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The spherical ensemble and
uniform distribution of points on the sphere
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Abstract

The spherical ensemble is a well-studied determinantal process with a fixed number
of points on S2. The points of this process correspond to the generalized eigenvalues
of two appropriately chosen random matrices, mapped to the surface of the sphere
by stereographic projection. This model can be considered as a spherical analogue
for other random matrix models on the unit circle and complex plane such as the
circular unitary ensemble or the Ginibre ensemble, and is one of the most natural
constructions of a (statistically) rotation invariant point process with repelling property
on the sphere.
In this paper we study the spherical ensemble and its local repelling property by
investigating the minimum spacing between the points and the area of the largest
empty cap. Moreover, we consider this process as a way of distributing points
uniformly on the sphere. To this aim, we study two "metrics" to measure the uniformity
of an arrangement of points on the sphere. For each of these metrics (discrepancy
and Riesz energies) we obtain some bounds and investigate the asymptotic behavior
when the number of points tends to infinity. It is remarkable that though the model is
random, because of the repelling property of the points, the behavior can be proved
to be as good as the best known constructions (for discrepancy) or even better than
the best known constructions (for Riesz energies).
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1 Introduction

1.1 Background

The aim of this paper is to study the statistical properties of a natural point process
on the sphere where the points exhibit repulsive behavior. This point process was
introduced in [25] and is known as spherical ensemble; see [23] and [24]. The model
was studied earlier in [12] and [15], but without observing the connection to random
matrices. It was shown in [12, 15] that there exists a connection between this model and
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The spherical ensemble

the one-component plasma on the sphere for a special value of temperature. See [17]
for further discussion.

Let An andBn be independent n×n random matrices with independent and identically
distributed standard complex Gaussian entries, and let {λ1, λ2, . . . , λn} denotes the set
of eigenvalues of A−1

n Bn. We can consider these eigenvalues as a (simple) random point
process on complex plane C. The point process {λ1, . . . , λn} can be described using the

k-point correlation functions ρ(n)
k : Ck → R≥0, 1 ≤ k ≤ n, defined in such a way that∫

Ck

F (z1, . . . , zk)ρ
(n)
k (z1, . . . , zk) dµ(z1) . . . dµ(zk) (1.1)

= E
∑

i1,...,ik
pairwise distinct

F (λi1 , . . . , λik),

for all continuous, compactly supported functions F : Ck → C, where

dµ(z) :=
n

π(1 + |z|2)n+1
dz

and dz denotes the Lebesgue measure on the complex plane C.
Krishnapur [24] showed that this random point process is a determinantal point

process on complex plane with kernel

K(n)(z, w) = (1 + zw̄)n−1

with respect to the background measure dµ(z), i.e. we have

ρ
(n)
k (z1, . . . , zk) = det

[
K(n)(zi, zj)

]k
i,j=1

(1.2)

for every k ≥ 1 and z1, . . . , zk ∈ C. We note here that a random point process is said to
be a determinantal point process if its k-point correlation functions have determinantal
form similar to (1.2). The corresponding kernel K(n)(z, w) is called a correlation kernel
of the determinantal point process. We refer to [22] or [23] and references therein for
more information on deteminantal point processes.

Let S2 = {p ∈ R3 : |p| = 1} be the unit two-dimensional sphere centred at the
origin in three-dimensional Euclidean space R3. Also we let ν denotes the Lebesgue
surface area measure on this sphere with total measure 4π. As mentioned in [23], these
eigenvalues are best thought of as points on S2, using stereographic projection. Let
g be the stereographic projection of the sphere S2 from the north pole (0, 0, 1) onto
the complex plane C, seen as two-dimensional plane {(t1, t2, 0); t1, t2 ∈ R}, i.e., for
(x1, x2, x3) ∈ S2,

g(x1, x2, x3) =
x1 + ix2

1− x3
. (1.3)

If we let Pi = g−1(λi) for 1 ≤ i ≤ n then the vector (P1, . . . , Pn), in uniform random order,
has the joint density

Const.
∏
i<j

|pi − pj |2

with respect to Lebesgue measure on (S2)n where |pi−pj | denotes the Euclidean distance
between two points pi and pj . Note that this density is similar to the circular unitary
ensemble case and clearly this point process is invariant in distribution under the
isometries of S2. Consider the point process on S2,

X (n) :=

n∑
j=1

δPj
.
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The spherical ensemble

We know that 1
nX

(n) converges almost surely to the uniform measure on the sphere. In
fact, it is also true in the more general case: Let A′n and B′n be independent n×n random
matrices with i.i.d entries with mean 0 and variance 1, and let {λ′1, λ′2, . . . , λ′n} denotes
the set of eigenvalues of A

′−1
n B′n. Based on the results of [35], Bordenave [8] shows that

1
n

∑n
j=1 δg−1(λ′j) converges almost surely to uniform measure on S2 as n→ +∞.

Moreover from the repulsive nature of determinantal point processes we expect that
the points of process X (n) are typically more evenly distributed than n independently
chosen uniform points on the sphere. This repelling property is the common feature
of many models in random matrix theory and has been comprehensively studied in
some special models such as the Gaussian unitary or the circular unitary ensembles.
For example, the distribution or the minimum or the maximum of the gaps between
consecutive eigenvalues have been computed and compared to simpler models as a way
to measure and understand the repulsive structure. One of the goals of this paper is to
do the same computations for the spherical model. We specially focus on the minimum
distance between the points, the area of the largest empty cap, the hole probability and
the limiting distribution of the nearest neighbors distances as natural two-dimensional
extensions of the so called metrics studied in one dimensional models.

On the other hand we apply this model and its properties to the classic problem of
distributing points on the sphere. The problem of distributing a given number of points
on the surface of a sphere "uniformly", is a challenging and old problem. Contrary to
the one dimensional case (i.e. distributing points on a circle) where the most uniform
arrangement clearly exists and is attained when the points are equidistributed, it seems
that there is no arrangement on the sphere that can be considered as completely uniform,
and the answer for the best arrangement depends on what criteria do we use to quantify
the uniformity of an arrangement. Among the mostly used criteria are those related to
the electrostatic potential energy and its generalizations where one tries to distribute
the points in a way that minimizes some energy function. Another common metric is
the discrepancy that measures the maximum deviance between the number of points
and the expected number, in some class of regions in the underlying space (sphere, in
our case). Both the energy and the discrepancy optimization problems, i.e. finding the
most optimum arrangement or even obtaining some relatively sharp upper and lower
bounds are open and challenging problems for the sphere. We study these metrics
(discrepancy and Riesz energies) to measure the uniformity of points of X (n). For each
of these metrics we obtain some bounds and investigate the asymptotic behavior when
the number of points tends to infinity. It is remarkable that though the model is random,
because of the repelling property of the points, the behavior can be proved to be as good
as the best known constructions (for discrepancy) or even better than the best known
constructions (for Riesz energies).

The main results of the paper are stated in the next subsection, together with
definition and some properties of the metrics discussed above.

1.2 Main results

Discrepancy

The geometrically most natural measure for the uniformity of the distribution of an
n-point set on S2 is the spherical cap discrepancy. Let Pn = {x1, . . . , xn} be an n-point
set on S2. The spherical cap discrepancy of Pn is defined as

D(Pn) := sup
D∈A

∣∣∣∣∣∣
n∑
j=1

1D(xj)−
n|D|
4π

∣∣∣∣∣∣
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The spherical ensemble

whereA is the set of all spherical caps on S2. A spherical cap is defined as the intersection
of the sphere and a half-space. In [4], it was shown that there is constant c > 0,
independent of n, such that for any n-point set Pn on S2 we have

cn1/4 ≤ D(Pn).

On the other hand, using probabilistic methods it has been shown (see [5]) that for any
n ≥ 1, there exists n-point set Pn on S2 such that

D(Pn) ≤ Cn1/4
√

log n.

The following theorem shows that the point process X (n) has small spherical cap
discrepancy.

Theorem 1.1. Consider the point process X (n) =
∑n
i=1 δPi

. For every M > 0 indepen-
dent of n, one has

D({P1, . . . , Pn}) = O
(
n1/4

√
log n

)
with probability at least 1− 1

nM .

Note that for independent uniform points on sphere, the discrepancy is of order
√
n

(up to a logarithmic factor).
The key to the proof of Theorem 1.1 is an estimate on the variance of the number

of points of X (n) on a spherical cap. The asymptotic expansion of this variance and the
proof of Theorem 1.1 will be presented in Section 2.

Largest empty cap

Given Pn = {x1, . . . , xn} ⊂ S2, define the covering radius of Pn as the infimum of the
numbers t > 0 such that every point of S2 is within distance t of some xj . If we let τ
be the covering radius of Pn, then the area of the largest spherical cap which does not
contain any point of Pn in its interior is equal to πτ2 (note that, for fixed q, the area of
the spherical cap {p ∈ S2 : |p − q| ≤ r} is πr2). We will be interested in studying the
asymptotic behavior of the area of the largest empty cap for the spherical ensemble.

Let Mn be the area of largest empty cap for random point process X (n). In the
following theorem, we derive first-order asymptotic for Mn.

Theorem 1.2. Let

Xn :=
n

8π
√

log n
Mn.

Then for any s > 0, Xn converges in Ls to one,

E(|Xn − 1|s)→ 0,

as n→ +∞.

The proof of this theorem is given in Section 3. For the proof we need asymptotics of
the hole probability, the probability that there are no points of X (n) in a given spherical
cap. The desired asymptotics of the hole probability will be given in Lemma 3.1. Then
we will prove Theorem 1.2 using a method similar to the proof of Theorem 1.3 in [3].
Notice that for independent uniform points on S2, the area of the largest empty cap is of
order logn

n .
At the end of Section 3 we study the nearest neighbour statistics of spherical ensem-

ble and show a connection between the local behavior of this model and the Ginibre
ensemble.
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The spherical ensemble

Riesz and logarithmic energy

In Section 4, we compute the expectations of the logarithmic energy and Riesz s-energy
of the random point process X (n) on S2. The discrete logarithmic energy of n points
x1, . . . , xn on S2 is given by

Elog(x1, . . . , xn) := log
∏
i 6=j

1

|xi − xj |
=
∑
i 6=j

log
1

|xi − xj |
.

Also we define
Elog(n) := min{Elog(x1, . . . , xn);x1, . . . , xn ∈ S2}.

The n-tuples that minimize this energy are usually called elliptic Fekete Points. Define
Cn by

Elog(n) =

(
1

2
− log 2

)
n2 − 1

2
n log n+ Cnn.

In [28] it was shown that Cn satisfies the following estimates

−0.22553754 · · · ≤ lim inf
n→+∞

Cn ≤ lim sup
n→+∞

Cn ≤ −0.0469945 . . . .

For a given s, the Riesz s-energy of n points x1, . . . , xn on S2 are defined as

Es(x1, . . . , xn) :=
∑
i 6=j

1

|xi − xj |s
.

Also, we consider the optimal n-point Riesz s-energy,

Es(n) :=


min{Es(x1, . . . , xn);x1, . . . , xn ∈ S2} if s ≥ 0

max{Es(x1, . . . , xn);x1, . . . , xn ∈ S2} if s < 0.

The important special case s = 1 corresponds to electrostatic potential energy of
electrons on S2 that repel each other with a force given by Coulomb’s law. We remark
that this problem is only interesting for s > −2. It is known that for the potential-theoretic
regime, −2 < s < 2, we have

lim
n→+∞

Es(n)

n2
=

1

(4π)2

∫
S2×S2

1

|p− q|s
dν(p) dν(q) =

21−s

2− s
. (1.4)

See e.g. [10].
Consider the difference Es(n)− 21−s

2−s n
2. Wagner ([36] lower bound for 0 < s < 2 and

upper bound for −2 < s < 0, and [37] upper bound for 0 < s < 2 and lower bound for
−2 < s < 0) proved that

−c1n1+s/2 ≤ Es(n)− 21−s

2− s
n2 ≤ −c2n1+s/2 , −2 < s < 2

where c1 and c2 are positive constants depending only on s. In [28], an alternative
method which is based on partitioning S2 into regions of equal area and small diameter
is used to prove the upper bound in the case 0 < s < 2 (and lower bound in the case
−2 < s < 0). Let ε > 0 be arbitrary, this method gives

Es(n)− 21−s

2− s
n2 ≤ −(2

√
2π)−s(1− ε)n1+s/2 , 0 < s < 2 (1.5)

Es(n)− 21−s

2− s
n2 ≥ −(2

√
2π)−s(1 + ε)n1+s/2 , −2 < s < 0 (1.6)
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The spherical ensemble

for n ≥ n0(ε, s). We show that the better bounds than (1.5) and (1.6) can be obtained by
considering the expectation of Riesz s-energy of point process X (n). It is conjectured
(see [10], Conjecture 3) that the asymptotic expansion of the optimal Riesz s-energy for
−2 < s < 4, s 6= 2 has the form

Es(n) =
21−s

2− s
n2 +

(
√

3/2)s/2ζΛ2
(s)

(4π)s/2
n1+s/2 + o(n1+s/2) n→ +∞, (1.7)

where ζΛ2
(s) is the zeta function of the hexagonal lattice Λ2 = {m(1, 0) + n(1/2,

√
3/2) :

m,n ∈ Z}. See the survey [10] for more details and further discussion.
In the boundary case s = 2, we have (see Theorem 3 in [26])

lim
n→+∞

E2(n)

n2 log n
=

1

4
.

Also, in [10] (see Proposition 3 and its remark therein), it is shown that

− 1

4
n2 +O(n) ≤ E2(n)− 1

4
n2 log n ≤ 1

4
n2 log logn+O(n2). (1.8)

Considering the expectation of Riesz s-energy of point process X (n), we are able to omit
the log log n term in this estimate. (See Conjecture 5 in [10] for the asymptotic expansion
of the optimal Riesz 2-energy.) We remark that the first term of the asymptotics of Es(n)

for s > 2 is not known.
In the following theorem, we give the expectations of the logarithmic energy and

Riesz s-energy of the random point process X (n) on S2.

Theorem 1.3. For the point process X (n) on S2, n ≥ 2, we have
i) (Logarithmic energy)

EElog(P1, . . . , Pn) =

(
1

2
− log 2

)
n2 − 1

2
n log n+

(
log 2− γ

2

)
n− 1

4
+O

(
1

n

)
(1.9)

Here, γ is the Euler constant.
ii) (Riesz s-energy: s < 4 and s 6= 2)

EEs(P1, . . . , Pn) =
21−s

2− s
n2 − Γ(n)Γ(1− s/2)

2sΓ(n+ 1− s/2)
n2 (1.10)

iii) (Riesz s-energy: s = 2)

EE2(P1, . . . , Pn) =
1

4
n2 log n+

γ

4
n2 − n

8
− 1

48
+O

(
1

n2

)
(1.11)

As a corollary to Theorem 1.3, we obtain the following bounds for optimal Riesz
s-energy.

Corollary 1.4. for every n ≥ 2,

Es(n)− 21−s

2− s
n2 ≤ −Γ(1− s/2)

2s
n1+s/2 , 0 < s < 2 (1.12)

Es(n)− 21−s

2− s
n2 ≥ −Γ(1− s/2)

2s
n1+s/2 , −2 < s < 0 (1.13)

E2(n)− 1

4
n2 log n ≤ γ

4
n2 (1.14)

Suppose that x1, . . . , xn are chosen randomly and independently on the sphere, with
the uniform distribution. One can easily show that

EElog(x1, . . . , xn) =

(
1

2
− log 2

)
n2 −

(
1

2
− log 2

)
n
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The spherical ensemble

and also for s < 2 (see (1.4))

EEs(x1, . . . , xn) =
21−s

2− s
n2 − 21−s

2− s
n.

Minimum spacing

Define the minimum spacing by

mn := min
i 6=j
|Pi − Pj |.

We are interested in the asymptotic behavior of mn as n tends to infinity. For 0 < t < 2,
set

Gt,n :=
∑
i<j

1{|Pi−Pj |≤t} (1.15)

to be the number of non-ordered pairs of distinct points at Euclidean distance at most t
apart. Our result concerning distribution of Gt,n is the following.

Theorem 1.5. Let Gt,n defined by (1.15) and assume that t = x
n3/4 then Gt,n converges

in distribution to the Poisson random variable with mean x4

64 .

The proof of this theorem is given in Section 5. As a consequence, since P(Gt,n =

0) = P(mn > t), Theorem 1.5 clearly implies that

Corollary 1.6. For any x > 0,

lim
n→+∞

P(n3/4mn > x) = exp

(
−x4

64

)
.

Suppose that x1, . . . , xn are chosen randomly and independently on the sphere, with
the uniform distribution. It was shown that (see Theorem 2 of [11])

lim
n→+∞

P(nmin
i6=j
|xi − xj | > x) = exp

(
−x2

8

)
.

2 Discrepancy

Let D be a spherical cap on the sphere S2. Define

ND := X (n)(D),

the number of points of X (n) in D. Clearly, the expected value of ND is equal to n|D|
4π . In

order to prove Theorem 1.1 we need to control the variance of ND. The following lemma
gives the asymptotic behavior of the variance.

Lemma 2.1. Let D be a spherical cap on the sphere (depending on n) such that
1
|D| ,

1
|Dc| = o(n). Then for any ε > 0

Var[ND] =

√
n

4π
√
π

√
|D||Dc|+ o

(
log

1
2 +ε(n|D||Dc|)

)
(2.1)

where |D| denotes the area of D and Dc = S2 −D.

Proof. The distribution of ND is invariant under isometries of the sphere, so we may
assume without loss of generality that g(D) is a disk centred at the origin with radius
r. From [22], Theorem 26, the set {|λk|2 : 1 ≤ k ≤ n} has the same distribution as set
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The spherical ensemble

{Qk : 0 ≤ k ≤ n− 1} where the random variables Qk are jointly independent and Qk for
0 ≤ k ≤ n− 1 has density

n
(
n−1
k

)
qk

(1 + q)n+1
, q ≥ 0

(Note that K(z, w) =
∑n−1
k=0

(
n−1
k

)
(zw̄)k and µ has density φ(|z|) where φ(x) = n

π(1+x2)n−1 ).

Thus Qk has the beta prime distribution with parameters k + 1 and n− k, i.e., Qk

1+Qk
has

the beta distribution with parameters as before.
Thus we have

ND
d∼ |{k : 0 ≤ k ≤ n− 1 , Qk < r2}|. (2.2)

And so by the independence of Qk, 0 ≤ k ≤ n− 1, we deduce that

ND
d∼ η0 + η1 + · · ·+ ηn−1 (2.3)

where the random variables ηk are independent and distributed as Bernoulli variables
with P(ηk = 1) = P(Qk < r2). By the properties of incomplete beta function (see e.g.
[39]) we have

P(Qk < r2) =

∫ r2

0

n
(
n−1
k

)
qk

(1 + q)n+1
dq =

∑n
j=k+1

(
n
j

)
r2j

(1 + r2)n
(2.4)

Now suppose B1, . . . , Bn are i.i.d. Bernoulli random variables with parameter α := r2

1+r2 .
Let Sn := B1+· · ·+Bn. One can write the right-hand side of above equation as P(Sn > k).
Therefore, we obtain for every 0 ≤ k ≤ n− 1

P(ηk = 1) = P(Qk < r2) = P(Sn > k). (2.5)

We also note that

|D| = 4πr2

1 + r2
= 4πα.

Now from (2.3) and (2.5) it follows that for every spherical cap D,

Var[ND] =

n−1∑
k=0

P(Sn ≤ k)P(Sn > k) (2.6)

where Sn is a binomial random variable with parameters n and |D|4π .
Fix ε > 0. Let

σ =
√
Var[Sn] =

√
nα(1− α)

and
M = σ(log σ)

1
2 +ε.

Since Var[ND] = Var[NDc ], by symmetry, we may assume that α ≤ 1/2. Using the
Bernstein’s inequality we see that for any t > 0, one has

P(|Sn − nα| > t) ≤ 2 exp

(
−min

(
t2

4σ2
,
t

4

))
(2.7)

(see for example Lemma 2 in [5] or Lemma 2.7.1 in [34]). We can use this to show that
(Let j = |k − nα| and note that α ≤ 1/2.)∑

|k−nα|≥M

P(Sn ≤ k)P(Sn > k) ≤ (2.8)

2

 ∑
M≤j≤σ2

exp

(
− j2

4σ2

)
+

∑
σ2<j≤n(1−α)

exp(−j/4)

 .
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The assumption of the lemma implies that σ → +∞ as n→ +∞ and thus we have∑
σ2<j≤n(1−α)

exp(−j/4) = o(1). (2.9)

Also, by comparing the integral of exp
(
−x2

4

)
with its Riemann sum, we conclude that

∑
M+1≤j≤σ2

exp

(
− j2

4σ2

)
≤ σ

∫ +∞

(log σ)1/2+ε

exp

(
−x2

4

)
dx

= σ

∫ +∞

(log σ)1+2ε

1

2
√
x

exp(−x/4) dx

≤ 2σ

(log σ)1/2+ε
exp

(
−1

4
(log σ)1+2ε

)
= o(1).

Thus, from (2.8), (2.9) and above estimate, we obtain∑
|k−nα|≥M

P(Sn ≤ k)P(Sn > k) = o(1).

Moreover, from the Berry-Esséen theorem we see that for some absolute constant C,
one has (see [6]) ∣∣∣∣P(Sn ≤ k)− Φ

(
k − nα
σ

)∣∣∣∣ ≤ C

σ

where Φ is the cumulative distribution function of the standard normal distribution.
From (2.6), and by using the above two estimates, we conclude that

Var[ND] =
∑
|j|<M

Φ

(
j

σ

)
Φ

(
−j
σ

)
+ o((log σ)1/2+2ε).

By considering the Riemann sum of Φ(x)Φ(−x), Making the change of variable x =

(log σ)1/2+εy and letting Φ̃(y) := Φ
(
(log σ)1/2+εy

)
, we have∣∣∣∣∣∣

∑
|j|<M

Φ

(
j

σ

)
Φ

(
−j
σ

)
− σ

∫ (log σ)1/2+ε

−(log σ)1/2+ε

Φ(x)Φ(−x) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|j|<M

Φ̃

(
−j
M

)
Φ̃

(
j

M

)
−M

∫ 1

−1

Φ̃(y)Φ̃(−y) dy

∣∣∣∣∣∣
≤ O(1) +

∫ 1

−1

∣∣∣(Φ̃(y)Φ̃(−y))′
∣∣∣ dy ≤ O(1) +

∫ ∞
−∞

∣∣(Φ(x)Φ(−x))
′∣∣ dx = O(1).

Using the standard bound

Φ(−x) =
1√
2π

∫ +∞

x

e−t
2/2 dt =

1√
2π

∫ +∞

x2

1

2
√
t
e−t/2 dt <

1√
2πx

e
−x2

2

for any x > 0, we have∫
{x:|x|>(log σ)1/2+ε}

Φ(x)Φ(−x) dx ≤ 2

∫ +∞

(log σ)1/2+ε

Φ(−x) dx

≤ 2

(log σ)1/2+ε
Φ(−(log σ)1/2+ε)

= o(1/σ).
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Combining all these facts, we deduce that

Var[ND] = σ

∫ +∞

−∞
Φ(x)Φ(−x) dx+ o((log σ)1/2+2ε).

On the other hand, using integration by parts twice, we have∫
Φ(x)Φ(−x) dx = xΦ(x)Φ(−x)− 1√

2π

∫
xe−

x2

2 (Φ(x)− Φ(−x)) dx

= xΦ(x)Φ(−x)− 1√
2π

(
e−

x2

2 (Φ(x)− Φ(−x))− 1√
2π

∫
2e−x

2

dx

)
= xΦ(x)Φ(−x)− 1√

2π
e−

x2

2 (Φ(x)− Φ(−x)) +
1√
π

Φ(
√

2x)

Thus ∫ +∞

−∞
Φ(x)Φ(−x) dx =

1√
π

and (2.1) follows.

Remark 2.2. Clearly, the restriction of point process X (n) to a spherical cap D is also a
determinantal point process with kernel 1g(D)(z)K

(n)(z, w)1g(D)(w). Denote by K
(n)
g(D) the

integral operator in L2(g(D)) obtained by considering this kernel. Then the distribution
of ND is the sum of independent Bernoulli random variables, whose expectations are the
eigenvalues of K

(n)
g(D) (see e.g. [2], Corollary 4.2.24). So from (2.3) we conclude that the

non-zero eigenvalues of operator K
(n)
g(D) are equal to P(Sn > k), 0 ≤ k ≤ n− 1, where Sn

is a binomial random variable with parameters n and |D|4π .

From Lemma 2.1 and the general central limit theorem for determinantal point
processes [31] (due to Costin and Lebowitz [13] in case of the sine kernel) we have the
following theorem.

Theorem 2.3. Let D be a spherical cap on S2 (depending on n) such that 1
|D| ,

1
|Dc| = o(n).

Then
ND − n|D|

4π
1
2π
−3/4n1/4 4

√
|D||Dc|

d−→ N(0, 1)

as n→ +∞.

Next we prove Theorem 1.1.

Proof of Theorem 1.1. We use the notation from the proof of Lemma 2.1. As we have
seen before

Var[ND] =

n−1∑
k=0

P(Sn ≤ k)P(Sn > k).

Similar to inequality (2.8), we have∑
0≤k≤n−1

P(Sn ≤ k)P(Sn > k) ≤

2

 ∑
0≤j≤σ2

exp

(
− j2

4σ2

)
+
∑
j>σ2

exp(−j/4)

 .
Also, we see ∑

1≤j≤σ2

exp

(
− j2

4σ2

)
≤ σ

∫ +∞

0

exp(−x2/4) dx.
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So we deduce that there exist absolute constants c1, c2 such that for any spherical cap D,

Var[ND] ≤ c1σ + c2 (2.10)

and since σ ≤
√
n

2 , we have for some absolute constant c3,

Var[ND] ≤ c3
√
n.

We know that for any spherical cap D, the random variable ND has the same distribu-
tion as

∑
k ηk where ηk are independent Bernoulli random variables (see equation (2.3)).

From Bernstein’s inequality (see Lemma 2.7.1 in [34]) we get a concentration estimate
for ND:

P (|ND −END| ≥ t) ≤ 2 exp

(
−min

(
t2

4Var[ND]
,
t

2

))
, t ≥ 0.

Let t = O(n1/4
√

log n). Then for any M > 0 we have

ND = END +O(n1/4
√

log n) (2.11)

with probability at least 1 − n−M where the implied constant in the O() notation is
independent of D. It can be easily shown that there is a collection A′ of nc spherical
caps, for some absolute constant c > 0, such that for any spherical cap D there exist
D1, D2 ∈ A′ (D1 can be empty) having the properties D1 ⊂ D ⊂ D2 and |D2\D1| ≤ 4π

n

and then we have
|ND −END| ≤ 1 + max

i=1,2
|NDi

−ENDi
|.

Thus we obtain
D({P1, . . . , Pn}) ≤ 1 + max

D′∈A′
|ND′ −END′ |.

So from the union bound, we see that the equation (2.11) is also true uniformly in D.
This completes the proof of the theorem.

3 Hole probability and largest empty cap

3.1 Hole probability

In this subsection, we establish the asymptotic behavior of ∆n(α) := P(ND = 0),
where D is a spherical cap on S2 such that |D| = 4πα. We use the notation from the proof

of Lemma 2.1. We know that ∆n(α) is equal to the Fredholm determinant of Id−K
(n)
g(D).

Also, from (2.3) and (2.5) we have

∆n(α) =

n−1∏
k=0

P(Sn ≤ k).

Proposition 3.1. There exist a positive constant c′ such that

log ∆n(α) =
n2

2
(α+ log(1− α)) +O(nα log(nα)) (3.1)

uniformly in c′/n < α < 1− c′/n.

Proof. We can write

log ∆n(α) =

n−1∑
k=0

logP(Sn ≤ k). (3.2)
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First, we estimate logP(Sn ≤ k) using large deviation principle. By the exponential
Chebyshev inequality (See the proof of Theorem I.4, Cramer’s Theorem, in [21].), we
have

P(Sn ≤ k) ≤ e−nI( k
n ) (3.3)

for any k ≤ nα where I(x) = supt∈R(tx− log(E etB1)) is the Legendre transform of the
cumulant generating function of B1. One easily computes that I(x) = x log x

α + (1 −
x) log 1−x

1−α . On the other hand, from Stirling’s formula we know {n!ennn+1/2} is bounded
away from zero and infinity and thus we have

P(Sn ≤ k) ≥
(
n

k

)
αk(1− α)n−k ≥ c0

nn+1/2

kk+1/2(n− k)n−k+1/2
αk(1− α)n−k

≥ c0
(

n

k(n− k)

)1/2

e−nI(
k
n )

for 0 < k ≤ nα and some absolute constant c0. Therefore, for all 0 < k ≤ nα, we have

logP(Sn ≤ k) ≥ −nI(k/n)− 1

2
log(nα) + log c0. (3.4)

From (3.3) and (3.4), it follows that∣∣∣∣∣∣
∑

0≤k≤nα

logP(Sn ≤ k) + n
∑

0≤k≤nα

I(k/n)

∣∣∣∣∣∣ ≤ nα
(

1

2
log(nα)− log c0

)
(3.5)

for sufficiently large n (for k = 0, note that logP(Sn = 0) = −nI(0)).
Since the median of binomial distribution is either bnαc or dnαe, this implies that

P(Sn > k) ≤ 1/2 when k > nα. Using the bound − log(1− x) < 2x, 0 ≤ x ≤ 1/2, we then
obtain ∑

nα<k≤n−1

− logP(Sn ≤ k) < 2
∑

nα<k≤n−1

P(Sn > k).

From (2.6), the right hand side of above inequality is smaller than 4Var[ND], and then
from (2.10) we have ∑

nα<k≤n−1

− logP(Sn ≤ k) ≤ c1
√
nα(1− α) + c2 (3.6)

for some constants c1, c2. Also, by Riemann integration, we have∣∣∣∣∣∣
∑

0≤k≤nα

I(k/n)− n
∫ α

0

I(x) dx

∣∣∣∣∣∣ ≤ I(0)− I(α) = − log(1− α) (3.7)

(Since I is a decreasing function on [0, α] and I(α) = 0) From (3.2), (3.5), (3.6) and (3.7),
we have ∣∣∣∣log ∆n(α) + n2

∫ α

0

I(x) dx

∣∣∣∣ ≤
1

2
nα log(nα)− n log(1− α)− nα log c0 + c1

√
nα(1− α) + c2.

So we conclude that for sufficiently large constant c′∣∣∣∣log ∆n(α)− n2

2
(α+ log(1− α))

∣∣∣∣ = O(nα log(nα))

uniformly in c′/n < α < 1− c′/n.
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Fix x > 0 and let α = x
√

logn
n . From Taylor expansion (Note that log(1 − α) =

−α− α2

2 +O(α3) for, say, α ≤ 1/2.) and Proposition 3.1 we have

log ∆n(α) = −x
2

4
log n+ o(log n)

or equivalently

∆n(α) = n−
x2

4 +o(1). (3.8)

3.2 largest empty cap

Proof of Theorem 1.2. We follow the proof of Theorem 1.3 in [3]. Let ε > 0 be arbitrary
and recall that

Xn =
n

8π
√

log n
Mn.

We easily see the inequality

E(|Xn − 1|s) ≤ εs + P(Xn < 1− ε) + E(|Xn − 1|s1{Xn>1+ε}).

Hence, it suffices to show that the last two terms go to zero as n tends to infinity.
Integrating by parts, we get

E(|Xn − 1|sI{Xn>1+ε}) =

∫ +∞

1+ε

s(u− 1)s−1 P(Xn > u) du+ εsP(Xn > 1 + ε).

Next, we give an upper bound for P(Xn > u). We can choose on S2 at most 4n points
q1, . . . , qm so that every spherical cap with area 4π/n contains at least one of these points.
(We can find m ≤ 4n spherical caps with area π/n such that there exists no spherical
cap with this area that does not intersect these m spherical caps. Let q1, . . . , qm be the
center of these m spherical caps. One can check that q1, . . . , qm have desired properties.)
Let Yi, 1 ≤ i ≤ m, be the area of the largest empty cap centred at qi. Note that there
exists some qj within distance 2/

√
n of the center of the largest empty cap. From this,

we can conclude that for any u ≥ 1 + ε and sufficiently large n,

P(Xn > u) ≤ P

(
Mn >

8π
√

log n

n
(1 + ε)

)
(3.9)

≤
m∑
i=1

P

(
Yi >

8π
√

log n

n
(1 + ε/2)

)
.

Thus, for sufficiently large n

P(Xn > u) ≤ 4n∆n

(
2
√

log n

n
(1 + ε/2)

)
. (3.10)

Using (3.8) and (3.10), we conclude that there is some δ > 0 such that

P(Xn > u) = o(n−δ) (3.11)

uniformly for u ≥ 1 + ε. Also, we can write∫ +∞

1+ε

s(u− 1)s−1P(Xn > u) du =

∫ logn

1+ε

s(u− 1)s−1 P(Xn > u) du

+

∫ n
2
√

log n

logn

s(u− 1)s−1 P(Xn > u) du.
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The first integral on the right hand side goes to zero as n→ +∞, thanks to (3.11). Using
a similar argument as in (3.9) and the crude upper bound

∆n(α) ≤ P(Sn = 0) = (1− α)n

we conclude that for any fixed C > 0, one has

P(Xn > u) = o(n−C)

uniformly for u ≥ log n. Thus the second integral also goes to zero as n→ +∞.
To prove Theorem 1.2, it suffices to show that P(Xn < 1 − ε) converges to zero.

The following lemma is similar to Lemma 3.3 in [3]. The proof is based on negative
association property for the events such as {ND1

= 0} and {ND2
= 0} where D1, D2 are

two disjoint spherical caps on S2. Note that negative association property holds in this
case. See Theorem 1.4 in [18] or proof of Lemma 3.8 in [3].

Lemma 3.2. Consider a set of disjoint spherical caps on the sphere. Let Fn be the
number of such caps free of points P1, ..., Pn. Then Var(Fn) ≤ E(Fn).

Now consider cn = Ω
(
n/
√

log n
)

disjoint spherical caps D1, D2, . . . , Dcn with area
(1−ε)8π

√
logn

n . If Fn be the number of such caps free of points P1, ..., Pn then from previous
lemma and Chebyshev’s inequality one has

P(Xn < 1− ε) ≤ P(Fn = 0) ≤ P(|Fn −EFn| ≥ EFn)

≤ Var(Fn)

E(Fn)2
≤ 1

E(Fn)
.

Also, using (3.8) we have

E(Fn) = cn∆n

(
2(1− ε)

√
log n

n

)
= n1−(1−ε)2+o(1),

which implies that P(Xn < 1− ε)→ 0 as desired.

3.3 Nearest neighbour statistics

Consider the random point process X (n) =
∑n
j=1 δPj

. Define for 1 ≤ j ≤ n

dj := min
i 6=j
|Pi − Pj |

the minimum distance from Pj to the remaining points. We define, as in [9], the nearest
neighbour spacing measure µ(P1, . . . , Pn) on [0,+∞) by

µ(P1, . . . , Pn) :=
1

n

n∑
j=1

δn
4 d

2
j
. (3.12)

Let

Q(x) = − d

dx
E∞(x)

where

E∞(x) = lim
n→+∞

En(x) , En(x) =

n−1∏
k=1

e−x
k∑
j=0

xj

j!
.

We want to show that,

Theorem 3.3. As n→ +∞,

µ(P1, . . . , Pn) −→ Q(x) dx. (3.13)
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One can easily check that for independent uniform points on sphere, this measure
converges to e−x dx as n tends to infinity. See 1.

Proof of Theorem 3.3. For fixed x > 0 let

Yn =
∣∣∣{Pj : 1 ≤ j ≤ n, n

4
d2
j < x}

∣∣∣
To prove (3.13) it suffices to show that

Yn
n

a.s.−→ 1− E∞(x). (3.14)

First, we compute the expectation of Yn. Let ∆̃n(α) denote the probability that the
spherical cap D with area 4πα centred at Pj has no other points of {P1, . . . , Pn} in its
interior. With this definition we obtain

EYn = n(1− ∆̃n(x/n)). (3.15)

We first show that

∆̃n(α) =

n−1∏
k=1

P(Sn ≤ k) (3.16)

where Sn is a binomial random variable with parameters n and α. Note that the law of
the point process conditioned to have a point at Pj is independent of Pj due to rotational
symmetry, so we can assume it to be conditioned at g−1(0) and D to be the spherical
cap (with area 4πα) centred at g−1(0). It follows from [29], Theorem 1.7, that the palm
measure of a determinantal process is also determinantal and its associated kernel on C,
K{0}(z, w), is given by

K{0}(z, w) =
1

K(0, 0)
det

(
K(z, w) K(z, 0)

K(0, w) K(0, 0)

)
= (1 + zw̄)n−1 − 1

=

n−1∑
k=1

(
n− 1

k

)
(zw̄)k

with respect to the measure dµ(z). Therefore, ∆̃n(α) is equal to the Fredholm determi-

nant of I −K
{0}
g(D), where K

{0}
g(D) is the integral operator with the kernel K{0}(z, w) on the

disk g(D). Let r be the radius of g(D), as in the proof of Lemma 2.1. Since the functions
zk are orthogonal on g(D), we get for 1 ≤ k ≤ n− 1 and z ∈ g(D),∫

g(D)

K{0}(z, w)wk dµ(w) = zk
∫
g(D)

n
(
n−1
k

)
|w|2k

π(1 + |w|2)n+1
dw

= zk
∫ r2

0

n
(
n−1
k

)
qk

(1 + q)n+1
dq.

Thus, from (2.4) and (2.5), we conclude that the non-zero eigenvalues of operator K
{0}
g(D)

are equal to P(Sn > k), 1 ≤ k ≤ n− 1, which implies (3.16) as desired (see the remark of
lemma 2.1).

Next, we show that

|∆̃n(x/n)− En(x)| = O

(
log n

n

)
. (3.17)

For this, we will use identity (3.16) and Poisson approximation. Let α = x/n. From
Theorem 1 of [19] we have

sup
0≤k≤n

∣∣∣∣∣∣P(Sn ≤ k)− e−x
k∑
j=0

xj

j!

∣∣∣∣∣∣ ≤ 2x2

n
= O(n−1). (3.18)
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From (2.7) we see that there exists M = O(log n) such that for every k ≥M we have

P(Sn ≤ k) ≥ 1− 1

n2
, e−x

k∑
j=0

xj

j!
≥ 1− 1

n2
(3.19)

where, for the second inequality, note that from Taylor’s theorem∣∣∣∣∣∣1− e−x
k∑
j=0

xj

j!

∣∣∣∣∣∣ ≤ e−x
∣∣∣∣∣∣ex −

k∑
j=0

xj

j!

∣∣∣∣∣∣ ≤ xk+1

(k + 1)!

and then use Stirling’s formula. Therefore, using the inequality

|∆̃n(x/n)− En(x)| =

∣∣∣∣∣∣
n−1∏
k=1

P(Sn ≤ k)−
n−1∏
k=1

e−x
k∑
j=0

xj

j!

∣∣∣∣∣∣
≤
n−1∑
k=1

∣∣∣∣∣∣P(Sn ≤ k)− e−x
k∑
j=0

xj

j!

∣∣∣∣∣∣ ,
(3.18) and (3.19) we get (3.17). From (3.15) and (3.17) we deduce that

lim
n→+∞

EYn
n

= 1− E∞(x).

In [27] (See Theorem 3.5 therein) it has been shown that for every 1-Lipschitz function
on finite counting measures on S2 such as f , (This means that deleting or adding one
point to a configuration of points on S2 changes f by at most 1. The point process on
S2 can also be viewed as a random counting measure on S2.) satisfies the following
concentration inequality:

P(|f −E f | ≥ a) ≤ 5 exp

(
− a2

16(a+ 2n)

)
.

Fix r > 0 and let f count the number of points of point process {P1, . . . , Pn} such that
dj < r. It is simple to check that f is Lipschitz with some constant c′ > 0. (If one point
is added then f increases by at most c′. Using a simple geometric argument, one can
choose c′ = 7.) Applying previous inequality to f/c′, we conclude that

P(|Yn −EYn| ≥ a) ≤ 5 exp

(
− a2

16c′(a+ 2c′n)

)
.

Using the Borel-Cantelli Lemma, this gives (3.14) as desired.

Remark 3.4. The infinite Ginibre ensemble is a translation invariant determinantal
point process on the complex plane C with kernel K(z, w) = ezw̄ with respect to the
Gaussian measure 1

π e
−|z|2 dz. It can be viewed as the local limit of the law of eigenvalues

of random matrices from the complex Ginibre ensemble (see [23] for more details). From
(3.17) we deduce that

lim
n→+∞

∆n(x/n) = exp(−x)E∞(x).

The right-hand side of above equation is equal to the probability that a disk of radius
√
x

in the complex plane contains no points of infinite Ginibre ensemble (see e.g. [16]). Also,
if we consider the complex Ginibre ensemble, then En(x) is the conditional probability
that if one eigenvalue (of an n× n random matrix with i.i.d. standard complex Gaussian
entries) lies at the origin, all n− 1 others are further away than

√
x. Compare with the

definition of ∆̃ and see (3.17).
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Figure 1: Comparison between the density of nearest neighbour spacing measure µ (see
(3.12)) in the case that the points are independently chosen as uniform distribution (on
sphere) and spherical ensemble case in the limit n→ +∞.

4 Riesz and logarithmic energy

The purpose of this section is to establish Theorem 1.3 and Corollary 1.4. We start
with computing the correlation functions of X (n) on S2. Let ρ̊(n)

k (p1, . . . , pk), k ≥ 1, be the
correlation functions of the point process X (n) with respect to the surface area measure
dν(p). Set g(p) = z and g(q) = w. Since dν(p) = 4

(1+|z|2)2 dz we conclude that

ρ̊
(n)
k (p1, . . . , pk) = det(K̊(n)(pi, pj))1≤i,j≤k

where

K̊(n)(p, q) =
n

4π

K(n)(z, w)

(1 + |z|2)
n−1
2 (1 + |w|2)

n−1
2

.

Also, we have

|p− q| = 2|z − w|√
1 + |z|2

√
1 + |w|2

. (4.1)

(To see this, one can verify that the right-hand side of (4.1) is invariant under the map
(z, w) 7→ (φ(z), φ(w)) where transformation φ(z) is defined by

φ(z) =
αz + β

−β̄z + ᾱ

such that α, β ∈ C and |α|2+|β|2 = 1. (It suffices to show this for φ(z) = 1+z
1−z and φ(z) = αz

where |α| = 1.) These transformations correspond via stereographic projection to the
rotations of S2, see [23]. So it suffices to check (4.1) for z, w ∈ C such that |z| = |w| = 1.
But in this case, from definition of g it is obvious that |g−1(z)− g−1(w)| = |z − w|)
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Recall that K(n)(z, w) = (1 + zw̄)n−1. A short computation then shows that

|K̊(n)(p, q)|2 =
( n

4π

)2
(

1 + |zw|2 + 2Re(zw̄)

(1 + |z|2)(1 + |w|2)

)n−1

(4.2)

=
( n

4π

)2
(

1− |z − w|2

(1 + |z|2)(1 + |w|2)

)n−1

=
( n

4π

)2
(

1− |p− q|
2

4

)n−1

.

Thus from above equation, the 2-point correlation function ρ̊(n)
2 is given by

ρ̊
(n)
2 (p, q) =

∣∣∣∣∣ K̊(n)(p, p) K̊(n)(p, q)

K̊(n)(q, p) K̊(n)(q, q)

∣∣∣∣∣ =
( n

4π

)2
(

1−
(

1− |p− q|
2

4

)n−1
)
. (4.3)

Proof of Theorem 1.3. We begin with part ii). Similar to (1.1), we have for a suitable test
function F

E
∑
i 6=j

F (Pi, Pj) =

∫
S2×S2

F (p, q)ρ̊
(n)
2 (p, q) dν(p) dν(q). (4.4)

Thus by setting F (p, q) = |p− q|−s we obtain

EEs(P1, . . . , Pn) =

∫
S2×S2

|p− q|−sρ̊(n)
2 (p, q) dν(p) dν(q).

Notice that the point process is invariant in distribution under isometries of the sphere
and so by Fubini’s theorem we conclude that

EEs(P1, . . . , Pn) = 4π

∫
S2
|p− q|−sρ̊(n)

2 (p, q) dν(p)

where q = g−1(0). Thus we can write

EEs(P1, . . . , Pn) =
n2

2sπ

∫
C

|z|−s (1 + |z|2)n−1 − 1

(1 + |z|2)n+1−s/2 dz.

(This can also be obtained directly from Equation 1.1, letting

F (z, w) =

(
2|z − w|√

1 + |z|2
√

1 + |w|2

)−s

and using suitable linear fractional transformations corresponding to the rotations of S2

by stereographic projection). Changing to polar coordinates, we get

EEs(P1, . . . , Pn) =
n2

2s−1

∫ +∞

0

1

rs−1

(1 + r2)n−1 − 1

(1 + r2)n+1−s/2 dr. (4.5)

Making the change of variable u = r2, we see that

EEs(P1, . . . , Pn) =
n2

2s

n−1∑
j=1

(
n− 1

j

)∫ +∞

0

1

us/2−j(1 + u)n+1−s/2 du (4.6)

=
n2

2s

n−1∑
j=1

Γ(n)Γ(j + 1− s/2)

Γ(n+ 1− s/2)Γ(j + 1)
.
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In the last line, we have used the beta function identity∫ +∞

0

1

us/2−j(1 + u)n+1−s/2 du =

∫ 1

0

tj−s/2(1− t)n−j−1 dt

=
Γ(j + 1− s/2)Γ(n− j)

Γ(n+ 1− s/2)
.

By using induction on n, one can show that for s 6= 2,

n−1∑
j=0

Γ(j + 1− s/2)

Γ(j + 1)
=

Γ(n+ 1− s/2)

(1− s/2)Γ(n)
. (4.7)

Note that Γ satisfies the functional equation xΓ(x) = Γ(x+ 1) which implies that

Γ(n+ 1− s/2)

(1− s/2)Γ(n)
+

Γ(n+ 1− s/2)

Γ(n+ 1)
=

(n+ 1− s/2)Γ(n+ 1− s/2)

(1− s/2)Γ(n+ 1)

=
Γ(n+ 2− s/2)

(1− s/2)Γ(n+ 1)

Combining (4.7) with (4.6), we obtain (1.10) as required.
For s = 2, from (4.6) we have

EE2(P1, . . . , Pn) =
n2

4

n−1∑
j=1

1

j
.

Also, from Euler-Maclaurin Summation Formula, we know (see the first part of the proof
of Theorem 3 and equation (2.1) in [7])

n∑
j=1

1

j
= log n+ γ +

1

2n
− 1

12n2
+O

(
1

n4

)
, (4.8)

and hence

EE2(P1, . . . , Pn) =
1

4
n2 log n+

γ

4
n2 − n

8
− 1

48
+O

(
1

n2

)
.

It remains to prove (1.9). By differentiation right hand side of (4.5) with respect to s at
s = 0, we conclude that

EElog(P1, . . . , Pn) =
d

ds
EEs(P1, . . . , Pn)

∣∣∣∣
s=0+

=
d

ds

[
21−s

2− s
n2 − Γ(n)Γ(1− s/2)

2sΓ(n+ 1− s/2)
n2

]∣∣∣∣
s=0+

.

Thus,

EElog(P1, . . . , Pn) =

(
1

2
− log 2

)
n2−

− 1
2Γ′(1)Γ(n+ 1)−

(
Γ(n+ 1) log 2− 1

2Γ′(n+ 1)
)

Γ(n+ 1)2
Γ(n)n2

Moreover, we have (see, e.g. 6.3.1-2 of [1])

Γ′(n) = Γ(n)

−γ +

n−1∑
j=1

1

j

 , Γ′(1) = −γ.
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Using above identities, it follows that

EElog(P1, . . . , Pn) =

(
1

2
− log 2

)
n2 +

−γ
2

+ log 2− 1

2

−γ +

n∑
j=1

1

j

n.

Finally, from (4.8) we obtain (1.9).

Proof of Corollary 1.4. For 0 < s < 2, from Theorem 1.3, we conclude that there exist
n-point set {x1, . . . , xn} such that

Es(x1, . . . , xn) ≤ 21−s

2− s
n2 − Γ(n)Γ(1− s/2)

2sΓ(n+ 1− s/2)
n2.

Thus, by definition

Es(n)− 21−s

2− s
n2 ≤ − Γ(n)Γ(1− s/2)

2sΓ(n+ 1− s/2)
n2. (4.9)

It is well known that (see e.g. (1) of [38] or 6.1.46 of [1])

lim
n→+∞

Γ(n)n1−s/2

Γ(n+ 1− s/2)
= 1.

Also, For 0 < β < 1 and x > 0, we have (see (7) of [38])

x

(x+ β)1−β ≤
Γ(x+ β)

Γ(x)
≤ xβ . (4.10)

Hence, for 0 < s < 2,
Γ(n+ 1− s/2)

Γ(n)
≤ n1−s/2.

Consequently, from (4.9) and above inequality we obtain for 0 < s < 2

Es(n)− 21−s

2− s
n2 ≤ −Γ(1− s/2)

2s
n1+s/2,

as desired. If we set β = s/2 and x = 1−s/2 in (4.10), we get for 0 < s < 2, Γ(1−s/2) > 1.
Thus, for 0 < s < 2, we have

Γ(1− s/2)

2s
> (2
√

2π)−s

and this shows that the bound (1.12) is better than (1.5). See Figure 2.
Similarly, for −2 < s < 0, from (4.10), we have

Γ(n+ 1− s/2)

Γ(n)
= (n− s/2)

Γ(n− s/2)

Γ(n)
≥ n(n− s/2)−s/2 ≥ n1−s/2. (4.11)

Therefore, using similar argument as above, we get (1.13). If we set β = −s/2 and x = 1

in (4.10), we then have for −2 < s < 0, Γ(1− s/2) < 1, thus

Γ(1− s/2)

2s
< (2
√

2π)−s

which implies that the bound (1.13) is better than (1.6). See Figure 2.
From (1.11), we easily obtain (1.14). To control the error term O(1/n2) in (1.11) see

the proof of Theorem 3 in [7]. This term is positive and bounded by 1
480n2 .
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Figure 2: Blue curve: The bound for (n2 − Es(n))/n1+s/2 given by Corollary 1.4. Black
curve: The asymptotic bound for (n2 − Es(n))/n1+s/2 given by 1.5 and 1.6. Red curve:
conjectured value of (n2 − Es(n))/n1+s/2 as n→ +∞.

Remark 4.1. For s ≥ 4, the expected value of Riesz s-energy for X (n) is infinite. Compare
with the points that are chosen randomly and independently on the sphere, with the
uniform distribution. in this case, the expected value of Riesz s-energy is infinite for
s ≥ 2.

Remark 4.2. Another interesting random point process on S2 is the roots of random
polynomials via the stereographic projection. Let f(z) =

∑n
j=0 ajz

j where the coefficients

aj are independent complex Gaussian random variables with mean 0 and variance
(
n
j

)
.

Let z1, . . . , zn are the complex zeros of f(z). In [14] the expectation of the logarithmic
energy for point process {g−1(z1), . . . , g−1(zn)} was computed. It was shown that

EElog(g−1(z1), . . . , g−1(zn)) =

(
1

2
− log 2

)
n2 − 1

2
n log n−

(
1

2
− log 2

)
n.

Compare with (1.9).

Remark 4.3. Another criterion for the quality of the distribution of points on the sphere
is the spherical cap L2-discrepancy, which is given by

D2({x1, . . . , xn}) =

∫ 1

−1

1

4π

∫
S2

∣∣∣∣∣∣
n∑
j=1

1D(p,t)(xj)−
n|D(p, t)|

4π

∣∣∣∣∣∣
2

dν(p) dt


1/2

.

Here D(p, t) = {q ∈ S2 : 〈p, q〉 ≤ t}. Stolarsky’s invariance theorem says that (see [33])

1

2

n∑
i,j=1

|xi − xj |+ D2
2({x1, . . . , xn}) =

2

3
n2

Consequently, by letting s = −1 in (1.10) we see that

ED2
2(P1, . . . , Pn) =

Γ(3/2)Γ(n)n2

Γ(n+ 3/2)
.
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From (4.11) and taking s = −1, we have Γ(n+ 3/2) ≥ n3/2Γ(n) and thus

ED2
2(P1, . . . , Pn) ≤ Γ(3/2)

√
n.

By the Cauchy-Schwarz inequality and above inequality, we then obtain, for n ≥ 2,

ED2(P1, . . . , Pn) ≤
√

Γ(3/2) 4
√
n.

5 Minimum spacing

Point pair statistics

Recall the definition (1.15) of the function Gt,n. We first compute the expectation of Gt,n.
The argument is similar to what was done in the proof of Theorem 1.3 in Section 4. Let
F (p, q) = 1{|p−q|≤t}. From (4.4) and Fubini’s theorem we have

2EGt,n =

∫
S2×S2

F (p, q)ρ̊
(n)
2 (p, q) dν(p) dν(q) (5.1)

= 4π

∫
S2
F (p, q)ρ̊

(n)
2 (p, q′) dν(p)

= 4π

∫
{p:|p−q′|≤t}

ρ̊
(n)
2 (p, q′) dν(p).

where q′ = g−1(0). Since dν(p) = 4
(1+|z|2)2 dz, from (4.1) and (4.3) we obtain that

EGt,n =
n2

2π

∫
{z∈C:|z|≤ t√

4−t2
}

(
1

(1 + |z|2)2
− 1

(1 + |z|2)n+1

)
dz

= n2

∫ t√
4−t2

0

r

(
1

(1 + r2)2
− 1

(1 + r2)n+1

)
dr

=
n2t2

8
− n

2

(
1− (1− t2/4)n

)
.

If we set t = o( 1√
n

) then we see that

EGt,n =
n3t4

64
(1 + o(1))

and for t = x
n3/4 , where x > 0 is fixed, we get

lim
n→+∞

EGt,n =
x4

64
. (5.2)

The above equation shows that the correct scaling for the minimum spacing is n−3/4.
To prove Theorem 1.5, similar to [3], we will use a modification of the method from
Soshnikov. This method has been used in [3] and [32] (see also [30]) to solve similar
problems in one-dimensional case.

The following two lemmas will be used frequently in the proof.

Lemma 5.1. For p, q ∈ S2 such that |p− q| = O(n−3/4) we have

ρ̊
(n)
2 (p, q) = O(n3/2). (5.3)

Proof. The proof is immediate from equation (4.3).

The next lemma will be used to control the k-point correlation function in terms of
the lower order correlation functions. For the proof see [20].
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Lemma 5.2. (Hadamard-Fischer inequality) Let M be an n × n (Hermitian) positive
definite matrix and let ω ⊂ {1, 2, . . . , n} be an index set. Let Mω be the submatrix of M
using rows and columns numbered in ω. Then

det(M) ≤ det(Mω) det(Mω̄)

where ω̄ = {1, 2, . . . , n}\ω.

Fix x > 0 and let t = x
n3/4 . Define for p ∈ S2

C(n)(p) = {q ∈ S2 : |p− q| ≤ t}

Consider the random point process

X (n) =

n∑
i=1

δPi .

We define a new point process X̃ (n). First consider all unordered pairs (Pi, Pj) such that
|Pi − Pj | < t and

C(n)(Pi) = {Pj} , C(n)(Pj) = {Pi}.

Then from each pair select independently with probability 1
2 one of the two items, and

consider all this points as X̃ (n). (Compare this with the modified processes that have
been used in [3, 32] in similar cases.) Then let Zn = X̃ (n)(S2).

Lemma 5.3. For fixed x > 0, let t = x
n3/4 . Then

Gt,n − Zn
d−→ 0.

Proof. We show that Gt,n − Zn
L1

−→ 0. First note that we have

E |Gt,n − Zn| ≤
∫
S2

∫
C(n)(p)×C(n)(p)

ρ̊
(n)
3 (p, q1, q2) dν(q1) dν(q2) dν(p). (5.4)

To see this, observe that Gt,n − Zn is equal to number of pairs (Pi, Pj) such that 0 <

|Pi − Pj | < t and there exist some point Pk where 0 < |Pi − Pk| < t or 0 < |Pj − Pk| < t.
By considering the triples (Pi, Pj , Pk) or (Pj , Pi, Pk) we see that

Gt,n − Zn ≤
∑
i,j,k

pairwise distinct

1{Pj∈C(n)(Pi),Pk∈C(n)(Pi)}.

Thus, taking expectation gives (5.4).
If q1, q2 ∈ C(n)(p) then |q1 − q2| = O(n−3/4) and using Hadamard-Fischer inequality

and (5.3) we obtain

ρ̊
(n)
3 (p, q1, q2) ≤ ρ̊(n)

1 (p)ρ̊
(n)
2 (q1, q2) =

n

4π
ρ̊

(n)
2 (q1, q2) = O(n5/2).

By integrating on the domain of area 4π|C(n)(p)|2 = O(n−3), we conclude E |Gt,n−Zn| →
0 as n goes to infinity.

Our goal is to prove Gt,n
d−→ Poisson(x

4

64 ) where t = x
n3/4 . Thanks to the Lemma 5.3,

it thus suffices to show that Zn
d−→ Poisson(x

4

64 ). Denote ρ̃(n)
k (p1, . . . , pk) as the k-point

correlation function X̃ (n). From (1.1) we have

E
Zn!

(Zn − k)!
=

∫
(S2)k

ρ̃
(n)
k (p1, . . . , pk) dν(p1) . . . dν(pk).
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So using the moment method it suffices to show that for every k ≥ 1∫
(S2)k

ρ̃
(n)
k (p1, . . . , pk) dν(p1) . . . dν(pk) −→

n→∞

(
x4

64

)k
. (5.5)

( The k-th factorial moment of the Poisson distribution with mean λ is equal to λk.)

Proof of Theorem 1.5. Let p1, . . . , pk be fixed distinct elements in (S2)k. First we show
that

ρ̃
(n)
k (p1, . . . , pk) −→

n→∞

(
x4

256π

)k
. (5.6)

By taking n large enough we can assume that for i 6= j,

|pi − pj | > 4t.

From inclusion-exclusion argument, we have (see [32])

ρ̃
(n)
k (p1, . . . , pk) =

1

2k

n−2k∑
m=0

(−1)m

m!

∫
C(n)(pk)

. . .

∫
C(n)(p1)

∫(⊔k
i=1 C

(n)(pi)∪C(n)(qi)
)m

ρ̊
(n)
2k+m(p1, q1, . . . , pk, qk, r1, . . . , rm)dν(r1) . . . dν(rm) dν(q1) . . . dν(qk). (5.7)

First consider the m = 0 case. From determinantal formula, we have

ρ̊
(n)
2k (p1, q1, . . . , pk, qk) = det

1≤i,j≤k

(
K̊(n)(pi, pj) K̊(n)(pi, qj)

K̊(n)(qi, pj) K̊(n)(qi, qj)

)
. (5.8)

Consider the (i, j)-th 2× 2 block of above determinant. First assume that i 6= j. Since
pi and pj are fixed and distinct we conclude that if qi ∈ C(n)(pi) and qj ∈ C(n)(pj), then
for sufficiently large n, |pi − pj |, |pi − qj |, |qi − pj | and |qi − qj | are greater than a positive
constant (say |pi − pj |/2). Thus from (4.2) we deduce that all terms of this block are
exponentially small in n.

Now if i = j, then from (5.3) the determinant of (i, i)-th 2× 2 block is

ρ̊
(n)
2 (pi, qi) = det

(
n
4π K̊(n)(pi, qi)

K̊(n)(qi, pi)
n
4π

)
= O(n3/2)

where qi ∈ C(n)(pi). So from the expansion of the determinant in (5.8) over all permuta-
tions of length 2k we conclude that only the terms contain the entries in the diagonal 2×2

blocks can have a non-zero limit (note that |K̊(n)| ≤ n
4π ). Thus for qi ∈ C(n)(pi), 1 ≤ i ≤ k,

we get

ρ̊
(n)
2k (p1, q1, . . . , pk, qk) = o(1) +

k∏
i=1

ρ̊
(n)
2 (pi, qi)

where o(1) term is exponentially small. Since the integration domain of ρ̊(n)
2k in the m = 0

case of (5.7) has size O(n
−3k
2 ) then from above equation, (5.1) and (5.2) we obtain∫

C(n)(pk)

. . .

∫
C(n)(p1)

ρ̊
(n)
2k (p1, q1, . . . , pk, qk) dν(q1) . . . dν(qk)

= o(1) +

k∏
i=1

∫
C(n)(pi)

ρ̊
(n)
2 (pi, qi) dν(qi)

= o(1) +

(
EGt,n

2π

)k
→
(

x4

128π

)k
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as n→ +∞. By Hadamard-Fischer inequality we conclude that the contribution of the
terms corresponding to m ≥ 1 in (5.7) is bounded by(∫

C(n)(pk)

. . .

∫
C(n)(p1)

ρ̊
(n)
2k (p1, q1, . . . , pk, qk) dν(q1) . . . dν(qk)

)
×

n−2k∑
m=1

1

m!

(∫
⊔k

i=1

(
C(n)(pi)∪C(n)(qi)

) ρ̊(n)
1 (r1)dν(r1)

)m
.

The integration domain
⊔k
i=1

(
C(n)(pi) ∪ C(n)(qi)

)
has size O(n−3/2) and ρ̊

(n)
1 (r1) = n

4π .
Thus the second term of the above product goes to zero as n→ +∞. Also the first factor
of the above product is just the m = 0 case, which we show converges. Thus the whole
expression goes to zero as n→ +∞ and (5.6) is obtained.

Also for all (p1, . . . , pk) ∈ (S2)k we have

ρ̃
(n)
k (p1, . . . , pk) ≤

∫
C(n)(pk)

. . .

∫
C(n)(p1)

ρ̊
(n)
2k (p1, q1, . . . , pk, qk) dν(q1) . . . dν(qk)

≤
k∏
i=1

∫
C(n)(pi)

ρ̊
(n)
2 (pi, qi) dν(qi) =

(
x4

128π

)k
.

Finally, From (5.6) and the dominated convergence theorem, one obtains (5.5), and the
claim follows.
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