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Almost exponential decay for the
exit probability from slabs of ballistic RWRE*
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Abstract

It is an open question, whether or not in dimensions d ≥ 2 any random walk in an
i.i.d. uniformly elliptic random environment (RWRE) which is directionally transient
is ballistic. The ballisticity conditions for RWRE interpolate between directional
transience and ballisticity and have served to quantify the gap which would be needed
in order to answer affirmatively this conjecture. Two important ballisticity conditions
introduced by Sznitman [7, 8] are conditions (T ′) and (T ), quantifying the decay of the
exit probability through the back side of a slab, the first one demanding a stretched
exponential decay while the second one an exponential one. It is believed that (T ′)
implies (T ). In this article we show that (T ′) implies at least an almost (in a sense to
be made precise) exponential decay.
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1 Introduction

The relationship between directional transience and ballisticity for random walks in
random environment is one of the most challenging open questions within the field of
random media. In the case of random walks in an i.i.d. random environment, several
ballisticity conditions have been introduced which quantify the exit probability of the
random walk through a given side of a slab as its width L grows, with the objective
of understanding the above relation. Examples of these ballisticity conditions include
Sznitman’s (T ′) and (T ) conditions [7, 8]: given a slab of width L orthogonal to l,
condition (T ′) in direction l is the requirement that the annealed exit probability of the
walk through the side of the slab in the half-space {x : x · l < 0}, decays faster than
e−CL

γ

for all γ ∈ (0, 1) and some constant C > 0, while condition (T ) in direction l is
the requirement that the decay is exponential e−CL. It is believed that condition (T ′),
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Almost exponential decay for ballistic RWRE

is equivalent to condition (T ). In this article we prove that condition (T ′) implies an
almost exponential decay (see Theorem 1.2 for the precise meaning of this statement)
of the corresponding exit probabilities. Our proof relies on a recursive renormalization
scheme, where a careful choice of fastly growing scales enables us to obtain the result.
We use the equivalence between condition (T ′) [8] and the d ≥ 2 dimensional version of
Solomon’s criterion [6], known as the effective criterion [8].

Let us introduce the random walk in random environment model. For x ∈ Zd denote
its Euclidean norm by |x|2. Let V := {e ∈ Zd : |e|2 = 1} be the set of canonical vectors.
Introduce the set P whose elements are 2d−vectors p(e)e∈Zd, |e|=1 such that

p(e) ≥ 0, for all e ∈ V ,
∑

e∈Zd, |e|=1

p(e) = 1.

We define an environment ω := {ω(x) : x ∈ Zd} as an element of Ω := PZd , where for
each x ∈ Zd, ω(x) = {ω(x, e) : e ∈ V } ∈ P. Consider a probability measure P on Ω

endowed with its canonical product σ-algebra, so that an environment is now a random
variable such that the coordinates ω(x) are i.i.d. under P. The random walk in the
random environment ω starting from x ∈ Zd is the canonical Markov Chain {Xn : n ≥ 0}
on (Zd)N with quenched law Px,ω starting from x, defined by the transition probabilities
for each e ∈ Zd with |e| = 1 by

Px,ω(Xn+1 = Xn + e|X0, . . . , Xn) = ω(Xn, e)

and

Px,ω(X0 = x) = 1.

The averaged or annealed law, Px, is defined as the semi-direct product measure

Px = P× Px,ω

on Ω× (Zd)N. Whenever there is a κ > 0 such that

inf
e,x

ω(x, e) ≥ κ P− a.s.

we will say that the law P of the environment is uniformly elliptic.
For the statement of the result, we need some further definitions. For each subset

A ⊂ Zd we define the first exit time of the random walk from A as

TA := inf{n ≥ 0 : Xn /∈ A}.

Fix a vector l ∈ Sd−1 and u ∈ R then define the half-spaces H−u,l := {x ∈ Zd : x · l < u},
H+
u,l := {x ∈ Zd : x · l > u},

T lu := TH−u,l
= inf{n ≥ 0, Xn · l ≥ u}

and
T̃ lu := TH+

u,l
= inf{n ≥ 0, Xn · l ≤ u}.

For γ ∈ (0, 1], we say that condition (T )γ |l holds with respect to direction l ∈ Sd−1, if

lim sup
L→∞

L−γ log P0(T̃ l
′

−L < T l
′

L ) < 0,

for all l′ in some neighborhood of l. Furthermore, we define (T ′)|l as the requirement
that condition (T )γ |l is satisfied for all γ ∈ (0, 1) and condition (T )|l as the requirement
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that (T )1|l is satisfied. In [8], Sznitman proved that when d ≥ 2 for every γ ∈ (0.5, 1),
(T )γ |l is equivalent to (T ′)|l. This equivalence was improved in [3] and [4] culminating
with the work of Berger, Drewitz and Ramírez who in [1] showed that for any γ ∈ (0, 1),
condition (T )γ |l implies (T ′)|l. As a matter of fact, in [1], an effective ballisticity condition,
which requires only polynomial decay was introduced. To define this condition, consider
L, L̃ > 0 and l ∈ Sd−1 and the box

Bl,L,L̃ := R
(

(−L,L)× (−L̃, L̃)d−1
)
∩Zd,

where R is a rotation defined by

R(e1) = l. (1.1)

Given M ≥ 1 and L ≥ 2, we say that the polynomial condition (P )M in direction l (also
denoted by (P )M |l) is satisfied on a box of size L if there exists and L̃ ≤ 70L3 such that

P0

(
XTB

l,L,L̃
· l < L

)
≤ 1

LM
.

Berger, Drewitz and Ramírez proved in [1] that there exists a constant c0 such that
whenever M ≥ 15d + 5, the polynomial condition (P )M |l on a box of size L ≥ c0 is
equivalent to condition (T ′)|l (see also Lemma 3.1 of [2]). On the other hand, the
following is still open.

Conjecture 1.1. Consider a random walk in a uniformly elliptic random environment in
dimension d ≥ 2 and l ∈ Sd−1. Then, condition (T )|l is equivalent to (T ′)|l.

To quantify how far are we presently from proving Conjecture 1.1, we will introduce
now a family of intermediate conditions between conditions (T ′) and (T ). Let γ(L) :

[0,∞) → [0, 1], with limL→∞ γ(L) = 1. Let l ∈ Sd. We say that condition (T )γ(L)|l is
satisfied if

lim sup
L→∞

L−γ(L) logP0(T̃ l
′

−L < T l
′

L ) < 0, (1.2)

for l′ in a neighborhood of l. We will call γ(L) the effective parameter of condition (T )γ(L).
Note that condition (T ) is actually equivalent to (T )γ(L) with an effective parameter
given by

γ(L) = 1− C

logL
, (1.3)

for any constant C ≥ 0. In 2002 Sznitman [8] was able to prove that (T ′) implies (T )γ(L)
with effective parameter

γ(L) = 1− C

logL

√
logL, (1.4)

for some constant C > 0.
In this paper, we are able to show that condition (T ′) implies condition (T )γ(L) with

an effective parameter γ(L) which is closer to the effective parameter for condition (T )

given by (1.3). This is the first result since the introduction of condition (T ′) by Sznitman
in 2002, which would give an indication that Conjecture 1.1 is true. To state it, let us
introduce some notation. Throughout, for each n ≥ 1, we will use the standard notation

n︷ ︸︸ ︷
log ◦ · · · ◦ log x,
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for the composition of the logarithm function n times with itself, for all x in its domain,
where the n superscript means that the composition is performed n times.

Theorem 1.2. Let d ≥ 2, l ∈ Sd−1 and M ≥ 15d + 5. Assume that condition (P )M |l is
satisfied on a box of size L ≥ c0. Then there exists a constant C > 0 and a function
n(L) : [0,∞)→ N satisfying limL→∞ n(L) =∞, such that condition (T )γ(L)|l, c.f. (1.2), is
satisfied with an effective parameter γ(L) given by

γ(L) = 1− C

logL

n(L)︷ ︸︸ ︷
log ◦ · · · ◦ logL. (1.5)

Remark 1.3. Note that the decay given by the effective parameter (1.5) of Theorem 1.2
is equivalent to the decay

lim sup
L→∞

(

n(L)−1︷ ︸︸ ︷
log ◦ · · · ◦ logL)C

L
logP0(T̃ l

′

−L < T l
′

L ) < 0,

for l′ in a neighborhood of l.

Let us remark that a priori, even if n(L) → ∞ as L → ∞, it might happen that
the composition of the logarithm n(L) times is bounded. Nevertheless, in the case of
Theorem 1.2, it turns out that

lim
L→∞

n(L)︷ ︸︸ ︷
log ◦ · · · ◦ logL =∞.

Theorem 1.2 will be proven in the next section, but some remarks are in order. The
strategy followed in the proof, roughly speaking, is to improve the iterative procedure
used by Sznitman in [8], to prove (T )γ(L) with γ(L) given by (1.4), through the so called
effective criterion introduced by Sznitman in [8]. The iterative procedure used in [8], in
spirit is a renormalization argument, where the idea is to control the exit probability of
the walk recursively from an initial scale L0 to the final size of the slab L > L0 passing
through a sequence of intermediate scales L0 < L1 < . . . < Lk = L. To go from scale L0

to scale L1, a slab of width L1 is subdivided into overlapping slabs of width L0, and the
walk is looked at its exit times from successive slabs of width L0. Essentially, at these
times the walk looks like a one dimensional random walk in random environment, for
which one can control its exit probabilities through the expected value of ρ, where ρ is
close to the quotient between the probability to exit a slab of width L0 through its left
side and the probability to exit it through its right side. Here, a triggering assumption is
needed, which in our case is the effective criterion of Sznitman [8] (the effective criterion
is implied by the polynomial condition introduced by Berger, Drewitz and Ramírez in
[1]). This first step is the content of Proposition 2.1. A similar strategy is then used to
pass from scale Lk to scale Lk+1 for k ≥ 1 (see Lemma 2.2). Nevertheless, reducing
the movement of the random walk to a one dimensional walk, has a cost, which is a
polynomial factor appearing in the recursion relations, and which somehow is the reason
why one cannot go from the initial scale L0 directly to L in one step. In this paper, we
modify Sznitman’s argument, choosing a sequence of scales where Lk+1 is much larger
than Lk compared to Sznitman’s approach, allowing us to work with a smaller number
of intermediate steps in the recursion relation. The use of this new sequence of scales,
produces at some points important difficulties in the proof which have to be properly
handled.
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2 Proof of Theorem 1.2

Throughout the rest of this section, we prove Theorem 1.2. Firstly, in subsection 2.1,
we will introduce the basic notation which will be needed to implement the renormal-
ization scheme, and we will recall a basic result of Sznitman which provides a bound
for quantities involving the exit probability through the unlikely side of boxes which are
inspired in techniques used for one-dimensional random walks in random environment.
In the second subsection, we will introduce a growth condition which will limit the
maximal way in which the scales on the recursive scheme can grow, while still giving a
useful recurrence. In the third subsection we will choose an adequate sequence of scales
satisfying the condition of subsection 2.2, and for which one can make computations.
Finally, in subsection 2.4, Theorem 1.2 will be proven using the scales constructed in
subsection 2.3 through the use of the effective criterion [8].

2.1 Preliminaries and notation

The proof of Theorem 1.2 will follow the renormalization method used by Sznitman to
prove Proposition 2.3 of [8]. The idea is to use a renormalization procedure which some-
how mimics a computation for a one-dimensional random walk in random environment,
where one goes from one scale to the next (larger) one through formulas where the exit
probabilities of the random walk through slabs at the smaller scales are involved.

Following Sznitman we introduce boxes transversal to direction l, which are specified
in terms of B = (R,L,L′, L̃), where L,L′, L̃ are positive numbers and R is the rotation
defined in (1.1). The box attached to B, is

B := R((−L,L′)× (−L̃, L̃)d−1) ∩Zd

and the positive part of its boundary is defined as

∂+B := ∂B ∩ {x ∈ Zd, x · l ≥ L′, |R(ei) · x| < L̃, i ≥ 2}.

We can now define the following random variable depending on a given specification B,
analogous to the quotient in dimension d = 1 between the probability to jump to the left
and the probability to jump to the right [5, 6], for ω ∈ Ω as

ρB(ω) :=
qB(ω)

pB(ω)
,

where

qB(ω) := P0,ω(XTB /∈ ∂+B) =: 1− pB(ω).

The first step in the renormalization procedure will be to control the moments of ρB at
the two first scales. To this end, consider positive numbers

3
√
d < L0 < L1, 3

√
d < L̃0 < L̃1

along with the box-specifications

B0 := (R,L0 − 1, L0 + 1, L̃0)

and

B1 := (R,L1 − 1, L1 + 1, L̃1).

It is convenient to introduce now the notation
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q0 := qB0
, p0 := pB0

, q1 := qB1
, p1 := pB1

,

and

ρ0 := ρB0
, ρ1 := ρB1

. (2.1)

Let also

N0 :=
L1

L0
and Ñ0 :=

L̃1

L̃0

.

We will also need to introduce the constant

c1(d) = c1 :=
√
d.

Note that for each pair of points x, y ∈ Zd, there exists a nearest neighbor path joining
them which has less than c1|x− y|2 steps.

Let us now recall the following Proposition of Sznitman [8].

Proposition 2.1. There exist c2(d) > 3
√
d, c3(d), c4(d) > 1, such that when N0 ≥ 3, L0 ≥

c2, L̃1 ≥ 48N0L̃0, for each a ∈ (0, 1] one has that

E
[
ρ
a
2
1

]
≤ c3

{
κ−10c1L1

(
c4L̃

d−2
1

L3
1

L2
0
L̃0E[q0]

) L̃1
12N0L̃0

+
∑

0≤m≤N0+1

(
c4L̃

d−1
1 E[ρa0 ]

) [N0]+m−1
2

}
. (2.2)

2.2 The maximal growth condition on scales

We next recursively iterate inequality (2.2) at different scales which will increase as
fast as possible, in the sense that a certain induction condition should enable us to push
forward the recursion.

We next recursively iterate inequality (2.2) at different scales which will increase as
fast as possible, in the sense that a certain induction hypothesis should enable us to
push forward the recursion. Let

v := 8, α := 240

and introduce two sequences of scales Lk, L̃k k ≥ 0, such that

L0 ≥ c2 , 3
√
d < L̃0 ≤ L3

0 (2.3)

and for k ≥ 0

Nk ≥ 7, Lk+1 = NkLk, L̃k+1 = N3
k L̃k, (2.4)

as well as box-specifications

Bk := (R,Lk − 1, Lk + 1, L̃k).

Note that

L̃k+1 =

(
Lk
L0

)3

L̃0. (2.5)
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Introduce also the notation for the respective attached random variables

ρk := ρBk .

Throughout, we will adopt the notation

u0 :=
3(d− 1)

L0 log 1
κ

, (2.6)

and for k ≥ 1,

uk :=
u0
vk
. (2.7)

We also let

c5 := 2c3c4.

Condition (G). We say that the scales Lk, Nk, k ≥ 0 satisfy condition (G) if

ukNk ≥ αc1 for k ≥ 0, (2.8)

and if

c5N
3(d−1)
k+1 L3d−1

k+1 κ
uk+1Lk+1 ≤ 1 for k ≥ 0. (2.9)

Let us now state the following lemma which generalizes Lemma 2.2 of Sznitman ([8]),
for scales satisfying condition (G). For completeness we include its proof.

Lemma 2.2. Consider scales Lk, Nk, k ≥ 0, such that condition (G) is satisfied. Then,
whenever L0 ≥ c2, 3

√
d ≤ L̃0 ≤ L3

0, and a0 ∈ (0, 1], we have that

ϕ0 := c4L̃
d−1
1 L0E[ρa00 ] ≤ κu0L0 . (2.10)

then for all k ≥ 0,

ϕk := c4L̃
d−1
k+1LkE[ρakk ] ≤ κukLk . (2.11)

with
ak = a02−k, uk = u0v

−k.

Proof. As in the proof of Lemma 2.2 of [8], we can conclude by Proposition 2.1 that if
L0 ≥ c2 (note that by the choice of Nk in (2.4), the other conditions of Proposition 2.1
are satisfied) we have that for k ≥ 0,

ϕk+1 ≤ c3c4L̃d−1k+2Lk+1

κ−10c1Lk+1ϕ
N2
k

12

k +
∑

0≤m≤Nk+1

ϕ
[Nk]+m−1

2

k

 . (2.12)

We will now prove inequality (2.11) by induction on k using inequality (2.12). Since
inequality (2.10) is identical to inequality (2.11) with k = 0, the induction hypothesis is
satisfied for k = 0. We assume now that it is true for k > 0, along with inequality (2.8) of
assumption (G) and conclude that

κ−10c1Lk+1ϕ
N2
k

24

k ≤ κ−10c1Lk+1κN
2
k
Lkuk

24 ≤ 1. (2.13)

Therefore, using (2.13) and the fact that [Nk]− 1 ≥ Nk
2 because Nk ≥ 7 we see that
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ϕk+1 ≤ c3c4L̃d−1k+2Lk+1

{
ϕ
N2
k

24

k + Lk+1ϕ
Nk
4

k

}
≤ c5L̃d−1k+2L

2
k+1ϕ

Nk
8

k ϕ
Nk
8

k , (2.14)

where we recall that c5 = 2c3c4. Now, by the induction hypothesis (2.11) we see that

ϕ
Nk
8

k ≤ κuk+1Lk+1 .

Substituting this into (2.14), we see that it is enough now to show that

c5L̃
d−1
k+2L

2
k+1ϕ

Nk
8

k ≤ 1.

But this is true, by (2.9) of condition (G), the induction hypothesis and the inequality
L̃k+1 ≤ L3

k+1 for k ≥ 0 which follows by induction starting from (2.3). Indeed, using
these facts,

c5L̃
d−1
k+2L

2
k+1ϕ

Nk
8

k ≤ c5N3(d−1)
k+1 L3d−1

k+1 κ
uk+1Lk+1 ≤ 1,

which ends the proof.

2.3 An adequate choice of fast-growing scales

We will now construct a sequence of scales {Lk : k ≥ 0} which satisfy condition (G),
and for which Lemma 2.2 will eventually imply Theorem 1.2. This is not the fastest
possible growing sequence of scales, but somehow it captures the best possible choice
of γ(L).

Let {fk : k ≥ 1} be a sequence of functions from [0,∞) to [0,∞) defined recursively
as

f0(x) := 1,

f1(x) := vx

and for k ≥ 1,

fk+1(x) := fk ◦ f1(x).

Let now, for k ≥ 0,

Nk :=
αc1
u0

f[ k+2
2 ]
([
k+1
2

])
f[ k+1

2 ]
([
k
2

]) . (2.15)

According to display (2.4), we have the following formula valid for k ≥ 0,

Lk+1 = f[ k+2
2 ]

([
k + 1

2

])(
αc1
u0

)k+1

L0. (2.16)
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Lemma 2.3. The condition

ukNk ≥ αc1 for k ≥ 0

(c.f. (2.8) of condition (G)) is equivalent to

f[ k+2
2 ]
([
k+1
2

])
f[ k+1

2 ]
([
k
2

])
vk
≥ 1 for k ≥ 0, (2.17)

Proof. Note that (2.17) can be easily verified for k = 0, 1 and 2. Therefore it is enough to
prove inequality (2.17) for k ≥ 3. For this purpose, we will first show that for all positive
integers n, and a, b ∈ [1,∞), we have that

fn (a+ b) ≥ fn(a)fn(b). (2.18)

To prove (2.18), suppose that

A := {n ∈ N : fn (a+ b) < fn(a)fn(b) for some a, b ≥ 1} 6= ∅.

Let m be the smallest element of A and remark that m is greater than 1. Also, note that

fm (a+ b) < fm(a)fm(b)

for some a, b ≥ 1. However, note that for a, b ≥ 1 one has that

va+b ≥ va + vb.

Furthermore, for each k ≥ 0, the function fk(·) is increasing. Therefore,

fm−1(va)fm−1(vb) = fm(a)fm(b)

> fm(a+ b) = fm−1(va+b) ≥ fm−1(va + vb).

This contradicts the minimality of m and hence A = ∅ which proves (2.18). Back to
(2.17), note that

f
[ k+2

2 ]([
k+1
2 ])

f
[ k+1

2 ]([
k
2 ])vk

≥
f
[ k+2

2 ]([
k+1
2 ]−1)

f
[ k+1

2 ]([
k
2 ])

f
[ k+2

2 ]
(1)

vk
≥

f
[ k+2

2 ]
(1)

vk
≥ 1,

where the first inequality was gotten using (2.18), the second one is a consequence of
the inequality

f[ k+2
2 ]
([
k+1
2

]
− 1
)

f[ k+1
2 ]
([
k
2

]) ≥ 1,

valid for k ≥ 3, and which can be proved in a straightforward fashion if we divide the
argument according to whether k is even or odd, and the last inequality comes from the
fact that

f[ k+2
2 ]−1(1)− k ≥ 0 for k ≥ 3. (2.19)

Now, it is easy to verify inequality (2.19) when k = 3 and k = 4. Furthermore, the left
hand of (2.19) is increasing as a function of k ≥ 2 for k odd. Similarly, it is increasing for
k ≥ 2 for k even. We can therefore conclude, using induction that (2.19) is satisfied. This
completes the proof of (2.17).
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Using Lemma 2.3 we can now obtain the following important lemma which gives condi-
tions on the growth of a sequence of scale which ensure that (G) is satisfied.

Lemma 2.4. There exists a constant c6(d) such that when L0 ≥ c6, the scales {Lk : k ≥ 0}
and {Nk : k ≥ 0} defined by (2.16) and (2.15) satisfy condition (G).

Proof. By Lemma 2.3 we know that (2.8) of condition (G) is satisfied. We therefore just
prove inequality (2.9) of condition (G). We need to show that there exists a constant
c(d, κ), such that whenever L0 ≥ c(d, κ), for all k ≥ 0 one has that

c5N
3(d−1)
k+1 L3d−1

k+1 κ
uk+1Lk+1 ≤ 1. (2.20)

We will first show that there exists c7(d, κ) = c7(d) > 0, such that whenever L0 ≥ c7, one
has that for k ≥ 0,

N
3(d−1)
k+1 κ

uk+1Lk+1
3 ≤ 1. (2.21)

Now (2.21) is equivalent to

3(d− 1) logv

(
αc1
u0

f
[ k+3

2 ]([
k+2
2 ])

f
[ k+2

2 ]([
k+1
2 ])

)

−
L0u0f[ k+2

2 ]([
k+1
2 ])

(
αc1
vu0

)k+1
logv( 1

κ )

3 ≤ 0.

Therefore, (2.21) is equivalent to the bound for k ≥ 0,

L0 ≥

9(d−1)
u0

logv

(
αc1
u0

f
[ k+3

2 ]([
k+2
2 ])

f
[ k+2

2 ]([
k+1
2 ])

)
f[ k+2

2 ]
([
k+1
2

]) (
αc1
vu0

)k+1

logv
(
1
κ

) . (2.22)

Let us focus on right-hand side of inequality (2.22) . Note that it can be split as

9(d−1)
u0

logv

(
αc1
u0

)
f[ k+2

2 ]
([
k+1
2

]) (
αc1
vu0

)k+1

logv
(
1
κ

) +

9(d−1)
u0

logv

(
f
[ k+3

2 ]([
k+2
2 ])

f
[ k+2

2 ]([
k+1
2 ])

)
f[ k+2

2 ]
([
k+1
2

]) (
αc1
vu0

)k+1

logv
(
1
κ

) . (2.23)

Let us now try to find an upper bound for this expression independent on u0 (or equiva-
lently, on L0). By the definition of u0 (c.f. (2.6)) note that for k ≥ 0 and L0 ≥ 3(d−1)

log 1
κ

one

has that,

1

u0

1(
αc1
vu0

)k+1
=

1(
αc1
vu0

)k 1(
αc1
v

) ≤ 1(
αc1
v

)k+1
.

Substituting this into (2.23) we see that it is bounded from above by

9(d− 1) logv

(
αc1
u0

)
f[ k+2

2 ]
([
k+1
2

]) (
αc1
v

)k+1
logv

(
1
κ

) +

9(d− 1) logv

(
f
[ k+3

2 ]([
k+2
2 ])

f
[ k+2

2 ]([
k+1
2 ])

)
f[ k+2

2 ]
([
k+1
2

]) (
αc1
v

)k+1
logv

(
1
κ

) . (2.24)

Note that only the left-most term of (2.24) depends on L0. Choose a constant c8(d, κ) =

c8(d) > 1, such that if L0 ≥ c8
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logv

(
αc1
u0

)
≤ L0

logv
(
1
κ

)
d− 1

. (2.25)

Then, when L0 ≥ c8, we see using the fact that the left-most term of (2.24) is a decreasing
function of k ≥ 0 and from inequality (2.25), that it can be bounded from above by

L0
9v

αc1
≤ L0

72

240
≤ L0

3
. (2.26)

Thus, whenever L0 ≥ c8, from (2.23), (2.24) and (2.26), we see that (2.22) is satisfied if

L0 ≥
3

2

9(d− 1) logv

(
f
[ k+3

2 ]([
k+2
2 ])

f
[ k+2

2 ]([
k+1
2 ])

)
f[ k+2

2 ]
([
k+1
2

]) (
αc1
v

)k+1
logv

(
1
κ

) . (2.27)

Therefore, in order to prove (2.21) it is enough to show that the right hand side of
inequality (2.27) is bounded. To do this, it is enough to prove that the expression

logv

(
f
[ k+3

2 ]([
k+2
2 ])

f
[ k+2

2 ]([
k+1
2 ])

)
f[ k+2

2 ]
([
k+1
2

])
is bounded. Now,

logv

(
f
[ k+3

2 ]([
k+2
2 ])

f
[ k+2

2 ]([
k+1
2 ])

)
f[ k+2

2 ]
([
k+1
2

]) ≤
logv

(
f[ k+3

2 ]
([
k+2
2

]))
f[ k+2

2 ]
([
k+1
2

]) . (2.28)

Let us now remark that if k is even, then
[
k+3
2

]
=
[
k+2
2

]
and

[
k+1
2

]
=
[
k+2
2

]
−1. Therefore,

in this case, the right-hand side of inequality (2.28) is smaller than

f[ k+2
2 ]−1

([
k+2
2

])
f[ k+2

2 ]
([
k+2
2

]
− 1
) =

f[ k+2
2 ]−1

([
k+2
2

])
f[ k+2

2 ]−1

(
v[ k+2

2 ]−1
) .

But, since for k fixed, the function fk(·) is increasing, and since for k ≥ 0 we have that

v[ k+2
2 ]−1 ≥

[
k + 2

2

]
,

we see that the right-hand side of inequality (2.28) is bounded. Hence, for k even the
right-most term of (2.28) is bounded by a constant c9(d, κ) = c9(d) > 0.

Suppose now that k is odd. Then
[
k+3
2

]
=
[
k+2
2

]
+ 1 and

[
k+1
2

]
=
[
k+2
2

]
. Therefore, in

this case, the right-hand side of inequality (2.28) is equal to

f[ k+2
2 ]
([
k+2
2

])
f[ k+2

2 ]
([
k+2
2

]) = 1,

so that we can conclude that the right-hand side of inequality (2.28) is bounded, and
hence that there is constant c10(d, κ) = c10(d) > 0 which is an upper bound for the right-
hand side of inequality (2.22). We can hence conclude, taking c7(d) = max{c9(d), c10(d)},
that when L0 ≥ c7(d), then (2.21) holds.
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As a second step to prove (2.20), we will show that it is possible to find a positive
constant c11(d, κ) = c11(d) such that when L0 ≥ c11 one has that for all k ≥ 0,

L3d−1
k+1 κ

uk+1Lk+1
3 ≤ 1. (2.29)

Inserting the definition (2.16) that defines Lk into this inequality, we see that it is enough
to prove that

(3d− 1) logv (Lk+1)−
logv

(
1
κ

)
u0

(
αc1
u0v

)k+1

f[ k+2
2 ]
([
k+1
2

])
L0

3
≤ 0. (2.30)

If we show that for all k ≥ 0, L0 ≥ logv(Lk+1)3(3d−1)

logv( 1
κ )u0

(
αc1
u0v

)k+1
f
[ k+2

2 ]([
k+1
2 ])

, we have a proof of

(2.30). But the right-hand side of this inequality can be written as

3(3d− 1) logv

[
L0

(
αc1
u0

)k+1
]

logv
(
1
κ

)
u0

(
αc1
u0v

)k+1

f[ k+2
2 ]
([
k+1
2

]) +
3(3d− 1) logv

(
f[ k+2

2 ]
([
k+1
2

]))
f[ k+2

2 ]
([
k+1
2

]) .

We need to establish a control with respect to L0 in this expression. Only the first term
depends on L0 so we concentrate on the first term. Now, this term is decreasing with k.
Therefore, it is smaller than

3(3d− 1) logv

[
L0

(
αc1
u0

)]
logv

(
1
κ

) (
αc1
v

) =
3(3d− 1) logv

(
L2

0αc1 log( 1
κ )

3(d−1)

)
logv

(
1
κ

) (
αc1
v

)
From this last expression, it is clear that we can choose a constant c12(d, κ) = c12(d) > 0

such that whenever L0 ≥ c12(d) one has that

3(3d− 1) logv

[
L0

(
αc1
u0

)k+1
]

logv
(
1
κ

)
u0

(
αc1
u0v

)k+1

f[ k+2
2 ]
([
k+1
2

]) ≤ L0

3
. (2.31)

Therefore, if L0 ≥ c12(d) and if

L0 ≥
3

2

3(3d− 1) logv

(
f[ k+2

2 ]
([
k+1
2

]))
f[ k+2

2 ]
([
k+1
2

]) , (2.32)

we would have (2.29), whenever we could prove that the right hand side of (2.32)
is bounded independently of k ≥ 0. This can be proven in analogy to the previous
computations made to show that the right-hand side of (2.27) is bounded. We have
thus established the existence of a constant c11(d) such that (2.29) is satisfied whenever
L0 ≥ c11(d).

On the other hand it is obvious that there is a constant c13(d), such that when
L0 ≥ c13(d), for k ≥ 0,

c5κ
uk+1Lk+1

3 ≤ 1.

Finally, in order for inequality (2.9) of condition (G) to be fulfilled, it is enough to take
c6(d) := max{c7(d), c11(d), c13(d)}.
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2.4 The effective criterion implies Theorem 1.2

We continue now showing how Lemma 2.2 with the appropriate choice of scales,
enables us to use the effective criterion (see Theorem 2.4 of [8] where it was introduced)
to prove the decay of Theorem 1.2. Let us define for x ∈ Zd,

|x|⊥ := max{|x ·R(ei)| : 2 ≤ i ≤ d}.

Also, define for each x ∈ Zd, the canonical translation on the environments tx : Ω→ Ω as

tx(ω)(y) := ω(x+ y) for y ∈ Zd.

For the statement of the following proposition and its proof, we will use the shorthand
notation for each n,

log
(n)
8 (L) :=

n︷ ︸︸ ︷
log8 ◦ · · · ◦ log8(L).

Proposition 2.5. There exist c15(d) > 1, c14(d) ≥ 3
√
d such that whenever L0 ≥ c14,

3
√
d ≤ L̃0 ≤ L3

0, and for the box specification B0 = (R,L0 − 1, L0 + 1, L̃0), the condition

c15

(
log

(
1

κ

))3(d−1)

L̃d−10 L3d−2
0 inf

a∈(0,1]
E[ρa0 ] < 1, (2.33)

is satisfied (recall the definition of ρ0 in (2.1)), then there exist a constant c > 0 and a
function n(L) : [0,∞)→ N, with n(L)→∞ as L→∞, such that

lim sup
L→∞

L−1 exp{c log
n(L)
8 L} logP0(T lL ≤ T̃ l−L) < 0. (2.34)

Remark 2.6. The assumption (2.33) of Proposition 2.5, is called the effective criterion,
and was introduced by Sznitman in [8].

Proof. Let us choose a sequence of scales {Lk : k ≥ 0} and {L̃k : k ≥ 0} according to
displays (2.16) and (2.5). With this choice of scales, as in the proof of Proposition 2.3 of
Sznitman [8], one can see that there are constants c15(d) and c14 ≥ max{c6, c2} such that
if L0 ≥ c14 then condition (2.33) implies condition (2.10) of Lemma 2.2 with u0 chosen
according to (2.6). By Lemma (2.4), the chosen scales {Lk : k ≥ 0} and {L̃k : k ≥ 0}
satisfy condition (G). Therefore, since (2.10) of Lemma (2.2) is satisfied , we know that
for all k ≥ 0, inequality (2.11) is satisfied. The strategy to prove (2.34) will be similar
to that employed in [8] to prove Proposition 2.3: we will first choose an appropriate k
so that Lk approximates a fixed scale L tending to∞. Nevertheless, since here we are
working with scales which are much larger than those used in [8], we will have to be
much more careful with this argument.

Let L ≥ L0. Then, there exists a unique integer k = k(L) such that

Lk ≤ L < Lk+1.

Note that to prove (2.34) it is enough to show that there exists a positive constant c16
such that for all L ≥ L0 one has that

P0(T̃ l−L < T lL) ≤ 1

c16
exp

{
−c16L exp

{
− 1

c16
log

([ k+1
2 ])

8 (L)

}}
. (2.35)

In effect, since clearly k →∞ as L→∞, choosing n(L) =
[
k+1
2

]
we have (2.34).
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We will divide the proof of (2.35) into two cases.

Case 1. Assume that

L ≤ 2αc1
u0

vkLk. (2.36)

Let

B :=

{
x ∈ Zd : |x|⊥ ≤

[
L

Lk

]
L̃k, x · l ∈ (−L,L)

}
.

From the inequality E[qk] ≤ E[ρakk ], Lemma 2.2 and Chebyshev inequality, we see that if

H := {ω ∈ Ω : ∃x ∈ B such that qk ◦ tx(ω) ≥ κ 1
2ukLk},

then

P(H) ≤ κ 1
2ukLk

|B|
L̃d−1k+1Lk

.

Note that on Hc, by the strong Markov property one has that

P0,ω(T lL ≤ T̃ l−L) ≥ (1− κ 1
2ukLk)

[
L
Lk

]
+1
.

Therefore, since for x ∈ [0, 1] and n natural one has that (1− x)n ≤ n(1− x), for L large
enough

P0(T̃ l−L < T lL) ≤
(

|B|
L̃d−1
k+1Lk

+ L
Lk

+ 1

)
κ

1
2ukLk

≤ 3× 2d
(
L
Lk

)d
κ

1
2ukLk

≤ 3× 2d
(

2αc1v
k

u0

)d
κ

1
4ukLk ≤ 1, (2.37)

where in the third inequality we have used our assumption on L (2.36). Hence, we can
check that there is a constant c17, such that for k ≥ 0,

P0(T̃ l−L < T lL) ≤ 1

c17
exp

{
−c17

Lk
vk

}
. (2.38)

Now, again by our assumption (2.36), observe that there is a constant c18 such that

Lk
vk

> c18
L

v2k
. (2.39)

On the other hand, note that whenever L0 is chosen so that L0 ≥
√

3(d−1)
αc1 log 1

κ

, we have by

the choice of scales given in (2.16), that for k ≥ 1

f[ k+1
2 ]

([
k

2

])
≤ Lk ≤ L. (2.40)

Repeatedly taking logarithms in (2.40), we conclude that for k ≥ 1

k

4
≤
[
k

2

]
≤ log

([ k+1
2 ])

8 (L). (2.41)

Then, substituting the inequalities (2.39) and (2.41) into (2.38), we see that there exists
a positive constants c16 such that for L ≥ L0
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P0(T̃ l−L < T lL) ≤ 1

c16
exp

{
−c16L exp

{
− 1

c16
log

([ k+1
2 ])

8 (L)

}}
.

Now, (2.34) follows taking n(L) =
[
k+1
2

]
.

Case 2. Let us now assume that

L >
2αc1
u0

vkLk.

Let mk be the unique integer such that

mkLk ≤ L < (mk + 1)Lk.

By the definition of mk we have the inequality

mk ≥
αc1
u0

vk. (2.42)

We will now follow an approach similar to the one employed for Case 1, but using a
sequence of scales which approximate L with a higher precision than the {Lk} sequence.
Let us define

Sk1 := mkLk, (2.43)

S̃k1 := m3
kL̃k,

Sk2 := m2
kLk,

S̃k2 := m6
kL̃k,

along with the box-specification B̂ := (R,Sk1 − 1, Sk1 + 1, S̃k1 ) and the random variable ρ̂k
attached to this box-specification. In analogy with the proof of Lemma 2.2, we will prove
that

(S̃k2 )d−1Sk1E[ρ̂
ak+1

k ] ≤ κuk+1S
k
1 . (2.44)

For the time being, assume that this inequality is true. Let

B̂ =

{
x ∈ Zd : |x|⊥ ≤

[
L

Sk1

]
S̃k1 , x · l ∈ (−L,L)

}
.

In analogy with the development of Case 1, using (2.44) we can arrive to the following
inequality analogous to (2.37)

P0[T̃ l−L < T lL] ≤

(
|B̂|

(S̃k2 )d−1Sk1
+

L

Sk1
+ 1

)
κ

1
2uk+1S

k
1 .

From here we conclude that there is a constant c19 such that for k ≥ 0

P0(T̃ l−L < T lL) ≤ 1

c19
exp

{
−c19S

k
1

vk

}
(2.45)

Now, the computation Sk1 = mkLk = (mk + 1)Lk −Lk ≥ L− u0

2αc1
v−kL, replaced at (2.45),

gives us

P0(T̃ l−L < T lL) ≤ 1

c19
exp

−c19L
(

1− u0

2αc1
v−k

)
vk


So that, there exists c20 such that
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P0(T̃ l−L < T lL) ≤ 1

c20
exp

{
−c20

L

vk

}
Using now (2.41) we conclude that there is a constant c16 such that for L ≥ L0 one has
that

P0(T̃ l−L < T lL) ≤ 1

c16
exp

{
−c16L exp

{
− 1

c16
log

([ k+1
2 ])

8 (L)

}}
.

Choosing n(L) =
[
k+1
2

]
we conclude the proof.

Now, we need to prove (2.44). Using Proposition 2.1, with B̂ and Bk instead of B1 and
B0, we have:

E[ρ̂
ak+1

k ] ≤ c3

κ−10c1Sk1ϕm2
k

12

k +
∑

0≤j≤mk+1

ϕ
mk+j−1

2

k


So that

(S̃k2 )d−1Sk1E[ρ̂
ak+1

k ] ≤ c3(Sk2 )d−1Sk1

κ−10c1Sk1ϕm2
k

12

k +
∑

0≤j≤mk+1

ϕ
mk+j−1

2

k


Now,

κ−10c1S
k
1ϕ

m2
k

24

k ≤ κ−10c1S
k
1 κ

mkS
k
1uk

24 ≤ 1. (2.46)

where the first inequality follows from inequality (2.42), the definition (2.43) of Sk1 and
(2.7) of uk, and from Lemma 2.4, which enables us to apply inequality (2.11) of Lemma
2.2, while the second inequality of (2.46) follows from the fact that mkuk ≥ 240c1 for
k ≥ 0.

Then, inequality (2.46) and the fact that mk − 1 ≥ mk
2 , imply that

(S̃k2 )d−1Sk1E[ρ̂
ak+1

k ] ≤ c3(S̃k2 )d−1Sk1

{
ϕ
m2
k

24

k + Sk1ϕ
mk
4

k

}
.

So that

(S̃k2 )d−1Sk1E[ρ̂
ak+1

k ] ≤ 2c3(S̃k2 )d−1(Sk1 )2ϕ
mk
8

k κuk+1S
k
1 .

Where, it was used the result of Lemma 2.2. Finally, note that to finish the proof we have
to show that for k ≥ 0,

2c3(S̃k2 )d−1(Sk1 )2ϕ
mk
8

k ≤ 1. (2.47)

By our definitions in (2.43),

(S̃k2 )d−1(Sk1 )2 = m6d−4
k L̃d−1k L2

k.

Now, by Lemma 2.4 and its consequence Lemma 2.2, we have that ϕ
mk
8

k ≤
(
κukLk

)mk
8 =

κuk+1mkLk . Therefore, the left hand side of inequality (2.47) is smaller than

2c3m
6d−4
k L̃d−1k L2

kκ
uk+1mkLk .

However, as d is fixed, and k is large, it is clear that

L̃d−1k L2
kκ

uk+1mkLk
2 ≤ 1
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and

2c3m
6d−4
k κ

uk+1mkLk
2 ≤ 1.

This completes the proof.

It is now easy to check that Proposition 2.5 implies Theorem 1.2 with the function
log x replaced by log8 x. Indeed, note that (2.33) is equivalent to the effective criterion.
On the other hand, using the fact that for every x > 0, log x ≥ log8 x, we can then obtain
Theorem 1.2.

References

[1] N. Berger, A. Drewitz and A.F. Ramírez. Effective Polynomial Ballisticity Conditions for
Random Walk in Random Environment. Comm. Pure. Appl. Math. 67, no. 12, 1947-1973
(2014). MR-3272364

[2] D. Campos and A.F. Ramírez. Ellipticity criteria for ballistic behavior of random walk in
random environment. Probab. Theory Related Fields 160, no. 1-2, 189-251 (2014). MR-
3256813

[3] A. Drewitz and A.F. Ramírez. Ballisticity conditions for random walk in random environment.
Probab. Theory Related Fields 150, no. 1-2, 61-75 (2011). MR-3256813

[4] A. Drewitz and A.F. Ramírez. Quenched exit estimates and ballisticity conditions for higher-
dimensional random walk in random environment. Ann. Probab. 40, no. 2, 459-534 (2012).
MR-2952083

[5] W. Smith and W. Wilkinson. On branching processes in random environments. Ann. Math.
Statist. 40 814-827 (1969). MR-0246380

[6] F. Solomon. Random walks in a random environment. Ann. Probability 3, 1-31 (1975). MR-
0362503

[7] A.S. Sznitman. On a class of transient random walks in random environment. Ann. Probab.
29 (2), 724-765 (2001). MR-1849176

[8] A.S. Sznitman. An effective criterion for ballistic behavior of random walks in random
environment. Probab. Theory Related Fields 122, no. 4, 509-544 (2002). MR-1902189

Acknowledgments. We thank A.-S. Sznitman for suggesting to explore how close can
one get to the exponential decay of condition (T ) from the effective criterion via the
effective criterion.

EJP 20 (2015), paper 24.
Page 17/17

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=3272364
http://www.ams.org/mathscinet-getitem?mr=3256813
http://www.ams.org/mathscinet-getitem?mr=3256813
http://www.ams.org/mathscinet-getitem?mr=3256813
http://www.ams.org/mathscinet-getitem?mr=2952083
http://www.ams.org/mathscinet-getitem?mr=0246380
http://www.ams.org/mathscinet-getitem?mr=0362503
http://www.ams.org/mathscinet-getitem?mr=0362503
http://www.ams.org/mathscinet-getitem?mr=1849176
http://www.ams.org/mathscinet-getitem?mr=1902189
http://dx.doi.org/10.1214/EJP.v20-3655
http://ejp.ejpecp.org/


Electronic Journal of Probability

Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS1)

• Non profit, sponsored by IMS2, BS3, PKP4

• Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Proof of Theorem 1.2
	Preliminaries and notation
	The maximal growth condition on scales
	An adequate choice of fast-growing scales
	The effective criterion implies Theorem 1.2

	References

