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Abstract

This article gives an account on various aspects of stochastic calculus in the plane.
Specifically, our aim is 3-fold: (i) Derive a pathwise change of variable formula for
a path x : [0, 1]2 → R satisfying some Hölder regularity conditions with a Hölder
exponent greater than 1/3. (ii) Get some Skorohod change of variable formulas for a
large class of Gaussian processes defined on [0, 1]2. (iii) Compare the bidimensional
integrals obtained with those two methods, computing explicit correction terms
whenever possible. As a byproduct, we also give explicit forms of corrections in the
respective change of variable formulas.
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1 Introduction

Stochastic calculus for processes indexed by the plane (or higher order objects) is
notoriously a cumbersome topic. In order to get an idea of this fact, let us start from
the simplest situation of a smooth function x indexed by [0, 1]2 and a regular function
ϕ ∈ C2(R). Then some elementary computations show that

[δϕ(x)]s1s2;t1t2 =

∫
[s1,s2]×[t1,t2]

ϕ(1)(xu;v) duvxu;v +

∫
[s1,s2]×[t1,t2]

ϕ(2)(xu;v) duxu;vdvxu;v,

(1.1)
for all 0 ≤ s1 < s2 ≤ 1 and 0 ≤ t1 < t2 ≤ 1, where we have set [δy]s1s2;t1t2 for the planar
increment of y in the rectangle [s1, s2]× [t1, t2], namely

[δy]s1s2;t1t2 ≡ ys2;t2 − ys1;t2 − ys2;t1 + ys1;t1 . (1.2)

This simple formula already exhibits the extra term
∫
ϕ(2)(xu;v) dux dvx with respect to

integration in R, and the mixed differential term dux dvx is one of the main source of
complications when one tries to extend (1.1) to more complex situations.
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Skorohod and Stratonovich in the plane

Moving to stochastic calculus in the plane, generalizations of (1.1) to a random
process x obviously starts with change of variables formulas involving the Brownian
sheet or martingales indexed by the plane. Relevant references include [3, 13, 19], and
some common features of the formulas produced in these articles are the following:

• Higher order derivatives of f showing up.

• Mixed differentials involving partial derivatives of x and quadratic variation type
elements.

• Huge number of terms in the formula due to boundary effects.

This non compact form of stochastic calculus in the plane has certainly been an obstacle
to its development, and we shall go back to this problem later on.

Some recent advances in generalized stochastic calculus have also paved the way
to change of variables formulas in the plane beyond the martingale case. One has to
distinguish two type of contributions in this direction:

(a) Skorohod type formulas for the fractional Brownian sheet (abbreviated as fBs in the
sequel) with Hurst parameters greater than 1/2 have been obtained in [17] thanks to a
combination of differential calculus in the plane and stochastic analysis tools inspired
by [1]. A subsequent generalization to Hurst parameters smaller than 1/2 is available
in [18], invoking the notion of extended divergence introduced in [12]. Notice however
that the extended divergence leads to a rather weak notion of integral, and might not be
necessary when the Hurst parameters of the fBs are greater than 1/4.

(b) The article [4] focuses on pathwise methods for stochastic calculus in the plane,
and builds an analog of the rough paths theory for functions indexed by the plane.
In particular, generalizations of (1.1) with Stratonovich type integrals are given for
functions with Hölder regularity greater than 1/3. The construction is deterministic and
general, and only requires the existence of a stack of iterated integrals of x called rough
path, denoted by X. One can show in particular that X exists when x is a fBs.

The current article is a contribution to these recent advances on generalized stochas-
tic calculus in the plane. Namely, we focus on 3 different problems: (i) A complete
exposition of the Stratonovich type change of variables formula obtained through rough
paths techniques. (ii) Generalization of [17] to a fairly general Gaussian process x. (iii)
Comparison of Stratonovich and Skorohod formulas, analogously to the 1 dimensional
situation handled in [10]. Before we further comment on these contributions, we now
describe our main results more specifically.

1.1 Some general notation

Before we can turn to the description of our main results, we introduce some general
notation concerning differential calculus in the plane. Let us mention first that we shall
separate as much as possible the first and the second direction of integration, which
will be respectively be denoted by direction 1 and direction 2. Thus the evaluation
of a function f : [0, 1]2k → R will be denoted by fs1···sk;t1···tk . We also set d12x for the
differential duvx and d1x d2x for the differential dux dvx. In fact, since the differential
element d1x d2x is essential for our purposes, we further shorten it into d1̂2̂x.

Another notation which will be used extensively throughout the paper is the following:
we set y = ϕ(x), and for all j ≥ 1 we write yj for the function ϕ(j)(x). With those first
shorthands, equation (1.1) for a smooth function x : [0, 1]2 → R can be written as

δy =

∫
1

∫
2

y1 d12x+

∫
1

∫
2

y2 d1̂2̂x. (1.3)
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Skorohod and Stratonovich in the plane

This kind of compact notation is of course useful when cumbersome computations come
into the picture.

Let us anticipate a little on the notation for planar increments which will be introduced
at Section 3.1: we denote by Pk,l the set of R-valued functions involving k variables
in direction 1 and l variables in direction 2, satisfying some vanishing conditions on
diagonals. We mostly deal with spaces of the form P2,2 and introduce some Hölder norms.
Namely, if f ∈ P2,2(V ), we set

‖f‖γ1; γ2 = sup

{
|fs1s2; t1t2 |

|s2 − s1|γ1 |t2 − t1|γ2
; s1, s2, t1, t2 ∈ [0, 1]

}
,

and we denote by Pγ1,γ22,2 (V ) the space of increments in P2,2(V ) whose ‖ · ‖γ1; γ2 norm is
finite.

1.2 Stratonovich type formula in the Young case

We assume here that x : [0, 1]2 → R is a path such that the rectangular increments
δx of x satisfy δx ∈ Pγ1,γ22,2 with γ1, γ2 > 1/2, which corresponds to the case where
integration with respect to x can be handled by Young techniques in the plane. Our
change of variable formula in this situation relies on the definition of 2 increments
x1;2,x1̂;2̂ ∈ Pγ1,γ22,2 defined as follows (see also Definition 4.2 for further information):

x1;2 =

∫
1

∫
2

d12x, and x1̂;2̂ =

∫
1

∫
2

d1x d2x,

where the integrals can be understood in the Young sense.

With these notations in hand, the change of variables formula can be read as:

Theorem 1.1. Let x : [0, 1]2 → R be a path such that x ∈ Pγ1,γ21,1 with γ1, γ2 > 1/2 (see
equation (3.2) for the definition of this space). Then the planar increments (see Section
3.1 for the definition of planar increment)

z1 =

∫
1

∫
2

y1 d12x, and z2 =

∫
1

∫
2

y2 d1̂2̂x, (1.4)

are well defined in the 2d-Young sense. Moreover:

(i) Both z1 and z2 can be decomposed as:

z1 = y1 x1;2 + ρ1, and z2 = y2 x1̂;2̂ + ρ2, (1.5)

where ρ1, ρ2 can be decomposed as ρj = ρj,1+ρj,2+ρj,12, with ρj,1 ∈ P2γ1,γ2
2,2 , ρj,2 ∈ Pγ1,2γ22,2

and ρj,12 ∈ P2γ1,2γ2
2,2 .

(ii) Provided x is a smooth path, the increments z1 and z2 are defined as Riemann-Stieljes
integrals.

(iii) If xn is a sequence of smooth functions such that the related increments xn;1;2,xn;1̂;2̂

converge respectively to x1;2 and x1̂;2̂ in Pγ1,γ22,2 , then z1,n, z2,n also converge respectively
to z1 and z2. Specifically, there exist p > 1 and cϕ > 0 such that for i = 1, 2 we have

‖zi − zi,n‖γ1,γ2 ≤ cϕ [1 +Nγ1,γ2(x) +Nγ1,γ2(xn)]
pNγ1,γ2(x− xn)

with cϕ =
∑4
i=1 sup|k|≤||x||∞ ϕ(x) and where the norm N is introduced in equation (3.2).

(iv) Some Riemann sums convergences hold true: if π1
n and π2

n are 2 partitions of
[s1, s2]× [t1, t2] whose mesh goes to 0 as n→∞, then

lim
n→∞

∑
π1
n,π

2
n

y1
σi;τj x

1;2
σiσi+1;τjτj+1

= z1
s1s2;t1t2 , and lim

n→∞

∑
π1
n,π

2
n

y2
σi;τj x

1̂;2̂
σiσi+1;τjτj+1

= z2
s1s2;t1t2 .

(1.6)
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Skorohod and Stratonovich in the plane

(v) The change of variables formula (1.3) still holds true when integrals are understood
in the Young sense.

Observe that this theorem is not new and can be easily recovered from consider-
ations contained in [7, 15]. However, we express it here in terms which allow easy
generalizations to Skorohod type integrals and to rough situations as well.

Remark 1.2. Let us remark that the statement of this Theorem still holds true when we
take a general yi ∈ Pγ1,γ21,1 (instead of yi = ϕi(x)).

1.3 Stratonovich type formula in the rough case

Consider now a function x whose rectangular increments δx only satisfy δx ∈ Pγ1,γ22,2

with γ1, γ2 > 1/3. The definition of z1, z2 as in (1.4) and the equivalent of formula (1.1)
require now a huge additional effort. In particular, the correct definition relies on the
introduction of a collection of iterated integrals of x (called rough path above x and
denoted by X by analogy with the 1-d case) that we proceed to describe, following [4].

The reader will soon observe that the definition of X involves a whole zoology of
objects which are somehow tedious to describe. In this article we shall index those
objects by the directions of integration, trying to separate as much as possible direction
1 and direction 2 as we already did for the first order integrals x1;2 and x1̂;2̂. Moreover,
when one tries to define iterated integrals in the plane, the following extra facts have to
be taken into account:

(i) The differentials with respect to x can be in one direction only (d1x or d2x) or
bidirectional. This reflects into some indices 0 when we don’t integrate in a given
direction, and 1 or 2 otherwise. Furthermore, as already mentioned, our bidirectional
differentials can be either of type d12x or d1x d2x = d1̂2̂x. We keep our convention of
indices 1; 2 for differentials of the type d12x and 1̂; 2̂ for differentials of the type d1̂2̂x.

As an example of these conventions, we define x11̂;02̂ ∈ P2,2 in the following way for a
smooth function x:

x11̂;02̂ =

∫
1

d1x

∫
2

d1̂2̂x, that is x11̂;02̂
s1s2;t1t2 =

∫ s2

s1

∫ t2

t1

(∫ σ2

s1

d1xσ1;t1

)
d1xσ2;τ1d2xσ2;τ1 .

(ii) We manipulate objects which are either iterated integrals or products of iterated
integrals. We indicate that one starts a new integral in one specific direction and gets
a product of increments by placing a new

∫
sign, and this is translated by a · in the

indices of x. For instance, modifying our previous example, we define x1·1̂;02̂ ∈ P3,2 in
the following way for a smooth function x:

x1·1̂;02̂ =

∫
1

d1x

∫
1

∫
2

d1̂2̂x, that is x1·1̂;02̂
s1s2s3;t1t2 =

∫ s2

s1

d1xσ1;t1

∫ s3

s2

∫ t2

t1

d1xσ2;τ1d2xσ2;τ1 .

Notice that those breaks in integration can occur at different steps in each direction 1
or 2. The resulting overlapping integrals are an important source of technical troubles
in the pathwise computations of [4].

With these preliminary considerations in mind, our assumptions on the function x are
of the following form:

Hypothesis 1.3. The function x is such that δx ∈ Pγ1,γ22,2 with γ1, γ2 > 1/3. Moreover,
the following rough path X can be constructed out of x:

In the table above, all increments belong to P2,2, so that a regularity (α, β) means
that the increment lyes into Pα,β2,2 . Furthermore, the stack X is a geometric rough path,
insofar as there exists a regularization xn of x such that limn→∞ ‖x− xn‖γ1,γ2 = 0 and
such that all the integrals in Xn, constructed out of xn in the Lebesgue-Stieljes sense,
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Increment Interpretation Regularity Increment Interpretation Regularity

x1;2
∫

1

∫
2
d12x (γ1, γ2) x1̂;2̂

∫
1

∫
2
d1̂2̂x (γ1, γ2)

x11;02
∫

1
d1x

∫
2
d12x (2γ1, γ2) x11̂;02̂

∫
1
d1x

∫
2
d1̂2̂x (2γ1, γ2)

x01;22
∫

2
d2x

∫
1
d12x (γ1, 2γ2) x01̂;22̂

∫
2
d2x

∫
1
d1̂2̂x (γ1, 2γ2)

x11;22
∫

1

∫
2
d12xd12x (2γ1, 2γ2) x11̂;22̂

∫
1

∫
2
d12xd1̂2̂x (2γ1, 2γ2)

x1̂1;2̂2
∫

1

∫
2
d1̂2̂xd12x (2γ1, 2γ2) x1̂1̂;2̂2̂

∫
1

∫
2
d1̂2̂xd1̂2̂x (2γ1, 2γ2)

converge with respect to their natural respective norms in Pγ1,γ22,2 , P2γ1,γ2
2,2 , Pγ1,2γ22,2 or

P2γ1,2γ2
2,2 . Note that the natural Hölder norm of a rough path is denoted by N in the

sequel.

Remark 1.4. As we shall see at Section 4.3, Hypothesis 1.3 is not completely sufficient
in order to settle a satisfying integration theory with respect to x. In fact the rough path
X should also include higher order increments like x11·1;022 or x1·11;22·2 (and other extra
terms). We have only stated Hypothesis 1.3 here in order to keep our exposition into
some reasonable bounds.

Now we can state the Stratonovich integration theorem of [4], which mimics Theorem
1.1:

Theorem 1.5. Let x : [0, 1]2 → R be a path such that δx ∈ Pγ1,γ22,2 with γ1, γ2 > 1/3 and
assume the further rough path Hypothesis 1.3. Consider a function ϕ ∈ C8

b (R). Then
the increments z1 and z2 given by (1.4) are well defined as continuous functions of the
rough path X. Moreover:

(i) The increment z1 can be decomposed as:

z1 = y1 x1;2 + y2 x11;02 + y2 x01;22 + y2 x11;22 + y3 x1̂1;2̂2 + ρ1, (1.7)

and the increment z2 admits a decomposition of the form

z2 = y2 x1̂;2̂ + y3 x11̂;02̂ + y3 x01̂;22̂ + y3 x11̂;22̂ + y4 x1̂1̂;2̂2̂ + ρ2,

where ρ1, ρ2 are sums of increments with triple regularity (3γ1, 3γ2) in at least one
direction.

(ii) If xn is a sequence of smooth functions such that the related rough pathXn converges
to X, then z1,n, z2,n (defined in the Lebesgue-Stieljes sense) also converge respectively
to z1 and z2. Furthermore, there exist two constants p ≥ 1 and c = cϕ such that for
i = 1, 2 we have:

‖z1 − z1,n‖γ1,γ2 ≤ c [1 +N (X) +N (Xn)]
pN (X−Xn),

with cϕ = c
∑8
i=1 sup|k|≤||x||∞ ϕ

i(k) for a universal constant c.

(iii) The change of variables formula (1.3) still holds true when integrals are understood
in the rough path sense.

Obviously, Theorem 1.5 would be of little interest if we could not apply it to processes
of interest. To this regard, our guiding example will be the fractional Brownian sheet
(fBs in the sequel). Let us recall that this is a centered Gaussian process x defined on
[0, 1]2, with a covariance function Rs1s2;t1t2 = E[xs1;t1xs2;t2 ] defined by

Rs1s2;t1t2 =
1

4

(
|s1|2γ1 + |s2|2γ1 − |s1 − s2|2γ1

) (
|t1|2γ2 + |t2|2γ2 − |t1 − t2|2γ2

)
, (1.8)

where the Hurst parameters γ1, γ2 lye into (0, 1). Many possible representations are
available for the fBs, among which we will appeal to the so-called harmonizable represen-
tation (see relation (6.1) below for further details). This allows a natural approximation
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of x by a sequence of smooth processes xn thanks to a cutoff in frequency, and we recall
the following convergence result established in [4]:

Proposition 1.6. Let x a fBs with Hurst parameters γj > 1/3, for j = 1, 2. Define
the regularization xn of x given by a frequency cutoff on B(0, n) in the harmonizable
representation of x. Then:

(i) The family of iterated integral Xn defined in Hypothesis 1.3 associated to xn fulfills
the relation limn,m→∞E[N p(Xm −Xn)] = 0 for all p ≥ 1, where the norm N is alluded
to at Hypothesis 1.3. The limit object X is called rough sheet associated to x.

(ii) Theorem 1.5 applies to the fBs x.

As the reader might imagine, Theorem 1.5 can also be applied to a wide range of
Gaussian and non Gaussian processes. We focus here on fBs for sake of simplicity.

1.4 Skorohod integration

One of the main issue alluded to in this article is a comparison between Stratonovich
and Skorohod type change of variable formulas when x is a Gaussian process exhibiting
some Hölder regularity in the plane. Towards this aim, our global strategy is to use our
Theorems 1.1 and 1.5 and compute corrections between Stratonovich and Skorohod type
integrals.

We first focus on the Young case, assuming the same regularity conditions as in
Section 1.2. We are then able to handle the case of a fairly general centered Gaussian
process x whose covariance function R satisfies a factorization property of the form

E[xs1;t1xs2;t2 ] = Rs1s2;t1t2 = R1
s1s2R

2
t1t2 , (1.9)

for two covariance functions R1, R2 on [0, 1] and such that R1, R2 ∈ C1-var([0, 1]2) (which
ensures that x is (γ1, γ2)-Hölder continuous with γ1, γ2 > 1/2). Notice in particular that
the fBs covariance function (1.8) satisfies condition (1.9).

The standard growth assumptions on f in order to get a Skorohod formula for f(x)

should also be met. They will feature prominently in the sequel, and we proceed to recall
them now:

Definition 1.7. Let k ∈ N, we will say that a function f ∈ Ck(R) satisfies the growth
condition (GC) if there exist positive constants c and λ such that

λ <
1

4 maxs,t∈[0,1] (R1
sR

2
t )
, and max

l=0,...,k
|f (l)(ξ)| ≤ c eλ |ξ|

2

for all ξ ∈ R. (1.10)

With these notations in hand, and denoting quite informally the Skorohod differentials
by d� (see Section 5.1.1 for further explanations), we can summarize our results in the
following:

Theorem 1.8. Assume x is a centered Gaussian process on [0, 1]2 with a covariance
function satisfying (1.9), and such that the paths of x are Hölder continuous with
exponent greater than 1/2 in each direction (see (3.2) again for a precise definition).
Consider a function ϕ ∈ C4(R) satisfying condition (GC). Then the increments

z1,� =

∫
1

∫
2

y1 d�12x, and z2,� =

∫
1

∫
2

y2 d�
1̂2̂
x, (1.11)

are well defined in the Skorohod sense of Malliavin calculus. Moreover:

(i) Some Riemann convergences hold true: if π1
n and π2

n are 2 partitions of [s1, s2]× [t1, t2]
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whose mesh goes to 0 as n→∞, then

lim
n→∞

∑
π1
n,π

2
n

y1
σi;τj � x

1;2
σiσi+1;τjτj+1

= z1,�
s1s2;t1t2 (1.12)

lim
n→∞

∑
π1
n,π

2
n

y2
σi;τj � δ2xsi;tjtj+1

� δ1xsisi+1;tj = z2,�
s1s2;t1t2 , (1.13)

where � stands for the Wick product in the left hand side of the relations above, and
where the convergence holds in both a.s and L2(Ω) sense.

(ii) The change of variables formula for y = f(x) becomes

δys;t = z1,�
s;t + z2,�

s;t +
1

2

∫
1

∫
2

y2
u;v d1R

1
u d2R

2
v +

1

2

∫
1

∫
2

y3
u;vR

1
u d2R

2
v d
�
1xu;v

+
1

2

∫
1

∫
2

y3
u;vR

2
v d1R

1
u d
�
2xu;v +

1

4

∫
1

∫
2

y4
u;vR

1
uR

2
v d1R

1
u d2R

2
v. (1.14)

(iii) Explicit corrections between z1, z2 and z1,�, z2,� can be computed (see relations
(5.15) and (5.22)).

Finally, let us move to the Skorohod change of variable in the rough situation. For
simplicity of exposition, we have restricted our analysis to the fractional Brownian sheet,
mainly because our computations heavily hinges on the explicit regular approximation
sequence xn given by the harmonizable representation of fBs (similarly to the construc-
tion of the rough path above x). The Skorohod change of variable (consistent with the
formulas obtained in [18]) and Skorohod-Stratonovich comparison we obtain in this case
are summarized as follows:

Theorem 1.9. Assume x is a fractional Brownian sheet on [0, 1]2, with γj > 1/3 for
j = 1, 2. Then the increments z1,�, z2,� of equation (1.4) are well defined in the Skorohod
sense of Malliavin calculus. Moreover:

(i) Both z1,� and z2,� can be seen as respective limits of zn,1,� and zn,2,�, computed as in
Theorem 1.8 for the regularized process xn.

(ii) For all f ∈ C6(R), the change of variables formula (1.14) still holds, and can be read
as:

δys;t = z1,� + z2,� + 2γ1γ2

∫
1

∫
2

y2
u;v u

2γ1−1v2γ2−1 dudv + γ2

∫
1

∫
2

y3
u;v u

2γ1v2γ2−1 d�1xu;vdv

+ γ1

∫
1

∫
2

y3
u;v u

2γ1−1v2γ2 d�2xu;vdu+ γ1γ2

∫
1

∫
2

y4
u;v u

4γ1−1v4γ2−1 dudv. (1.15)

(iii) Explicit corrections between z1, z2 and z1,�, z2,� can be computed (see relations
(6.17) and (6.25)).

1.5 Further comments

As the reader might have noticed, our paper gives a rather complete picture of
pathwise Stratonovich and Itô-Skorohod integration for processes indexed by the plane.
In order to put our strategy for the Itô case into perspective, notice that 2 types of
methodologies are usually available for changes of variables in case of a Gaussian
process x:

(a) Define a divergence type operator δ� for x and proceed by integration by parts on
expressions like E[δf(x)G], where G is a smooth functional of x. This is the strategy
invoked e.g. in [1, 10].
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(b) Base the calculations on the pathwise change of variables formula of type (1.1). This
formula is generally related to some converging Riemann sums like in Theorem 1.1, and
one can compute corrections between Wick and ordinary products in relation (1.6). This
is the method implicitly adopted in [17] and we also resort to this second strategy here,
which allows to derive our Skorohod formula and its comparison with the Stratonovich
formula at the same time.

Unfortunately, the Wick corrections strategy does not work for the rough case, even in
the explicit situation of a fractional Brownian sheet. This mainly stems from the fact
that convenient Riemann sums related to formula (1.1) are not available (so far) in the
case of Theorem 1.5. This drawback led us to change our strategy again, and proceed by
regularization. Indeed, as mentioned before, one can come up with an explicit regular
approximation xn of x. For this regularization, we can apply Theorem 1.8 and get some
Itô-Stratonovich corrections. Invoking the fact that δ� is a closable operator, we can
then take limits in our operations as n → ∞. This allows to compare the changes of
variables formulas (1.1) and (1.15), but the interpretation in terms of Riemann-Wick
sums is obviously lost in this case. Notice that an approximation procedure (expressed in
terms of the extended divergence operator) is also at the heart of [18] for irregular fBs.

Finally, let us say a few words about possible extensions of our work:

• Generalizations of Skorohod’s change of variable to a Gaussian process without the
factorization hypothesis (1.9) on the covariance function of x are certainly possible.
However, at a technical level, one should be aware of the fact that the analysis of mixed
terms like

∫
1

∫
2
y3
u;vR

2
v d1R

1
u d
�
2xu;v would require tools of Young integration in dimension

4. These techniques have been used e.g in [6], and the elaboration we need would
certainly be cumbersome. We have thus sticked to the factorized case for R for sake of
readability.

• As mentioned before, our strategy for the Skorohod formula in the rough case relies
heavily on a suitable regularization of x. Instead of treating the explicit fBs example,
we could have stated some general approximation assumptions satisfied in the fBs case.
Once again, we have chosen to specialize our study here for sake of clarity. The general
case might be handled in a subsequent paper, and we also hope to design a strategy
based on Riemann-Wick sums in the next future.

Here is how our article is structured: We recall some basic notation of algebraic
integration in dimension 1 at Section 2, and extend it to integration in the plane at
Section 3. The Stratonovich change of variable formula is recalled at Section 4.1 for the
Young case and at Section 4.3 in the rough situation. We then move to Skorohod type
formulas at Sections 5 and 6, respectively for the regular and rough cases.

2 Algebraic integration in dimension 1

We recall here the minimal amount of notation concerning algebraic integration
theory in R, in order to prepare the ground for further developments in the plane. We
refer to [8, 9] for a more detailed introduction.

2.1 Increments

The extended pathwise integration we will deal with is based on the notion of
increments, together with an elementary operator δ acting on them. The algebraic
structure they generate is described in [8, 9], but here we present directly the definitions
of interest for us, for sake of conciseness. First of all, for a vector space V and an
integer k ≥ 1 we denote by Ck(V ) the set of functions g : [0, 1]k → V such that gt1···tk = 0

whenever ti = ti+1 for some i ≤ k − 1. Such a function will be called a (k − 1)-increment,
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and we set C∗(V ) = ∪k≥1Ck(V ). We can now define the announced elementary operator
δ on Ck(V ):

δ : Ck(V )→ Ck+1(V ), (δg)t1···tk+1
=

k+1∑
i=1

(−1)k−igt1···t̂i···tk+1
, (2.1)

where t̂i means that this particular argument is omitted. A fundamental property of δ,
which is easily verified, is that δδ = 0, where δδ is considered as an operator from Ck(V )

to Ck+2(V ). We denote ZCk(V ) = Ck(V ) ∩ Kerδ and BCk(V ) = Ck(V ) ∩ Imδ.

Some simple examples of actions of δ, which will be the ones we will really use
throughout the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any s, u, t ∈
[0, 1], we have

δgst = gt − gs, and δhsut = hst − hsu − hut. (2.2)

Furthermore, it is easily checked that ZCk+1(V ) = BCk(V ) for any k ≥ 1. In particular,
the following basic property holds:

Lemma 2.1. Let k ≥ 1 and h ∈ ZCk+1(V ). Then there exists a (non unique) f ∈ Ck(V )

such that h = δf .

Lemma 2.1 can be rephrased as follows: any element h ∈ C2(V ) such that δh = 0

can be written as h = δf for some (non unique) f ∈ C1(V ). Thus we get a heuristic
interpretation of δ|C2(V ): it measures how much a given 1-increment is far from being an
exact increment of a function, i.e., a finite difference.

Notice that our future discussions will mainly rely on k-increments with k ≤ 2, for
which we will make some analytical assumptions. Namely, we measure the size of these
increments by Hölder norms defined in the following way: for f ∈ C2(V ) let

‖f‖µ = sup
s,t∈[0,1]

|fst|
|t− s|µ

, and Cµ2 (V ) = {f ∈ C2(V ); ‖f‖µ <∞} . (2.3)

Obviously, the usual Hölder spaces Cµ1 (V ) will be determined in the following way: for a
continuous function g ∈ C1(V ), we simply set

‖g‖µ = ‖δg‖µ, (2.4)

and we will say that g ∈ Cµ1 (V ) iff ‖g‖µ is finite. Notice that ‖ · ‖µ is only a semi-norm on
C1(V ). For h ∈ C3(V ) set in the same way

‖h‖γ,ρ = sup
s,u,t∈[0,1]

|hsut|
|u− s|γ |t− u|ρ

(2.5)

‖h‖µ = inf

{∑
i

‖hi‖ρi,µ−ρi ; h =
∑
i

hi, 0 < ρi < µ

}
,

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =
∑
i hi and

for all choices of the numbers ρi ∈ (0, z). Then ‖ · ‖µ is easily seen to be a norm on C3(V ),
and we set

Cµ3 (V ) := {h ∈ C3(V ); ‖h‖µ <∞} .
Eventually, let C1+

3 (V ) = ∪µ>1Cµ3 (V ), and notice that the same kind of norms can be
considered on the spaces ZC3(V ), leading to the definition of some spaces ZCµ3 (V ) and
ZC1+

3 (V ).

With these notations in mind the following proposition is a basic result, which belongs
to the core of our approach to pathwise integration. Its proof may be found in a simple
form in [9].
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Skorohod and Stratonovich in the plane

Proposition 2.2 (The Λ-map). There exists a unique linear map Λ : ZC1+
3 (V )→ C1+

2 (V )

such that

δΛ = IdZC1+3 (V ) and Λδ = IdC1+2 (V ).

In other words, for any h ∈ C1+
3 (V ) such that δh = 0 there exists a unique g = Λ(h) ∈

C1+
2 (V ) such that δg = h. Furthermore, for any µ > 1, the map Λ is continuous from
ZCµ3 (V ) to Cµ2 (V ) and we have

‖Λh‖µ ≤
1

2µ − 2
‖h‖µ, h ∈ ZCµ3 (V ). (2.6)

Let us mention at this point a first link between the structures we have introduced so
far and the problem of integration of irregular functions.

Corollary 2.3. For any 1-increment g ∈ C2(V ) such that δg ∈ C1+
3 , set ` = (Id − Λδ)g.

Then there exists a unique f ∈ C1(V ), defined up to constants, such that ` = δf and

δfst = lim
|Πst|→0

n−1∑
i=0

gti ti+1
,

where the limit is over any partition Πst = {t0 = s, . . . , tn = t} of [s, t], whose mesh tends
to zero. Thus, the 1-increment δf is the indefinite integral of the 1-increment g.

2.2 Products of increments

For notational sake, let us specialize now to the case V = R, and just write Cγk for
Cγk (R). The usual product of two increments considered on (C∗, δ) is obtained by gluing
one variable in each increment (see e.g [8, 9]):

Definition 2.4. For g ∈ Cn and h ∈ Cm, we denote by gh the element of Cn+m−1 defined
by

(gh)t1,...,tm+n−1 = gt1,...,tnhtn,...,tm+n−1 , t1, . . . , tm+n−1 ∈ [0, 1]. (2.7)

However, another product (defined without gluing of variables) turns out to be useful
for further computations in the plane. This product is called splitting and is defined
below:

Definition 2.5. For g ∈ Cn and h ∈ Cm, we denote by S(g, h) the element of Cn ⊗ Cm
defined by

[S(g, h)]t1,...,tm+n
= gt1,...,tnhtn+1,...,tm+n

, t1, . . . , tm+n ∈ [0, 1]. (2.8)

Notice that S(g, h) can also be considered as an increment in Cn+m, except that it is not
required to vanish when tn = tn+1.

We now recall some elementary properties concerning products of increments:

Proposition 2.6. Let g ∈ C1 and h ∈ C2. Then gh ∈ C2 and

δ(gh) = −δg h+ g δh. (2.9)

Furthermore, if both g and h are elements of C1, then gh ∈ C1 and

δ(gh) = δgh+ gδh
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2.3 Iterated integrals as increments

Iterated integrals of smooth functions on [0, 1] are obviously particular cases of
elements of C2, which will be of interest for us. A typical example of this kind of object is
given as follows: consider f j ∈ C∞1 for j = 1, . . . , n and 0 ≤ s1 < s2 ≤ 1. For n ≥ 1, we
denote by Sn(s1, s2) the simplex

Sn(s1, s2) = {(σ1, . . . , σn) ∈ [0, 1]n; s1 < σ1 < · · · < σn < s2} (2.10)

and we set

h1,...,n
s1s2 ≡

∫
Sn(s1,s2)

df1
σ1
· · · dfnσn =

∫ s2

s1

∫ σn−1

s1

· · ·
∫ σ2

s1

df1
σ1
· · · dfnσn . (2.11)

We now introduce some notation for iterated integrals which is much too complicated
for integration in dimension 1, but turns out to be useful for integration in the plane.
Indeed, we can alternatively denote the increment h1,...,n defined at (2.11) by

h1,...,n = [d, . . . , d︸ ︷︷ ︸
n times

](f1, . . . , fn), or h1,...,n =

∫
df1 · · · dfn, (2.12)

where the integration on the n-dimensional simplex is implicit in both cases. We shall
also need a small variant of these conventions: we set

[Id, . . . , Id︸ ︷︷ ︸
j times

, d, . . . , d︸ ︷︷ ︸
n−j times

](f1, . . . , fn) ≡ f1 · · · f j
∫
df j+1 · · · dfn, (2.13)

where all the products are understood as products of increments as in Definition 2.4.

3 Algebraic integration in the plane

Before going on with the two dimensional integration, let us label some notations for
further use:

Notation 3.1. We write X .a,b,... Y if there exist a constant c depending on a, b, ...

such that the quantities X,Y satisfy X ≤ cY . For a partition {(si, tj)i,j} of a rectangle
∆ = [s1, s2]× [t1, t2], ∆ij denotes the rectangle [si, si+1]× [tj , tj+1].

section is devoted to recall the elements of algebraic integration necessary to define
an integral of the form

∫
[0,1]2

f(x) dx for a Hölder function x in the plane with Hölder

exponent greater than 1/3. This requires a tensorization of the algebraic structures
defined in the previous section, plus some extra tools that we proceed to introduce.

3.1 Planar increments

We consider here increments of a variable s (also called direction 1) and a variable t
(also called direction 2), with (s, t) ∈ [0, 1]2. For a vector space V , we set

Pk,l(V ) =
{
f ∈ C([0, 1]k × [0, 1]l; V ); fs1···sk; t1···tl = 0 whenever si = si+1 or tj = tj+1

}
.

In the particular case V = R, we simply set Pk,l(R) ≡ Pk,l.
Some partial difference operators δ1 and δ2 with respect to the first and second

direction can be defined as in the previous section. Namely, for f ∈ Pk,l(V ) we set

δ1 : Pk,l(V )→ Pk+1,l(V ), δ1gs1···sk+1; t1···tl =

k+1∑
i=1

(−1)k−igs1···ŝi···sk+1; t1···tl , (3.1)
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and we define δ2 similarly. The planar increment δ is then obtained as δ = δ1 δ2. Notice
that for f ∈ P1,1 we have

δfs1s2; t1t2 = fs2; t2 − fs2; t1 − fs1; t2 + fs1; t1 ,

which is the usual rectangular increment of a function f defined on [0, 1]2 and is consistent
with formula (1.2). Let us label the following notation for further use:

Notation 3.2. For j = 1, 2, we set ZjPk,l = Pk,l ∩ ker(δj) and BjPk,l = Pk,l ∩ Im(δj). We
also write ZPk,l for Pk,l ∩ ker(δ) and BPk,l for Pk,l ∩ Im(δ).

As in the 1-d case, the Hölder regularity of planar increments is an essential feature
of our generalized integration theory. On P2,2(V ) and P3,3(V ), it is measured by a
tensorization of the Hölder norms defined at (2.3) and (2.5). Namely, if f ∈ P2,2(V ), we
set

‖f‖γ1; γ2 = sup

{
|fs1s2; t1t2 |

|s2 − s1|γ1 |t2 − t1|γ2
; s1, s2, t1, t2 ∈ [0, 1]

}
,

and we denote by Pγ1,γ22,2 (V ) the space of increments in P2,2(V ) whose ‖ · ‖γ1; γ2 norm is
finite. Along the same lines, we say that h ∈ Pγ1,γ23,3 (V ) if there exist κ1, κ2, ρ1, ρ2 such
that κj + ρj = γj , j = 1, 2, and

sup

{
|hs1s2s3; t1t2t3 |

|s2 − s1|κ1 |s3 − s2|ρ1 |t2 − t1|κ2 |t3 − t2|ρ2
; s1, s2, s3, t1, t2, t3 ∈ [0, 1]

}
<∞.

Similar norms, omitted here for sake of conciseness, can be defined on P2,3(V ) and
P3,2(V ).

As in the 1-dimensional case, the regularities in P1,1 are measured in a slightly
different way. Namely, we say that f ∈ Pα,β1,1 if the following norm is finite:

Nα,β(f) = ‖f‖α,β + ‖f‖α,1 + ‖f‖β,2 + ‖f‖∞, (3.2)

where

‖f‖α,1 = sup
(s1,s2,t)∈[0,1]2×[0,1]

|δ1fs1s2;t|
|s2 − s1|α

, and ‖f‖β,2 = sup
(s,t1,t2)∈[0,1]2

|δ2fs;t1t2 |
|t2 − t1|β

. (3.3)

For Hölder continuous increments with regularity greater than 1, one gets the
following inversion properties, which are a direct consequence of the one dimensional
Proposition 2.2:

Proposition 3.3. Let γ1, γ2 > 1. Then:

(1) There exist two unique maps Λ1 : B1Pγ1,γ23,3 → Pγ1,γ22,3 and Λ2 : B2Pγ1,γ23,3 → Pγ1,γ23,2 such
that δjΛj = Id.These maps satisfy the bound ‖Λj(h)‖γ1,γ2 ≤ cγj‖h‖γ1,γ2 for j = 1, 2.

(2) There exists a unique map Λ : BPγ1,γ23,3 → Pγ1,γ22,2 such that δΛ = Id. This map satisfies
the bound ‖Λ(h)‖γ1,γ2 ≤ cγ1,γ2‖h‖γ1,γ2 .

We do not include the proof of this proposition for sake of conciseness. Let us
just mention that (as the reader might imagine) we have Λ = Λ1Λ2. It should also
be observed that some 2-dimensional Riemann sums are related to the sewing map Λ,
echoing Corollary 2.3:

Proposition 3.4. Let g ∈ P2,2 satisfying the following assumptions:

δ1g ∈ Pγ1,∗3,2 , δ2g ∈ P∗,γ22,3 , δg ∈ Pγ1,γ23,3 ,

for γ1, γ2 > 1, where ∗ denotes any kind of Hölder regularity. Then there exists f ∈ P1,1

such that

δf = [Id− Λ1δ1] [Id− Λ2δ2] g, and lim
|π|→0

∑
σi,τj∈π

gσiσi+1;τjτj+1 = δfs1s2;t1t2 ,
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where π designates a family of rectangular partitions of [s1, s2]× [t1, t2] whose mesh goes
to 0.

3.2 Products of planar increments

This section is a parallel of Section 2.2, and we mainly deal here with a state space
V = R. We describe the different conventions on products of 2-d increments which will
be used in the sequel, starting from the equivalent of Definition 2.4:

Definition 3.5. For g ∈ Pn1,n2
and h ∈ Pm1,m2

, we denote by gh the element lying in the
space Pn1+m1−1,n2+m2−1 defined by

(gh)s1,...sn1+m1−1;t1,...,tn2+m2−1
= gs1,...sn1

;t1,...,tn2
hsn1

,...sn1+m1−1;tn2
,...,tn2+m2−1

.

We now define the equivalent of splitting for increments in P:

Definition 3.6. Let g ∈ Pn1,n2 and h ∈ Pm1,m2 . Then:

• The partial splitting S1(g, h) is the element of Cn2+m2−1(Cn1
⊗ Cm1

) defined by

[S1(g, h)]s1,...sn1+m1 ;t1,...,tn2+m2−1
= gs1,...sn1

;t1,...,tn2
hsn1+1,...sn1+m1

;tn2
,...,tn2+m2−1 .

• The partial splitting S2(g, h) is the element of Cn1+m1−1(Cn2 ⊗ Cm2) defined by

[S2(g, h)]s1,...sn1+m1−1;t1,...,tn2+m2
= gs1,...sn1 ;t1,...,tn1

hsn1 ,...sn1+m1−1;tn2+1,...,tn2+m2
.

• The splitting S(g, h) is the element of Cn1
⊗ Cm1

(Cn2
⊗ Cm2

) defined by

[S1(g, h)]s1,...sn1+m1 ;t1,...,tn2+m2
= gs1,...sn1

;t1,...,tn2
hsn1+1,...sn1+m1

;tn2+1,...,tn2+m2
.

We close this section by introducing a last product of increments which is labeled for
further computations.

Definition 3.7. Let g ∈ P2,1 and h ∈ P1,2. Then g ◦ h is the increment in P2,2 defined by
[g ◦ h]s1s2;t1t2 = gs1s2;t1hs1;t1t2 .

3.3 Iterated integrals as increments in the plane

The relationship between iterated integrals and increments in the plane is crucial for
us. Generally speaking, an iterated integral is given as follows: consider f j ∈ P∞1,1 for
j = 1, . . . , n and (s1, s2), (t1, t2) ∈ S2, where we recall relation (2.10) defining simplexes.
Then we set

h1,...,n
s1s2;t1,t2 ≡

∫
Sn(s1,s2)×Sn(t1,t2)

d12f
1
σ1;τ1 · · · d12f

n
σn;τn (3.4)

=

∫ s2

s1

∫ t2

t1

∫ σn−1

s1

∫ τn−1

t1

· · ·
∫ σ2

s1

∫ τ2

t1

d12f
1
σ1;τ1 · · · d12f

n
σn;τn ,

where we recall from Section 1.1 that d12f
j
σ;τ stands for ∂2

στf
j
σ;τ .

Expression (3.4) is obviously cumbersome, and it could in particular become clearer
by separating the s, σ from the t, τ variables. This is where the conventions introduced
in equation (2.12) turn out to be useful. Namely, one can simply tensorize (2.12) in order
to write the increment h1,...,n defined at (3.4) as

h1,...,n = [d1, . . . , d1]⊗ [d2, . . . , d2] (f1, . . . , fn), or h1,...,n =

∫
1

∫
2

d12f
1 · · · d12f

n, (3.5)

and notice that we will mainly use the second convention throughout the paper. This
notation proves to be particularly convenient when one is faced with partial integrations
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(as introduced in (2.13)) in both directions 1 and 2. In order to illustrate this point, let
us consider the simple example

g ≡ [d1, d1]⊗ [Id, d2] (f1, f2) =

∫
1

d1f
1

∫
2

d12f
2. (3.6)

Let us now describe the algorithm which allows to go from expression (3.6) to an integral
like (3.4). It can be summarized as follows:

• For direction 1, count the number of iterated integrals starting from the left hand
side (in our example this number is 2). Then interpret these integrals as integrals
on the simplex in direction 1 and write the 1-variables.

• Do the same for direction 2. In our example, there is only one integral in this
direction, so that variable 2 is frozen in the first differential d1f

1.

Applying this algorithm, the reader can easily check that g defined at (3.6) can be written
as

gs1s2;t1t2 =

∫
s1<σ1<σ2<s2

d1f
1
σ1;t1

∫ t2

t1

d12f
2
σ2;τ1 .

For sake of conciseness, we omit generalizations of this simple example.

4 Planar integration

Before going into the computational details, let us describe the general strategy we
shall follow in order to obtain our Itô-Stratonovich type change of variable formulae in
case of non smooth functions x. Indeed, we start from a smooth approximation xn to our
path x and we introduce a useful notation for the remainder of the computations:

Notation 4.1. We shall drop the index n of approximations in xn, which means that x
will stand for a generic smooth path defined on [0, 1]2. For a smooth function ϕ : R→ R,
we also write y for the path ϕ(x) and for all j ≥ 1 we set yj = ϕ(j)(x).

With these notations in hand, for a smooth sheet x and f ∈ C2
b it is well known that

formula (1.1) holds true. Recall that we have written this relation under the following
form, compatible with our convention (3.5):

δy =

∫
1

∫
2

y1 d12x+

∫
1

∫
2

y2 d1̂2̂x. (4.1)

We shall see that this formula still holds true in the limit for x, except that the integrals
involved in the right hand side of (4.1) have to be interpreted in a sense which goes
beyond the Riemann-Stieltjes case. Our main task will thus be to obtain a definition of∫

1

∫
2
y1 d12x and

∫
1

∫
2
y2 d1̂2̂x involving iterated integrals of x and increments of y (or yj

for j ≥ 1) only. Though this task might overlap with some aspects of [4], we present it
here because it is short enough and allows us to introduce part of our formalism.

Let us introduce what will be later interpreted as the first order elements of the
planar rough path above x:

Notation 4.2. Let x ∈ Pγ1,γ21,1 with γ1, γ2 > 1/2. We set

x1;2 = δx, and x1̂;2̂ = [Id− Λ1δ1][Id− Λ2δ2] (δ1x δ2x) .

Notice that for smooth functions we also have

x1;2 =

∫
1

∫
2

d12x, and x1̂;2̂ =

∫
1

∫
2

d1x d2x.

We are now ready to express the integrals in (4.1) in terms of the planar sewing map
(Λi)i=1,2 and Λ = Λ1Λ2 and the increments introduced in Notation 4.2.
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4.1 Change of variables formula: the Young case

The following theorem gives the analog of relation (4.1) in the Young case, and is a
way to recast Theorem 1.1. Notice that some extensions of these results are contained
in [4].

Theorem 4.3. Let x ∈ Pγ1,γ21,1 (where Pγ1,γ21,1 is defined by (3.2)) with γ1, γ2 > 1/2 and
ϕ ∈ C4(R). With our notations 4.2 and 4.1 in mind, define two increments z1, z2 as

z1 = [Id− Λ1δ1][Id− Λ2δ2](y1 x1;2), and z2 = [Id− Λ1δ1][Id− Λ2δ2](y2 x1̂;2̂). (4.2)

Then items (i)–(v) of Theorem 1.1 hold true. Furthermore, for j = 1, 2 the following
bound is satisfied: ‖zj‖γ1;γ2 ≤ cϕNγ1,γ2(x)(1 +Nγ1,γ2(x)).

Proof. We first introduce a formalism which will feature prominently in the sequel of the
paper.

Step 1: Setting for our computations. Let us write the first step of our expansion in
a usual integration language: for s1, s2, t1, t2 ∈ [0, 1] and a continuously differentiable
function x we have

z1
s1s2;t1t2 =

∫ s2

s1

∫ t2

t1

y1
σ1;τ1 d12xσ1;τ1 ,

where we have written d12xσ1;τ1 instead of dστxσ1;τ1 . Then according to the elementary
identity yσ1;τ1 = ys1;t1 + δ2y

1
σ1;t1τ1 we obtain

z1
s1s2;t1t2 =

∫ s2

s1

y1
σ1;t1

∫ t2

t1

d12xσ1;τ1 +

∫ s2

s1

∫ t2

t1

δ2y
1
σ1;t1τ1 d12xσ1;τ1 .

Going on with this procedure, we end up with a decomposition of the form

z1
s1s2;t1t2 = y1

s1;t1δxs1s2;t1t2 +

∫ s2

s1

δ1y
1
s1σ1;t1

∫ t2

t1

d12xσ1;τ1

+

∫ t2

t1

δ2y
1
s1;t1τ1

∫ s2

s1

d12xσ1;τ1 +

∫ s2

s1

∫ t2

t1

δy1
s1σ1;t1τ1 d12xσ1;τ1 . (4.3)

Since further calculations with all explicit indices are cumbersome, we shall now show
how to translate the above computations with the formalism of Section 3.3: we simply
write

z1 =

∫
1

∫
2

y1 d12x =

∫
1

y1

∫
2

d12x+

∫
1

∫
2

d2y
1 d12x

= y δx+

∫
1

d1y
1

∫
2

d12x+

∫
2

d2y
1

∫
1

d12x+

∫
1

∫
2

d12y
1 d12x (4.4)

≡ y1 x1;2 + a11;02 + a01;22 + a11;22,

which is obviously a shorter expression than (4.3). From now on, we shall carry on our
computations with this simplified formalism.

Step 2: Analysis of the integrals. Consider the term a11;02 above. According to the
definition (3.1) of δ1 we have:

δ1a
11;02
s1s2s3;t1t2 = a11;02

s1s3;t1t2 − a
11;02
s1s2;t1t2 − a

11;02
s2s3;t1t2 =

∫ s3

s2

(
y1
s2;t1 − y

1
s1;t1

) ∫ t2

t1

d12xu;v

= δ1y
1
s1s2;t1 x

1;2
s2s3;t1t2 ,

which is shortened into the relation δ1a11;02 = δ1y
1 x1;2. From this expression it is easily

seen that δ1a11;02 ∈ P2γ1;γ2
3,2 , and since 2γ1 > 1 one can resort to Proposition 3.3 in order
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to get the relation a11;02 = Λ1(δ1y x
1;2). Proceeding in the same way for a01;22 and a11;22

we end up with

a11;02 = Λ1(δ1y
1 x1;2), a01;22 = Λ2(δ2y

1 x1;2), a11;22 = Λ(δy1 x1;2), (4.5)

where we observe that ϕ ∈ C3(R) is the minimal assumption in order to have δy1 ∈ Pγ1,γ22,2

(we impose however the condition ϕ ∈ C4(R) in order to have δy2 ∈ Pγ1,γ22,2 as well).
Furthermore, according to relation (2.9) we have δ1(y x1;2) = −δ1y1 x1;2, δ2(y1 x1;2) =

−δ2y1 x1;2 and δ(y1 x1;2) = δy1 x1;2, so that (4.5) can be expressed as

a11;02 = −Λ1δ1(y1 x1;2), a01;22 = −Λ2δ2(y1 x1;2), a11;22 = Λδ(y1 x1;2).

Plugging these relations into (4.4) we get

z1 =

∫
1

∫
2

y1 d12x = [Id− Λ1δ1][Id− Λ2δ2](y1 x1;2),

for smooth functions z, which corresponds to claim (ii) in Theorem 1.1. Item (i)-(iii)-(v)
are now a matter of straightforward limiting procedures on smooth sheets, and the
assertions concerning z2 are obtained exactly in the same way. Item (iv) is an easy
consequence of Proposition 3.4 and expression (4.2).

4.2 Riemann sums decompositions

This section is meant as a preparation for Skorohod type computations. Indeed,
change of variables in the Skorohod setting involve some mixed integrals with dx dR

terms, for which a suitable representation is required. It will also be convenient for us to
express the integral

∫
1

∫
2
y2 d1xd2x in different ways, so that we first recall a proposition

borrowed from [4]:

Proposition 4.4. let x ∈ Pγ1,γ21,1 with γ1, γ2 > 1/2. Set y = ϕ(x) for ϕ ∈ C2(R) and
z2,y ≡

∫
1

∫
2
y d1xd2x, understood in the Young sense. Then the following series of

identities hold true:

z2,y = [Id− Λ1δ1][Id− Λ2δ2](y x1̂;2̂) = [Id− Λ1δ1][Id− Λ2δ2](y δ1x δ2x)

= [Id− Λ1δ1][Id− Λ2δ2](y δ2x δ1x) = [Id− Λ1δ1][Id− Λ2δ2](y δ1x ◦ δ2x),

where we recall that the notation ◦ has been introduced at Definition 3.7.

The following proposition gives different ways to express the increment z2,y as limit
of Riemann sums.

Proposition 4.5. Let 0 < s1 < s2 < 1, 0 < t1 < t2 < 1 and denote by π1 = (si)i and
π2 = (tj) some partitions of the intervals [s1, s2] and [t1, t2] respectively. Then under

the assumptions of Proposition 4.4 we have that
∫ s2
s1

∫ t2
t1
yst d12xst can be written as

limit of Riemann sums of the form lim|π1|,|π2|→0

∑
i,j ysi;tjδxsisi+1;tjtj+1

, and recalling that
z2,y ≡

∫
1

∫
2
y d1xd2x we also have:

z2,y = lim
|π1|,|π2|→0

∑
i,j

ysi;tjδ1xsisi+1;tjδ2xsi+1;tjtj+1

= lim
|π1|,|π2|→0

∑
i,j

ysi;tjδ2xsi;tjtj+1
δ1xsisi+1;tj+1

= lim
|π1|,|π2|→0

∑
i,j

ysi;tjδ1xsisi+1;tjδ2xsi;tjtj+1
.

Finally we shall need an extension of the last three propositions to integrals with
mixed driving noises:
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Proposition 4.6. Let f ∈ Pγ1,γ21,1 ,g ∈ Pρ1,ρ21,1 and h ∈ Pβ1,β2

1,1 such that γi+ρi > 1, βi+γi > 1

and βi + ρi > 1 for i = 1, 2. Set∫
1

∫
2

f d1g d2h = [Id− Λ1δ1][Id− Λ2δ2](f δ1g δ2h).

Then we also have∫
1

∫
2

f d1gd2h = [Id− Λ1δ1][Id− Λ2δ2](f δ2g δ1h) = [Id− Λ1δ1][Id− Λ2δ2](f δ1g ◦ δ2h).

Moreover, taking up the notations of Proposition 4.5 we have the following Reimann-sum
representation of our integrals:∫ s2

s1

∫ t2

t1

fs;t d1gs;td2hs;t = lim
|π|→0

∑
i,j

fsi;tjδ1gsisi+1;tjδ2hsi+1;tjtj+1

= lim
|π|→0

∑
i,j

fsi;tjδ1gsisi+1;tjδ2hsi;tjtj+1
= lim
|π|→0

∑
i,j

fsi;tjδ2gsi;tjtj+1
δ1hsisi+1;tj+1

.

In addition, as a consequence of the continuity of the sewing maps we have also the
following continuity estimate:∥∥∥∥∫

1

∫
2

f d1g d2h

∥∥∥∥
ρ1,β2

. Nγ1,γ2(f)Nβ1,β2
(h)Nρ1,ρ2(g).

Proof. Let a1 = f δ1g δ2h, a2 = f δ2g δ1h and a3 = f δ1g ◦ δ2h. Then by a simple computa-
tion we have that

δ1a
1 = −δ1f δ1g δ2h− f δ1g δh ∈ Pmin(γ1+ρ1,ρ1+β1),β2

3,2

δ2a
1 = −δ2f δ1g δ2h− f δg δ2h ∈ Pρ1,min(γ2+β2,ρ2+β2)

2,3 ,

and

δa1 = δf δ1g δ2h+ δ1f δg δ2h+ δ2f δ1g δh+ f δg δh ∈ Pmin(γ1+ρ1,ρ1+β1),min(γ2+β2,ρ2+β2)
3,3 .

This means that a1 satisfies the assumptions of Proposition 3.3, and the same is readily
checked for a2 and a3. Thus the increments [Id−Λ1δ1][Id−Λ2δ2](aj) are well defined for
j = 1, 2, 3. We set [Id− Λ1δ1][Id− Λ2δ2](a1) =

∫
1

∫
2
f d1gd2h since both objects coincide

for smooth functions f, g, h.

We now identify the increments [Id− Λ1δ1][Id− Λ2δ2](aj) by analyzing their Riemann
sums. Indeed, a straightforward application of Proposition 3.4 yields the following limits:

[Id− Λ1δ1][Id− Λ2δ2](a1) = lim
|π|→0

∑
i,j

fsi;tjδ1gsisi+1;tjδ2hsi+1;tjtj+1

[Id− Λ1δ1][Id− Λ2δ2](a2) = lim
|π|→0

∑
i,j

fsi;tjδ2gsi;tjtj+1
δ1hsisi+1;tj+1

[Id− Λ1δ1][Id− Λ2δ2](a3) = lim
|π|→0

∑
i,j

fsi;tjδ1gsisi+1;tjδ2hsi;tjtj+1 .

We now prove that the 3 increments coincide by showing that the differences between
Riemann sums vanish when the mesh of the partitions go to zero. Indeed, if we call π2

the partition in direction 2, observe for instance that

lim
|π2|→0

∑
i,j

(a1 − a3)sisi+1;tjtj+1
= lim
|π2|→0

∑
i,j

fsi;tjδ1gsisi+1;tjδhsisi+1;tjtj+1

=
∑
i

∫ t2

t1

fsitδ1gsisi+1;t d2δ1hsisi+1;t

(4.6)
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Now if we remark that |
∫ t2
t1
fsitδ1gsisi+1;t dthsisi+1;t| . (si+1 − si)ρ1+β1 , we easily obtain

that lim|π1|→0 lim|π2|→0

∑
i,j(a

1 − a3)sisi+1;tjtj+1
= 0. The same relation holds true for

a2 − a3 by symmetry, which ends our proof.

4.3 Change of variable formula: the rough case

In this section, we consider a path x ∈ Pγ1,γ21,1 with γ1, γ2 > 1/3 and we wish to
establish the change of variables formula for y = ϕ(x) (with ϕ ∈ C8

b (R)) announced in
Theorem 1.5. In such a general context, the integration theory with respect to x relies
on the existence of a rough path X sitting above x. Now recall that the first elements of
X have been introduced at Hypothesis 1.3. However, as mentioned in Remark 1.4, the
rough path still has to be completed and we proceed to its description here.

Let us first introduce another indexing convention for the elements of the rough path
X, similarly to what is done at Section 1.3:

(iii) (Following (ii) at Section 1.3) In the rough case, some overlapping integrals in
directions 1 and 2 difficult the regularity analysis of certain increments. This induces
some splitting operations on iterated integrals, leading to some split elements of the
rough path X. We indicate this splitting procedure by a ⊗ in indices of x. An example of
this operation is given by the increment x11;2⊗2 ∈ C2(C2 ⊗ C2):

x11;2⊗2
s1s2;t1t2t3t4 =

∫ s2

s1

∫ σ2

s1

(∫ t2

t1

d12xσ1;τ1

)(∫ t4

t3

d12xσ2;τ2

)
.

With this additional notation in mind, the complete description of X is given below:

Hypothesis 4.7. The function x is such that δx ∈ Pγ1,γ22,2 with γ1, γ2 > 1/3, and fulfills
Hypothesis 1.3. In addition, the stack X of iterated integrals related to x is required to
contain the elements in the table below, where we let the reader guess the natural Hölder
regularities related to each increment. As in Hypothesis 1.3, the iterated integrals above

Table 1: Further elements of X

Increment Interpretation Increment Interpretation

x11̂;22̂
∫

1

∫
2
d12xd1̂2̂x x1⊗1;22

∫
1

∫
2
d12x⊗1

∫
1
d12x

x11·1;022
∫

1
d1x

∫
2
d12x

∫
1
d12x x11·1;222

∫
1

∫
2
d12xd12x

∫
1
d12x

x11̂;02̂
∫

1
d1x

∫
2
d1̂2̂x x11⊗1;222

∫
1

∫
2
d12xd12x⊗1

∫
1
d12x

x11⊗1;022
∫

1
d1x

∫
2
d12x⊗1

∫
1
d12x x11·1;2·22

∫
1

∫
2
d12x

∫
2
d12x

∫
1
d12x

are assumed to be limits along approximations of x by smooth functions. Furthermore,
the rough path X should also contain all the elements x obtained by symmetrizing the
increments of Table 1 with respect to 1↔ 2, as well as those for which we change the last
indices 1; 2 by 1̂; 2̂. In total, we have to assume the existence of 26 additional increments.

With the additional notation introduced above, the following theorem is one of the
main contents of [4]:

Theorem 4.8. Theorem 1.5 holds true under Hypothesis 4.7.

5 Skorohod’s calculus in the Young case

This section is devoted to relate the Young type integration theory introduced at
Section 4 and the Skorohod integral in the plane handled in [17]. Specifically, we shall
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first generalize the Skorohod change of variables formula given in [17] for a fractional
Brownian sheet with Hurst parameter greater than 1/2 to a fairly general Gaussian
process. We shall then compare this formula with Theorem 1.1 item (v).

5.1 Malliavin calculus framework

We consider in this section a centered Gaussian process {xs;t; (s, t) ∈ [0, 1]2} defined
on a complete probability space (Ω,F ,P), with covariance function E[xs1;t1xs2;t2 ] =

Rs1s2;t1t2 . We now briefly define the basic elements of Malliavin calculus with respect to
x and then specify a little the setting under which we shall work.

5.1.1 Malliavin calculus with respect to x

We first relate a Hilbert space H to our process x, defined as the closure of the
linear space generated by the functions {1[0,s]×[0,t], (s, t) ∈ [0, 1]2} with respect to
the semi define positive form 〈1[0,s1]×[0,t1],1[0,s2]×[0,t2]〉 = Rs1s2;t1t2 . Then the map
I1 : 1[0,s]×[0,t] → xs;t can be extended to an isometry between H and the first chaos
generated by {xs;t; (s, t) ∈ [0, 1]2}.

Starting from the space H, a Malliavin calculus with respect to x can now be devel-
opped in the usual way (see [10, 14] for further details). Namely, we first define a set of
smooth functionals of x by

S := {f(I1(ψ1), . . . , I1(ψn)); n ∈ N, f ∈ C∞b (Rn), ψ1, . . . , ψn ∈ H}

and for F = f(I1(ψ1), . . . , I1(ψn)) ∈ S we define

DF =

n∑
i=1

∂if(I1(ψ1), . . . , I1(ψn))ψi.

Then D is a closable operator from Lp(Ω) into Lp(Ω,H). Therefore we can extend D to
the closure of smooth functionals under the norm

‖F‖1,p = (E[|F |p] + E[‖DF‖pH])
1
p

The iteration of the operator D is defined in such a way that for a smooth random
variable F ∈ S the iterated derivative DkF is a random variable with values in H⊗k. The
domain Dk,p of Dk is the completion of the family of smooth random variables F ∈ S
with respect to the semi-norm :

‖F‖k,p =

E[|F |p] +

k∑
j=1

E[‖DjF‖pH⊗j ]

 1
p

.

Similarly, for a given Hilbert space V we can define the space Dk,p(V ) of V -valued
random variables, and D∞(V ) = ∩k,p≥1D

k,p.

Consider now the adjoint δ� of D. The domain of this operator is defined as the set of
u ∈ L2(Ω,H) such that E[|〈DF, u〉H|] . ‖F‖1,2, and for this kind of process δ�(u) (called
Skorohod integral of u) is the unique element of L2(Ω) such that

E[δ�(u)F ] = E[〈DF, u〉H], for F ∈ D1,2.

Note that E[δ�(u)] = 0 and

E[|δ�(u)|2] ≤ E[‖u‖2H] + E[‖Du‖2H⊗H] ≡ ‖u‖2D1,2(H). (5.1)
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The following divergence type property of δ� will be useful in the sequel:

δ�(Fu) = Fδ�(u)− 〈Du,F 〉H, (5.2)

and we also recall the following compatibility of δ� with limiting procedures:

Lemma 5.1. let un be a sequence of elements in Dom(δ�), which converges to u in
L2(Ω,H). We further assume that δ�(un) converges in L2(Ω) to some random variable
F ∈ L2(Ω). Then u ∈ Dom(δ�) and δ�(u) = F .

5.1.2 Wick products

Some of our results below will be expressed in terms of Rieman-Wick sums. We give a
brief account on these objects, mainly borrowed from [10, 11].

Among functionals F of x such that F ∈ D∞, the set of multiple integrals plays a
special role. In order to introduce it in the context of a general process x indexed by the
plane, consider an orthonormal basis {en; n ≥ 1} of H and let ⊗̂ denote the symmetric
tensor product. Then

fn =
∑
finite

fi1,··· ,inei1⊗̂ · · · ⊗̂ein , fi1,··· ,in ∈ R (5.3)

is an element of H⊗̂n satisfying the relation:

‖fn‖2H⊗̂n =
∑
finite

|fi1,··· ,in |2 . (5.4)

Moreover, H⊗̂n is the completion of the set of elements like (5.3) with respect to the
norm (5.4).

For an element fn ∈ H⊗̂n, the multiple Itô integral of order n is well-defined. First,
any element of the form given by (5.3) can be rewritten as

fn =
∑
finite

fj1···jme
⊗̂k1
j1
⊗̂ · · · ⊗̂e⊗̂kmjm

, (5.5)

where the j1, . . . , jm are different and k1 + · · ·+ km = n. Then, if fn ∈ H⊗̂n is given under
the form (5.5), define its multiple integral as:

In(fn) =
∑
finite

fj1,··· ,jmHk1(I1(ej1)) · · ·Hkm(I1(ejm)), (5.6)

where Hk denotes the k-th normalized Hermite polynomial given by

Hk(x) = (−1)ke
x2

2
dk

dxk
e−

x2

2 =
∑
j≤k/2

(−1)jk!

2j j! (k − 2j)!
xk−2j .

It holds that the multiple integrals of different order are orthogonal and that

E
[
|In(fn)|2

]
= n! ‖fn‖2H⊗̂n .

This last isometric property allows to extend the multiple integral for a general fn ∈ H⊗̂n
by L2(Ω) convergence. Finally, one can define the integral of fn ∈ H⊗n by putting
In(fn) := In(f̃n), where f̃n ∈ H⊗̂n denotes the symmetrized version of fn. Moreover,
the chaos expansion theorem states that any square integrable random variable F ∈
L2(Ω,G,P), where G is the σ- field generated by x, can be written as

F =

∞∑
n=0

In(fn) with E[F 2] =

∞∑
n=0

n!‖fn||2H⊗̂n . (5.7)
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With these notations in mind, one way to introduce Wick products on a Wiener space
is to impose the relation

In(fn) � Im(gm) = In+m(fn⊗̂gm) (5.8)

for any fn ∈ H⊗̂n and gm ∈ H⊗̂m, where the multiple integrals In(fn) and Im(gm) are
defined by (5.6). If F =

∑N1

n=1 In(fn) and G =
∑N2

m=1 Im(gm), we define F �G by

F �G =

N1∑
n=1

N2∑
m=1

In+m(fn⊗̂gm).

By a limit argument, we can then extend the Wick product to more general random
variables (see [11] for further details). In this paper, we will take the limits in the L2(Ω)

topology.

Some corrections between ordinary and Wick products will be computed below. A
simple example occurs for products of f(x) by a Gaussian increment. Indeed, for a
smooth function f and g1, g2 ∈ H, it is shown in [11] that

f(I1(g1)) � I1(g2) = f(I1(g1)) I1(g2)− f ′(I1(g1)) 〈g1, g2〉H . (5.9)

We now state a result which is proven in [10, Proposition 4.1].

Proposition 5.2. Let F ∈ Dk,2 and g ∈ H⊗k. Then

1. F � Ik(g) is well defined in L2(Ω).

2. Fg ∈ Dom δ�k.

3. F � Ik(g) = δ�k(Fg).

5.1.3 Further assumptions and preliminary results

In order to simplify our computations, let us introduce some additional assumptions on
the covariance R:

Hypothesis 5.3. The covariance R of our centered Gaussian process x belongs to the
space C1-var([0, 1]4), and satisfies a factorization property of the form

E[xs1;t1xs2;t2 ] = Rs1s2;t1t2 = R1
s1s2R

2
t1t2 ,

for two covariance functions R1, R2 on [0, 1]. In addition, setting Ria = Riaa for a ∈ [0, 1]

and i = 1, 2, we assume that a 7→ Ria is differentiable and we suppose that

|2Riab −Riaa −Ribb| . |a− b|γi (5.10)

for all a, b ∈ [0, 1], with γi > 1. Finally we suppose that (Ri)′a = ∂aR
i
aa ∈ L∞([0, 1]).

The first consequence of our Hypothesis 5.3 is that the regularity of x corresponds to
the Young type regularity of Section 4. Indeed, it is readily checked that relation (5.10)
yields

E
[
(δxs1s2;t1t2)2

]
. |s− s′|γ1 |t− t′|γ2 .

Since x is Gaussian, an easy application of Kolmogorov’s criterion ensures that

x ∈ Pα1,α2

1,1 , with α1 =
γ1

2
− ε1 >

1

2
, α2 =

γ2

2
− ε2 >

1

2
, (5.11)

for arbitrarily small ε1, ε2 > 0. This enables us to appeal to Young’s integration theory in
order to define integrals of the form

∫
1

∫
2
ϕ(x) d12x.

Let us quote two lemmas concerning Hölder norms in the plane which will feature in
our comparison between Stratonovich and Skorohod integrations. The first one deals
with the composition of a Hölder process with a nonlinearity f :
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Lemma 5.4. Let ϕ ∈ C2(R), θ1, θ2 > 0 and a rectangle ∆ ⊂ [0, 1]2. Then on ∆ we have
that

‖δ1y‖θ1,0 ≤ ‖y1‖0;∆ ‖δ1x‖θ1,0
and

‖δy‖θ1,θ2 .
(
‖y1‖0;∆ + ‖y2‖0;∆

)
‖δx‖θ1,θ2(1 + ‖δx‖θ1,θ2),

where ‖ · ‖0;∆ stands for the supremum norm on ∆ and yj still denotes ϕ(j)(x).

Next we also need an integral semi-norm dominating Hölder’s norms in the plane.
This is given by the following Garsia type result:

Lemma 5.5. Let p > 1, θ1, θ2 > 0 and y ∈ P1,1. The following relation holds true: there
exists a constant M = Mθ1,θ2 > 1 such that

‖δy‖pθ1,θ2 ≤M
p

∫
[0,1]4

|δyu1u2;v1v2 |p

|u2 − u1|θ1p+2|v2 − v1|θ2p+2
du1du2dv1dv2. (5.12)

We now turn to a consequence of our additional Hypothesis 5.3 on embedding
properties of the Hilbert space H defined above:

Lemma 5.6. Under Hypothesis 5.3, we have ‖f‖H ≤ ‖f‖∞‖R‖1-var;[0,1]4 .

Proof. Consider a step function f =
∑
ij aij1∆ij

related to a partition (∆ij)ij of [0, 1]2.
We have

‖f‖2H =
∑
i,j,l,k

aijalkR
1
sisl

R2
tjtk

=
∑
i,j,k,l

aijakl

∫ si

0

∫ sl

0

∫ tj

0

∫ tk

0

d12R
1
s1s2d12R

2
t1t2

=

∫
[0,1]4

fs1;t1 fs2;t2d12R
1
s1s2d12R

2
t1t2 ≤ ‖f‖

2
∞ ‖R‖21-var;[0,1]4 . (5.13)

The general case now easily follows by density of the step functions in H.

Let us now recall that we work under the usual assumptions for Skorohod type
change of variables formulae given at Definition 1.7 and referred to as (GC) condition
in the sequel. Notice that maxs,t∈[0,1](R

1
sR

2
t ) = maxs,t∈[0,1]E[|xs;t|2]. Thus condition (GC)

implies that

E
[

sup
s,t∈[0,1]

|ϕ(xs;t)|r
]
<∞, for all r ≥ 1. (5.14)

We now state an approximation result in H which proves to be useful in order to get
our Itô type formula.

Proposition 5.7. Let x be a centered Gaussian process on [0, 1] satisfying Hypothesis 5.3
and ϕ ∈ C1(R) such that the growth condition (GC) is fulfilled for f and f (1). Consider a
rectangle ∆ = [s1, s2]× [t1, t2] and π1 = (si)i, π2 = (tj)j two respective dissections of the
intervals [s1, s2] and [t1, t2]. Then

lim
|π1|,|π2|→0

E

∥∥∥y·1∆ −
∑
i,j

ysi;tj1∆i,j

∥∥∥2

H

 = 0,

where we have used Notation 3.1 for the rectangles ∆i,j .

Proof. Observe first that

ys;t1∆(s, t)−
∑
i,j

ysi;tj1∆ij (s, t) =
∑
i,j

(ys;t − ysi;tj )1∆i,j (s, t)
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from which the following estimation is easily obtained:

|(ys;t − ysi;tj )1∆i,j (s, t)| ≤

(
sup

(s,t)∈∆

|y1
s;t| max
|s1−s2|≤|π1|,|t1−t2|≤|π2|

|xs1;t1 − xs2;t2 |

)
1∆i,j .

Hence if we take expectations in this last estimation and resort to Hölder’s inequality,
we obtain that

E

∥∥∥y·1∆ −
∑
i,j

ysi;tj1∆i,j

∥∥∥2

∞


≤ E1/2

[
sup

(s,t)∈∆

|y1
s;t|4

]
E1/2

[
max

|s−s′|≤|π1|,|t−t′|≤|π2|
|xs;t − xs′;t′ |4

] ∥∥∥∑
i,j

1∆ij

∥∥∥
∞
.

Now the r.h.s of this inequality goes to zero when the mesh of the partitions π1, π2 goes
to zero by continuity properties of x (see (5.11)). Our claim thus easily stems from the
embedding (5.13).

5.2 Itô-Skorohod type formula

We now turn to one of the main aim of this article, namely the proof of a Skorohod
type change of variable formula for a general Gaussian process x defined on [0, 1]2, under
our assumptions 5.3. Our starting point is the relation between z1 and its Skorohod
equivalent.

Proposition 5.8. Assume x is a centered Gaussian process on [0, 1]2 with a covariance
function satisfying (1.9). Consider a function ϕ ∈ C2(R) satisfying condition (GC) and a
rectangle ∆ = [s1, s2]× [t1, t2]. Then we have that y1

· 1∆ ∈ Dom(δ�), and if we define the
increment z1,� ≡ δ�(y1

· 1∆) the following relation holds true:

z1,�
s1s2;t1t2 = z1

s1s2;t1t2 −
1

4

∫ s2

s1

∫ t2

t1

y2
s;t d1R

1
sd2R

2
t , (5.15)

where z1 is given by Theorem 4.3 and the second integral in the right hand side of (5.15)
is of Riemann-Stietjes type. Moreover, relation (1.12) holds true in the L2(Ω) and almost
sure sense.

Remark 5.9. We have expressed all our assumptions so far in terms of Hölder type
regularities, and this is why we stick to this kind of hypothesis on R here. However,
generalizations to p-var type assumptions are easily conceivable, and in particular
relation (5.15) is certainly verified as soon as R ∈ C1−var([0, 1]4).

Proof of Proposition 5.8. Consider a sequence of partitions πn = (π1
n, π

2
n) whose mesh

go to 0 as n → ∞. The generic elements of πn will be denoted by (si, tj). Owing to
formula (5.2), we have that∑

πn

δ�(y1
si;tj1∆ij

) =
∑
πn

y1
si;tjδxsisi+1;tjtj+1

−
∑
πn

y2
si;tjE[xsi;tjδxsisi+1;tjtj+1

] (5.16)

=
∑
πn

y1
si;tjδxsisi+1;tjtj+1 −

∑
πn

y2
si;tj (R

1
sisi+1

−R1
sisi)(R

2
tjtj+1

−R2
tjtj ) ≡ A

n
1 −An2 .

We now treat those two terms separately.

Step 1: Estimation of An2 . Recall that An2 is defined by

An2 =
∑
πn

y2
si;tj (R

1
si+1si −R

1
sisi)(R

2
tj+1tj −R

2
tjtj ).
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In order to treat this term, first remark that for k = 1, 2 we have

Rksisi+1
−Rksisi =

1

2
(Rksi+1si+1

−Rksisi) + ρksisi+1
,

where ρksisi+1
= 1

2 (2Rksisi+1
−Rksisi −R

k
si+1si+1

). Injecting this relation in the definition of

the term An2 and recalling that we have set Rka ≡ Rkaa, we obtain

An2 = 1/4
∑
πn

y2
si;tj (R

1
si+1
−R1

si)(R
2
tj+1
−R2

tj )

+1/2
∑
πn

y2
si;tj

[
(R2

tj+1
−R2

tj )ρ
1
sisi+1

+ (R1
si+1
−R1

si)ρ
2
tjtj+1

+ ρ1
sisi+1

ρ2
tjtj+1

]
≡ An21 +An22 +An23 +An24.

We will now show that

lim
n→∞

An21 =
1

4

∫ s2

s1

∫ t2

t1

y2
s;t d1R

1
sd2R

2
t , and lim

n→∞

4∑
j=2

An2j = 0, (5.17)

where the limits are understood in the almost sure and L2 sense.

Indeed, it is easily understood that the terms An22, A
n
23, A

n
24 are remainder terms:

according to Hypothesis 5.3 we have that |ρiab| . |a − b|γi , and we get the following
inequality for An22:

An22 . |π1|γ1−1 sup
(s,t)∈∆

|y2
s;t|
∑
πn

(si+1 − si) |R2
tj+1
−R2

tj |

≤ |π1|γ1−1 sup
(s,t)∈∆

|y2
s;t| (s2 − s1)

∫ t2

t1

|d2R
2
t |.

This relation, plus the condition (GC) on f , obviously entails that limn→∞An22 = 0 in the
almost sure and L2(Ω) sense. The case of An23, A

n
24 follow exactly along the same lines.

We now focus on the term An21: observe that∣∣∣∣a1 − 1/4

∫ s2

s1

∫ t2

t1

y2
s;td1R

1
sd2R

2
t

∣∣∣∣
. sup

(s,t)∈∆

|y2
s;t| max
|s−s′|≤|π1|,|t−t′|≤|π2|

|xs;t − xs2;t2 |
∫ s2

s1

∫ t2

t1

|d1R
1
s‖d2R

2
t |.

Invoking the same estimates as before for the Hölder norm of x and condition (GC) on f ,
the proof of our assertion (5.17) is now completed.

Step 2: Estimation of An1 . Let us set Y n =
∑
πn
y1
si;tj1∆ij

and Y = y11∆. Then one can
recast (5.16) into δ�(Y n) = An1 −An2 . Furthermore, we know that An1 converges almost
surely to z1 as stated in Theorem 4.3. In order to show that An1 also converges in L2,
we proceed as follows: (i) We show that Y n converges to Y in D1,2(H). According to
standard results of Malliavin calculus (see also (5.1)), this yields the L2 convergence
of δ�(Y n) to δ�(Y ). (ii) Since we have also shown the convergence of An2 in L2, the
convergence of An1 in L2 is then easily obtained from the relation δ�(Y n) = An1 −An2 .

We are thus reduced to the convergence of Y n to Y in D1,2(H), which is obtained
similarly to what is done in Proposition 5.7. Indeed, the convergence of Y n towards Y
is obtained exactly as in the latter proposition. In addition, the derivative of Y n can be
explicitly computed as:

Dσ;τY
n
s;t =

∑
πn

y2
si;tj1[0,si]×[0,tj ](σ, τ)1∆ij

(s, t).
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The convergence of this derivative to

Dσ;τYs;t = y2
s;t1[0,s]×[0,t](σ, τ)1∆(s, t)

is then established again along the same lines as for Proposition 5.7.

Step 3: Conclusion. Let us summarize the results obtained in the last two steps:
plugging relation (5.17) into the definition of An2 and recalling the limiting behavior of
An1 established at Step 2, we have obtained that

δ�(y11∆) = lim
n→∞

∑
πn

δ�(y1
si;tj1∆ij ) =

∫ s2

s1

∫ t2

t1

y1
s;td12xs;t −

1

4

∫ s2

s1

∫ t2

t1

y2
s;td1R

1
sd2R

2
t .

where the convergence is understood in both a.s and L2(Ω) sense. This finishes our
proof of relation (5.15).

As far as expression (1.12) with Wick-Riemann sums is concerned, recall that we
have proved that

δ�(y1
· 1∆) = lim

|π1|,|π2|→0

∑
πn

δ�(y1
si;tj1∆ij ).

Now invoke Proposition 5.2 for k = 1 in order to state that

δ�(y1
si;tj1∆ij ) = y1

si;tj � δ
�(1∆ij ) = y1

si;tj � δxsisi+1;tjtj+1 ,

which ends the proof.

Proposition 5.8 gives a meaning to the increment z1,� and compares them to the
corresponding Stratonovich increment z1. In order to compare change of variables
formulae, we still have to define Skorohod integrals of the form z2,�, which is what we
proceed to do now.

To this aim, let us start by some formal considerations: it is easily conceived that∫ s

0

∫ t

0

y2
u;vd

�
1xu;vd

�
2xu;v =

∫ s

0

∫ t

0

∫ u

0

∫ v

0

y2
u;vd

�
12xu′vd

�
12xuv′ = δ�,2(N(y2)) (5.18)

where, similarly to [17], we set

N(y)u′u;vv′ := yu,v 1[0,s]×[0,v](u, v
′)1[0,u]×[0,t](u

′, v),

where we integrate firstly in (u′, v) and then in (u, v′), and where the notation δ�,2

specifies that we perform double integrals in the Skorohod sense. Our objective in what
follows is to give a rigorous meaning to equation (5.18).

Lemma 5.10. Take up the notation of Proposition 5.8, and consider f ∈ C3(R) satisfying
condition (GC). For a sequence of partitions (πn)n≥1 whose mesh goes to 0 define

aπnu′u;vv′ =
∑
i,j

y2
si;tj 1[0,si]×[tj ,tj+1](u

′, v)1[si,si+1]×[0,tj ](u, v
′). (5.19)

Then aπn converges to N(y2) in L2(Ω,H⊗2) as n goes to infinity.

Proof. First notice that the tensor norm of an element K ∈ H⊗2 can be bounded as:

‖K‖H⊗2 =

∫
[0,1]8

Ka1a′1;b1b′1
Ka2a′2;b2b′2

d12R
1
a1a′1

d12R
1
a2a′2

d12R
2
b1b′1

d12R
1
b2b′2

≤
∫

[0,1]8
|Ka1a′1;b1b′1

Ka2a′2;b2b′2
| |d12R

1
a1a′1
||d12R

1
a2a′2
||d12R

2
b1b′1
||d12R

1
b2b′2
|. (5.20)
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Furthermore, a simple computation shows that

aπnu′u;vv′ −N(y2)u′u;vv′ =
∑
πn

[
y2
si;tj − y

2
u;v

] [
1[0,u]×[tj ,tj+1](u

′, v)1[si,si+1]×[0,v](u, v
′)
]

+
∑
πn

y2
si;tj

[(
1[0,si]×[0,tj ](u

′, v′)− 1[0,u]×[0,v](u
′, v′)

)
1[si,si+1]×[tj ,tj+1](u, v)

]
,

and thus,∣∣∣aπnu′u;vv′ −N(y2)u′u;vv′

∣∣∣ ≤ ( sup
(a,b)∈[0,s]×[0,t]

|y3
a;b| sup
|a2−a1|≤|π1|,|b2−b1|≤|π2|

|xa2;b2 − xa1;b1 |

+ max
i,j

(1[si,si+1](u
′) + 1[tj ,tj+1](v

′)) sup
(a,b)∈[0,s]×[0,t]

|y2
a;b|
)
. (5.21)

Our claims are now easily derived: on the one hand the right hand side of (5.21) con-
verges to zero when n→∞ if u′ 6= si and v′ 6= tj for all i, j. Then using inequality (5.20)
and dominated convergence we obtain that aπn converges a.s to N(y) in H⊗2. On the
other hand, in order to obtain the convergence in L2(Ω,H⊗2) it suffices to use the fact
that f satisfies condition (GC) and apply once again dominated convergence.

Now we are able to define our mixed integral in the Skorohod sense and connect it to
the equivalent integral in the Young theory:

Proposition 5.11. Assume x is a centered Gaussian process on [0, 1]2 with a covariance
function satisfying (1.9). Consider a function ϕ ∈ C4(R) satisfying condition (GC) and
a rectangle ∆ = [s1, s2]× [t1, t2]. Then we have that N(y) ∈ Dom(δ�,2), and if we define
z2,� = δ�,2(N(y)) the following relation holds:

z2,�
s1s2;t1t2 = z2

s1s2;t1t2 −
1

4

∫ s2

s1

∫ t2

t1

y2
u;vd1R

1
u d2R

2
v −

1

2

∫ s2

s1

∫ t2

t1

y3
u;vR

1
u d2R

2
v d1xu;v

− 1

2

∫ s2

s1

∫ t2

t1

y3
u;vR

2
v d1R

1
u d2xu;v +

1

4

∫ s2

s1

∫ t2

t1

y4
u;vR

1
uR

2
v d1R

1
u d2R

2
v, (5.22)

where
∫ s2
s1

∫ t2
t1
y3
u;vR

1
u d2R

2
v d1xu;v and

∫ s2
s1

∫ t2
t1
y3
u;vR

2
v d1R

1
u d2xu;v are defined according to

Proposition 4.6. Moreover, relation (1.13) holds true in the L2(Ω) and almost sure sense.

Proof. Like for Proposition 5.8, our strategy is as follows: consider a sequence πn =

(π1
n, π

2
n) whose mesh go to 0 as n → ∞ and set an ≡ aπn defined by (5.19). We have

seen at Lemma 5.10 that limn→∞ an = N(y) in L2(Ω,H⊗2). We shall now study the
convergence of δ�(an) by means of Wick-Stratonovich corrections. Then we will conclude
by invoking Proposition 5.1.

Step 1: Wick-Stratonovich corrections. According to relation (5.8) and Proposition 5.2
for k = 2 we obtain

δ�,2(an) =
∑
πn

δ�,2(y2
si;tj1[0,si]×[tj ,tj+1] ⊗ 1[si,si+1]×[0,tj ])

=
∑
πn

y2
si;tj � δ2xsi;tjtj+1

� δ1xsisi+1;tj . (5.23)
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We now use Theorem 4.10 in [11] in order to get that δ�,2(an) can be decomposed as:∑
πn

y2
si;tj (δ2xsi;tjtj+1 � δ1xsisi+1;tj )−

∑
πn

y3
si;tjR

1
si(R

2
tjtj+1

−R2
tjtj )δ1xsisi+1;tj

−
∑
πn

y3
si;tjR

2
tj (R

1
sisi+1

−R1
si,si)δ2xsi;tjtj+1

(5.24)

+
∑
πn

y4
si;tjR

1
siR

2
tj (R

1
sisi+1

−R1
sisi)(R

2
tjtj+1

−R2
tjtj ) ≡ B

n
1 −Bn2 −Bn3 +Bn4 .

Like in the proof of Proposition 5.8, we treat those 4 terms separately.

Step 2: Estimation of Bn1 , . . . , B
n
4 . The term Bn1 can be decomposed as

Bn1 =
∑
πn

y2
si;tjδ1xsisi+1;tjδ2xsi;tjtj+1 −

∑
πn

y2
si;tj (R

1
sisi+1

−R1
sisi)(R

2
tjtj+1

−R2
tjtj ).

Moreover, the second term in the r.h.s is the same as An2 in the proof of Proposition 5.8,
while the convergence for

∑
πn
y2
si;tjδ1xsisi+1;tjδ2xsi;tjtj+1

follows exactly along the same
lines as An1 in the same proof. We thus leave to the patient reader the task of showing
that

lim
n→∞

Bn1 =

∫ s2

s1

∫ t2

t1

y2
s;t d1xs;td2xs;t −

1

4

∫ s2

s1

∫ t2

t1

y2
s;t d1R

1
sd2R

2
t , (5.25)

and we concentrate now on the other terms in (5.24).

The term Bn2 =
∑
πn
y3
si;tjR

1
si(R

2
tjtj+1

−R2
tjtj )δ1xsisi+1;tj can be decomposed as Bn2 =

Bn21 +Bn22, with

Bn21 =
1

2

∑
πn

y3
si;tjR

1
si(R

2
tj+1
−R2

tj )δ1xsisi+1;tj , Bn22 =
∑
πn

y3
si;tjR

1
siρ

2
tjtj+1

δ1xsisi+1;tj ,

where we recall that we have set ρktjtj+1
= 1

2 (2Rktjtj+1
−Rktjtj −R

k
tj+1tj+1

) for k = 1, 2.

It is now easily seen that the almost sure and L2 convergence of Bn2 are obtained
with the same kind of considerations as for An2 in the proof of Proposition 5.8. We get
that

lim
n→∞

Bn2 =
1

2

∫ s

0

∫ t

0

y3
u;vR

1
u d2R

2
v d1xu;v,

and Bn3 , B
n
4 are also handled in the same way.

Step 3: Conclusion. Thanks to Step 1 and Step 2, we have obtained that δ�(an) converges
to the right hand side of relation (5.22) as n→∞, in both almost sure and L2 senses. As
mentioned before, this limiting behavior plus the convergence of an toN(y) established at
Lemma 5.10 yield relation (5.22) by a direct application of Proposition 5.1. Furthermore,
relation (1.13) is also a direct consequence of relation (5.23).

Notice that our formula (5.22) involves some mixed integrals of the form:∫ s

0

∫ t

0

y3
u;vR

2
v d1R

1
ud2xu;v,

which are defined as Young type integrals. The following proposition, whose proof is
similar to Propositions 5.8 and 5.11 and is left to the reader for sake of conciseness,
gives a meaning to the analogue integrals in the Skorohod setting.
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Proposition 5.12. Let f ∈ C4(R) be a function satisfying condition (GC). Then for every
fixed u ∈ [0, s] we have that v 7→ y3

u;vR
2
v ∈ Dom(δ�,u) where δ�,u is the divergence operator

associated to the process (xu;v)v∈[0,t]. We can thus define
∫ s

0

∫ t
0
y3
u;vR

2
vd1R

1
ud
�
2xu;v by :∫ s

0

∫ t

0

y3
u;vR

2
v d1R

1
u d
�
2xu;v := lim

|π|→0

∑
πn

δ�,si(y3
si;tj1[tj ,tj+1])R

2
tj (R

1
si+1
−R1

si)

where the convergence holds in both L2(Ω) and almost sure senses. In addition, we have
the following identity:∫ s

0

∫ t

0

y3
u;vR

2
v d1R

1
u d
�
2xu;v =

∫ s

0

∫ t

0

y3
u;vR

2
v d1R

1
u d2xu;v −

1

2

∫ s

0

∫ t

0

y4
u;vR

1
uR

2
v d1R

1
u d2R

2
v.

Finally, the integral
∫ s

0

∫ s
0
y3
u;vR

1
ud2R

2
vd
�
1xu;v is defined similarly.

Remark 5.13. We have defined all the integrals we needed in order to prove our
Skorohod change of variable formula (1.14). Indeed, the proof of formula (1.14) is now
easily deduced by injecting the identities of Propositions 5.8, 5.11 and 5.12 in the
Stratonovich type formula (1.3).

6 Skorohod’s calculus in the rough case

Our goal in this section is to extend the formulae given in Propositions 5.8 and 5.11 to
rougher situations, namely for Gaussian processes in the plane with Hölder regularities
smaller than 1/2. This is however a harder task than in the Young case, and this is why
we introduce 2 simplifications in our considerations:

(1) Instead of dealing with a general centered Gaussian process whose covariance admits
the factorization property of Hypothesis 5.3, we handle here the case of a fractional
Brownian sheet (xs;t)(s,t)∈[0,1]2 with Hurst parameters γ1, γ2 ∈ (1/3, 1/2].

(2) The definition of our Skorohod integrals with respect to x is obtained in the following
way: we first regularize x as a smooth process xn. For this process we can still use the
formulae of Propositions 5.8 and 5.11 like in the Young case. We shall then perform
a limiting procedure on these formulae (this is where the specification of a concrete
approximation is important), which will give our Stratonovich-Skorohod corrections.
Notice however that the interpretation in terms of Riemann-Wick sums will be lost with
this strategy.

As in the previous section, we start our considerations by specifying the Malliavin
framework in which we are working.

6.1 Further Malliavin calculus tools

Recall that the covariance function of our fractional Brownian sheet x is given by
(1.8). We can thus consider a Hilbert space Hx related to x exactly as in Section 5.1,
where we now stress the dependence in x of Hx in order to differentiate it from the
Hilbert space related to white noise. In particular we denote by Ix1 the isometry between
Hx and the first chaos generated by x.

However, the Malliavin structure related to the harmonizable representation of x will
also play a prominent role in the sequel. Namely, it is well known (see e.g. [16]) that for
s, t ∈ [0, 1], x can be represented as

xs;t = cγ1,γ2 Ŵ (Qs;t) = cγ1,γ2

∫
R2

Qs;t(ξ, η) Ŵ (dξ, dη), (6.1)

EJP 20 (2015), paper 39.
Page 28/39

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3041
http://ejp.ejpecp.org/


Skorohod and Stratonovich in the plane

where cγ1,γ2 is a normalization constant whose exact value is irrelevant for our computa-
tions, W is the Fourier transform of the white noise on R2, and Qs;t is a kernel defined
by

Qs;t(ξ, η) =
eısξ − 1

|ξ|γ1+ 1
2

eıtη − 1

|η|γ2+ 1
2

. (6.2)

This induces us to consider the canonical Hilbert space related to Ŵ , that is HŴ =

L2(R2). The relations between Malliavin calculus with respect to Ŵ and x are then
summarized in the next lemma:

Lemma 6.1. Denote by Dx,k,p (resp. DŴ ,k,p) the Sobolev spaces related to x (resp. Ŵ ),
and recall the notation L1,2 = DŴ ,1,2(L2(R)) borrowed from [14]. For φ : [0, 1]2 → R, set

Kφ(ξ, η) =

∫
[0,1]2

φs;t ∂s∂tQs;t(ξ, η) dsdt, (6.3)

where we recall that Q is defined by (6.2). Then the following holds true:

(i) We can represent the space Hx as the closure of the set of step functions under the
norm ‖φ‖Hx = ‖Kφ‖L2(R2).

(ii) We have Dx,1,2(Hx) = K−1(L1,2), where we recall that L1,2 = DŴ ,1,2(L2(R)). In
addition, for any smooth function F and any Hx-valued square integrable random
variable u the following identity holds:

〈u,DxF 〉Hx = 〈Ku,DŴF 〉L2(R2).

(iii) As far as divergence operators are concerned, the relation is

Dom(δx,�) = K−1Dom(δŴ ,�), and δx,�(u) = δŴ ,�(Ku).

Proof. Let φ =
∑
i,j φi,j1[si,si+1]×[tj ,tj+1] be a step function. We have that:

Ix1 (φ) =
∑
i,j

φi,jδxsisi+1;tjtj+1 =
∑
i,j

φi,jŴ (δQsisi+1tjtj+1)

= Ŵ

∑
i,j

φi,jδQsisi+1;tjtj+1

 = Ŵ (Kφ),

(6.4)

which easily yields our first claim (i).

Let now F be a smooth functional of x of the form F = f(xs1;t1 , . . . , xsn;tn). Then

E [〈u,DxF 〉Hx ] = E
[ ∑
l∈{1,...,n}

∂lf(xs1t1 , . . . , xsntn)〈u,1[0,sl]×[0,tl]〉Hx
]

= E
[ ∑
l∈{1,...,n}

∂lf(xs1t1 , . . . , xsntn)〈Ku,K1[0,sl]×[0,tl]〉L2(R)

]
,

(6.5)

and since K1[0,sl]×[0,tl] = Qsl,tl we end up with

E [〈u,DxF 〉Hx ] = E
[
〈Ku,

∑
l∈{1,...,n}

∂lf(Ŵ (Qs1t1), . . . , Ŵ (Qsntn))Qsl,tl〉L2(R)

]
= E

[
〈Ku,DŴF 〉L2(R)

]
,

which gives our assertion (ii) by density of smooth functionals. Relation (iii) is easily
derived from (ii) by duality.
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Notice that the preceding result can be extended to second order derivatives thanks
to a simple tensorization trick. We label here the result for further use:

Lemma 6.2. Under the conditions of Lemma 6.1, set

[
K⊗2φ

]
(ξ1ξ2; η1η2) =

∫
[0,1]4

φs1s2;t1t2 ∂stQs1;t1(ξ1, η1)∂stQs2;t2(ξ2, η2) ds1ds2dt1dt2. (6.6)

Then for any smooth functional F and any (Hx)⊗2-valued square integrable random
variable u we have:

〈u,D2,xF 〉Hx = 〈K⊗2u,D2,ŴF 〉L2(R4).

6.2 Embedding results

Similarly to [2], we now give an embedding result for the space Hx which proves to
be useful for further computations.

Lemma 6.3. Let γ1, γ2 ∈ (0, 1
2 ]. Then the following inequality is satisfied:

‖u‖2H .
∫
R2

(∫
R2

|δũs1s2;t1t2 |2

|s2 − s1|2−2γ1 |t2 − t1|2−2γ2
ds1dt1

)
ds2dt2

+

∫
R2

1

|s2 − s1|2−2γ1

(∫ 1

0

|ũs2;t − ũs1;t|2 dt
)
ds1ds2 (6.7)

+

∫
R2

1

|t2 − t1|2−2γ2

(∫ 1

0

|ũs;t2 − ũs;t1 |
2
ds

)
dt1dt2 +

∫
[0,1]2

|ũs;t|2dsdt,

where we have set ũs;t = us;t1[0,1]2(s, t).

Proof. In this proof we only consider the case γ1, γ2 < 1/2. Indeed, if γ1 = 1/2 or γ2 = 1/2

then our process x is simply a Brownian motion in the first or in the second direction,
and this situation is handled by L2 norms.

For γ1, γ2 < 1/2, definitions (6.2) and (6.3) entail:

‖u‖2H =

∫
R2

|ξ|1−2γ1 |η|1−2γ2

∣∣∣∣∣
∫

[0,1]2
us;te

ısξ+ıtηdsdt

∣∣∣∣∣
2

dξdη,

from which one deduces that H is isometric to H1/2−γ1 ⊗H1/2−γ1 , where H1/2−γ1 stands
for the Sobolev space W 1/2−γ1,2. Now we use the fact that 1/2− γ1 ∈ (0, 1/2), and recall
that the norm defined by

N 2
1/2−γ1(φ) =

∫
R2

|φs1 − φs2 |2

|s2 − s1|2−2γ1
ds1ds2 +

∫
R

|φs|2ds

is equivalent to the usual norm in H1/2−γ1 . This yields (6.7) by tensorization.

The following embedding result is easily deduced from Lemma 6.3.

Corollary 6.4. Let γ1, γ2 ∈ (0, 1/2) and u ∈ Pα1,α2

1,1 such that 0 < 1
2 − αi < γi. Then we

have the following embedding:

‖u‖H . Nα1,α2(u), (6.8)

where we recall that Nα,β is defined by (3.2).
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6.3 Strategy and preliminary results

The strategy we shall develop in order to extend Proposition 5.8 (and also Proposi-
tion 5.11) to the rough case is based on a regularization of x. Specifically, for a strictly
positive integer n, set

xns;t = cγ1,γ2

∫
|ξ|,|η|≤n

Qs;t(ξ, η) Ŵ (dξ, dη), (6.9)

where we recall that x and Q are respectively defined by (6.1) and (6.2). For fixed n, it is
readily checked that xn is a regular Gaussian process. Its covariance function is given
by Rns1s2;t1t2 = R1,n

s1s2R
2,n
t1t2 , where

Ri,nab = cγi

∫
|ξ|≤n

(eıaξ − 1)(e−ibξ − 1)

|ξ|2γi+1
dξ, for i = 1, 2, (6.10)

and hence Rn is a regular function which satisfies Hypothesis 5.3. One can thus apply
Proposition 5.8 and obtains the following Skorohod-Stratonovich comparison:

z1,n,�
s1s2;t1t2 ≡ δ

xn,�(yn,1· 1∆) =

∫
∆

yn,1s;t d12x
n
s;t −

1

4

∫
∆

yn,2s;t d1R
1,n
s d2R

2,n
t , (6.11)

for ϕ ∈ C6(R) satisfying condition (GC), and where we set again ∆ = [s1, s2]× [t1t2]. Our
goal is now to take limits in equation (6.11).

A first observation in this direction is that equation (6.11) involves Skorohod integrals
with respect to xn. The fact that a different integral has to be defined for each n is
somehow clumsy, and this is why we have decided to express all integrals with respect
to Ŵ in the remainder of our computations. Namely, the same computations as for
equations (6.4) and (6.5) entail that δx

n,�(yn) = δŴ ,�(Knyn), where Kn is the operator
defined by

Knφ(ξ, η) = 1(|ξ|,|η|≤n)

∫
[0,1]2

φs;t ∂s∂tQs;t(ξ, η)dsdt. (6.12)

With this representation in hand, our limiting procedure can be decomposed as follows:

• Take L2 limits in the right hand side of equation (6.11) by means of rough paths
techniques.

• Show that Knyn converges in L2(Ω, L2(R)) to Ky.

Thanks to the closability of δŴ ,�, this will show the convergence of δx
n,�(yn1[0,1]2) to

δx,�(y1[0,1]2) and our Skorohod-Stratonovich correction formula will be obtained in this
way.

We now state and prove 3 useful lemmas for our future computations. The first one
deals with convergence of covariance functions:

Lemma 6.5. For i = 1, 2, set Riu = u2γi . Then for all ε > 0 we have

lim
n→+∞

‖Ri,n −Ri‖2γi−ε = 0,

where Ri,n is defined by (6.10).

Proof. We recall that cγi
∫
R

|eıaξ−1|2
|ξ|2γi+1 dξ = a2γi . Then an elementary computation shows

that

|δi(Ri,n −Ri)ab| =

∣∣∣∣∣cγi
∫
|ξ|≥n

cos(aξ)− cos(bξ)
|ξ|2γi+1

dξ

∣∣∣∣∣ .γi,ε |a− b|2γi−ε
∫
|x|≥n

|ξ|−1−εdξ,

which gives ‖Rn,i −Ru‖2γi−ε .γi,ε
∫
|ξ|≥n |ξ|

−1−εdξ, and this finishes the proof.
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Our second preliminary result ensures that xn is an accurate approximation of x:

Proposition 6.6. Let p > 1 and 0 < ε < min(γ1, γ2). Then we have the following
convergence:

lim
n→∞

E
[
‖xn − x‖pγ1−ε,γ2−ε

]
= 0.

In addition, there exists λ > 0 such that

sup
n∈N

E
[
eλ sup(s,t)∈[0,1]2 |x

n
s;t|

2
]
< +∞. (6.13)

Proof. The definitions (6.1) of x, (6.9) of xn plus formula (6.2) for Q allow to write, for
all n ≥ 1:

E[|δ(xn − x)s1s2;t1t2 |2] =

∫
|x|,|y|≥n

|eıs2x − eıs1x|2|eıt2y − eıt1y|2

|x|2γ1+1|y|γ2+1
dxdy

.γ1,γ2 |s1 − s1|2(γ1−ε/2)|t2 − t1|2(γ2−ε/2)In

(6.14)

where we have set In =
∫
|x|,|y|≥n

dx dy
|x|1+ε|y|1+ε (this quantity is obviously finite). Hence by

Gaussian hypercontractivity and Lemma 5.5 we obtain

E[[‖xn − x‖pγ1−ε,γ2−ε] .p,γ1,γ2,ε
∫

[0,1]4

E[|δxs1s2;t1t2 |2]p/2

|s2 − s1|(γ1−ε)p+2|t2 − t1|(γ2−ε)p+2
dt2ds2dt1ds1

. (In)p/2
∫

[0,1]4
|s2 − s1|pε/2−2|t2 − t1|pε/2−1dt2ds2dt1ds1 . (In)p/2.

Since limn→∞ In = 0, we thus get limn→∞E[‖xn − x‖pγ1−ε,γ2−ε] = 0, which is our first
claim.

We now focus on the exponential integrability of supxn. Notice that for a fixed n

one can easily get those exponential estimates thanks to Fernique’s lemma. However,
we claim some uniformity in n here, and we thus come back to uniform estimates of
moments in order to prove (6.13). Let then r = max(b 1

γ1−εc, b
1

γ2−εc) + 1 and remark

that ‖xn‖∞ ≤ ‖xn‖ε,ε. We thus use a decomposition of the form E[eλ sup(s,t)∈[0,1]2 |x
n
s;t|

2

] =

I1,n(λ) + I2,n(λ), where

I1,n(λ) =

r−1∑
l=0

λl

l!
E[‖xn‖2l∞], and I2,n(λ) =

+∞∑
l=r

λl

l!
E[‖xn‖2l∞].

We now bound those 2 terms separately: one the one hand, it is readily checked that

I1,n(λ) . max
i=0,...,r

sup
n∈N

E[‖xn‖2iε,ε] < +∞,

for ε < min(γ1, γ2). On the other hand, the bound on I2,n(λ) is obtained invoking
Lemma 5.5 again. Indeed, starting from expression (5.12) and introducing a standard
Gaussian random variable N , it is easily seen that

E[‖xn‖2lε,ε] ≤ C2l,ε,εE[N 2l]

∫
[0,1]2×[0,1]2

E[|δxns1s2t1t1 |
2]l

|s2 − s1|2lε+2|t2 − t1|2lε+2
ds1ds2dt1dt2

with N is a Gaussian random variable N (0, 1). Now we have

sup
n∈N

E
[
|δxns1s2;t1t2 |

2
]
≤
∫
R2

|eıs2x − eıs1x|2|eıt2y − eıt1y|2

|x|2γ1+1|y|2γ2+1
dxdy

≤ |s2 − s1|2γ1 |t2 − t1|2γ2
∫
R2

|eıx − 1|2|eıy − 1|2

|x|2γ1+1|y|2γ2+1
dxdy . |s2 − s1|2γ1 |t2 − t1|2γ2 .
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Furthermore, according to Lemma 5.5, the constant C2l,ε,ε can be taken of the form M l

for a given M > 1. Thus:
sup
n∈N

E[‖xn‖2lε,ε] .M lE
[
N 2l

]
,

from which the relation I2,n(λ) <∞ is easily obtained. This finishes the proof of (6.13).

With classical considerations concerning compositions of Hölder functions with non
linearities, we finally get the following result which is labelled for further use. Its proof
is omitted for sake of conciseness.

Lemma 6.7. Let ρ1, ρ2 ∈ (0, 1), x1, x2 two increments lying in Pρ1,ρ21,1 , and f ∈ C3(R) sat-
isfying condition (GC). Then we have (The square below has been dropped as suggested
by the referee):

Nρ1,ρ2(f(x1)− f(x2)) . cx1,x2 Nρ1,ρ2(x1 − x2)
[
1 +Nρ1,ρ2(x1) +Nρ1,ρ2(x2)

]
(6.15)

where we recall that Nα1,α2
has been defined at equation (6.8). In the relation above

we have also set cx1,x2 = exp(θ(sup(s,t)∈[0,1]2 |x1
s;t|2 + sup(s,t)∈[0,1]2 |x2

s;t|2)), where θ is the
constant featuring in condition (GC).

6.4 Itô-Skorohod type formula

We now turn to the limiting procedure in equation (6.11), beginning with the term
involving covariances only:

Proposition 6.8. Let f ∈ C6(R) be a function satisfying condition (GC) with a small
enough parameter λ > 0 defined as in Lemma 6.7, so that the random variable cx1,x2

(also defined in Lemma 6.7) satisfies E[c8x1,x2 ] <∞. Consider xn, the regularized version
of x defined by (6.9). Then the following convergence:

lim
n→+∞

∫
[0,1]2

yns;t d1R
1,n
s d2R

2,n
t = γ1γ2

∫
[0,1]2

ys;ts
2γ1−1t2γ2−1dsdt (6.16)

holds in L2(Ω).

Proof. The integrals involved in (6.16) are all of Young type. Owing to Proposition 4.6,
we thus have:∫

[0,1]2
yns;td1R

1,n
s d2R

2,n
t = [(Id− Λ1δ1)(Id− Λ2δ2)] (ynδ1R

1,nδ2R
2,n).

By continuity of the sewing maps Λ and Λi, the desired convergence will thus stem from
the relations limn→0A

1,n = 0 and limn→0A
2,n = 0, where for ε > 0 we set:

A1,n :=

2∑
i=1

‖δiRi,n − δiRi‖2γi−ε, and A2,n := Nγ1−ε,γ2−ε(yn − y).

Now the relation limn→0A
1,n = 0 is obviously a direct consequence of Lemma 6.5.

As far as A2,n is concerned, we start from relation (6.15) and apply Hölder’s inequality.
This yields

E[(Nγ1−ε,γ2−ε(yn − y))2]

. E1/4[(cx1,x2)8]E1/2[‖xn − x‖4γ1−ε,γ2−ε]E
1/4[(1 +Nγ1−ε,γ2−ε(x

n) +Nρ1,ρ2(x))8].

Then according to Proposition 6.6 we see that the r.h.s of this last equation vanishes
when n goes to infinity, which proves our claim.
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We now compute the correction terms in z1, that is the equivalent of Proposition 5.8.

Proposition 6.9. Let x be a fBs with Hurst parameters γ1, γ2 > 1/3. Consider a function
ϕ ∈ C8(R) satisfying condition (GC) and a rectangle ∆ = [s1, s2] × [t1, t2]. Then we
have that y1

· 1∆ ∈ Dom(δ�), and if we define the increment z1,� ≡ δ�(y1
· 1∆) the following

relation holds true:

z1,�
s1s2;t1t2 = z1

s1s2;t1t2 − γ1γ2

∫
∆

y2
s;ts

2γ1−1t2γ2−1dsdt, (6.17)

where z1 is the rough integral given by Theorem 1.5.

Proof. Let us start from the corrections for the regularized process xn, for which we can
appeal to Proposition 5.8. We obtain relation (6.11), written here again for convenience:

z1,n,�
s1s2;t1t2 ≡ δ

xn,�(yn,1· 1∆) =

∫
∆

yn,1s;t d12x
n
s;t −

1

4

∫
∆

yn,2s;t d1R
1,n
s d2R

2,n
t . (6.18)

Now putting together Proposition 6.8 and the continuity of the rough path integral, we
get convergence of the r.h.s of (6.18) in probability. Thus one can write:

lim
n→+∞

δx
n,�(yn) =

∫
∆

y1
s;td12xs;t − γ1γ2

∫
∆

y2
s;ts

γ1−1tγ2−1 dtds,

where the integral with respect to x is interpreted in the sense of Theorem 1.5.

Let us further analyze the convergence of δx
n,�(yn): recall that this quantity can be

written as δŴ ,�(Knyn), where Kn is defined by (6.12) or specifically as

(Knyn)(ξ, η) =
ıξ ıη

|ξ|γ1+1/2|η|γ2+1/2

(∫
∆

ynuve
ıξu+ıηvdudv

)
1(|ξ|,|η|≤n) (6.19)

Hence, owing to closability of the operator δŴ ,�, the proof of (6.17) is reduced to show
that Knyn,1 converges in L2(Ω;L2(∆)) to Ky1. Now expression (6.19) easily entails that∣∣∣∣Knyn,1 −Ky

∣∣∣∣
L2(R)

≤ ‖yn,1 − y1‖H

+

∫
|ξ|,|η|≥n

|ξ|1−2γ1 |η|1−2γ2

∣∣∣∣∫
∆

y1
u;ve

ıξu+ıηvdudv

∣∣∣∣2 dξdη,
and we shall bound the 2 terms on the r.h.s of this inequality.

Indeed, on the one hand we consider γ1, γ2 > 1/4 and ε > 0 small enough. This gives

E

[∫
‖(ξ,η)‖∞≥n

|ξ|1−2γ1 |η|1−2γ2

∣∣∣∣∫
∆

y1
u;ve

ıξu+ıηvdudv

∣∣∣∣2 dξdη
]

. n−εE
[
(Nγ1−ε,γ2−ε(y))2

] n→+∞

−→ 0.

On the other hand, Corollary 6.4 asserts that ‖y − yn‖H . Nγ1−ε,γ2−ε(yn − y), and the
r.h.s of this relation vanishes as n → ∞ thanks to Proposition 6.6. This concludes our
proof.

In order to complete our comparison between Itô and Stratonovich formulae, we
still have to compare the Skorohod type increment z2,� and the rough integral z2. As
a previous step, let us give an intermediate result concerning some mixed integrals in
R, x:
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Skorohod and Stratonovich in the plane

Proposition 6.10. Let ϕ ∈ C6(R) satisfying condition (GC) for a small enough parameter
λ as in Proposition 6.8, and recall that for the fractional Brownian sheet x we have
Riu = u2γi for i = 1, 2. Then the integral∫

y1R1 d1x d2R
2 = [(Id− Λ1δ1)(Id− Λ2δ2)]

(
y1R1δ1xδ2R

2 +
1

2
y2R1(δ1x)2δ2R

2

)
(6.20)

is well defined a.s, in the sense of Proposition 3.4. Moreover the following convergence
takes place in L2(Ω):

lim
n→+∞

∫
∆

y1,n
uv R

1,n
u d1x

n
uvd2R

2,n
v =

∫
∆

y1
u;vR

1
ud1xu;vd2R

2
v. (6.21)

Finally, the same kind of result is still verified when one interchanges directions 1 and 2
in relation (6.20).

Proof. Let us first check that the integral in (6.20) is well-defined in the sense of
Proposition 4.6. To this aim, set A = y1R1δ1x δ2R

2 + 1
2y

2R1(δ1x)2δ2R
2. Then a simple

application of Proposition 2.6 yields δ1A = z δ2R
2, with

z =
(
y2δ1x− δ1y1

)
R1δ1x−

1

2
δ1(y2R1)(δ1x)2 − y1δ1R

1δ1x.

It is thus easily seen that δ1A ∈ P3γ1−ε,2γ2
3,2 for an arbitrary small ε, thanks to the fact

that x ∈ Pγ1−ε,γ2−ε1,1 and δ1y1 − y2δ1x ∈ P2γ1−ε,γ2
2,1 almost surely. It is worth noting at this

point that this regularity property is not valid without the term 1/2y2R1(δ1x)2δ2R
2 in

equation (6.20). Also observe that with the same kind of considerations we also have
that δ2A ∈ Pγ1,3γ2−ε2,3 .

Let us now compute δA: we have

δA = −δ2z δ2R2 = − (A1 +A2) δ2R
2,

where

A1 = g R1δ1x, with g = δy1 − δ2y2δ1x− y2δx,

and where setting (δ1x ◦1 δx)s1s2;t1t2 = δ1xs1s2t1δxs1s2;t1t2 similarly to Definition 3.7, we
have

A2 = δ2y
1δ1R

1δ1x− {δ1y1 − y2δ1x}R1δx− 1

2
δy2(δ1x)2 − 1

2
δ1y

2{δx ◦1 δ1x+ δ1x ◦1 δx}.

The reader can now easily check that A2 ∈ P3γ1−ε,γ2−ε
2,2 . In order to check the regularity

of A1, observe that g is of the form g = δ2h, with

hs1s2;t := (δ1y
1
s1s2;t − y2

s1;t)δ1xs2s2;t

=

(∫ 1

0

dθ θ

∫ 1

0

dθ′y2(xs1;t + θθ′δ1xs1s2;t)

)
(δ1xs1s2;t)

2. (6.22)

Computing δ2h with formula (6.22), one obtains that A1 = δ2hR
1δ1x ∈ P3γ1−ε,γ2−ε

2,2 .

Let us summarize our last considerations: we have seen that both A1 and A2 lye
into P3γ1−ε,γ2−ε

2,2 , and recalling that δA = −(A1 + A2)δ2R
2, we obtain δA ∈ P3γ1−ε,3γ2−ε

3,3 .

We have also checked that δ1A ∈ P3γ1−ε,2γ2
3,2 and δ2A ∈ P2γ1,3γ2−ε

2,3 . Gathering all this
information, we have checked the assumptions of Proposition 3.4 for the increment A,
which justifies expression (6.20).
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Now we focus on the convergence formula (6.21). We start by observing that for all
n ≥ 1 the following representation holds true:∫

∆

yn,1uv R
1,n
u d2x

n
uvd2R

2,n
v = [(Id− Λ1δ1)(Id− Λ2δ2)]An

with An = yn,1R1,nδ2R
2,n + 1/2yn,1R1,n(δ1x

n)2δ2R
2,n. Hence, owing to the continuity

of the planar sewing-maps (Λi)i=1,2 and Λ, our claim (6.21) is reduced to prove that
the sequences ‖An − A‖γ1−ε,2γ2−ε, ‖δ1(An − A)‖3γ1−ε,2γ2−ε, ‖δ2(An − A)‖γ1−ε,3γ2−ε and
‖δ(An − A)‖3γ1−ε,3γ2−ε converge in L2(Ω) and almost surely to 0. Furthermore, it is
readily checked that those convergences all stem from the relations

lim
n→0
‖Ri,n −R‖2γi−ε +

5∑
i=0

Nγ1−ε,γ2−ε(yn,i − yi) + ‖(δ1xn)2 − (δ1x)2‖2γ1−ε,1 = 0 (6.23)

and
lim
n→0
‖δ2 (h− hn) ‖2γ1−ε,γ2−ε = 0, with hn = δ1y

n,1 − yn,2δ1xn, (6.24)

where the limits take place in some Lp(Ω) with a sufficiently large p, and where we recall
that h is defined by (6.22). We now turn to the proof of those two relations.

To begin with, note that the convergence (6.23) easily stems from Lemma 6.5 for the
terms R, Proposition 6.6 for the terms x and Lemma 6.7 for the terms y. In order to
prove (6.24), we invoke again the integral representation (6.22) for both hn and h. Then
some elementary considerations (omitted here for sake of conciseness) allow to reduce
the problem to the following relation:

Lp(Ω)− lim
n→∞

(
E[Nγ1−ε,γ1−ε(xn − x)p] +

3∑
i=0

E[N p
γ1−ε,γ2−ε(y

n,i − yi)p]

)
= 0.

This last relation is a direct consequence of Proposition 6.6 and composition with non
linearities, whenever ϕ satisfies the growth condition (GC) with a small parameter λ > 0

chosen as in Proposition 6.8. The proof is now finished.

We can now state our result concerning the Itô-Stratonovich correction for the mixed
stochastic integral

∫
yd1xd2x:

Theorem 6.11. Let x be a fBs with Hurst parameters γ1, γ2 > 1/3. Consider a function
ϕ ∈ C8(R) satisfying condition (GC) and a rectangle ∆ = [s1, s2]× [t1, t2]. Then we have
that N(y2) ∈ Dom(δ�,2), and if we define the Skorohod integral z2,� as δ�,2(N(y2)), the
following particular case of relation (5.22) holds:

z2,�
s1s2;t1t2 = z2

s1s2;t1t2 − γ1γ2

∫
∆

y2
u;vu

2γ1−1v2γ2−1dudv − γ2

∫
∆

y3
u;vu

2γ1v2γ2−1dvd1xu;v

− γ1

∫
∆

y3
u;vu

2γ1−1v2γ2dud2xu;v + γ1γ2

∫
∆

y4
u;vu

4γ1−1v4γ2−1dudv. (6.25)

Proof. We follow the same strategy as for Theorem 6.9: apply first Proposition 5.11 for
the regularized process xn, which yields:∫

∆

yn,2u;vd
�
1x
n
uvd
�
2x
n
uv =

∫
∆

yn,2u;vd1x
n
u;vd2x

n
uv − 1/4

∫
∆

yn,2u;vd1R
1,n
u d2R

2,n
v

− 1

2

∫
∆

yn,3u;vR
1,n
u d2R

2,n
v d1xu;v −

1

2

∫
∆

yn,3u;vR
2,n
v d1R

1,n
u d2x

n
uv

+ 1/4

∫
∆

yn,4u;vR
1,n
u R2,n

v d1R
1,n
u d2R

n,2
v . (6.26)
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Now our preliminary results allow to take limits in relation (6.26). Indeed, owing to
Propositions 6.8 and 6.10 plus the continuity of the rough increment z2 given at Theorem
1.5, we obtain the convergence in probability for the four first terms in the r.h.s of
equation (6.26). Moreover the last term also converges in L2(Ω), thanks to the same
arguments as in the proof of the Proposition 6.8. We thus get the convergence of the r.h.s
of equation (6.26) to the r.h.s of equation (6.25), and also the fact that z2,� converges in
L2(Ω). Like in the proof of Theorem 6.9, the proof of (6.25) is thus reduced to show the
L2 convergence of the integrand defining z2,�.

However, mimicking again the proof of Theorem 6.9, it is easily seen that∫ 1

0

∫ 1

0

yn,2u;vd
�
1x
n
uvd
�
2x
n
uv := δx

n,�,2 (N(yn,2)
)

= δŴ ,�,2 (Kn,⊗2N(yn,2)
)
,

where we recall that K⊗2 is defined by (6.6) and[
Kn,⊗2φ

]
(x1x2; y1y2) = 1{|x1|,|x2|,|y1|,|y2|≤n}

[
K⊗2φ

]
(x1x2; y1y2).

It thus remains to show that Kn,⊗2(N(yn,2)) converges to K⊗2(N(y2) in L2(Ω, L2(R4)).
Towards this aim, we introduce the further notation us;t(ξ, η) = y2

s;t(e
ısξ − 1)(eıtη − 1),

uns;t(ξ, η) = yn,2s;t (eısξ − 1)(eıtη − 1) and

û(ξ1, ξ2; η1, η2) =

∫
∆

us;t(ξ1, η1)eısξ2+ıtη2dsdt

ûn(ξ1, ξ2; η1, η2) =

∫
∆

uns;t(ξ1, η1)eısξ2+ıtη2dsdt.

Then note that

‖(Kn)⊗2(N(yn))−K⊗2(N(y)‖2L2(R4) ≤ I
n
1 + In2 + In3 ,

where

In1 =

∫
|ξ1|,|η1|≥n

(∫
R2

|ξ2|1−2γ1 |η2|1−2γ2 |û(ξ1, ξ2; η1, η2)|2 dξ2dη2

)
dξ1dη1

|ξ1|2γ1+1|η1|2γ2+1

In2 =

∫
R2

(∫
|ξ2|,|η2|≥n

|ξ2|1−2γ1 |η2|1−2γ2 |û(ξ1, ξ2; η1, η2)|2 dξ2dη2

)
dξ1dη1

|ξ1|2γ1+1|η1|2γ2+1

and

In3 =

∫
R2

(∫
R2

|ξ2|1−2γ1 |η2|1−2γ2 |û(ξ1, ξ2; η1, η2)− ûn(ξ1, ξ2; η1, η2)|2 dξ2dη2

)
× dξ1dη1

|ξ1|2γ1+1|η1|2γ2+1
.

In order to bound those 3 terms, observe that

Nγ1−ε,γ2−ε(u(ξ, η)) . Nγ1−ε,γ2−ε(y)(1 + |ξ|γ1−ε + |η|γ2−ε + |ξ|γ1−ε|η|γ2−ε)

and thus Corollary 6.4 entails that

E[In1 ] . E
[(
Nγ1−ε,γ2−ε(y2)

)2] ∫
|ξ|,|η|≥n

1

|ξ|ε+1|η|ε+1
dξdη

n→+∞−→ 0,

and
E[In2 ] . n−εE

[(
Nγ1−ε,γ2−ε(y2)

)2] n→+∞−→ 0.

EJP 20 (2015), paper 39.
Page 37/39

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3041
http://ejp.ejpecp.org/


Skorohod and Stratonovich in the plane

As far as In3 is concerned, we remark that

Nγ1−ε,γ2−ε(u(ξ, η)− un(ξ, η)) . Nγ1−ε,γ2−ε(y2 − yn,2)(1 + |ξ|γ1−ε + |η|γ2−ε + |ξ|γ1−ε|η|γ2−ε)

and then we can conclude along the same lines as in Theorem 6.11 that E[In3 ] vanishes
as n goes to infinity. This finishes the proof.

The last step in order to go from Theorem 6.11 to Theorem 1.9 is to convert
Stratonovich into Skorohod type integrals in the right hand side of relation (6.25).
To this aim, let us first recall the following one-parameter result:

Proposition 6.12. Let B a fractional brownian motion with hurst parameters 1/2 ≥ γ >
1/3 then we have that u 7→ ϕ(Bu)u2γ ∈ Dom(δ�,B) and we have that∫

[0,1]

ϕ(Bu)u2γd�Bu =

∫
[0,1]

ϕ(Bu)u2γdBu − γ
∫

[0,1]

ϕ′(Bu)u4γ−1du

Proof. Use exactly the same arguments of the Proposition (6.9) for the one parameters
setting.

Now the Corollary below is the key to the conversion of Theorem 6.11 into Theo-
rem 1.9:

Corollary 6.13. For γi > 1/3 and ϕ ∈ C6(R) then for every v ∈ [0, 1] u 7→ y3
u;vu

2γ1 ∈
Dom(δ�,x.;v ) and the following formula hold true∫

∆

y3
u;vu

2γ1v2γ2−1d�1xu;vdv =

∫
δ

y3
u;vu

2γ1v2γ2−1d1xu;vd2v − γ1

∫
∆

y4
u;vu

4γ1−1v4γ2−1dudv

Proof. we recall that xu,v
(law)
= vγ2Bu with B is a fBm with hurst parameter γ1 and then it

suffice to use the proposition (6.4).
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