
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 20 (2015), no. 73, 1–24.
ISSN: 1083-6489 DOI: 10.1214/EJP.v20-3969

Existence of mark functions
in marked metric measure spaces
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Abstract

We give criteria on the existence of a so-called mark function in the context of marked
metric measure spaces (mmm-spaces). If an mmm-space admits a mark function, we
call it functionally-marked metric measure space (fmm-space). This is not a closed
property in the usual marked Gromov-weak topology, and thus we put particular
emphasis on the question under which conditions it carries over to a limit. We obtain
criteria for deterministic mmm-spaces as well as random mmm-spaces and mmm-
space-valued processes. As an example, our criteria are applied to prove that the
tree-valued Fleming-Viot dynamics with mutation and selection from [5] admits a mark
function at all times, almost surely. Thereby, we fill a gap in a former proof of this fact,
which used a wrong criterion.

Furthermore, the subspace of fmm-spaces, which is dense and not closed, is
investigated in detail. We show that there exists a metric that induces the marked
Gromov-weak topology on this subspace and is complete. Therefore, the space of
fmm-spaces is a Polish space. We also construct a decomposition into closed sets
which are related to the case of uniformly equicontinuous mark functions.
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1 Introduction

A metric (finite) measure spaces (mm-space) is a complete, separable metric space
(X, r) together with a finite measure ν on it. Considering the space of (equivalence
classes of) mm-spaces itself as a metric space dates back to Gromov’s invention of the
2λ-metric in [11, Chapter 3 1

2 ]. Motivated by Aldous’ work on the Brownian continuum
random tree ([1]), it was realised in [9] that the space of mm-spaces is a useful state
space for tree-valued stochastic processes, and Polish when equipped with the Gromov-
weak topology. That the Gromov-weak topology actually coincides with the one induced
by the 2λ-metric was shown in [15].
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Existence of mark functions in marked metric measure spaces

Important examples for the use of mm-spaces within probability theory are given by
individual-based populations X with mutual genealogical distances r between individuals.
Here, r can for instance measure the time to the most recent common ancestor (MRCA)
(cf. [5, (2.7), Remark 3.3]), where the resulting metric space is ultrametric. Another
possibility is the number of mutations back to the MRCA (cf. [14]), where the resulting
space is not ultrametric. Finally, there is a sampling measure ν on the space X which
models population density. This means that the state of the process is an mm-space
(X, r, ν). Such individual-based models are often formulated for infinite population size
(with diffuse measures ν) but obtained as the high-density limit of approximating models
with finite populations (where ν is typically the uniform distribution on all individuals).

For encoding more information about the individuals, such as an (allelic) type or
location (which may change over time), marked metric measure spaces (mmm-spaces)
and the corresponding marked Gromov-weak topology (mGw-topology) have been intro-
duced in [4]. For a fixed complete, separable metric space (I, d) of marks, the sampling
measure ν is replaced by a measure µ on X × I, which models population density in
combination with mark distribution.

A natural question in this context is whether or not every point of the limiting
population X has a single mark almost surely, that is, does genetic distance zero
imply the same type/location? Put differently, we ask ourselves if µ factorizes into a
“population density” measure ν on X and a mark function κ : X → I assigning each
individual its mark. If this is the case, we call the mmm-space functionally-marked
(fmm-space). This property is often desirable, and one might want to consider the
space of fmm-spaces, rather than mmm-spaces, as the state space. Unfortunately, the
subspace of fmm-spaces is not closed in the mGw-topology, which means that limits
of finite-population models that are constructed as fmm-spaces might not admit mark
functions themselves. It is therefore of interest, if the space of fmm-spaces with marked
Gromov-weak topology is a Polish space (that is a “good” state space). Here, we show
in Theorem 2.2 that this is indeed the case. We also produce criteria to enable one to
check if an mmm-space admits a mark function. For limiting populations, they are given
in terms of the approximating mmm-spaces. We derive such criteria for deterministic
spaces (Theorem 3.1), random spaces (Theorem 3.7) and mmm-space-valued processes
(Theorem 3.9 and Theorem 3.11).

An important example of such a high-density limit of approximating models with
finite populations is the tree-valued Fleming-Viot dynamics. In the neutral case, it is
constructed in [10] using the formalism of mm-spaces. In [5], (allelic) types – encoded
as marks of mmm-spaces – are included, in order to model mutation and selection. For
this process, the question of existence of a mark function has already been posed. In [5,
Remark 3.11] and [6, Theorem 6] it is stated that the tree-valued Fleming-Viot process
admits a mark function at all times, almost surely. The given proof, however, contains
a gap, because it relies on the criterion claimed in [6, Lemma 7.1], which is wrong in
general, as we show in Example 4.1. We fill this gap by applying our criteria and showing
in Theorem 4.3 that the claim is indeed true and the tree-valued Fleming-Viot process
with mutation and selection (TFVMS) admits a mark function at all times, almost surely.
We also show in Theorem 4.4 that the same arguments apply to the Λ-version of the
TFVMS in the neutral case, that is where selection is not present.

Intuitively, the existence of a mark function in the case of the TFVMS holds because
mutations are large but rare in the approximating sequence of tree-valued Moran models.
Hence, as genealogical distance becomes small, the probability that any mutation
happened at all in the close past becomes small as well (recall that distance equals
time to the MRCA). In contrast, in [14], where evolving phylogenies of trait-dependent
branching with mutation and competition are under investigation, mutations happen at
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a high rate but are small which justifies the hope for the existence of a mark function
also for the limiting model. Our criteria are also suited for this kind of situation.

Outline. The paper is organized as follows. In the subsections of the introduction we
first introduce notations and basic results for the Prohorov metric for finite measures.
Then, we give a short introduction to the space MI of marked metric measure spaces
(mmm-spaces) with the marked Gromov-weak topology, as well as the marked Gromov-
Prohorov metric dmGP on it. We continue with defining the so-called functionally-marked
metric measure spaces (fmm-spaces) Mfct

I ⊆ MI , and finally investigate the case of
equicontinuous mark functions as an illustrative example. We emphasize that the
restriction of the marked Gromov-Prohorov metric dmGP to Mfct

I is not complete.

In Section 2, we therefore show that there exists another metric on Mfct
I that induces

the marked Gromov-weak topology and is complete. As one sees in Subsection 1.4,
the situation becomes easy if we restrict to a subspace of MI containing spaces with
uniformly equicontinuous mark functions. We introduce in Subsection 2.2 several related
subspaces capturing some aspect of equicontinuity, and obtain a decomposition of Mfct

I

into closed sets. This decomposition is used to prove Polishness of Mfct
I , and in Section 3

to formulate criteria for the existence of mark functions.

Section 3 gives criteria for the existence of mark functions. Based on the construction
of the complete metric and the decomposition of Mfct

I , we derive in Subsection 3.1
criteria to check if an mmm-space admits a mark function, especially in the case where it
is given as a marked Gromov-weak limit. We then transfer the results in Subsection 3.2
to random mmm-spaces and in Subsection 3.3 to MI -valued stochastic processes.

To conclude, Section 4 gives examples. We first show that the criterion in [6] is wrong
in general by means of counterexamples. Our criteria are then applied in Subsection 4.1
to prove the existence of a mark function for the tree-valued Fleming-Viot dynamics with
mutation and selection. To this goal, we verify the necessary assumptions for a sequence
of approximating tree-valued Moran models. In Subsection 4.2 we show that a similar
strategy applies if we replace the tree-valued Moran models by so-called tree-valued Λ-
Cannings models. Finally, in Subsection 4.3, a future application to evolving phylogenies
of trait-dependent branching with mutation and competition is indicated.

1.1 Notations and prerequisites

In this paper, let all topological spaces be equipped with their Borel σ-algebras. We
use the following notation throughout the article.

Notation 1.1. For a Polish space E, letM1(E) respectivelyMf(E) denote the space of
probability respectively finite measures on the Borel σ-algebra B(E) on E. The space
Mf(E) is always equipped with the topology of weak convergence, which is denoted by
w−→. We also use the distance in variational norm of µ, ν ∈Mf(E), which is

‖µ− ν‖ := sup
B∈B(E)

∣∣µ(B)− ν(B)
∣∣. (1.1)

In particular, ‖µ‖ = µ(E), and ‖µ− ν‖ = ν(E)− µ(E) if µ ≤ ν, that is µ(A) ≤ ν(A) for all
A ∈ B(E).

For Y ∈ B(E) and µ ∈Mf(E), denote by µ|Y ∈Mf(E) the restriction of µ to Y , that
is µ|Y (B) := µ(B ∩Y ) for all B ∈ B(E). Because µ|Y ≤ µ, we have ‖µ|Y −µ‖ = µ(E \Y ).

For ϕ : E → F measurable, with F some other Polish space, denote the image measure
of µ under ϕ by ϕ∗µ := µ ◦ ϕ−1. Finally, for the product space X := E × F , the canonical
projection operators from X onto E and F are denoted by πE and πF , respectively.

Definition 1.2 (Prohorov metric). For finite measures µ0, µ1 on a metric space (E, r),
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the Prohorov metric is defined as

dPr(µ0, µ1) := inf
{
ε > 0 : µi(A) ≤ µ1−i(A

ε) + ε ∀A ∈ B(E), i ∈ {0, 1}
}
, (1.2)

where Aε := {x ∈ E : r(A, x) < ε } is the ε-neighbourhood of A.

It is well-known that the Prohorov metric metrizes the weak convergence of mea-
sures if and only if the underlying metric space is separable. The following equivalent
expression for the Prohorov metric turns out to be useful.

Remark 1.3 (coupling representation of the Prohorov metric). Let (E, r) be a separable
metric space and µ1, µ2 ∈M1(E). For a finite measure ξ on E2, we denote the marginals
as ξ1 := ξ(· × E) and ξ2 := ξ(E × ·). It is well-known (see, e.g., [7, Theorem III.1.2]) that

dPr(µ1, µ2) = inf
{
ε > 0 : ∃ξ ∈M1(E2) with ξ(Nε) ≤ ε, ξi = µi, i = 1, 2

}
, (1.3)

where Nε := { (x, y) ∈ E2 : r(x, y) ≥ ε }. We obtain from this equation

dPr(µ1, µ2) = inf
{
ε > 0 : ∃ξ′ ∈Mf(E

2) with ξ′(Nε) = 0, ξ′i ≤ µi, ‖µi − ξ′i‖ ≤ ε, i = 1, 2
}
.

(1.4)
Indeed, consider ξ′ := ξ|E2\Nε respectively ξ := ξ′ + (1 − ‖ξ′‖)−1

(
(µ1 − ξ′1) ⊗ (µ2 − ξ′2)

)
to obtain equality in the above. Following the ideas of the proof of the representation
(1.3) in [7], the representation (1.4) for the Prohorov metric dPr(µ0, µ1) is easily seen to
hold true for measures µ1, µ2 ∈ Mf(E) as well, which are not necessarily probability
measures.

From (1.4), we can easily deduce the following lemma, which we use below.

Lemma 1.4 (rectangular lemma). Let (E, r) be a separable, metric space, ε, δ > 0, and
µ1, µ2 ∈ Mf(E). Assume that dPr(µ1, µ2) < δ and there is µ′1 ≤ µ1 with ‖µ1 − µ′1‖ ≤ ε.
Then

∃µ′2 ≤ µ2 : dPr(µ
′
1, µ
′
2) < δ, ‖µ2 − µ′2‖ ≤ ε. (1.5)

Proof. According to (1.4), we find ξ ∈Mf(E
2) with marginals ξi ≤ µi, i = 1, 2, ‖µi−ξi‖ <

δ, and ξ({r ≥ δ}) = 0. Let L be a probability kernel from E to E (for existence see [12,
Theorems 8.36–8.38]) with ξ = µ1 ⊗ L and define ξ′ := (µ′1 ∧ ξ1)⊗ L. Obviously, ξ′1 ≤ µ′1
and ‖µ′1 − ξ′1‖ ≤ ‖µ1 − ξ1‖ < δ. Now set

µ′2 := ξ′2 + µ2 − ξ2. (1.6)

Then ξ′2 ≤ µ′2, ‖µ′2 − ξ′2‖ = ‖µ2 − ξ2‖ < δ and thus dPr(µ2, µ
′
2) < δ by (1.4). Furthermore,

µ′2 ≤ µ2 and ‖µ2 − µ′2‖ = ‖ξ2 − ξ′2‖ ≤ ‖µ1 − µ′1‖ ≤ ε.

1.2 The space of marked metric measure spaces (mmm-spaces)

In this subsection, we recall the space MI of marked metric measure spaces, and
the marked Gromov-Prohorov metric dmGP, which induces the marked Gromov-weak
topology on it. This space, (MI , dmGP), will be the basic space used in the rest of the
paper. These concepts have been introduced in [4], and are based on the corresponding
non-marked versions introduced in [9]. In contrast to [4], we allow the measures of the
marked metric measure spaces to be finite, that is do not restrict ourselves to probability
measures only. Because a sequence of finite measures converges weakly if and only if
their total masses and the normalized measures converge, or the masses converge to
zero, this straight-forward generalization requires only minor modifications (compare
[16, Section 2.1], where this generalization is done for metric measure spaces without
marks).

In what follows, fix a complete, separable metric space (I, d), called the mark space.
It is the same for all marked metric measure spaces in MI .
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Definition 1.5 (mmm-spaces,MI). (i) An (I-)marked metric measure space (mmm-
space) is a triple (X, r, µ) such that (X, r) is a complete, separable metric space,
and µ ∈Mf(X × I), where X × I is equipped with the product topology.

(ii) Let X i = (Xi, ri, µi), i = 1, 2, be two mmm-spaces, and νi := µi(· × I) the marginal
of µi on Xi. For a map ϕ : X1 → X2 we use the notation

ϕ̃ : X1 × I → X2 × I, (x, u) 7→ ϕ̃(x, u) := (ϕ(x), u). (1.7)

We call X1 and X2 equivalent if they are measure- and mark-preserving isometric,
that is there is an isometry ϕ : supp(ν1)→ supp(ν2), such that

ϕ̃∗µ1 = µ2. (1.8)

(iii) Finally, define

MI :=
{

equivalence classes of mmm-spaces
}
. (1.9)

With a slight abuse of notation, we identify an mmm-space with its equivalence
class and write X = (X, r, µ) ∈MI for both mmm-spaces and equivalence classes
thereof.

Next, we recall the marked Gromov-weak topology from [4, Section 2.2] that turns
MI into a Polish space (cf. [4, Theorem 2]). To this goal, we first recall

Definition 1.6 (marked distance matrix distribution). Let X := (X, r, µ) ∈MI and

R(X,r) :=

{
(X × I)N → R

(N2)
+ × IN,(

(xk, uk)k≥1
)
7→

((
r(xk, xl)

)
1≤k<l, (uk)k≥1

)
.

(1.10)

The marked distance matrix distribution of X is defined as

νX := ‖µ‖ ·
(
R(X,r)

)
∗(

µ
‖µ‖ )

N ∈Mf

(
R

(N2)
+ × IN

)
. (1.11)

The marked Gromov-weak topology is the one induced by the map X 7→ νX .

Definition 1.7 (marked Gromov-weak topology). Let X ,X1,X2, . . . ∈ MI . We say that

(Xn)n∈N converges to X in the marked Gromov-weak topology, Xn
mGw−−−→
n→∞

X , if and only if

νXn
w−−−→

n→∞
νX (1.12)

in the weak topology onMf

(
R

(N2)
+ × IN

)
.

Finally, let us recall the Gromov-Prohorov metric from [4, Section 3.2]. It is complete
and metrizes the marked Gromov-weak topology, as shown in [4, Proposition 3.7].

Definition 1.8 (marked Gromov-Prohorov metric, dmGP). For X i = (Xi, ri, µi) ∈MI , i =

1, 2, set
dmGP(X1,X2) := inf

(E,ϕ1,ϕ2)
dPr

(
(ϕ̃1)∗µ1, (ϕ̃2)∗µ2

)
, (1.13)

where the infimum is taken over all complete, separable metric spaces (E, r) and
isometric embeddings ϕi : Xi → E, and ϕ̃i is as in (1.7), i = 1, 2. The Prohorov metric
dPr is the one on Mf(E × I), based on the metric r̃ = r + d on E × I, metrizing the
product topology. The metric dmGP is called the marked Gromov-Prohorov metric.

A direct consequence of the fact that dmGP induces the marked Gromov-weak topology
is the following characterization of marked Gromov-weak convergence obtained in [4,
Lemma 3.4].
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Lemma 1.9 (embedding of marked Gromov-weakly converging sequences). Let Xn =

(Xn, rn, µn) ∈ MI for n ∈ N ∪ {∞}. Then (Xn)n∈N converges to X∞ Gromov-weakly if
and only if there is a complete, separable metric space (E, r), and isometric embeddings
ϕn : Xn → E, such that for ϕ̃n as in (1.7),

(ϕ̃n)∗µn
w−→ µ. (1.14)

1.3 Functionally-marked metric measure spaces (fmm-spaces)

Consider an I-marked metric measure space X = (X, r, µ) ∈ MI . Since µ is a
finite measure on the Polish space X × I, regular conditional measures exist (cf. [12,
Theorems 8.36–8.38]), and we write

µ(dx, du) = ν(dx) ·Kx(du), (1.15)

in short µ = ν ⊗ K, for the marginal ν := µ(· × I) ∈ Mf(X), and a (ν-a.s. unique)
probability kernel K from X to I.

In the present article we investigate criteria for the existence of a mark function for
X , that is (cf. [6, Section 3.3]) a measurable function κ : X → I such that

µ(dx,du) = ν(dx) · δκ(x)(du), (1.16)

or equivalently, Kx = δκ(x) for ν-almost every x. Obviously, X admits a mark function
if and only if Kx is a Dirac measure for ν-almost every x. Recall that the complete,
separable mark space (I, d) is fixed once and for all.

Definition 1.10 (fmm-spaces,Mfct
I ). We call X = (X, r, ν, κ) an (I-)functionally-marked

metric measure space ( fmm-space) if (X, r) is a complete, separable metric space,
ν ∈Mf(X), and κ : X → I is measurable. We identify X with the marked metric measure
space (X, r, µ) ∈MI , where µ satisfies (1.16). With a slight abuse of notation, we write
(X, r, ν, κ) = (X, r, µ) if (1.16) is satisfied. Denote byMfct

I ⊆MI the space of (equivalence
classes of) fmm-spaces.

A first, simple observation is that Mfct
I is a dense subspace of MI .

Lemma 1.11. The subspace Mfct
I is dense in MI with marked Gromov-weak topology.

Proof. For X = (X, r, µ) ∈ MI , define Xn = (X × I, rn, νn, κn) ∈ Mfct
I with νn = µ,

κn(x, u) = u, and rn
(
(x, u), (y, v)

)
:= r(x, y) + e−n ∧ d(u, v), for x, y ∈ X, u, v ∈ I. It is

easy to see that Xn → X in the marked Gromov-weak topology.

1.4 The equicontinuous case

It directly follows from Lemma 1.11 that the subspace Mfct
I is not closed in MI ,

meaning that if Xn
mGw−−−→ X is a marked Gromov-weakly converging sequence in MI , and

all Xn admit a mark function, this need not be the case for X . In applications, however,
the limit X is often not known explicitly, and it would be important to have (sufficient)
criteria for the existence of a mark function in terms of the Xn alone. An easy possibility
is Lipschitz equicontinuity: if all Xn admit a mark function that is Lipschitz continuous
with a common Lipschitz constant L > 0, the same is true for X (see [17]). More generally,
this holds for uniformly equicontinuous mark functions as introduced below. We briefly
discuss the equicontinuous case in this subsection, because it is straightforward and
illustrates the main ideas.

Recall that a modulus of continuity is a function h : R+ → R+∪{∞} that is continuous
in 0 and satisfies h(0) = 0. A function f : X → I, where (X, r) is a metric space, is h-
uniformly continuous if d

(
f(x), f(y)

)
≤ h

(
r(x, y)

)
for all x, y ∈ X. Note that for every
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modulus of continuity h, there exists another modulus of continuity h′ ≥ h which is
increasing and continuous with respect to the topology of the one-point compactification
of R+. Therefore, we can restrict ourselves without loss of generality to moduli of
continuity from

H :=
{
h : R+ → R+ ∪ {∞}

∣∣ h(0) = 0, h is continuous and increasing
}
. (1.17)

For h ∈ H and a metric space (X, r), we define

AXh := A
(X,r)
h :=

{
(xi, ui)i=1,2 ∈ (X × I)2 : d(u1, u2) ≤ h(r(x1, x2))

}
⊆ (X × I)2. (1.18)

Note that f : X → I is h-uniformly continuous if and only if
(
(x, f(x)), (y, f(y))

)
∈ AXh for

all x, y ∈ X, and that AXh is a closed set in (X × I)2 with product topology.

Definition 1.12 (Mh
I ). For h ∈ H, let Mh

I ⊆Mfct
I be the space of marked metric measure

spaces admitting an h-uniformly continuous mark function.

The next lemma states that a marked metric measure space (X, r, µ) admits an h-
uniformly continuous mark function if and only if a pair of independent samples from µ

is almost surely in AXh . Furthermore, if a sequence with h-uniformly continuous mark
functions converges marked Gromov-weakly, the limit space also admits an h-uniformly
continuous mark function.

Lemma 1.13 (uniform equicontinuity). Fix a modulus of continuity h ∈ H.

(i) Mh
I =

{
(X, r, µ) ∈MI : µ⊗2(AXh ) = ‖µ⊗2‖

}
.

(ii) Mh
I is closed in the marked Gromov-weak topology.

Proof. The mmm-space X = (X, r, µ) is in Mh
I if and only if supp(µ) is the graph of an

h-uniformly continuous function. This is clearly equivalent to µ⊗2
(
(X × I)2 \ AXh

)
= 0.

Item (ii) is obvious from (i), because AXh is a closed set.

This preliminary result is quite restrictive because of the condition to have the
same modulus of continuity for all occurring spaces. In fact, the mark function of the
tree-valued Fleming Viot dynamic considered in Subsection 4.1 is not even continuous.

At the heart of the following generalisation to measurable mark functions lies the
fact that measurable functions are “almost continuous” by Lusin’s celebrated theorem
(see for instance [3, Theorem 7.1.13]). Here, we give a version tailored to our setup:

Lusin’s theorem. Let X,Y be Polish spaces, µ a finite measure on X, and f : X → Y a
measurable function. Then, for every ε > 0, there exists a compact set Kε ⊆ X such that
µ(X \Kε) < ε and f |Kε is continuous.

2 The space of fmm-spaces is Polish

The subspace Mfct
I is not closed in MI in the marked Gromov-weak topology, and

hence the restriction of the marked Gromov-Prohorov metric dmGP toMfct
I is not complete.

In this section, we show that there exists another metric onMfct
I that induces the marked

Gromov-weak topology and is complete. This shows that Mfct
I is a Polish space in its own

right.

2.1 A complete metric on the space of fmm-spaces

For a measure ξ on I, we define

βξ :=

∫
I

∫
I

(1 ∧ d(u, v)) ξ(du) ξ(dv). (2.1)
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Note that βξ = 0 if and only if ξ is a Dirac measure. For X = (X, r, µ) ∈ MI , with
µ = ν ⊗K as in (1.15), we define

β(X) :=

∫
X

βKx ν(dx) =

∫
X×I

∫
I

(1 ∧ d(u, v)) Kx(dv) µ
(
d(x, u)

)
. (2.2)

Proposition 2.1 (characterization ofMfct
I as continuity points). Let cont(β) ⊆MI be the

set of continuity points of β : MI → R+, where MI carries the marked Gromov-weak
topology. Then

cont(β) = β−1(0) = Mfct
I . (2.3)

Proof (first part). As seen before, X = (X, r, ν ⊗K) ∈MI admits a mark function if and
only if Kx is a Dirac measure for ν-almost every x ∈ X, which is the case if and only
if β(X) = 0. Hence β−1(0) = Mfct

I . Because Mfct
I is dense in MI by Lemma 1.11, no

X ∈MI \ β−1(0) can be a continuity point of β. Thus cont(β) ⊆ β−1(0).
We defer the proof of the inclusion β−1(0) ⊆ cont(β) to Subsection 2.2, because it

requires a technical estimate on β derived in Proposition 2.7.

In view of (2.3), we can use standard arguments to construct a complete metric on
Mfct
I that metrizes marked Gromov-weak topology. Namely consider the sets

Fm := β−1
(
[ 1
m ,∞)

)
⊆MI , m ∈ N, (2.4)

where the closure is in the marked Gromov-weak topology. Then, due to Proposition 2.1,
Fm is disjoint from Mfct

I , and Mfct
I = MI \

⋃
m∈N Fm. Because Fm is also closed by

definition, we obtain

Mfct
I =

⋂
m∈N

{
X ∈MI : dmGP(X , Fm) > 0

}
. (2.5)

We consider the metric dfGP on Mfct
I defined for X , Y ∈Mfct

I by

dfGP(X , Y) := dmGP(X , Y) + sup
m∈N

2−m ∧
∣∣∣ 1

dmGP(X , Fm)
− 1

dmGP(Y, Fm)

∣∣∣. (2.6)

Theorem 2.2 (Mfct
I is Polish). The space Mfct

I of I-functionally-marked metric measure
spaces with marked Gromov-weak topology is a Polish space. Namely, dfGP is a complete
metric on Mfct

I inducing the marked Gromov-weak topology.

Proof. First, we show that dfGP induces the marked Gromov-weak topology on Mfct
I . For

m ∈ N, X ∈MI , define
ρm(X) := dmGP(X , Fm), (2.7)

with Fm defined in (2.4). Note that ρm is a continuous function on MI . Let Xn,X ∈
Mfct
I . Then ρm(X) > 0 for all m ∈ N because of (2.5). Therefore, by definition,

dfGP(Xn,X) −→
n→∞

0 if and only if the two conditions dmGP(Xn,X) −→
n→∞

0 and

ρm(Xn) −→
n→∞

ρm(X) ∀m ∈ N (2.8)

hold. We have to show that the marked Gromov-weak convergence already implies (2.8).
This, however, follows from the continuity of the ρm.

It remains to show that dfGP is a complete metric on Mfct
I . Consider a dfGP-Cauchy

sequence (Xn)n∈N inMfct
I . By completeness of dmGP onMI , it converges marked Gromov-

weakly to some X = (X, r, µ) ∈ MI . Furthermore, for every fixed m ∈ N, (2.6) implies
that 1/ρm(Xn) converges as n→∞, and hence dmGP(Xn, Fm) is bounded away from zero.
Thus X 6∈ Fm. Because Mfct

I = MI \
⋃
m∈N Fm, this means that X ∈Mfct

I , and by the first
part of the proof dfGP(Xn,X) −→

n→∞
0.
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Existence of mark functions in marked metric measure spaces

With BMI

δ (X) :=
{
Y ∈ MI : dmGP(X , Y) < δ

}
we denote the open δ-ball in MI with

respect to dmGP. The following corollary gives formal criteria for a limiting space to
admit a mark function, which are useful only together with estimates on β.

Corollary 2.3. Let (Xn)n∈N be a sequence in MI which converges marked Gromov-
weakly to X . Then the following four conditions are equivalent:

(i) X ∈Mfct
I .

(ii) lim supn→∞ ρm(Xn) > 0 for all m ∈ N, with ρm defined in (2.7).

(iii) For every δ > 0,
lim sup
n→∞

inf
Y∈β−1([δ,∞[)

dmGP(Xn, Y) > 0. (2.9)

(iv)
lim
δ↓0

lim inf
n→∞

sup
Y∈BMIδ (Xn)

β(Y) = 0. (2.10)

Proof. “(i)⇔ (ii)”: We have ρm(X) = limn→∞ ρm(Xn), and ρm(X) > 0 for all m ∈ N if and
only if X ∈Mfct

I .

“(ii)⇔ (iii)”: follows directly from the definition of ρm.

“(iii)⇔ (iv)”: Using monotonicity in δ we obtain

(iii) ⇐⇒ ∀δ > 0∃ε > 0 ∀(Yn)n∈N ⊆MI with β(Yn) ≥ δ : lim sup
n→∞

dmGP(Xn, Yn) ≥ ε
(2.11)

⇐⇒ ∀δ > 0∃ε > 0 ∀(Yn)n∈N ⊆MI : lim inf
n→∞

β(Yn) < δ or lim sup
n→∞

dmGP(Xn, Yn) ≥ ε

⇐⇒ ∀ε > 0∃δ > 0 ∀(Yn)n∈N ⊆MI with Yn ∈ BMI

δ (Xn) : lim inf
n→∞

β(Yn) < ε ⇐⇒ (iv),

where, in the third equivalence, we renamed δ to ε and ε to δ.

2.2 A decomposition of Mfct
I into closed sets and estimates on β

In this subsection, we derive some estimates on β and use them to complete the proof
of Proposition 2.1. Furthermore, we construct a decomposition of Mfct

I into closed sets
which are related to the sets Mh

I .
As we have seen in Subsection 1.4, the situation becomes easy if we restrict to

the uniformly equicontinuous case, that is to the subspace Mh
I for some h ∈ H as in

Definition 1.12. We introduce in what follows several related subspaces capturing some
aspect of equicontinuity. In analogy to the definition of AXh in (1.18), we use for a metric
space (X, r), and δ, ε > 0, the notation

AXδ,ε := A
(X,r)
δ,ε :=

{
(xi, ui)i=1,2 ∈ (X × I)2 : r(x1, x2) ≥ δ or d(u1, u2) ≤ ε

}
⊆ (X × I)2.

(2.12)
Note that AXδ,ε is a closed set. For every h ∈ H, using monotonicity and continuity of h,
we observe that

AXh =
⋂
δ>0

AXδ,h(δ). (2.13)

Definition 2.4 (Mδ,ε
I ,Mδ,ε

I ,Mh
I ). Let δ, ε > 0 and h ∈ H. We define

Mδ,ε
I :=

{
(X, r, µ) ∈MI : µ⊗2(AXδ,ε) = ‖µ⊗2‖

}
, (2.14)

M
δ,ε
I :=

{
(X, r, µ) ∈MI : ∃µ′ ∈Mf(X × I) : µ′ ≤ µ, ‖µ− µ′‖ ≤ ε, (X, r, µ′) ∈Mδ,ε

I

}
,

(2.15)

and Mh
I :=

⋂
δ>0M

δ,h(δ)
I .
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Existence of mark functions in marked metric measure spaces

The intuition is that for spaces in M
δ,h(δ)
I , the measure behaves as if it admitted an

h-uniformly continuous mark function when distances of order δ are observed. The same
holds for the spaces in Mδ,h(δ)

I if we are additionally allowed to neglect a portion h(δ) of
mass.

Remark 2.5. (i) Clearly Mh
I ⊆Mh

I . We will see in Lemma 2.8 that Mh
I ⊆Mfct

I .

(ii) The space Mh
I is much larger than Mh

I : while
⋃
h∈HMh

I contains only mmm-spaces
admitting a uniformly continuous mark function, we will see in Lemma 2.8 that
every element of Mfct

I is in some Mh
I .

(iii) The spaces Mδ,ε
I and Mδ,ε

I are not contained in Mfct
I . For instance, consider I = R

and X =
(
{0}, 0, δ(0,0) + δ(0,ε)) ∈Mδ,ε

I ⊆Mδ,ε
I .

We have the following stability of Mδ,ε
I with respect to small perturbations in the

marked Gromov-Prohorov metric.

Lemma 2.6 (perturbation ofMδ,ε
I ). Let δ, ε > 0, X ∈Mδ,ε

I and X̂ ∈MI . Then

δ′ := dmGP(X , X̂) < 1
2δ =⇒ X̂ ∈Mδ−2δ′, ε+2δ′

I . (2.16)

Proof. Let X = (X, r, µ), X̂ = (X̂, r̂, µ̂). We may assume that X, X̂ are subspaces of some
separable, metric space (E, rE) such that dPr(µ, µ̂) < δ′. By definition of Mδ,ε

I , there

is µ′ ≤ µ with ‖µ − µ′‖ ≤ ε and X′ := (X, r, µ′) ∈ Mδ,ε
I . Due to Lemma 1.4, we find

µ̂′ ≤ µ̂ with ‖µ̂ − µ̂′‖ ≤ ε and dPr(µ
′, µ̂′) < δ′, where X̂ ′ = (X̂, r̂, µ̂′). By the coupling

representation of the Prohorov metric, (1.4), we obtain a measure ξ on (E × I)2 with
marginals ξ1 ≤ µ′ and ξ2 ≤ µ̂′ such that ‖µ̂′ − ξ2‖ ≤ δ′ and

ξ
({(

(x, u), (x̂, û)
)
∈ (X × I)× (X̂ × I) : rE(x, x̂) + d(u, û) ≥ δ′

})
= 0. (2.17)

By definition, (µ′)⊗2 is supported by AXδ,ε. Therefore, the same is true for ξ⊗21 and we
obtain

‖ξ⊗22 ‖ = ‖ξ⊗2‖ = ξ⊗2
({

(xi, ui, x̂i, ûi)i=1,2 ∈ ((X × I)× (X̂ × I))2 : (xi, ui)i=1,2 ∈ AXδ,ε
})

(2.18)

≤ ξ⊗22

({
(x̂i, ûi)i=1,2 ∈ (X̂ × I)2 : rE(x̂1, x̂2) ≥ δ − 2δ′ or d(û1, û2) ≤ ε+ 2δ′

})
= ξ⊗22 (AX̂δ−2δ′,ε+2δ′),

where the inequality follows from (2.17) together with the triangle-inequality. Therefore,

(X̂, r̂, ξ2) ∈ Mδ−2δ′, ε+2δ′

I . Now the claim follows from ‖µ̂ − ξ2‖ ≤ ‖µ̂ − µ̂′‖ + ‖µ̂′ − ξ2‖ ≤
ε+ δ′.

Proposition 2.7 (estimates on β). Let δ, ε > 0 and consider X = (X, r, µ) ∈ MI . Then
the following hold:

(i) If µ′ ∈Mf(X × I), then β(X) ≤ β
(
(X, r, µ′)

)
+ 2‖µ− µ′‖.

(ii) If X ∈M2δ,ε
I , then β(X) ≤ ε‖µ‖.

(iii) If X ∈M2δ,ε
I and X̂ ∈MI with dmGP(X , X̂) < δ, then β(X) ≤ ε

(
‖µ‖+ 2

)
and

β(X̂) ≤ (ε+ 2δ)(2 + ‖µ‖+ δ). (2.19)

Proof. (i) follows directly from the definition.

(ii) If x ∈ X and u, v ∈ I satisfy
(
(x, u), (x, v)

)
∈ AX2δ,ε, then d(u, v) ≤ ε by definition of

AX2δ,ε. Thus β(X) =
∫
X×I

∫
I
(1 ∧ d(u, v))Kx(dv)µ

(
d(x, u)

)
≤ ε‖µ‖.

(iii) Combining (i) and (ii) yields β(X) ≤ 2ε+ ε‖µ‖. Let δ′ = dmGP(X , X̂). By Lemma 2.6,

we have X̂ ∈M2δ−2δ′, ε+2δ′

I and thus β(X̂) ≤ (2+‖µ̂‖)(ε+2δ′) ≤ (2+‖µ‖+δ)(ε+2δ).
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Existence of mark functions in marked metric measure spaces

In order to complete the proof of Proposition 2.1 with the help of Proposition 2.7,
we first observe that, as a consequence of Lusin’s theorem, every functionally marked
metric measure space is an element of Mh

I for some h ∈ H. Together with Lemma 2.9
below, this means that we have a nice (though uncountable) decomposition of Mfct

I into
closed sets.

Lemma 2.8 (decomposition ofMfct
I ). The following equality holds: Mfct

I =
⋃
h∈HM

h
I .

Proof. We have Mh
I ⊆ β−1(0) = Mfct

I for every h ∈ H. Indeed, the equality was shown in
the first part of the proof of Proposition 2.1. To obtain the inclusion, that is β(X) = 0 for
all X ∈Mh

I , recall Mh
I from Definition 2.4 and choose ε = h(2δ) in Proposition 2.7(iii).

Conversely, let X = (X, r, ν, κ) ∈Mfct
I . According to Lusin’s theorem, we find for every

ε > 0 a compact set Kε ⊆ X, and a modulus of continuity hε ∈ H, such that ν(X \Kε) ≤ ε
and κ|Kε is hε-uniformly continuous. In particular,

X ∈Mδ,hε(δ)∨ε
I ∀ε, δ > 0. (2.20)

We may assume without loss of generality that ε 7→ hε(δ) is decreasing and right-
continuous for every δ > 0. We define

h(δ) := inf
{
ε > 0 : hε(δ) < ε

}
∈ R+ ∪ {∞}. (2.21)

Clearly, h(δ) converges to 0 as δ ↓ 0 because hε ∈ H. Furthermore, hh(δ)(δ) ≤ h(δ), and
hence (2.20) with ε = h(δ) implies X ∈Mh

I .

Proof of Proposition 2.1 (completion). We still have to show continuity of β in every
point X ∈ β−1(0). Due to Lemma 2.8, there is h ∈ H with X ∈Mh

I . Now Proposition 2.7
yields for δ > 0 the estimate sup

{
β(X̂) : X̂ ∈ BMI

δ (X)
}
≤ (h(2δ) + 2δ)(2 + ‖µ‖+ δ), which

converges to 0 as δ ↓ 0.

It directly follows from Proposition 2.7(iii) that the marked Gromov-weak closure of
Mh
I is contained in Mfct

I . In fact, Mh
I is even Gromov-weakly closed, which will be used

in the proof of Theorem 3.11 below.

Lemma 2.9 (closedness of Mh
I ). For every δ, ε > 0, Mδ,ε

I is marked Gromov-weakly
closed in MI . In particular, Mh

I is closed for every h ∈ H.

Proof. Fix ε, δ > 0 and let (Xn)n∈N be a sequence in Mδ,ε
I converging marked Gromov-

weakly to some X = (X, r, µ) ∈MI . Using Lemma 1.9, we may assume that Xn, n ∈ N,
and X are subspaces of a common separable, metric space (E, rE), such that µn

w−→ µ

on E × I. By definition of Mδ,ε
I , we find µ′n ≤ µn, ‖µ′n − µn‖ ≤ ε, such that (µ′n)⊗2 is

supported by AEδ,ε for all n ∈ N. Since (µ′n)n∈N is tight, we may assume, by passing to

a subsequence, that µ′n
w−→ µ′ for some µ′ ∈ Mf(E). Obviously, µ′ ≤ µ and ‖µ − µ′‖ =

limn→∞ ‖µn‖ − ‖µ′n‖ ≤ ε. Because AEδ,ε is closed, (µ′)⊗2 is supported by AEδ,ε and hence

X ∈Mδ,ε
I .

3 Criteria for the existence of mark functions

Based on the construction of the complete metric and the decomposition Mfct
I =⋃

h∈HM
h
I into closed sets obtained in Section 2, we now derive criteria to check if a

marked metric measure space admits a mark function, especially in the case where
it is given as a marked Gromov-weak limit. We then transfer the results to random
mmm-spaces and MI -valued stochastic processes.
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Existence of mark functions in marked metric measure spaces

3.1 Deterministic criteria

Our main criterion for deterministic spaces is a direct consequence of the results in
Section 2. Recall that H is the set of moduli of continuity defined in (1.17).

Theorem 3.1 (characterization of existence of a mark function in the limit). Let (Xn)n∈N

be a sequence in MI with Xn
mGw−−−→ X ∈ MI . Then X ∈ Mfct

I if and only if there exists
h ∈ H such that for every δ > 0

Xn ∈Mδ,h(δ)
I for infinitely many n ∈ N. (3.1)

In this case, X ∈Mh
I .

Proof. First assume there is h ∈ H such that (3.1) is satisfied. Since Mδ,h(δ)
I is closed by

Lemma 2.9, (3.1) implies that X ∈ Mδ,h(δ)
I for every δ, that is X ∈ Mh

I . By Lemma 2.8,
Mh
I ⊆Mfct

I .
Conversely, assume X ∈ Mfct

I . Then, by Lemma 2.8, we find h ∈ H with X ∈ Mh
I .

We claim that (3.1) holds with h replaced by ĥ(δ) := h(3δ) + 2δ. Indeed, fix δ > 0

and observe that X ∈ Mh
I ⊆ M

3δ,h(3δ)
I . Lemma 2.6 yields Xn ∈ Mδ,ĥ(δ)

I for all n with
dmGP(X ,Xn) < δ.

We will use Theorem 3.1 in the following form.

Corollary 3.2. Let Xn = (Xn, rn, νn, κn) ∈ Mfct
I , Xn

mGw−−−→ X ∈ MI . Let Yn,δ ⊆ Xn

measurable for n ∈ N, δ > 0, and h ∈ H. Then X ∈Mfct
I if the following two conditions

hold for every δ > 0:

lim inf
n→∞

νn(Xn \ Yn,δ) ≤ h(δ), (3.2)

∀n ∈ N, x, y ∈ Yn,δ : rn(x, y) < δ =⇒ d
(
κn(x), κn(y)

)
≤ h(δ). (3.3)

Proof. Let µ′n := µn|Yn,δ×I , where µn = νn ⊗ δκn . Then (3.3) implies (Xn, rn, µ
′
n) ∈

M
δ,h(δ)
I and (3.2) yields ‖µ′n − µn‖ ≤ h(δ) for infinitely many n. Hence we can apply

Theorem 3.1.

Remark 3.3. To obtain X ∈ Mfct
I , it is clearly enough to show in Theorem 3.1 and

Corollary 3.2, (3.1) respectively (3.2) and (3.3) only for δ = δm for a sequence (δm)m∈N
with δm ↓ 0 as m→∞.

We illustrate the rôle of the exceptional set Xn \ Yn,δ, and the importance of its
dependence on δ, with a simple example.

Example 3.4. Consider X = [0, 1] with Euclidean metric r, ν = λ + δ0, where λ is
Lebesgue-measure, and κn(x) = (nx)∧ 1. Obviously, Xn = (X, r, ν, κn) converges marked
Gromov-weakly and the limit admits the mark function 1(0,1]. To see this from Corol-
lary 3.2, we choose h(δ) = δ and Yn,δ = {0} ∪ [δ ∨ 1

n , 1]. Note that we cannot choose Yn,δ
independent of δ.

Remark 3.5 (equicontinuous case). If, in Corollary 3.2, Yn,δ = Yn does not depend on
δ, then (3.3) means that κn is h-uniformly continuous on Yn. Consequently, the mark
function of X is in this case h-uniformly continuous. If we restrict to Yn = Xn for all n,
we recover part (ii) of Lemma 1.13.

Corollary 3.6. Let Xn = (Xn, rn, νn, κn) ∈ Mfct
I and assume that Xn converges to X =

(X, r, µ) ∈MI marked Gromov-weakly. Further assume that for n ∈ N, δ > 0, there are
measurable sets Zn,δ ⊆ Xn, such that

lim
δ↓0

lim inf
n→∞

(
νn(Xn \ Zn,δ) +

∫
Zn,δ

(
1 ∧ diam

(
κn
(
BXnδ (x) ∩ Zn,δ

)))
νn(dx)

)
= 0, (3.4)
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where diam is the diameter of a set. Then X admits a mark function, that is X ∈Mfct
I .

Proof. For δ > 0 let

g(δ) := sup
0<δ′≤δ

lim inf
n→∞

(
νn(Xn \ Zn,δ′) +

∫
Zn,δ′

(
1 ∧ diam

(
κn
(
BXnδ′ (x) ∩ Zn,δ′

)))
νn(dx)

)
.

(3.5)
By (3.4), limδ↓0 g(δ) = 0 and g is increasing with ‖g‖∞ ≤ ‖µ‖. Let h ∈ H be such that

g(δ) ≤ h(δ)
2

(
1 ∧ h(δ)) for all δ > 0. Then

νn
({
x ∈ Zn,δ : diam

(
κn(BXnδ (x) ∩ Zn,δ)

)
> h(δ)

})
≤ g(δ)

1 ∧ h(δ)
≤ h(δ)/2. (3.6)

Now apply Corollary 3.2 with

Yn,δ :=
{
x ∈ Zn,δ : diam

(
κn
(
BXnδ (x) ∩ Zn,δ

))
≤ h(δ)

}
. (3.7)

Then (3.3) follows from the definition of Yn,δ in (3.7), and νn(Xn \ Yn,δ) ≤ νn(Xn \Zn,δ) +

h(δ)/2 ≤ g(δ) + h(δ)/2 ≤ h(δ) holds by (3.6) and (3.5).

3.2 Random fmm-spaces

The following theorem is a randomized version of Theorem 3.1. It is our main criterion
for MI -valued random variables.

Theorem 3.7 (random fmm-spaces as limits in distribution). Let (Xn)n∈N be a sequence
of MI -valued random variables which converges in distribution (w.r.t. marked Gromov-
weak topology) to an MI -valued random variable X . Further assume that for every
ε > 0, there exists a modulus of continuity hε ∈ H such that

lim sup
δ↓0

lim sup
n→∞

P
({
Xn ∈Mδ,hε(δ)

I

})
≥ 1− ε. (3.8)

Then X admits almost surely a mark function, that is X ∈Mfct
I almost surely.

If additionally Xn = (Xn, rn, νn, κn) ∈Mfct
I almost surely for all n ∈ N, we can replace

(3.8) by existence of random measurable sets Y εn,δ ⊆ Xn, n ∈ N, δ > 0, in addition to the
hε ∈ H, such that the following two conditions hold for every ε > 0:

lim sup
δ↓0

lim sup
n→∞

P
({
νn(Xn \ Y εn,δ) ≤ hε(δ)

})
≥ 1− ε. (3.9)

∀n ∈ N, δ > 0, x, y ∈ Y εn,δ : rn(x, y) < δ =⇒ d
(
κn(x), κn(y)

)
≤ hε(δ). (3.10)

Remark 3.8. In (3.9), we need not worry about measurability of the “event” Bn,δ :={
νn(Xn \Y εn,δ) ≤ hε(δ)

}
due to the choice of Y εn,δ. The inequality (3.9) is to be understood

in the sense of inner measure, that is we require that there are measurable sets Cn,δ ⊆
Bn,δ with lim supδ↓0 lim supn→∞P(Cn,δ) ≥ 1− ε.

Proof. The second statement follows in the same way as Corollary 3.2. We divide the
proof of the main part in two steps. First, we show X ∈Mfct

I if, instead of (3.8), even

P
( ⋂
m∈N

{
Xn ∈Mδm,hε(δm)

I for infinitely many n
})
≥ 1− ε (3.11)

holds for a sequence δm = δm(ε) ↓ 0 as m→∞. In the second step, we show that, given
(3.8), we can modify hε to ĥε ∈ H such that (3.11) holds with hε replaced by ĥε.

Step 1. By Skorohod’s representation theorem, we may assume that the Xn are coupled
such that they converge almost surely to X in the marked Gromov-weak topology. The
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inequality (3.11) implies that with probability at least 1−ε, for allm ∈ N, Xn ∈Mδm,hε(δm)
I

for infinitely many n. By Theorem 3.1 and Remark 3.3, this means that the probability
that X admits a mark function is at least 1 − ε. Because ε is arbitrary, this implies
X ∈Mfct

I almost surely.

Step 2. Let T (ε, δ) := lim supn→∞ P
({
Xn ∈Mδ,hε(δ)

I

})
in (3.8). Set

δ1 := sup
{
δ ∈ [0, 1] : T (ε/4, δ) ≥ 1− ε/2 and hε/4(δ) < 1

}
. (3.12)

By (3.8) and as hε/4 ∈ H, the set inside the supremum is non-empty. Next define
recursively

δm := sup
{
δ ∈ [0, δm−1/2] : T (ε2−(m+1), δ) ≥ 1− ε2−m and hε2−(m+1)(δ) < 1/m

}
(3.13)

for m ∈ N,m ≥ 2. Again, the set inside the supremum is non-empty by (3.8) and as
hε2−(m+1) ∈ H. Moreover, δm = δm(ε) > 0, δm ↓ 0 for m → ∞ and hε2−(m+1)(δm) ≤ 1/m

follows. We can therefore set

ĥε(δm) := hε2−(m+1)(δm) (3.14)

and extend this to ĥε ∈ H. Using Fatou’s lemma, we obtain

P
( ⋃
m∈N

{
Xn 6∈Mδm,ĥε(δm)

I eventually
})
≤
∑
m∈N

E
(
lim inf
n→∞

1
MI\Mδm,ĥε(δm)

I

(Xn)
)

(3.15)

≤
∑
m∈N

lim inf
n→∞

P
({
Xn 6∈Mδm,ĥε(δm)

I

})
=
∑
m∈N

(
1− T (ε2−(m+1), δm)

)
≤
∑
m∈N

ε2−m = ε.

Thus (3.11) holds with hε replaced by ĥε.

3.3 Fmm-space-valued processes

Let J ⊆ R+ be a (closed, open or half-open) interval and consider a stochastic process
X = (Xt)t∈J with values in MI and càdlàg paths, where MI is equipped with the marked
Gromov-weak topology. We say that X is an Mfct

I -valued càdlàg process if

P
({
Xt,Xt− ∈Mfct

I for all t ∈ J
})

= 1, (3.16)

where Xt− is the left limit of X at t (X`− := X` if ` is the left endpoint of J). In the
following, we give sufficient criteria for X to be an Mfct

I -valued càdlàg process. We are
particularly interested in the situation where X is the limit of Mfct

I -valued processes Xn.
Unsurprisingly, if the set of P-measure smaller or equal to ε in Theorem 3.7 is

independent of t, the result is true for all t simultaneously, almost surely. The modulus
of continuity may also depend on t in a continuous way; or be arbitrary if the limiting
process has continuous paths:

Theorem 3.9. Let J ⊆ R+ be an interval, and Xn = (Xnt )t∈J , n ∈ N, a sequence of
MI -valued càdlàg processes converging in distribution to an MI -valued càdlàg process
X = (Xt)t∈J . Assume that for every t ∈ J , ε > 0, there exists ht,ε ∈ H such that

lim sup
δ↓0

lim sup
n→∞

P
({
Xnt ∈M

δ,ht,ε(δ)
I ∀t ∈ J

})
≥ 1− ε. (3.17)

Then X is an Mfct
I -valued càdlàg process, that is (3.16) is satisfied, if at least one of the

following two conditions holds:
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(i) X has continuous paths a.s.

(ii) t 7→ ht,ε(δ) is continuous for every ε, δ > 0.

If additionally Xn is Mfct
I -valued almost surely for all n ∈ N, (3.17) can be replaced by

existence of random measurable sets Y nt,ε,δ ⊆ Xn
t , in addition to the ht,ε ∈ H, satisfying

the following two conditions for every ε > 0:

lim sup
δ↓0

lim sup
n→∞

P
({
νnt (Xn

t \ Y nt,ε,δ) ≤ ht,ε(δ) ∀t ∈ J
})
≥ 1− ε, (3.18)

∀n ∈ N, t ∈ J, δ > 0, x, y ∈ Y nt,ε,δ : rn(x, y) < δ =⇒ d
(
κn(x), κn(y)

)
≤ ht,ε(δ). (3.19)

Proof. Due to the Skorohod representation theorem, we may assume that Xn → X
almost surely in the Skorohod topology. For condition (i) respectively (ii) we obtain

(i) If X has continuous paths a.s., the convergence in Skorohod topology implies
uniform convergence of Xnt (ω) on J a.s. with respect to dmGP. Hence we have

Xnt
mGw−−−→
n→∞

Xt for all t ∈ J , almost surely, and we can proceed as in the proof of

Theorem 3.7.

(ii) There are (random) continuous wn : J → J , converging to the identity uniformly on
compacta, such that Xnwn(t) → Xt for all t ∈ J , almost surely. We can use the moduli

of continuity ĥt,ε(δ) := ht,ε(δ) + δ and proceed as in the proof of Theorem 3.7. Note
here that, due to continuity of ht,ε(δ) in t, there is for every compact subinterval J
of J an NJ ,ε,δ ∈ N such that ĥt,ε(δ) ≥ hwn(t),ε(δ) for all n ≥ NJ ,ε,δ and t ∈ J .

The same arguments apply for left limits with wn− such that Xnwn−(t) → Xt−.

To use Theorem 3.9, we have to check in (3.17) or (3.18) a condition for uncountably
many t simultaneously, which is often much more difficult than for every t individually.
One situation, where it is easy to pass from individual t to all t simultaneously is the case
where the moduli of continuity ht,ε actually do not depend on t and ε (see Corollary 3.13).
The independence of ε, however, is a strong requirement. Therefore, we relax it to not
blowing up too fast as ε ↓ 0, where the “too fast” is determined by the following modulus
of càdlàgness of the limiting process.

Definition 3.10 (modulus of càdlàgness). Let J be an interval, (E, r) a metric space,
and e = (et)t∈J ∈ DE(J) a càdlàg path on J with values in E. Following [2, (14.44)], set

w′′(e, δ) := sup
t,t1,t2∈J:t1≤t≤t2,t2−t1≤δ

min
{
r(e(t), e(t1)), r(e(t2), e(t))

}
. (3.20)

We say that e admits w ∈ H as modulus of càdlàgness if w′′(e, δ) ≤ w(δ) for all δ > 0.

Theorem 3.11. Fix an interval J ⊆ R+. Let X = (Xt)t∈J and Xn = (Xnt )t∈J , n ∈ N, be
MI -valued càdlàg processes such that Xn converges in distribution to X . Furthermore,
assume that there is a dense set Q ⊆ J and wε, hε ∈ H, such that for all ε > 0

lim sup
n→∞

P({Xnt ∈Mδ,hε(δ)
I }) ≥ 1− ε ∀δ > 0, t ∈ Q, (3.21)

P({t 7→ Xt admits wε as modulus of càdlàgness w.r.t. dmGP}) ≥ 1− ε, and (3.22)

lim inf
δ↓0

hε·δ
(
2wε(δ)

)
= 0. (3.23)

Then X is an Mfct
I -valued càdlàg process, that is (3.16) holds.

Recall the decomposition MI \Mfct
I =

⋃
m∈N Fm with Fm defined in (2.4). The basic

idea of the proof is to use the following lemma about càdlàg paths to show that, almost
surely, the path of X avoids Fm. The assertion of the lemma follows easily using the
triangle-inequality.

EJP 20 (2015), paper 73.
Page 15/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3969
http://ejp.ejpecp.org/


Existence of mark functions in marked metric measure spaces

Lemma 3.12. Let J be an interval, (E, r) a metric space, and e = (et)t∈J ∈ DE(J) a
càdlàg path admitting modulus of càdlàgness w ∈ H. Let F ⊆ E be any set, δ > 0, and
Q ⊆ J such that for all t ∈ J there is t1, t2 ∈ Q with t1 ≤ t ≤ t2 ≤ t1 + δ. Then

r(et, F ) > w(δ) ∀t ∈ Q =⇒ et 6∈ F and et− 6∈ F ∀t ∈ J. (3.24)

Proof of Theorem 3.11. Because Mhε
I =

⋂
δ>0M

δ,hε(δ)
I is closed by Lemma 2.9, the Port-

manteau theorem and (3.21) imply

P({Xt 6∈Mhε
I }) < ε ∀t ∈ Q, ε > 0. (3.25)

Due to the Skorohod representation theorem, we may assume that Xn → X almost
surely in Skorohod topology. In order to simplify notation, we assume J = [0, 1] and Q =⋃
k∈NQk with Qk = { i2−k : i = 0, . . . , 2k }. It is enough to show for every ε > 0, m ∈ N

and Fm as defined in (2.4) that

pm := P
({
∃t ∈ [0, 1] : Xt or Xt− ∈ Fm

})
≤ 3ε. (3.26)

To show (3.26), fix ε > 0 and m ∈ N, and let Xt = (Xt, rt, µt). Because X has càdlàg
paths, we find K = K(ε) <∞ such that

P
({

sup
t∈[0,1]

‖µt‖ ≥ K − 3
})

< ε. (3.27)

According to (3.23) and (3.25), we can choose k ∈ N big enough such that for h := hε2−k

we have

h
(
2wε(2

−k)
)
< (Km)−1 − 2wε(2

−k) and P({Xt 6∈Mh
I }) < ε2−k. (3.28)

Assume without loss of generality that wε(2−k) ≤ 1. Now Proposition 2.7(iii) implies that,
whenever Xt ∈Mh

I and ‖µt‖ < K − 3, we have

dmGP(Xt, Fm) > wε(2
−k). (3.29)

Combining (3.22) and Lemma 3.12, we obtain

pm ≤ ε+ P
({
∃t ∈ Qk : dmGP(Xt, Fm) ≤ wε(2−k)

})
. (3.30)

Using (3.27), (3.29), and (in the last step) (3.28), we conclude

pm ≤ 2ε+ 2k sup
t∈Qk

P
({
‖µt‖ < K − 3, Xt 6∈Mh

I

})
≤ 3ε. (3.31)

Thus (3.26) holds for all ε > 0, and P({∃t ∈ [0, 1] : Xt 6∈ Mfct
I }) = supm∈N pm = 0

follows.

If, in Theorem 3.11, we can choose the modulus of continuity hε = h ∈ H, independent
of ε, such that (3.21) holds, we do not need to check (3.22) and (3.23).

Corollary 3.13 (ε-independent modulus of continuity). Assume that Xn = (Xnt )t∈J
converges in distribution to an MI -valued càdlàg process X , and Q ⊆ J is dense. Then
X is an Mfct

I -valued càdlàg process if, for some h ∈ H,

lim sup
n→∞

P({Xnt ∈Mh
I }) = 1 ∀t ∈ Q. (3.32)

Proof. Let h ∈ H be such that (3.32) is satisfied and set hε := h. Then (3.23) is satisfied
for every choice of wε ∈ H, ε > 0. For every càdlàg process, in particular for X , there
exist moduli of càdlàgness wε such that (3.22) holds (cf. [2, (14.6),(14.8) and (14.46)]).
Thus, Theorem 3.11 yields the claim.
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4 Examples

The (neutral) tree-valued Fleming-Viot dynamics is constructed in [10] using the
formalism of metric measure spaces. In [5], (allelic) types – encoded as marks of
marked metric measure spaces – are included, in order to be able to model mutation and
selection.

In [5, Remark 3.11] and [6, Theorem 6] it is stated that the resulting tree-valued
Fleming-Viot dynamics with mutation and selection (TFVMS) admits a mark function at
all times, almost surely. The given proof, however, contains a gap, because it relies on
the criterion claimed in [6, Lemma 7.1], which is wrong in general (see Example 4.1).
The reason why the criterion may fail is a lack of homogeneity of the measure ν, in the
sense that there are parts with high and parts with low mass density. Consequently, if
we condition two samples to have distance less than ε, the probability that they are from
the high-density part tends to one as ε ↓ 0, and we do not “see” the low-density part.
This phenomenon occurs if ν has an atom but is not purely atomic. We also give two
non-atomic examples, one a subset of Euclidean space, and the other one ultrametric.

Example 4.1 (counterexamples). In both examples, it is straight-forward to see that
(X, r, µ), with µ = ν ⊗K, satisfies the assumptions of [6, Lemma 7.1], but does not admit
a mark function. The mark space is I = {0, 1}.

(i) Let λA be Lebesgue measure of appropriate dimension on a set A. Define X :=

[0, 1]2 ∪ [2, 3], where [2, 3] is identified with [2, 3]× {0} ⊆ R2,

ν := 1
2 (λ[0,1]2 + λ[2,3]) and Kx :=

{
1
2 (δ0 + δ1), x ∈ [0, 1]2,

δ0, x ∈ [2, 3].
(4.1)

(ii) In this example think of a tree consisting of a left part with tertiary branching
points and a right part with binary branching points. The leaves correspond to
X := A ∪B with A = {0, 1, 2}N and B = {3, 4}N, and we choose as a metric

r
(
(xn)n∈N, (yn)n∈N

)
:= max

n∈N
e−n · 1xn 6=yn . (4.2)

Note that (X, r) is a compact, ultrametric space. The measure ν is constructed as
follows: choose the left respectively right part of the tree with probability 1

2 each.
Going deeper in the tree, at each branching point a branch is chosen uniformly.
That is, let νA and νB be the Bernoulli measures on A and B with uniform marginals
on {0, 1, 2} and {3, 4}, respectively. Define

ν := 1
2 (νA + νB) and Kx :=

{
1
2 (δ0 + δ1), x ∈ A,
δ0, x ∈ B.

(4.3)

4.1 The tree-valued Fleming-Viot dynamics with mutation and selection

In the following, we prove the existence of a mark function for the TFVMS by verifying
the assumptions of Theorem 3.9 for a sequence of approximating tree-valued Moran
models. Due to the Girsanov transform given in [5, Theorem 2], it is enough to consider
the neutral case, that is without selection.

We briefly recall the construction of the tree-valued Moran model with mutation
(TMMM) with finite population UN = {1, . . . , N}, N ∈ N, and types from the mark space
I. For details and more formal definitions, see [5, Subsections 2.1–2.3]. In the underlying
Moran model with mutation (MMM), every pair of individuals “resamples” independently
at rate γ > 0. Here, resampling means that one of the individuals (chosen uniformly at
random among the two) is replaced by an offspring of the other one, and the offspring
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t0

time axis

1 2 3 4 5 6 7 8 9 10 = N

b

b

b

t
81 2 3 4 5 6 7 9 10

M t0,N
t

∅
{1}
{1}
{1, 9}

{5, 9}

{5, 6, 9}
{3, 5, 6, 9}
{3, 5, 6, 9}
{3, 5, 6, 8, 9}
{3, 5, 6, 8, 9}

b {1, 5, 9}
{1, 9}

Figure 1: Graphical construction of the MMM for N = 10 for the time-period [t0, t], and the
resulting process (M t0,N

s )s∈[t0,t]. Resampling arrows are drawn at points of ηk,`res , and mutation
dots at points of ηkmut.

gets the same type as the parent. Furthermore, every individual mutates independently
at rate ϑ ≥ 0, which means that it changes its type according to a fixed stochastic kernel
β(·, ·) on I. Denote the resulting type of individual x ∈ UN at time t ≥ 0 by κNt (x). To
obtain the tree-valued dynamics, define the distance rNt (x, y) between two individuals
x, y ∈ UN at time t ≥ 0 as twice the time to the most recent common ancestor (MRCA)
(cf. [5, (2.7)]), provided that a common ancestor exists, and as 2t+ rN0 (x, y) otherwise.
The TMMM is the resulting process XNt = (UN , r

N
t , νN , κ

N
t ), with sampling measure

νN = 1
N

∑N
k=1 δk. It is easy to check that, by definition, (UN , r

N
t ) is an ultrametric space,

provided that the initial metric space (UN , r
N
0 ) is ultrametric. This explains the name

tree-valued (cf. [5, Remark 2.7]).
Next recall the graphical construction of the MMM from [5, Definition 2.2]. A

resampling event is modeled by means of a family of independent Poisson point processes
{ηk,`res : k, ` ∈ UN} on R+, where each ηk,`res has rate γ/2. If t ∈ ηk,`res , draw an arrow from
(k, t) to (`, t) to represent a resampling event at time t, where ` is an offspring of k.
Similarly, model mutation times by a family of independent Poisson point processes
{ηkmut : k ∈ UN}, where each ηkmut has rate ϑ. If t ∈ ηk,`res , draw a dot at (k, t) to represent
a mutation event changing the type of individual k (see Figure 1).

Let (M t0,N
t )t≥t0 , M t0,N

t ⊆ UN with M t0,N
t0 = ∅ be the process that records the indi-

viduals of the population at time t with an ancestor at a time t0 < s ≤ t involved in a
mutation event. By a coupling argument, this process can be constructed by means of
the Poisson point processes (ηk,`res , η

k
mut, k, ` ∈ UN ) as follows (compare Figures 1–2):

M t0,N
t =


M t0,N
t− ∪ {`} if there is an arrow from k ∈M t0,N

t− to ` ∈ UN at time t,

M t0,N
t− ∪ {k} if there is a mutation event at k ∈ UN at time t,

M t0,N
t− \{`} if there is an arrow from k /∈M t0,N

t− to ` ∈ UN at time t.
(4.4)

Let ξNt := 1
N#M t0,N

t0+t be the proportion of individuals at time t0+t, t ≥ 0 whose ancestors
have mutated after (the for the moment fixed) time t0.

Lemma 4.2. Let C := 1
2ϑ(2ϑ+ γ). Then for all a, δ > 0

lim sup
N→∞

P
(

sup
t∈[0,δ]

ξNt ≥ a
)
≤ Ca−2δ2. (4.5)
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t0
1 2 3 4 5 6 7 8 9 10 = N

b

b

b

t
81 2 3 4 5 6 7 9 10

b

1 4 2 3

4 2 3

56 8 7 9 10

5 7 10

b

b

b

Figure 2: Tracing the ancestor backwards in time in Figure 1: This dual construction is also known
as the coalescent backwards in time. Reverse the arrows to see for instance that 3 at time t0 is an
ancestor of 8 at time t. The elements of M t0,N

t ⊆ UN are highlighted by boxes in the right part of
the picture.

Proof. By definition,
(
ξNt
)
t≥0 is a (continuous time) Markov jump process on [0, 1] with

ξN0 = 0 and transitions{
x 7→ x− 1/N at rate γ

2N
2x(1− x),

x 7→ x+ 1/N at rate γ
2N

2x(1− x) + ϑN(1− x).
(4.6)

This process converges weakly with respect to the Skorohod topology to the solution
(Zt)t≥0 of the stochastic differential equation (SDE)

dZt = ϑ(1− Zt)dt+
√
γZt(1− Zt) dBt, Z0 = 0. (4.7)

Indeed, to establish tightness use [7, Theorem III.9.4]. Note that, as [0, 1] is compact,
it suffices to show the convergence of the generators applied to a set of appropriate
test-functions. For existence and uniqueness of solutions to (4.7) reason as for the
Bessel SDE in [19, (48.1) and below]. Moreover, Zt ∈ [0, 1] is a bounded non-negative
right-continuous submartingale. Hence, with Doob’s submartingale inequality (see for
instance [7, Proposition II.2.16(a)]), we obtain

P
(

sup
t∈[0,δ]

Zt ≥ a
)

= P
(

sup
t∈[0,δ]

Z2
t ≥ a2

)
≤ a−2E[Z2

δ ]. (4.8)

As Zt ∈ [0, 1], we further deduce using Itô’s formula that for all t ≥ 0,

E[Zt] ≤ ϑt and (4.9)

E[Z2
t ] = E

[∫ t

0

2Zsϑ(1− Zs) + γZs(1− Zs) ds
]
≤ Ct2. (4.10)

Then
lim sup
N→∞

P
(

sup
t∈[0,δ]

ξNt ≥ a
)
≤ P

(
sup
t∈[0,δ]

Zt ≥ a
)
≤ Ca−2δ2 (4.11)

follows.

As the construction of the TFVMS in [5] is only given for a compact type-space
I, we make the same assumption. Note, however, that our proof itself does not use
compactness and is therefore valid for non-compact I, provided that the TFVMS is the
limit of the corresponding Moran models, and there exists a Girsanov transform allowing
us to reduce to the neutral case.
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Theorem 4.3 (the TFVMS admits a mark-function). Let I be compact and X = (Xt)t≥0
be the tree-valued Fleming-Viot dynamics with mutation and selection as defined in [5].
Then

P(Xt ∈Mfct
I for all t > 0) = 1. (4.12)

In particular, (Xt)t>0 is an Mfct
I -valued càdlàg process.

Proof. By [5, Theorem 2], there exists a Girsanov transform that enables us to assume
without loss of generality that selection is not present. In this case, according to [5,
Theorem 3], X is the limit in distribution of TMMMs XN = (XNt )t≥0, as discussed above.
Let XNt = (UN , r

N
t , νN , κ

N
t ) with UN = {1, . . . , N} and νN the uniform distribution on

UN . Let δ > 0 be fixed for the moment, and recall that the distance rNt (x, y) between
two individuals x, y ∈ UN at time t ≥ δ/2 is twice the time to the MRCA. Hence, if
rNt (x, y) < δ, then x and y at time t have a common ancestor at time t − δ/2. Further
recall that (M t0,N

t )t≥t0 , with M t0,N
t ⊆ UN and M t0,N

t0 = ∅, records the individuals of the
population at time t with an ancestor at a time s ∈ (t0, t] involved in a mutation event (cf.
(4.4)).

Fix an arbitrary time horizon T > 0 and i ∈ N, i ≤ 2T/δ. Using the notation of

Theorem 3.9, for t ∈ [iδ/2, (i+ 1)δ/2), let Y Nt,ε,δ := UN\M (i−1)δ/2,N
t , independent of ε > 0.

Set Y Nt,ε,δ := ∅ for t < δ/2. We claim that (3.19) is satisfied for any choice of ht,ε ∈ H.

Indeed, if x, y ∈ Y Nt,ε,δ satisfy rNt (x, y) < δ, then they have a common ancestor at time
t0 := (i− 1)δ/2 ≤ t− δ/2, and after this point in time no mutation occurred along their
ancestral lineages. In particular, d(κNt (x), κNt (y)) = 0, and (3.19) is obvious. Moreover,
XN is Mfct

I -valued by construction, and X has continuous paths by [5, Theorem 1].
According to Theorem 3.9, it is therefore enough to find moduli of continuity ht,ε ∈ H
such that (3.18) holds for every ε > 0.

By Lemma 4.2, we obtain a constant C > 0 such that for every a > 0,

lim sup
N→∞

P
(

sup
t∈[iδ/2,(i+1)δ/2)

νN
(
UN \ Y Nt,ε,δ

)
≥ a

)
≤ Ca−2δ2. (4.13)

After summation over i ∈ {1, . . . , b2T/δc}, we obtain

lim sup
N→∞

P
(

sup
t∈[δ/2,T ]

νN
(
UN\Y Nt,ε,δ

)
≥ a

)
≤ 2TCδa−2. (4.14)

For ε > 0 arbitrary, we use this inequality with a :=
√
ε−12TCδ, together with ‖νN‖ ≤ 1

for t < δ/2, to see that (3.18) is satisfied for ht,ε ∈ H with

ht,ε(δ) ≥
√
ε−12TCδ + 1[2t,∞[(δ). (4.15)

4.2 The tree-valued Λ-Fleming-Viot process

Let Λ be a finite measure on [0, 1], and recall the Λ-coalescent, introduced in [18]. It
is a coalescent process, where each k-tuple out of N blocks merges independently at
rate

λN,k :=

∫ 1

0

yk−2(1− y)N−k Λ(dy). (4.16)

For fixed N , it is elementary to construct a finite, random (ultra-)metric measure space
encoding the random genealogy of the Λ-coalescent, where the distance is defined as
the time to the MRCA (recall the construction of Figures 1–2 and see Figure 3). In [9,
Theorem 4], existence and uniqueness of a Gromov-weak limit in distribution, as N →∞,
is proven to be equivalent to the so-called “dust-free"-property, namely

∫ 1

0
y−1 Λ(dy) =∞.

The resulting limit is called Λ-coalescent measure tree.
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Figure 3: Tracing the ancestor backwards in time: The Λ-coalescent allows for one parent to have
more than one child.

Now, replace the tree-valued Moran models considered in Subsection 4.1 and [5]
by so-called tree-valued Λ-Cannings models with Λ satisfying the dust-free-property.
That is, leave the mutation- and selection-part as it is and change the resampling-
part of the Moran models as follows: For k = 2, . . . , N , at rate

(
N
k

)
λN,k a block of k

individuals is chosen uniformly at random among the N individuals of the population.
Upon such a resampling event, all individuals in this block are replaced by an offspring
of a single individual which is chosen uniformly from this block. Note that the genealogy
(disregarding types) of the resulting Λ-Cannings model with N individuals is dual to
the Λ-coalescent starting with N blocks. We call any limit point (in path space) of the
tree-valued Λ-Cannings processes, as N tends to infinity and Λ is fixed, tree-valued
Λ-Fleming-Viot process (TLFV). In the neutral case, existence and uniqueness of such a
limit point follows as a special case of the forthcoming work [8]. Here, we show that,
whenever limit points exist, all of them admit mark functions.

Theorem 4.4 (the TLFV admits a mark-function). Suppose there is no selection, that is
α = 0, and X = (Xt)t≥0 is a tree-valued Λ-Fleming-Viot process with mutation. Then

P(Xt ∈Mfct
I for all t > 0) = 1. (4.17)

Proof. By passing to a subsequence if necessary, we may assume that the Λ-Cannings
models converge in distribution to X . We proceed as in Subsection 4.1. Again, let
(M t0,N

t )t≥t0 , M t0,N
t ⊆ UN with M t0,N

t0 = ∅ be the process that records the individuals of
the population at time t with an ancestor at a time t0 < s ≤ t involved in a mutation
event and ξNt := 1

N#M t0,N
t0+t be the proportion of individuals at time t0 + t, t ≥ 0 whose

ancestors have mutated after (the for the moment fixed) time t0. By definition,
(
ξNt
)
t≥0

is a (continuous time) Markov jump process on [0, 1] with ξN0 = 0 and generator(
ΩNf

)
(x) = ϑN(1− x)

(
f(x+ 1/N)− f(x)

)
(4.18)

+

N∑
k=2

λN,k

(Nx)∧k∑
m=0

(
Nx

m

)(
N(1− x)

k −m

)
×
(m
k

(
f(x+ (k −m)/N)− f(x)

)
+
k −m
k

(
f(x−m/N)− f(x)

))
,

where x ∈ [0, 1], N · x ∈ N ∪ {0}, f ∈ C2b ([0, 1]). Due to Taylor’s formula, there is x+m,k,N ∈
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[x, x+ (k −m)/N ], x−m,k,N ∈ [x−m/N, x] with(
ΩNf

)
(x) = ϑN(1− x)

(
f(x+ 1/N)− f(x)

)
(4.19)

+

N∑
k=2

λN,k

(Nx)∧k∑
m=0

(
Nx

m

)(
N(1− x)

k −m

)

×
(f ′′(x+m,k,N )

2

m(k −m)2

kN2
+
f ′′(x−m,k,N )

2

(k −m)m2

kN2

)
= ϑ(1− x)f ′(x) +O(N−1) + x(1− x)

N∑
k=2

λN,k∆N,k(x),

where, using
(
n
i

)
= n

i

(
n−1
i−1
)

for i ≥ 1,

∆N,k(x) =

(Nx)∧(k−1)∑
m=1

(
Nx− 1

m− 1

)(
N(1− x)− 1

k −m− 1

)(
f ′′(x+m,k,N )

k −m
2k

+ f ′′(x−m,k,N )
m

2k

)
.

(4.20)
Recall that

∑k
m=0

(
`
m

)(
N−`
k−m

)
=
(
N
k

)
and λN,k =

∫ 1

0
yk−2(1 − y)N−k Λ(dy) with a finite

measure Λ on [0, 1] to see that

N∑
k=2

|∆N,k(x)| ≤ ‖f ′′‖∞
N∑
k=2

λN,k

k−2∑
m=0

(
Nx− 1

m

)(
N(1− x)− 1

k − 2−m

)
(4.21)

= ‖f ′′‖∞
∫ 1

0

N∑
k=2

(
N − 2

k − 2

)
yk−2(1− y)N−k Λ(dy)

= ‖f ′′‖∞ Λ([0, 1]).

Therefore, (
ΩNf

)
(x) = ϑ(1− x)f ′(x) +O(N−1) + x(1− x)O(1). (4.22)

Use f(x) = x, x ∈ [0, 1] in (4.19) to see that (ξNt )t≥0 is a non-negative right-continuous
submartingale with ξN0 = 0 and E[ξNt ] ≤ ϑt. Use f(x) = x2 to deduce from (4.22) that

E
[
(ξNt )2

]
≤ Ct2 +O(N−1)t. (4.23)

Now reason as for the TFVMS in the proofs of Lemma 4.2 and Theorem 4.3 to complete
the claim.

4.3 Future application: Evolving phylogenies of trait-dependent branching

In [14] the results of the present paper will be applied in a context of evolving
genealogies to establish the existence of a mark function with the help of Theorem 3.9.
These genealogies are random marked metric measure spaces, constructed as the limit
of approximating particle systems. The individual birth- respectively death-rates in the
N th-approximating population depend on the present trait of the individuals alive and
are of order O(N). At each birth-event, mutation happens with a fixed probability. Each
individual is assigned mass 1/N . The metric under consideration is genetic distance: in

the N th-approximating population genetic distance is increased by 1/N at each birth
with mutation. Hence, genetic distance of two individuals is counted in terms of births
with mutation backwards in time to the MRCA rather than in terms of the time to the
MRCA.

Because of the use of exponential times in the modeling of birth- and death-events
in this therefore non-ultrametric setup the analysis of the modulus of continuity of the
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trait-history of a particle in combination with the evolution of its genetic age plays a
major role in establishing tightness of the approximating systems and existence of a
mark function. In [13, Lemma 3.9], control on the modulus of continuity is obtained
by transferring the model to the context of historical particle systems. In a first step,
time is related to genetic distance by means of the modulus of continuity. The extend of
the change of trait of an individual in a small amount of time (recall (3.9) and (3.3)) can
then be controlled by means of the modulus of continuity of its trait-path in combination
with a control on the height of the largest jump during this period of time. This can in
turn be ensured by appropriate assumptions on the mutation transition kernels of the
approximating systems.
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