem 4.1. Let (Γ, µ) be a weighted graph satisfying (1.1), (1.2), (1.3), (1.5) and
its heat kernel pn satisfies the sub-Gaussian bounds (1.6) and (1.7) with escape time
exponent γ. Let K be a Markov operator symmetric with respect to the measure µ

satisfying (Jφ), where φ : [0,∞) → [1,∞) is a continuous regularly varying function of
positive index. Then there exists a constant c > 0 such that

ψK(n) ≥ c

V (ζ(n))

for all n ∈ N, where ζ : [0,∞)→ [1,∞) is a continuous non-decreasing function which is

an asymptotic inverse of t 7→ tγ/
∫ t

0
sγ−1 ds
φ(s) .

Proof. By Lemma 1.9, we have ∥∥Klf
∥∥2

2

‖f‖22
≥

(
‖Kf‖22
‖f‖22

)l
. (4.1)

For any finite set A define

λ(A) = sup
supp(f)⊆A,

f 6≡0

‖Kf‖22
‖f‖22

.

Then by (4.1) and Cauchy-Schwarz inequality

ψK(n) = ‖Kn‖21→2 ≥ sup
A

sup
supp(f)⊆A,
‖f‖1=1

‖f‖22

(
‖Kf‖22
‖f‖22

)n

≥ sup
A

λ(A)n

µ(A)
. (4.2)
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We write λ(A) as

λ(A) = 1− (1− λ(A)) = 1− inf
supp(f)⊆A,

f 6≡0

EK2(f, f)

‖f‖22
. (4.3)

To obtain a lower bound on λ(A) it suffices to pick a test function f . By Lemma 1.8,
Proposition 2.6, there exists C1 > 0 such that

EK2(f, f) ≤ 2EK(f, f) ≤ C1EQφ(f, f) = C1cφ

∞∑
n=1

1

nφ(n)
EQ2bnγc(f, f). (4.4)

By Lemma 2.4, (1.8) and (1.4), there exist constants c1 ∈ (0, 1) and C2, C3 > 1 such that

RQ(B(x, c1R), B(x,R)c) ≥ C−1
2

Rγ

V (R)

for all x ∈ Γ and for all R ≥ C3. Therefore for any x ∈ Γ and for any R > C3, there exists
f ∈ RΓ satisfying supp(f) ⊆ B(x,R), f

∣∣
B(x,c1R)

≡ 1 and

EQ(f, f) ≤ 2C2V (R)

Rγ
. (4.5)

Since such a function has ‖f‖22 ≥ V (x, c1R), by (1.3), (1.4) and (4.5), there exists C4 > 1

such that the following holds: for any x ∈ Γ and for any R > C3, there exists f ∈ RΓ

satisfying supp(f) ⊆ B(x,R) and

EQ(f, f)

‖f‖22
≤ C4R

−γ . (4.6)

Using Lemma 1.8 and the bound EQ2k(f,f) = ‖f‖22 −
∥∥Qkf∥∥2

2
≤ ‖f‖22, we obtain

∞∑
n=1

1

nφ(n)
EQ2bnγc(f, f) ≤ 2

bRc∑
n=1

nγ−1

φ(n)
EQ(f, f) + ‖f‖22

∞∑
n=bRc+1

1

nφ(n)
(4.7)

for all f ∈ `2(Γ, µ). For the second term above, we use [8, Proposition 1.5.10] to obtain
C5 > 0 such that

∞∑
n=bRc+1

1

nφ(n)
≤ C5

1

φ(R)
(4.8)

for all R ≥ 1. By Potter’s bound [8, Theorem 1.5.6] and continuity of φ, there exists
C6 > 0 such that

bRc∑
n=1

nγ−1

φ(n)
≤ C6

∫ R

0

sγ−1 ds

φ(s)
(4.9)

for all R ≥ 1.
Combining (4.3), (4.4), (4.6), (4.7), (4.8), (4.9) and using Lemma 3.1(b), there exist

constants C7 > 0 and R0 > 0 such that

λ(B(x,R)) ≥ 1− C7

η(R)

for all R > R0. Combining (4.2), (1.3), (3.3) of Lemma 3.1(c) along with the substitution
R = ζ(n), there exists N1, C8, c1 > 0 such that

ψK(n) ≥
C−1
h

V (ζ(n))

(
1− C7

η(ζ(n))

)n
≥

C−1
h

V (ζ(n))

(
1− C8

n

)n
≥ c1
V (ζ(n))

for all n ∈ N with n ≥ N1. The case n ≤ N1 follows from (Jφ).

Proof of Theorem 1.2. The upper bound and lower bound follows from Theorems 3.3
and 4.1 respectively.
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5 Stable subordination and the case β < γ

In this section, we provide evidence to the conjecture in Remark 1.4(b) and (e). Let
(Γ, µ) be a weighted graph satisfying the volume doubling condition: there exists CD > 0

such that
Vµ(x, 2r) ≤ CDVµ(x, r) (5.1)

for all x ∈ Γ and for all r > 0. By a slight abuse of notation, we denote Vµ by V in this
section. We denote Similar to (1.4), there is a volume comparison estimate

V (x, r)

V (x, s)
≤ CD

(r
s

)α
(5.2)

for any x ∈ Γ , for all 0 < s ≤ r and for all α ≥ log2 CD.
As before let P and pn denote the Markov operator corresponding to the natural

random walk and the heat kernel respectively. We assume that the heat kernel satisfies
the following sub-Gaussian estimates. There exist constants c, C > 0 such that, for all
x, y ∈ Γ

pn(x, y) ≤ C

V (x, n1/γ)
exp

[
−
(
d(x, y)γ

Cn

) 1
γ−1

]
,∀n ≥ 1 (5.3)

and

(pn + pn+1)(x, y) ≥ c

V (x, n1/γ)
exp

[
−
(
d(x, y)γ

cn

) 1
γ−1

]
,∀n ≥ 1 ∨ d(x, y). (5.4)

Consider a random walk Xn driven by the operator Q defined in (2.2). We consider the
continuous time Markov chain Yβ0

(t) = XN(Sβ0 (t)) where N(t) and Sβ0
are independent

Poisson process and β0-stable subordinator for some β0 ∈ (0, 1). Let kt,β0
denote the

kernel of Yβ0
(t) with respect to the measure µ. By definition of kt,β0

, we have

kt,β0
(x, y) =

∞∑
i=0

Aβ0
(t, i)qi(x, y) (5.5)

for all t ≥ 0 and for all x, y ∈ Γ, where Aβ0(t, i) := P(N(Sβ0(t)) = i). Let qi denote the
kernel of the iterated operator Qi with respect to the measure µ for i ∈ N. By the
same proof as Lemma 2.3, we get similar sub-Gaussian estimates for the more general
volume doubling setup. We assume that the kernel qn satisfies the following sub-Gaussian
estimates: There exist constants c, C > 0 such that, for all x, y ∈ Γ

qn(x, y) ≤ C

V (x, n1/γ)
exp

[
−
(
d(x, y)γ

Cn

) 1
γ−1

]
,∀n ≥ 1 (5.6)

and

qn(x, y) ≥ c

V (x, n1/γ)
exp

[
−
(
d(x, y)γ

cn

) 1
γ−1

]
,∀n ≥ 1 ∨ d(x, y). (5.7)

Using estimates on the stable subordinator Sβ0 and the estimates on the kernel qn similar
to Lemma 2.3, we show the following:

Theorem 5.1. Let (Γ, µ) be a weighted graph satisfying (5.1) and its heat kernel pn
satisfies the sub-Gaussian bounds (5.3) and (5.4) with escape time exponent γ. Let kt,β0

be the symmetric Markov kernel with respect to the measure µ defined by (5.5). Then
for all β0 ∈ (0, 1) there exists a constant C > 0 such that

kn,β0(x, y) ≤ C
(

1

V (x, n1/β)
∧ n

V (x, d(x, y))(1 + d(x, y))β

)
(5.8)
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and

kn,β0
(x, y) ≥ C−1

(
1

V (x, n1/β)
∧ n

V (x, d(x, y))(1 + d(x, y))β

)
(5.9)

for all x, y ∈ Γ and for all n ∈ N∗, where β = β0γ.

We begin by recalling some known estimates for stable subordinator. Let ft,β0
(u) be

the density of the β0-stable subordinator Sβ0
(t). We have the scaling relation

ft,β0
(u) = t−1/β0f1,β0

(t−1/β0u), β0 ∈ (0, 1).

By standard estimates on ft,β0 (see [18, Section 3]) there exist constants c1, C1 > 0 such
that

ft,β0
(u) ≤ C1tu

−1−β0 , t, u > 0, (5.10)

f1,β0
(u) ≤ C1u

− 2−β0
2−2β0 e−c1u

− β0
1−β0 , u ∈ (0, 1), (5.11)

ft,β0
(u) ≥ c1tu−1−β0 , t > 0, u > t1/β0 . (5.12)

Next, we estimate the quantity

Aβ0
(t, i) = P(N(Sβ0

(t)) = i) =

∫ ∞
0

ft,β0
(u)

e−uui

i!
du. (5.13)

By (5.10) and Stirling asymptotics for Gamma function, there exists C2 > 0

Aβ0
(t, i) ≤ C1

∫ ∞
0

tu−1−β0
e−uui

i!
du

≤ C1ti
−1 Γ(i− β0)

Γ(i)
≤ C2

t

i1+β0
(5.14)

for all t > 0 and for all i ∈ N∗. By Chebychev’s inequality applied to Gamma distribution,
we have ∫ ∞

λ/2

e−uuλ−1

Γ(λ)
du ≥ 1

5
(5.15)

for all λ ≥ 5. Therefore, there exists c2 > 0 such that

Aβ0
(t, i) ≥ c1

∫ ∞
t1/β0

tu−1−β0
e−uui

i!
du (5.16)

≥ c1
∫ ∞

(i−β0)/2

tu−1−β0
e−uui

i!
du

≥ c1
5
t
Γ(i− β0)

iΓ(i)
≥ c2

t

i1+β0
(5.17)

for all β0 ∈ (0, 1), for all i ∈ N∗ and for all t > 0 such that i ≥ max
(
6, 4t1/β0

)
. We

used (5.12) in the first line i ≥ max
(
6, 4t1/β0

)
in the second line and (5.15) and Stirling

asymptotics for Gamma function in the last line.
We need the following estimate to prove the desired diagonal upper bound.

Lemma 5.2. Under the doubing assumption (5.1), there exists C1 > 0 such that

∞∑
i=0

exp(−u)ui

i!

1

V (x, i1/γ)
≤ C1

V (x, u1/γ)
(5.18)

for all x ∈ Γ and for all u ≥ 0.
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Proof. Note that

∞∑
i=0

exp(−u)ui

i!

1

V (x, i1/γ)
≤ 1

V (x, u1/γ)

buc∑
i=0

exp(−u)ui

i!

V (x, u1/γ)

V (x, i1/γ)
+

1

V (x, u1/γ)

≤ C2

V (x, u1/γ)

∞∑
i=0

exp(−u)ui

i!

(
u

i+ 1

)n0

+
1

V (x, u1/γ)

≤ C2(n0!)

V (x, u1/γ)

∞∑
i=0

exp(−u)ui+n0

(i+ n0)!
+

1

V (x, u1/γ)

≤ C3

V (x, u1/γ)
(5.19)

where n0 = d(log2 CD)/γe. We used (5.2) in the second line.

Proof of Theorem 5.1. We start by showing the off-diagonal lower bound for the case
d(x, y)γ ≥ 4n1/β0 . By (5.5), (5.17),(5.2) and (5.7), we have

kn,β0(x, y) ≥ c1
2dd(x,y)γe∑
i=dd(x,y)γe

n

(1 + i)1+β0

1

V (x, d(x, y))

≥ c2
n

(1 + d(x, y))β
1

V (x, d(x, y))

for all x, y ∈ Γ, for all n ∈ N∗ such that d(x, y)γ ≥ 4n1/β0 . Next, we show the near-
diagonal lower bound for the case d(x, y)γ ≤ 4n1/β0 . By (5.5), (5.17),(5.2) and (5.7), we
have

kn,β0
(x, y) ≥ c3

d8n1/β0e∑
i=d4n1/β0e

n

(1 + i)1+β0

1

V (x, n1/β)
≥ c4
V (x, n1/β)

for x, y ∈ Γ and for all n ∈ N∗ such that d(x, y)γ ≤ 4n1/β0 .

We prove the diagonal upper bound below. We use (5.5), (5.13) and Fubini’s theorem
to obtain

kn,β0
(x, y) =

∫ ∞
0

fn,β0
(u)

∞∑
i=0

e−uui

i!
qi(x, y) du. (5.20)

Combining (5.6) ,(5.20) and Lemma 5.2, there exists C2, C3, C4 > 0 such that

kn,β0(x, y) ≤ C1

∫ ∞
0

fn,β0(u)

∞∑
i=0

e−uui

i!

1

V (x, i1/γ)
du

≤ C2

∫ ∞
0

fn,β0
(u)

1

V (x, u1/γ)
du

= C2

∫ ∞
0

f1,β0(s)
1

V (x, n1/βs1/γ)
ds

≤ C2

V (x, n1/β)
+

C3

V (x, n1/β)

∫ 1

0

s−
2−β0
2−2β0 e−c1s

− β0
1−β0 1

s(log2 CD)/γ
ds

≤ C4

V (x, n1/β)
. (5.21)

Next, we show the off-diagonal upper bound in (5.8). Combining (5.5), (5.14), (5.6),
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there exists C5, C6, C7 > 0 such that

kn,β0
(x, y)

≤ C5n

∞∑
i=1

(1 + i)−1−β0
C

V (x, i1/γ)
exp

[
−
(
d(x, y)γ

Ci

) 1
γ−1

]

≤ C6n

(1 + d(x, y))βV (x, d(x, y))

(1 + d(x, y))β
∞∑

i=1+bd(x,y)γc

(1 + i)−1−β0

+ d(x, y)−γ
bd(x,y)γc∑
i=1

(
d(x, y)γ

i

)1+β0+(α/γ)

exp

[
−
(
d(x, y)γ

Ci

) 1
γ−1

]
≤ C7n

(1 + d(x, y))βV (x, d(x, y))
(5.22)

for all x, y ∈ Γ with x 6= y and for all n ∈ N.
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