
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 20 (2015), no. 22, 1–35.
ISSN: 1083-6489 DOI: 10.1214/EJP.v20-3708

On the rate of convergence in
the Kesten renewal theorem*

Dariusz Buraczewski† Ewa Damek‡ Tomasz Przebinda§

Abstract

We consider the stochastic recursion Xn+1 = Mn+1Xn +Qn+1 on Rd, where (Mn, Qn)
are i.i.d. random variables such that Qn are translations, Mn are similarities of the
Euclidean space Rd. Under some standard assumptions the sequence Xn converges
to a random variable R and the law ν of R is the unique stationary measure of the
process. Moreover, the weak limit of properly dilated measure ν exists, defining thus
a homogeneous tail measure Λ. In this paper we study the rate of convergence of
dilations of ν to Λ

In particular in the one dimensional setting, when (Mn, Qn) ∈ R+×R and Xn ∈ R,
the Kesten renewal theorem says that tαP[|R| > t] converges to some strictly positive
constant C+. Our main result says that∣∣tαP[|R| > t]− C+

∣∣ ≤ C(log t)−σ,

for some σ > 0 and large t. It generalizes the previous one by Goldie.
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1 Introduction

We consider the stochastic difference equation on Rd

Xn = MnXn−1 +Qn, n ≥ 1 (1.1)

where (Mn, Qn) is a sequence of i.i.d. (independent identically distributed) random
variables with values in GL(Rd)×Rd and X0 ∈ Rd is the initial distribution. The generic
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On the rate of convergence in the Kesten renewal theorem

element of the sequence (Mn, Qn) will be denoted by (M,Q). Under mild contractivity
hypotheses the sequence Xn converges in law to a random variable R, which is the
unique solution of the random difference equation

R =d MR+Q, R independent of (M,Q). (1.2)

Moreover, the solution R can be explicitly written as

R =

∞∑
n=0

M1..MnQn+1. (1.3)

Existence of R is related to the contraction properties of M expressed in terms of the so
called top Liapunov exponent of M . Following work by Furstenberg, Kesten [32], Vervaat
[55] and Brandt [17] definitive sufficient and necessary conditions for convergence of
the above series were achieved by Bougerol and Picard [14] and by Goldie and Goldie,
Maller in the one dimensional case [33, 34]

There is a considerable interest in study various aspects of the iteration (1.1) and,
in particular, the tail behavior of R. The story started with the seminal paper of Kesten
[42] who formulated reasonable conditions for R to have a heavy tail in the case when
the matrices Mn have positive entries. For one dimensional situation this means that

lim
t→∞

tαP[|R| > t] = C+, (1.4)

exists, where α is the Cramér coefficient, i.e. the unique positive number such that
E|M |α = 1 (see Lemma 2.1). Later on the proof was essentially simplified and improved
by Goldie [33] who also studied the rate of convergence in (1.4). (1.4) found an enormous
number of applications both in pure and applied mathematics, see [12, 24, 49] and the
comprehensive bibliography there. For this reason it is important to study this result
further and to describe both the limiting constant (this is a subject of recent work, see
[22, 29]) and the rate of convergence in (1.4). Here we consider the second problem and
we prove that ∣∣tαP[|R| > t]− C+

∣∣ ≤ C(log t)−σ (1.5)

for some σ > 0 and large t (see Theorem 2.2 for the one dimensional situation). (1.5)
should be compared with the result of Goldie [33] that says∣∣tαP[|R| > t]− C+

∣∣ ≤ Ct−σ,
but under assumption that the law of (M,Q) is spread out. We have a slower rate
of convergence but the law of (M,Q) may be much less regular which is of interest
nowadays.

Goldie studied not only recursion (1.1) but also more general iterative one dimensional
systems i.e. recursions of the type

Xn = fn(Xn−1), n = 1, 2, ..., X0 = x

for certain affine like functions (in particular Lipschitz) and he adopted to them the
approach working for (1.1). Beginning from the early nineties the general Lipschitz
iterative systems have attracted a lot of attention: Alsmeyer, Arnold and Crauel, Diaconis
and Freedman, Duflo, Elton, Henion and Hervé, Mirek [7, 8, 11, 24, 27, 28, 39, 47] and
they still do. In particular, it seems that modeling them after (1.1) has been very fruitful
Alsmeyer [8], Mirek [47]. Therefore, studying asymptotic properties of multidimensional
R may be of a broader impact.

In parallel the matrix recursion (1.1) was studied in various contexts (not always
fitting into the Diaconis-Freedman Lipschitz scheme) and appropriate sharp estimates
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have been proved: de Saporta, Guivarch, Le Page [23, 36, 37, 35, 44], Klüppelberg,
Pergamenchtchikov [43] Alsmeyer, Mentemeier [10], Buraczewski, Damek, Mirek, Urban
[19, 20].

However nobody has approached the corresponding rate of convergence i.e. a
multidimensional analog of (1.5). So we are trying to take the first step.

We consider here matrices M being similarities, when the precise asymptotics of the
tail of R is known due to our paper with Y. Guivarc’h [19]. More precisely, we consider
the d-dimensional Euclidean space Rd, endowed with the scalar product 〈x, y〉 =

∑d
1 xiyi

and the corresponding norm: |x|2 =
∑d

1 |xi|2. The norm of a linear transformation g

of Rd is denoted |g|. An element g ∈ GL(Rd) is a similarity in the sense of Euclidean
geometry, if

|gx| = |g||x|, x ∈ Rd. (1.6)

If g is a similarity, then 1
|g|g preserves the norm on Rd. Hence the subgroup G ⊆ GL(Rd)

of all the similarities is isomorphic to the direct product of the multiplicative group of
real positive numbers R+ and the orthogonal group O(Rd). The isomorphism map is
given by g 7→ (|g|, g/|g|). We shall identify G = R+ × O(Rd). We consider the group
H = Rd o G of transformations

Rd 3 x→ hx = gx+ q ∈ Rd,

where h = (q, g) with g ∈ G, q ∈ Rd and study the stochastic recursion defined in (1.1).
Then (Qn,Mn) is an H valued i.i.d. sequence with distribution µ̄. (Here Qn ∈ Rd and
Mn ∈ G.)

If E log |M | < 0 and E log+ |Q| < ∞, then the sequence Xn converges in law to a
random variable R, which is the unique solution of the random difference equation (1.2).
The main result of [19] shows that under appropriate assumptions the random variable
R is regularly varying, i.e. if ν denotes the law of R, then for some class of functions
(containing e.g. bounded continuous functions supported outside 0),

lim
|g|→0,g∈Gµ

|g|−α(gν)(f) = lim
|g|→0,g∈Gµ

|g|−α
∫
Rd
f(gx)ν(dx) = Λ(f) (1.7)

for a Radon measure Λ on Rd \ {0}, see Theorem 4.1. (Here Gµ = R+ ×K is the closed
subgroup of G generated by the support of the law µ of M i.e. the image of µ̄ under the
map (q, g) 7→ g.) (1.7) is the right analogue of (1.4) here.

The goal of this paper is to study the rate of convergence of |g|−α(gν) to Λ on natural
function spaces like the Hölder space or the Zolotarev space, Theorem 4.5 being our
main result (see also Theorems 4.2, 4.3). We obtain

||g|−αgν(f)− Λ(f)| ≤ C| log |g||−σ (1.8)

for small |g|, g ∈ Gµ and C independent of a function f . Again, as in (1.5), regularity of µ
is very mild.

In (1.8) the spectral gap of the measure |g|αµ(dg) = µα(dg) as the convolution
operator on L2

0(Gµ) = {φ ∈ L2(Gµ) :
∫
K
φ(gk) dk = 0} is crucial. Let U =

∑∞
n=0 µ

n
α. We

write
|g|−α(gν)(f) = ψ1 ∗ U(g) + ψ2 ∗ U(g)

as the sum of two potentials of very good functions ψ1, ψ2 on G with additional properties:

ψ1 ∈ L2
0(Gµ), ψ2(gk) = ψ2(g), (g ∈ G, k ∈ K). (1.9)

To U ∗ψ2, which reduces to the one dimensional situation, we apply the Implicit Renewal
Theory as developed by Goldie in [33]. To handle U ∗ ψ1 we need a spectral gap i.e. that

‖ψ1 ∗ µα‖L2 ≤ λ‖ψ1‖L2 (1.10)
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for a λ < 1 and all ψ1 ∈ L2
0(Gµ). Inequality (1.10) is clearly satisfied if µ is spread out

(see paragraph 5.2), but due to the action of K much less is needed. If we disintegrate µ
as

µ(dg) = µa(dk)µR+(da).

then the existence of a spectral gap for µa on L2
0(K) = {φ ∈ L2(K) :

∫
K
φ(k) dk = 0} for

a in a set A with µR+(A) > 0 is sufficient (Proposition 5.4). In particular, if

µ(dg) = µ1(dk)× µR+(da)

is a product measure and µ1 has a spectral gap then (1.10) holds.
For a measure on K to have a spectral gap it is sufficient to be spread out but much

less will do. This phenomenon has been intensively studied by a number of authors. The
most important are the measures

η =
1

2k

k∑
j=1

(δgj + δg−1
j

)

on SU(d) Bourgain, Gamburd ([15, 16]) or SO(d) HeeOh, Lubotzky, Phillips, Sarnak ([48,
45, 46]), related to so called Hecke operators (Tf = f ∗ν). Also there are other examples:
measures supported by special rotations Diaconis, Saloff-Coste, Janvresse, Rosenthal
([25, 41, 50]) or η being a measure uniformly distributed on the set of reflections
(elements of O(d), SU(d), Sp(d)) leaving one hyperplane fixed, Porod[53], [54]). So our
result applies e.g. to the situation when, say “K part” of the measure is of this kind.

The structure of this paper is as follows. In Section 2 we state the one dimensional
result and explain the scheme of the proof. In Section 3 we introduce notation and
definitions needed to consider the multidimensional situation. Section 4 contains state-
ments of our main results preceded by some discussions concerning distance between
measures on appropriate function spaces. The rest of the work is devoted to proofs. In
Section 5 we collect some auxiliary results concerning the spectral cut off and discuss
conditions implying existence of the spectral gap. (A part of this discussion is postponed
to Appendix A.) Main steps of the proofs are contained in Sections 6 and 7. In Appendix
B we describe relations between two different metrics on compact groups.

Finally let us mention that we separate the one dimensional arguments from the
technically more involved multidimensional case. Thus, if the reader is interested only in
the one dimensional situation, the complete proof is contained in Section 2, Lemmas 6.1,
7.1 and Proposition 7.2 and this part can be read independently of the rest of the paper.

2 The main result in the one dimensional case

The asymptotic behavior of R in the one dimensional case was described by Goldie,
who proved the following result.

Theorem 2.1 (Kesten [42], Goldie [33]). Assume that

• there exists α > 0 such that EMα = 1;

• E[Mα| logM |] and E|Q|α are both finite;

• the law of logM is nonarithemetic;

• for every x ∈ R, P[Mx+Q = x] < 1.

Then there exist nonnegative constants C+ and C− such that

lim
x→∞

xαP[R > x] = C+, lim
x→−∞

|x|αP[R < x] = C−. (2.1)

Moreover C+ + C− > 0.
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In his paper Goldie considered also rate of convergence in (2.1). He proved that
if EMα+ε < ∞, E|Q|α+ε < ∞ and the law of logM is spread-out (i.e. some of its
convolution powers have a positive absolutely continuous component), then the rate of
approach is of the order o(|x|−δ), for some δ > 0.

Theorem 2.1 is a consequence of the classical two-sided renewal theorem for the
probability measure µα viewed as a measure on R, via the logarithm. Under additional
hypotheses stated above the measure µα has finite exponential moments and it is
spread out. Thus Stone’s decomposition theorem [52] provides also control of the
rate of convergence of the renewal measure U =

∑∞
n=0 µ

n
α, where µnα denotes the nth

convolution power of µα, to the Lebesgue measure.
In this paper we study the rate of approach of tαP[R > t] to C+, however under

weaker assumptions. We develop here Goldie’s remarks that the control of the rate
of convergence in (2.1) is a consequence of a description of the distance between the
renewal measure and the Lebesgue measure. More precisely, according to the classical
Renewal Theorem, [30, Theorem 1, Chapter XI, S1], for any directly Riemann integrable
function (dRi) F

1

m

∫
R

F (s) ds = lim
t→∞

∞∑
n=0

µnα ∗ F (t) = lim
t→∞

∫
R

F (t− s)U(ds), (2.2)

where m =
∫
R
xµα(dx). Let H(x) = U(−∞, x] be the “distribution function” of U . It is

well known that if the measure µα has finite second moment m2 then

H(x) = Ax+B + o(1)

as x goes to +∞. (Here A = 1
m and B = m2

2m2 .)
In short, our main result, Theorem 2.2 below, says that if the term o(1) is of the order

O(x−δ), then the speed of convergence in (2.1) is of logarithmic order.

Theorem 2.2. Assume the conditions of Theorem 2.1 are satisfied,

H(s) =

{
As+B +O(s−δ) as s→ +∞,
O(|s|−δ) as s→ −∞. (2.3)

for some δ > 0 and

E
[
Mα| logM |γ

]
<∞, (2.4)

E
[
(Mα + |Q|α)(| logM |χ + | logQ|χ)

]
<∞ (2.5)

for some γ > 2 and χ > 1. Then

xαP[R > x] = C+ + o(| log x|−η) as x→∞,
|x|αP[R < x] = C− + o(| log |x||−η) as x→ −∞,

where

η =
1

2
min

{
χ− 1, γ − 2, δ

}
.

Hypothesis (2.3) is quite natural. It is satisfied e.g. when the measure µα is absolutely
continuous, but it is valid also in more general settings. Carlsson [21] proved (2.3) for
nonlattice measure of p-type, i.e for measures satisfying

lim inf
|t|→∞

∣∣tp(1− µ̂α(t))
∣∣ > 0,

where µ̂α(t) is the Fourier transform of µα: µ̂α(t) =
∫
R
e−itxµα(dx). Then, assuming also

(2.4), expansion (2.3) holds for δ = min
{
γ − 2, bγc

(1+p(bγc+1)

}
.

Assuming some technical lemmas, that are presented in the latter sections, the proof
of Theorem 2.2 is immediate. We include it here in order to clarify our presentation.
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Proof of Theorem 2.2. We proceed as in [33]. Define

r(t) = eαtP[R > et].

We intend to consider r as a solution of a renewal equation. (We would like to apologize
in advance that later we shall also use the same letter r to denote a positive number -
the radius of a sphere.) Clearly, r does not have to be dRi. Hence we need to study its
smoothed version, i.e. its convolution with K(t) = 1[0,∞)(t)e

−t:

r̆(t) = r ∗K(t) =

∫ ∞
−∞

K(t− u)r(u) du. (2.6)

First let us sketch the idea of the proof of Theorem 2.1. After a number of calculations
one proves that

r̆(t) = ğ ∗ U(t), (2.7)

where U is the potential of µα and

g(t) = eαt
(
P(R > et)− P(MR > et)

)
, (2.8)

see [33, (9.8)]. Next, since g belongs to L1(R), ğ is dRi, see [33, Lemma 9.2]. Then by
the renewal theorem

lim
t→∞

r̆(t) =
1

m

∫
R

ğ(u)du =
1

m

∫
R

g(u)du

and finally unsmoothing the function, [33, Lemma 9.3], one deduces

lim
t→∞

r(t) =
1

m

∫
R

g(u)du =: C+.

In order to prove Theorem 2.2 one has to proceed more carefully.

Our goal is to control the rate of approach in the last limit. For this purpose some
further properties of functions g and r are needed. First, applying (2.5), one has to
prove that

∫
R
|g(t)||t|χdt < ∞ and this is done in Lemma 6.1. Secondly, in view of

(2.1), g is bounded. Moreover g is continuous because R has no atoms. This follows
immediately from the result of Alsmeyer, Iksanov and Rösler [9] and was also proved
in [19] (Proposition 2.4) in a much more general setting. Next we need to prove that r
satisfies some Tauberian condition. Namely, for t > s, by (2.1),

r(t)− r(s) =
(
eαt − eαs

)
P[R > et] + eαs

(
P[R > et]− P[R > es]

)
≤

(
eα(t−s) − 1

)
eαsP[R > et] ≤ C(t− s)

for s ≤ t ≤ s+ η0 provided s0 sufficiently big and η0 sufficiently small.

The conclusion follows now from Proposition 7.2, being the main part of Section 7. In
this Proposition one uses the asymptotic expansion of the potential U given by (2.3) to
estimate the difference ∣∣∣∣r̆(t)− 1

m

∫
R

ğ(u)du

∣∣∣∣
and here all the properties of the function g stated above are essential. Finally thanks to
the Tauberian property of r we can use a result due to Frennemo [31] to unsmooth the
estimates.
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3 Some preliminaries

Before we state our main results in the multidimensional case we recall some standard
notation concerning function spaces on groups.

Let K be a compact group and let G = R+ × K be the direct product of the mul-
tiplicative group of the real numbers R+ and K. We shall write the elements of G as
g = ak, where a ∈ R+ and k ∈ K and set |g| = a. Let da denote the Haar measure on R+

normalized so that
∫ e

1
da = 1 and let dk be the Haar measure on K normalized so that

the volume of K is 1. The resulting direct product dg = da dk is a Haar measure on G.
The group G acts on the space C(G) of the continuous complex valued functions via

the left regular representation

λ(h)φ(g) = φ(h−1g) (g, h ∈ G; φ ∈ C(G))

and by the right regular representation

ρ(h)φ(g) = φ(gh) (g, h ∈ G; φ ∈ C(G)).

If µ is a bounded measure on G, define the convolutions of φ and µ on the right and on
the left by

φ ∗ µ(g) = ρ(µ)φ(g) =

∫
G

φ(gh)µ(dh),

µ ∗ φ(g) = λ(h)(µ)φ(g) =

∫
G

φ(h−1g)µ(dh) (g ∈ G).

(3.1)

(If µ is absolutely continuous with respect to the Haar measure then we use the first
or the second formula, whichever is more convenient.) In particular, if φ̆ denotes the
reflection of φ with respect to the , φ̆(g) = φ(g−1), then

φ ∗ µ(g−1) = µ ∗ φ̆(g) (g ∈ G). (3.2)

The reflected measure µ̆ is defined by µ̆(ψ) = µ(ψ̆). For an integer n = 1, 2, 3, . . . the
n-fold convolution µn of µ is defined by∫

G

ψ(g) dµn(g) =

∫
G

∫
G

. . .

∫
G

ψ(g1g2 . . . gn)µ(dgn) . . . µ(dg2)µ(dg1). (3.3)

Then ρ(µn) = ρ(µ)n and λ(µn) = λ(µ)n. Also, we shall adopt the convention that µ0 is the
Dirac delta at the identity of the group.

The convolution with the Haar measure on K defines the projection onto the space of
the K-invariants:

C(G) 3 φ→ φK ∈ C(G)K, φK(g) =

∫
K

φ(gk) dk (g ∈ G). (3.4)

Lemma 3.1. If µ is a bounded measure on G then

(φ ∗ µ)K = φK ∗ µ (φ ∈ C(G)).

Proof. This is straightforward:

(φ ∗ µ)K(g) =

∫
K

∫
G

φ(gkh)µ(dh) dk =

∫
G

∫
K

φ(gkh) dk µ(dh)

=

∫
G

∫
K

φ(gh(h−1kh)) dk µ(dh) =

∫
G

∫
K

φ(ghk) dk µ(dh)

=

∫
G

∫
K

φK(gh)µ(dh) = φK ∗ µ(g),

where the forth equality follows from the fact that G normalizes K and that the Haar
measure on K is invariant under the conjugation action of G.
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If F(G) is a space of complex valued functions on G, which are integrable over K, we
shall denote by F(G)0 ⊆ F(G) the subspace of all the functions whose average over K is
zero. Thus

F(G)0 = {φ ∈ F(G); φK = 0}. (3.5)

(Later we shall use this definition for very particular function spaces L∞, L2, C.)
For a bounded measure µ on G, let µR+ denote the projection of µ onto R+:

µR+(B) = µ(B ×K) (B a Borel subset of R+).

Equivalently, for φ ∈ C(G)K,

φ ∗ µ(ak) = φ|R+ ∗ µR+(a) (a ∈ R+, k ∈ K),

where φ|R+ is the restriction of φ to R+, that is φ|R+(a) = φ(a1), where 1 is the identity
of K. (In fact φ(a1) = φ(ak), for every k ∈ K.) Indeed, the left hand side is equal to∫

G

φ((ak)(bl)) dµ(bl) =

∫
G

φ(abkl) dµ(bl) =

∫
G

φ(ab) dµ(bl) =

∫
G

φ(ab) dµR+(b),

which coincides with the right hand side. Hence, Lemma 3.1 together with the induction
on n show that

φ ∗ µn(ak) = φ|R+ ∗ µnR+(a) (φ ∈ C(G)K, a ∈ R+, k ∈ K, n = 1, 2, 3, . . . ) . (3.6)

4 Main results in the multidimensional case

4.1 Behavior of the tail of ν

In the multidimensional case we have the following description of the tail of ν. Let
µ be the marginal law of M i.e the image of µ̄ under the map (q, g) 7→ g. Let Gµ be the
closed group generated by the support of µ and let Kµ = Gµ ∩O(Rd). For g ∈ Gµ, set

νg(f) = |g|−α(gν)(f) = |g|−α
∫
Rd
f(gx)ν(dx) = |g|−αEf(gR), (4.1)

where R is the solution to (1.2). Denote by R the projection of R onto the unit sphere,
i.e. R = R/|R|. From now on we shall denote by R, R1, M1, Q1 the random variables
such that

R = M1R1 +Q1, a.s.

and M1, Q1 are independent of R1.

The following theorem describes the tail of ν, [19].

Theorem 4.1. Assume that the action of suppµ on Rd has no fixed point,

• E(log |M |) < 0

• there is α > 0 such that E|M |α = 1

• mα = E(|M |α log |M |) and E|Q|α are both finite

• µ is not arithmetic.

Then there is a Radon measure Λ on Rd \ {0} such that for every bounded continuous
function f that vanishes in a neighborhood of zero

lim
|g|→0,g∈Gµ

〈f, νg〉 = 〈f,Λ〉, (4.2)

where, given a measure π, 〈f, π〉 denotes the integral of a function f with respect to the
measure π.
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Moreover, there is a finite Kµ - invariant measure σµ on Sd−1 such that, in radial
coordinates,

〈f,Λ〉 =

∫
R+×Sd−1

f(rω)
α

rα
dr σµ(dω).

The family of measures σt on Sd−1 defined by

σt(W ) = tαP{|R| > t, R̄ ∈W},

for W ⊂ Sd−1, converges weakly to σµ as t→ +∞.
Finally, (4.2) holds for every function f such that 0 /∈ suppf , the measure Λ of the set

of discontinuities of f is 0 and for some ε > 0

sup
x 6=0

(
|x|−α| log |x||1+ε|f(x)|

)
<∞. (4.3)

4.2 Function spaces

We are interested in the rate of convergence of 〈f, νg〉 to 〈f,Λ〉 in terms of a distance
between measures νg and Λ. Traditionally, in order to define a distance between bounded
measures of the same mass one takes some family F of functions and computes

ρF (ν1, ν2) = sup{|〈f, ν1〉 − 〈f, ν2〉| : f ∈ F}. (4.4)

Typically, more than just the continuity of functions f ∈ F is required. We are going to
use here the so called Zolotarev distance [56, 57] between two probability measures ν1

and ν2. It is defined, as in (4.4), by fixing ε > 0 and taking

F = Fε = {f ∈ Hε(Rd), ‖f‖ε ≤ 1
}
,

where Hε(Rd) is the Hölder space consisting of all the functions f : Rd → C for which
the seminorm

‖f‖ε = sup
x6=y

|f(x)− f(y)|
|x− y|ε

is finite. Clearly, locally ρFε2 ≤ CρFε1 if ε1 ≤ ε2, so ideally we would like to be able to
estimate ρFε for any ε > 0. It is essential here for the measures to have the same mass.
Otherwise the supremum is infinite.

In our situation we have two specific issues to address. First, Λ is unbounded. Second,
νg(R

d) varies with g, although for any r > 0 the function νg(R
d \ Br(0)) approaches

Λ(Rd \ Br(0)) as |g| → 0. Therefore we fix r > 0, restrict measures to Rd \ Br(0) and
take a class of functions supported away from 0. This eliminates the main obstacle, the
constants, so that the definition makes sense.

Specifically, we fix ε > 0, denote by Hε
r the space of Hölder functions on Rd supported

in Rd \Br(0) and consider (4.4), with

F = Fr,ε = {f ∈ Hε
r ; ‖f‖ε ≤ 1}.

Then ρFr,ε(νg,Λ) is indeed a distance between νg and Λ restricted to Rd \Br(0).
We are able to estimate ρFr,1(νg,Λ) only (the space of Lipschitz functions) and under

some more assumptions 1 we obtain the following inequality

ρFr,1(νg,Λ) ≤ C| log |g||−σ (4.5)

1In particular α ≥ 1. For α ≤ 1 we need a further restriction: supports of functions f must be contained in
a compact set.

EJP 20 (2015), paper 22.
Page 9/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3708
http://ejp.ejpecp.org/


On the rate of convergence in the Kesten renewal theorem

for |g| < 1. See Theorem 4.5. This will be more carefully discussed at the end of this
section. It is interesting that with this choice of functions vanishing around zero we can
make the quantity sup{|〈f, νg〉 − 〈f,Λ〉|} finite even without the requirement of equality
of total masses. Finally, together with Theorem 4.2 we have (4.5) also for νg and Λ

restricted to Rd \Br(0) and normalized.
Notice that νg, unlike Λ, are not Kµ invariant so (4.5) has an additional value of

showing how fast νg become Kµ invariant. The existence of the spectral gap on Kµ or
Gµ is vital here. See Proposition 4.7.

For ε < 1 the distance ρFr,ε(νg,Λ) is difficult to estimate. We impose further restriction
on the class F . More precisely, let

Fr,ε,+ = {f ∈ Hε
r , ‖f‖ε ≤ 1, f(kx) = f(x), f(a1x) ≤ f(a2x), for 0 < a1 ≤ a2

}
.

Then

ρFr,ε,+(νg,Λ) ≤ C| log |g||−σ (|g| < 1).

This is formulated in Theorem 4.3 and leads directly to an approximation of the measure
σµ, which is interesting as a straightforward generalization of Theorem 2.2. In the one
dimensional case the measure σµ is determined by the constants C+, C−.

For α > 1 we may also think of other Zolotarev distances, namely those defined in
terms of functions growing faster at infinity. Let m ∈ N, 0 < ε ≤ 1 and m+ ε < α. The
point of this assumption is that under the conditions of Theorem 4.1

E|M |m+ε < 1. (4.6)

Let Hm,ε be the space of functions such that for every multiindex I of length m, ∂If is a
Hölder function, ∂If ∈ Hε. Define

‖f‖m,ε = sup
|I|=m

sup
x 6=y

|∂If(x)− ∂If(y)|
|x− y|ε

(4.7)

and let

Fm;ε = {f ∈ Hm,ε, ‖f‖m,ε ≤ 1
}
.

Then ρFm;ε(ν1, ν2) is well defined provided all the moments of ν1, ν2 of order at most m
are equal. This latter condition is not satisfied in our situation, but we take functions
supported outside a ball of radius r, Hm,ε

r = {f ∈ Hm,ε : suppf ∩Br(0) = ∅} and set

Fm;r,ε = {f ∈ Hm,ε
r , ‖f‖m,ε ≤ 1}.

This kills polynomials, ρFm;r,ε(ν1, ν2) is well defined and again we have,

ρFm;r,ε
(ν1, ν2) ≤ C| log |g||−σ, (4.8)

for small |g|. See Theorem 4.5.

4.3 Main results for K-invariant functions

Now we are going to formulate our results more precisely and show how do they
follow from more technical theorems and lemmas contained in later chapters. All the
theorems stated below require slightly different assumptions and provide estimates in
different metrics. However the schemes of the proofs are similar.

We start with estimating the difference

νg(R
d \Br(0))− Λ(Rd \Br(0)),
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On the rate of convergence in the Kesten renewal theorem

as |g| → 0, i.e.
tαP[|R| > t]− σµ(Sd−1), (4.9)

as t→ +∞. This is in full analogy with Theorem 2.2. Indeed, the proof is as in the one
dimensional case. Let µα be the measure on Gµ defined by dµα(g) = |g|αdµ(g) and let
U =

∑∞
n=0 µ

n
α be its potential on G. In order to estimate (4.9) we need only the image

UR of U on R via g 7→ log |g|.
Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied and that

E
(
|Q|α + |M |α

)(
(log(1 + |Q|))χ + (log(1 + |M |))χ

)
<∞ (4.10)

holds with χ > 1 as well as (2.3) holds for UR. Then there are constants C, σ such that∣∣∣νg(Rd \Br(0)
)
− Λ

(
Rd \Br(0)

)∣∣∣ ≤ C| log |g||−σ, (4.11)

for |g| < 1, i.e. ∣∣tαP[|R| > t]− σµ(Sd−1)
∣∣ ≤ C(log t)−σ, t > r. (4.12)

Proof. We are going to apply Proposition 7.2 to the function

F (t) = eαt
(
P[|R| > et]− P[|MR| > et]

)
.

Proceeding as in the one dimensional case, following Goldie, we prove that F is bounded,
r(t) = U ∗ F and r̆(t) = U ∗ F̆ are well defined and

U ∗ F (t) = eαtP[|R| > et].

Moreover F is continuous because, as shown in [19, Proposition 2.4], ν(S) = 0 for every
sphere S. The condition (7.4) is satisfied by Lemma 6.1 and (7.6) can be checked as in
the proof of Theorem 2.2.

We can approximate the measure σµ, not just its total mass, as follows. Take a
continuous function f of the form

f(rω) = f1(r)f2(ω), 0 /∈ suppf1. (4.13)

Then

〈f,Λ〉 =

∫
R+

f1(s)
α

sα
ds

∫
Sd−1

f2(ω)σµ(dω) = C(f1)〈f2, σµ〉.

Suppose we fix f1 such that C(f1) 6= 0 and for a class of functions f2 we have∣∣〈f, νg〉 − 〈f,Λ〉∣∣ ≤ C| log |g||−σ. (4.14)

Then ∣∣∣〈f2, σµ〉 − C(f1)−1〈f, νg〉
∣∣∣ ≤ C| log |g||−σ. (4.15)

Clearly taking f2 in (4.14) invariant under Kµ does not change anything because σµ is
Kµ invariant. In order to get (4.14) we need to impose some more regularity on f2. Being
Hölder is fine.

Theorem 4.3. Assume that the conditions of Theorem 4.2 are satisfied. Let f ∈ Hε
r ,

‖f‖ε ≤ 1, f(kx) = f(x), k ∈ Kµ and f(a1x) ≤ f(a2x), if a1 ≤ a2. Then there are constants
C, σ such that ∣∣∣〈f, νg〉 − 〈f,Λ〉∣∣∣ ≤ C| log |g||−σ, (4.16)

for every f as above and |g| < 1 .
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Hence for product functions we have the following Corollary.

Corollary 4.4. Assume that the conditions of Theorem 4.2 are satisfied. Let f ∈ Hε
r be

as in (4.13) with f1 is non-decreasing, f2(kω) = f2(ω), k ∈ K and ‖f‖ε ≤ 1. Then there
are constants C, C(f1), σ such that∣∣∣〈f2, σν〉 − C(f1)−1〈f, νg〉

∣∣∣ ≤ C| log |g||−σ, (4.17)

holds for every f2 as above and |g| < 1.

The measure σµ represents the weight of the tail of ν in various directions. Indeed, if
σµ(∂W ) = 0 then

σµ(W ) = lim
t→∞

tαP{|R| > t, R̄ ∈W}.

Suppose we could take in (4.15) f1 = 1[0,∞), f2 = 1W , then we could estimate

σµ(W )− tαP{|R| > t, R̄ ∈W}.

We cannot do that, but taking Hölder functions f1, f2 close to functions 1[0,∞),1W , we
obtain something analogous.

Proof of Theorem 4.3. Let

ψ(g) = |g|−αE
[
f(gR)− f(gM1R1)

]
. (4.18)

Then, by [19],
νg(f) = ψ ∗ U(g). (4.19)

Let f̄(g) = νg(f). Notice that with our assumptions f̄ and ψ are K-invariant, i.e. abusing
slightly the notation, for g = etk we have

f̄(g) = f̄(et), and ψ(g) = ψ(et).

Moreover, for F (t) = ψ(e−t) we have

f̄(e−t) =

∫
R

ψ(e−t+s) UR(ds) =

∫
R

F (t− s) UR(ds) = UR ∗ F (t).

So |g| → 0 corresponds to t→∞. Since

〈f,Λ〉 =
1

mα

∫
G

ψ(g) dg =
1

mα

∫
R

F (t) dt,

where mα is the mean of µα (see Theorem 4.1), we have

〈f, νg〉 − 〈f,Λ〉 = UR ∗ F (t)− 1

mα

∫
R

F (t) dt.

We are going to apply Proposition 7.2 to F . Clearly F is continuous. In view of
Lemma 6.3, |ψ| is dRi and so is |F |. Therefore, UR ∗ F̆ = r̆ is well defined, where F̆ is the
smoothing operator defined in (2.6). In particular F is bounded. The condition (7.4) is
satisfied by (6.5). Since f ∈ Hε

r and since f is radially non-decreasing, it is real valued
and non-negative. Hence, for s < t,

F ∗ UR(t)− F ∗ UR(s) = f̄(e−t)− f̄(e−s)

= eαt
(
Ef(e−tR)− Ef(e−sR)

)
+ (eαt − eαs)Ef(e−sR),

≤ (eα(t−s) − 1)eαsEf(e−sR)
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On the rate of convergence in the Kesten renewal theorem

because
eαt
(
Ef(e−tR)− Ef(e−sR)

)
≤ 0.

Hence
F ∗ UR(t)− F ∗ UR(s) ≤ eαη0α(t− s)eαsEf(e−sR)

as soon as s ≤ t ≤ s+ η0. Now

0 ≤ eαsEf(e−sR) = eαsE|f(e−sR)− f(0)|
≤ e(α−ε)s‖f‖εE

[
|R|ε1{|R|≥res}

]
≤ Cr−α+ε‖f‖ε.

To get the last inequality we apply Theorem 4.1 to s > 0 and to function |x|ε1{|x|≥1}.
Finally,

F ∗ UR(t)− F ∗ UR(s) ≤ Cr−α+ε(t− s)‖f‖ε
and so (7.6) is satisfied. Hence the conclusion follows.

4.4 Main results for general functions

Our results for the general functions (not necessary K-invariant) require further
assumptions on the measure µ. Recall the definitions of the function spaces L∞(G)0,
L2(G)0 given in (3.5). We are going to assume that

‖φ ∗ µ‖L∞ ≤ λ‖φ‖L∞ , φ ∈ L∞(G)0 (4.20)

for some λ < 1.
Alternatively, we are going to assume that

‖φ ∗ µ‖L2 ≤ λ‖φ‖L2 , φ ∈ L2(G)0, (4.21)

for some λ < 1.
In Section 5 we discuss these assumptions in more detail and present conditions

ensuring that (4.20) and (4.21) are satisfied. Moreover we have to restrict our attention
to compactly supported functions. Our next main result is the following theorem.

Theorem 4.5. Assume that the hypotheses of Theorem 4.1 are fulfilled, µ satisfies (4.20)
or (4.21) and (4.10) with χ > 1. Let (2.3) hold for UR. Fix r̃ > r > 0. If α ≤ 1 let

F =
{
f ∈ H0,1

r : suppf ⊂ B̄r̃(0) : ‖f‖1 ≤ 1
}
.

If α > 1 and m+ ε < 1 or ε = 1 and m = 0, let

F = {f ∈ Hm,ε
r : ‖f‖m,ε ≤ 1}.

Then there are C, σ > 0 such that

ρF (νg,Λ) ≤ C| log |g||−σ (4.22)

for small |g|.
The proof of this Theorem is similar to the proof of Theorem 4.2, but is technically

more involved.

Notice first that definitions (4.18) and (4.19) can be extended to any function f ∈
Hm,ε
r . Indeed we have the following lemma.

Lemma 4.6. Let f ∈ Hm,ε
r . Then the functions ψ and f given by

ψ(g) = |g|−αE
[
f(gR)− f(gM1R1)

]
(4.23)

and
f̄(g) = ψ ∗ U(g) (4.24)

are well defined.
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Proof. The function ψ ∗ U is well defined in view of Lemma 6.3 and

n∑
k=0

ψ ∗ µkα(g) = f̄(g)− |g|−α(f̄ ∗ µn+1
α )(g).

It is enough to prove that for every g

lim
n→∞

f̄ ∗ µnα(g) = 0.

But this follows from (4.6) via a straightforward computation.

Next, we need to extend the concept of dRi functions to the group Gµ. We say that a
bounded Borel function φ is dRi (directly Riemann integrable) on Gµ if

• the set of discontinuities of φ is negligible with respect to the Haar measure of Gµ;

•
∑
n sup{g∈Gµ: n<log |g|≤n+1} |φ(g)| <∞.

A continuous function satisfying the second condition on Gµ is dRi on any subgroup of
Gµ.

Proposition 4.7. Assume that the potential UR satisfies (2.3) and (4.10) is satisfied for
some χ > 1. Let F be as in Theorem 4.1. Suppose ψ is a dRi function such that for some
constant D

|ψ ∗ µn(g)| ≤ C1n
D‖ψ‖L∞(1 + | log |g||)−β1 , n ≥ 0, (4.25)

and ∣∣(ψ − ψK) ∗ µn(g)
∣∣ ≤ C2(ψ)λn, n ≥ 1 (4.26)

for some λ < 1. Then∣∣∣∣ψ ∗ U(g)− 1

m

∫
G

ψ(h) dh

∣∣∣∣
≤
(

2C1‖ψ‖L∞ + C2(ψ)(1− λ)−1 + C3(ψ)
)

(log | log |g||)D| log |g||−β ,

for |g| < e−e and some β.

The Proposition follows from Proposition 7.2 and its proof will be given in Section 7.

Proof of Theorem 4.5. We are going to apply Proposition 4.7 to µα and ψ. By Lemma
6.3, ψ is dRi.

Our next step is to justify that hypothesis (4.26) is satisfied. Assume first that (4.20)
holds. Then (4.26) follows from Lemma 5.3 and Corollary 6.4.

Under the condition (4.21) this follows from Proposition 5.1 if we know that the
norms ‖ψ‖L2(G) and ‖ψ‖Hε(G) (see (5.3) are finite. The first norm is bounded by Corollary
6.4. For the Hölder norm we apply the property

|k − k1| ≤ Cτ(k, k1),

where | | is the operator norm as in (1.6) and τ is the Riemannian distance on K (see
Appendix B). Therefore, by Lemma 6.5, there is C such that for all f ∈ F

|ψ(etk)− ψ(esk)| ≤ C(|t− s|+ τ(k, k1))ε

i.e.

‖ψ‖Hεr (G) ≤ C.
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Finally we have to check (4.25). By Lemma 6.3 there is C4 such that

|ψ(g)| ≤ C4(1 + | log |g||)−χ.

On the other hand (4.10) implies∫
G

(1 + | log |g||)χ µα(dg) <∞.

Therefore, by Lemma 6.6 there is D such that for every f ∈ F

|ψ ∗ µnα(g)| ≤ C1n
D(1 + | log |g||)−χ (4.27)

and so (4.25) is satisfied. Thus, by Proposition 4.7 we conclude the Theorem.

5 Spectral cut off

5.1 Some more preliminaries and auxiliary results

Suppose that K is a compact Lie group with the Lie algebra k. Then both are
Riemannian manifolds. There is r0 > 0 small enough such that the Jacobian of the
exponential map (see [38, Theorem 7.4, page 139] for the precise formula) is bounded
away from zero on the ball of radius r0 centered at zero in k and every ball of radius
r < r0 centered at zero in k is mapped bijectively onto the ball of radius r centered at the
identity in the connected identity component of K, see [38, Proposition 9.4 and Ch.IV].
Let us denote by v(r) the volume of the last ball. Then there is a constant c such that

v(r) ≥ (cr)dim(K) (0 < r < r0). (5.1)

By taking direct products, the group G = R+ × K is also a Riemannian manifold with
the bi-invariant distance d( , ) and that there is r0 > 0 and a constant C such that the
volume V (r) of the ball of radius r in G satisfies

V (r) ≥ (Cr)dim(G) (0 < r < r0). (5.2)

(Recall [40, (8.6)] that there is an invariant distance on every compact group whose
identity is equal to the intersection of countably many open sets, but we shall need an
explicit estimate (5.2). Therefore we restrict our attention to compact Lie groups.)

We shall say that a function ψ ∈ C(G) satisfies Hölder condition of order ε > 0 if there
is a finite constant ‖ψ‖Hε(G) such that

|ψ(g)− ψ(g′)| ≤ ‖ψ‖Hε(G) d(g, g′)ε (g, g′ ∈ G). (5.3)

The space of all such functions is denoted by Hε(G).

Notice that if we equip R+ with the usual Riemannian structure then

d(a, b) = | log(ab−1)| = | log(a)− log(b)| (a, b ∈ R+).

Also, if ‖ ‖ is the norm defined by the K invariant scalar product on k, which determines
the Riemannian structure on K, then

d(k, l) = d(kl−1, e) = ‖ log(kl−1)‖

if k, l ∈ K are close enough.
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Proposition 5.1. Suppose µ is a probability measure on G and 0 < λ < 1 is a constant
such that

‖φ ∗ µ‖L2(G) ≤ λ‖φ‖L2(G). (φ ∈ L2(G)0). (5.4)

Then there is a constant C such that for ε > 0

‖ψ ∗ µn‖L∞(G) ≤ C max{‖ψ‖Hε(G), ‖ψ‖L2(G)}
(
λ

2ε
2ε+dim(G)

)n
(ψ ∈ Hε(G)o, n = 0, 1, 2, . . . ). (5.5)

Remark 5.2. The idea of the proof comes from [25].

Proof. Let µr denote the Haar measure on G multiplied by the indicator function of the
ball of radius r centered at the identity of G and divided by the volume of that ball. Then
µr is a probability measure supported on the ball. Clearly

|ψ(g)− µr ∗ ψ(g)| ≤
∫

G

|ψ(g)− ψ(h−1g)|µr(dh) ≤
∫

G

‖ψ‖Hε(G)d(g, h−1g)εµr(dh)

=

∫
G

‖ψ‖Hε(G)d(e, h−1)εµr(dh) =

∫
G

‖ψ‖Hε(G)d(h, e)εµr(dh)

≤ rε‖ψ‖Hε(G).

Hence,
‖ψ − µr ∗ ψ‖L∞(G) ≤ rε‖ψ‖Hε(G). (5.6)

On the other hand, Cauchy’s inequality, the assumption (5.4) and Lemma 3.1 show that

‖µr ∗ ψ ∗ µn‖L∞(G) ≤ V (r)−
1
2 ‖ψ ∗ µn‖L2(G) ≤ V (r)−

1
2λn‖ψ‖L2(G). (5.7)

Hence,

‖ψ ∗ µn‖L∞(G) ≤ ‖ψ ∗ µn − µr ∗ ψ ∗ µn‖L∞(G) + ‖µr ∗ ψ ∗ µn‖L∞(G)

≤ ‖ψ − µr ∗ ψ‖L∞(G) + ‖µr ∗ ψ ∗ µn‖L∞(G)

≤ rε‖ψ‖Hε(G) + V (r)−
1
2λn‖ψ‖L2(G)

≤ max{‖ψ‖Hε(G), ‖ψ‖L2(G)}(rε + V (r)−
1
2λn).

Let r = C−
dim(G)

2ε+dim(G)

(
λ

2
2ε+dim(G)

)n
. Then rε = (Cr)−

dim(G)
2 λn.

If n is large enough then r < r0 and we have the estimate (5.2). Hence,

rε + V (r)−
1
2λn ≤ rε + (Cr)−

dim(G)
2 λn = 2rε = 2C−

dim(G)
2

(
λ

2ε
2ε+dim(G)

)n
.

Therefore

‖ψ ∗ µn‖L∞(G) ≤ max{‖ψ‖Hε(G), ‖ψ‖L2(G)}2C−
dim(G)

2ε+dim(G)

(
λ

2ε
2ε+dim(G)

)n
. (5.8)

The estimate holds with the constant “C” equal to the supremum over ε > 0 of

2C−
dim(G)

2ε+dim(G) .

Lemma 5.3. Let µ be a bounded measure on G. Suppose λ ≥ 0 is such that

‖ψ ∗ µ‖∞ ≤ λ‖ψ‖∞ (ψ ∈ C(G)o). (5.9)

Then
‖ψ ∗ µn‖∞ ≤ λn‖ψ‖∞ (ψ ∈ C(G)o, n = 1, 2, 3, . . . ). (5.10)

Proof. We see from Lemma 3.1 that

(ψ ∗ µn)K = ψK ∗ µn.

Thus if ψK = 0 then (ψ ∗ µn)K = 0 for any n = 1, 2, 3, . . . . Therefore (5.9) implies
(5.10).
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5.2 Examples

Let us discuss some conditions that imply (4.21). By Lemma A.2 it is enough for µ to
have density. This assumption can be relaxed because instead of µ we may consider µn.
Indeed, ν is the stationary measure also for the recursion (1.1) with (Q,M) having the
law µn. Also, if the measure µ is of the form

µ = sµ1 + (1− s)µ2

for an s such that 0 < s ≤ 1 and µ1 satisfies (4.21) then so does µ. This means that the
assumption for µ to be spread out is sufficient.

We can formulate still weaker hypotheses. Let µ be a probability measure on G and
let µ̃ be the push-forward of µ via the projection G→ R+. We deduce from the theory of
the conditional probability, as in [30], that there are probability measures µa, a ∈ R+,
such that ∫

G

φ(g)µ(dg) =

∫
R+

∫
K

φ(ak)µa(dk) µ̃(da) (φ ∈ C(G)). (5.11)

In our settings, if µ is the law of M , then µ̃ is the law of |M | and µa is a version of the
conditional law of 1

|M |M , given |M | = a. We want the operators

Taφ = φ ∗ µa

to have good properties on L2(K)0.

Proposition 5.4. Let ‖Ta‖L2(K)0 be the norm of Ta on L2(K)0 and let

β =

∫
R+

‖Ta‖L2(K)0 µ̃(da).

Then for every φ ∈ L2(G)0

‖φ ∗ µ‖L2 < β‖φ‖L2 .

Remark 5.5. In particular, if β < 1 then (4.21) holds. This assumption is clearly satisfied
when there is a set A ⊂ R+ of positive measure µ̃(a) such that ‖Ta‖ < 1. For instance µa
being spread out for a ∈ A is sufficient. The same can be applied to (µn)a that is to the
measure obtained from disintegration of µn.

Proof. Let φ, φ̃ ∈ L2(G)0 and let φa(k) = φ(ak) and similarly for φ̃. Then the absolute
value of the L2(G) - scalar product of φ ∗ µ and φ̃ is equal to

|〈φ ∗ µ, φ̃〉| =
∣∣∣∣∫
R+×R+

∫
K

φaa1 ∗ µa1(k)φ̃a(k)dkµ̃(da1)da

∣∣∣∣
≤
∫
R+×R+

‖Ta1‖L2(K)0‖φaa1‖L2(K)0‖φ̃a‖L2(K)0 µ̃(da1)da.

Integrating first with respect to a and then with respect to a1, we get the conclusion.

Remark 5.6. The same proof holds for the L∞ norm i.e. we may replace the norm
‖Ta‖L2(K)0 wih the norm ‖Ta‖L∞(K)0 in Proposition 5.4 and Remark 5.5.

6 Properties of ψ

In this section we collect all the lemmas describing the behavior of the function
ψ defined in 4.18. Recall that the function ψ depends on some function f . Thus the
behavior of ψ is determined by the properties of f . We consider here pointwise and
integral estimates as well as finiteness of norms discussed in Section 4.

We begin with a very particular case considered in Theorems 2.2 and 4.2, where the
function f is of the form f(x) = 1(1,∞)(x) or f(x) = 1Rd\B1(0)(x).
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Lemma 6.1. Let
g(t) = eαt

(
P[R > et]− P[MR > et]

)
in the one dimensional case and

g(t) = eαt
(
P[|R| > et]− P[|MR| > et]

)
in general. If (4.10) holds, then ∫

R

|g(t)||t|χdt <∞.

Here g(t) = ψ(etk), if we take f(x) = 1Rd\B1(0)(x) in (4.18).

Proof. It is sufficient to study the integral for large positive values of t, since for negative
t:

|g(t)| ≤ 2e−α|t|.

Let X = MR +Q, Y = MR or X = |MR +Q|, Y = |MR|, for R independent of (M,Q).
Given a real number z we denote ze = max{z, e}. Then∫ ∞

1

|g(t)|tχdt =

∫ ∞
1

eαttχ
∣∣P[X > et]− P[Y > et]

∣∣dt
≤

∫ ∞
e

sα−1(log s)χE
[
1{X≥s≥Y }

]
ds+

∫ ∞
e

sα−1(log s)χE
[
1{Y >s>X}

]
ds

= E

[
1{X≥Y }

∫ Xe

Ye

sα−1(log s)χds

]
+ E

[
1{X<Y }

∫ Xe

Ye

sα−1(log s)χds

]
≤ 1

α
E
[
1{X≥Y }(logXe)

χ
(
Xα
e − Y αe

)]
+

1

α
E
[
1{X<Y }(log Ye)

χ
(
Y αe −Xα

e

)]
≤ 1

α
E
[(

(logXe)
χ + (log Ye)

χ
)∣∣Xα

e − Y αe
∣∣] = I.

Assume first that α ≤ 1. Then using inequalities

|aα − bα| ≤ |a− b|α, a, b > 0,

log(x+ y)e ≤ log xe + log ye,

log(xy)e ≤ log(1 + |x|) + log(1 + |y|) + 1,

we obtain that I can be estimated by

E
[
(1 + log(1 + |M |) + log(1 + |Q|) + log(1 + |R|))χ|Q|α

]
,

which is finite by (4.10) and the fact that E|R|β <∞ for any β < α, see [19, Lemma D.8].

For α > 1 we apply the inequality

|aα − bα| ≤ α|a− b|max{a, b}α−1

and we dominate I by

E
[
(1 + log(1 + |M |) + log(1 + |Q|) + log(1 + |R|))χ|Q|(|M |α−1|R|α−1 + |Q|α−1)

]
.

To prove that the latter expression is finite we use independence of R and (Q,M), (4.10)
as well as the Hölder inequality. For instance, by the Hölder inequality with p = α,
q = α

α−1 , we estimate

E
[
(1 + log(1 + |M |))χ|Q||M |α−1

]
≤
(
E
[
(1 + log(1 + |M |))χ|Q|α

])1/α(
E
[
(1 + log(1 + |M |))χ|M |α

])(α−1)/α

,

which is finite, by (4.10).
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The following lemma concerns functions f ∈ Hm,ε
r and provides the control of their

derivatives. It will be used in Lemma 6.3.

Lemma 6.2. Let I be a multiindex, |I| ≤ m. Then for every f ∈ Hm,ε
r and x ∈ Rd

|∂If(x)| ≤ C|I|‖f‖m,ε|x|m+ε−|I|, (6.1)

where C|I| = dm−|I|
(

Π
m−|I|
j=1 (j + ε)

)−1

.

Moreover, if m ≥ 1, then there is C = C(m, ε, d) such that for every f ∈ Hm,ε
r and

every x, y ∈ Rd

|f(x)− f(y)| ≤ C‖f‖m,ε(|x|+ |y|)m+ε−1|x− y|. (6.2)

Proof. Notice that ∂If(0) = 0 so for |I| = m (6.1) follows from the definition of the
seminorm (4.7). Let |I| < m. Then

∂If(x) = ∂If(x)− ∂If(0) =

∫ 1

0

∂

∂t
∂If(tx) dt =

∫ 1

0

d∑
j=1

(∂xj∂
If)(tx)xj dt.

Hence, by induction,

|∂If(x)| ≤ C|I|+1d|x|m+ε−|I|‖f‖m,ε
∫ 1

0

tm+ε−|I|−1 dt

and (6.1) follows for an arbitrary I.
Next, since

f(x)− f(y) =

∫ 1

0

d

dt
f(x+ t(y − x)) dt

=

∫ 1

0

d∑
j=1

(∂xjf)(x+ t(y − x))(yj − xj) dt

we have

|f(x)− f(y)| ≤ C1‖f‖m,εd
∫ 1

0

|x+ t(y − x)|m+ε−1|y − x| dt

≤ C1‖f‖m,εdmax{1, 2m+ε−2}(|x|+ |y|)m+ε−1|y − x|,

which implies (6.2).

The following lemma is crucial. It implies that if f ∈ Hm,ε
r , then the corresponding

function ψ is dRi and provides also its estimates.

Lemma 6.3. Assume (4.10). Let 0 < ε ≤ 1, m be a nonnegative integer and let α > m+ε.
Then there is a constant C = C(α,m, ε, d, µ̄, ν) such that for any f ∈ Hm,ε

r ,∑
n∈Z

sup
n≤log |g|≤n+1

|ψ(g)| ≤ Cr−(α−m−ε)‖f‖m,ε. (6.3)

Also,

sup
g∈G
|ψ(g)|(1 + | log |g||)χ ≤ Cr−(α−m−ε) max

(
rε/2, r−ε/2

)
‖f‖m,ε (6.4)

and ∫
G

|ψ(g)|(1 + | log |g||)χ dg ≤ Cr−(α−m−ε) max
(
rε/2, r−ε/2

)
‖f‖m,ε. (6.5)
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Corollary 6.4. Suppose that the assumptions of Lemma 6.3 are satisfied. Then there is
a constant C = C(α,m, ε, d, µ̄, ν) such that for every f ∈ Hm,ε

r

‖ψ‖L∞ , ‖ψ‖L1 , ‖ψ‖L2 ≤ Cr−(α−m−ε) max
(
rε/2, r−ε/2

)
‖f‖m,ε.

Proof of Lemma 6.3. In the proof we will denote by C a constant, that may vary from
line to line, but depends only on α,m, ε, χ, µ̄, ν and d.

Step 1. Proof of (6.3). Suppose first that m ≥ 1. Notice that since R = Q1 + M1R1,
f(gR)− f(gM1R1) 6= 0 implies |gQ1|+ |gM1R1| ≥ r. Let 1s be the indicator function of
the event {|Q1|+ |M1R1| ≥ s}. Then for n ≤ log |g| ≤ n+ 1 by Lemma 6.2 we have

|ψ(g)| ≤ C‖f‖m,ε|g|−αE
[
(|gR|+ |gM1R1|)m+ε−1|gQ1|1r|g|−1

]
≤ C‖f‖m,εe−(α−m−ε)nE

[
(|Q1|+ 2|M1R1|)m+ε−1|Q1|1re−n−1

]
.

Therefore, taking n0 = b− log(|R|+ |M1R1|) + log r − 1c, we have∑
n∈Z

sup
n≤log |g|≤n+1

|ψ(g)| ≤ C‖f‖m,εE
[
(|Q1|+ 2|M1R1|)m+ε−1|Q1|

∑
n>n0

e−(α−m−ε)n
]

≤ Cr−(α−m−ε)‖f‖m,εE
[
(|Q1|+ |M1R1|)α−1|Q1|

]
.

Now a standard argument using (4.10) and based on the Hölder inequality proves
finiteness of the last expectation. Thus (6.3) follows.

If m = 0 then in the first step of the proof we write

|ψ(g)| ≤ ‖f‖m,ε|g|−αE
[
|gQ1|ε1r|g|−1

]
and the rest of the argument caries over.

Step 2. Proof of (6.4). We proceed as in the first step. Let m ≥ 1. Since for |g| ≥ 1 we
can dominate (1 + | log |g||)χ by C|g|δ for any positive δ, we have

|ψ(g)|(1 + | log |g||)χ ≤ C‖f‖m,ε|g|−α+m+ε+δE
[
(|Q1|+ |M1||R1|)m+ε−1|Q1|1r|g|−1

]
≤ Cr−α+m+ε+δ‖f‖m,εE

[
(|Q1|+ |M1||R1|)α−1−δ|Q1|

]
.

For the last inequality we have used r|g|−1 ≤ |Q1|+ |M1||R1|. For m = 0, we write

|ψ(g)|(1 + | log |g||)χ ≤ C‖f‖m,ε|g|−α+ε+δE
[
|Q1|ε1r|g|−1

]
≤ Cr−α+ε+δ‖f‖m,εE

[
(|Q1|+ |M1||R1|)α−ε−δ|Q1|ε

]
.

Again, Hölder inequality implies that both expectations in the last and in the previous
formulae are finite. Hence we get the bound (6.4) for |g| ≥ 1.

For |g| ≤ 1 and m ≥ 1, we write

|ψ(g)|(1 + | log |g||)χ

≤ C‖f‖m,ε|g|−α+m+ε(1 + | log |g||)χE
[
(|Q1|+ |M1||R1|)m+ε−1|Q1|1r|g|−1

]
.

Since for 1 ≤ |g|−1 ≤ r−1(|Q1|+ |M1||R1|) we have

| log |g|| ≤ log
(
1 + r−1(|Q1|+ |M1||R1|)

)
≤ log(1 + r−1) + log(1 + |Q|) + log(1 + |M1|) + log(1 + |R1|),
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and we estimate

|ψ(g)|(1 + | log |g||)χ ≤ C‖f‖m,εr−α+m+ε · E
[
(|Q1|+ |M1||R1|)α−1|Q1|(

log(1 + r−1) + log(1 + |Q1|) + log(1 + |M1|) + log(1 + |R1|)
)χ]

.

Now using (4.10), independenceR1 of (Q1,M1) and the fact that E|R1|α−1 log(1+|R1|)χ <
∞ we prove that the last expectation is finite. To indicate how to do it let us estimate for
instance

E
[
|M1|α−1|R1|)α−1|Q1|

(
log(1 + |Q1|)

)χ]
= E

[
|R1|α−1

]
E
[
|M1|α−1|Q1|

(
log(1 + |Q1|)

)χ]
≤ E

[
|R1|α−1

](
E
[
|Q1|α

(
log(1 + |Q1|)

)χ])1/α(
E
[
|M1|α

(
log(1 + |Q1|)

)χ])(α−1)/α

.

The factor log(1 + r−1) gives an extra factor max{r−ε/2, 1} and (6.4) follows for |g| ≤ 1

too. If m = 0, we proceed similarly starting with

|ψ(g)|(1 + | log |g||)χ ≤ C‖f‖m,ε|g|−α+ε(1 + | log |g||)χE
[
|Q|ε1r|g|−1

]
. (6.6)

Step 3. Proof of (6.5). For m ≥ 1 we write∫
|g|≥1

|ψ(g)|(1 + | log |g||)χdg ≤ C
∫
|g|≥1

|ψ(g)||g|δ dg

≤ C‖f‖m,ε
∫
|g|≥1

|g|−α+m+ε+δE
[
(|Q1|+ |M1||R1|)m+ε−1|Q1|1r|g|−1

]
dg

≤ C‖f‖m,εE
[
|Q1|(|Q1|+ |M1||R1|)m+ε−1

∫ ∞
r−1(|Q1|+|M1||R1|)

s−α+m+ε+δ ds

s

]
≤ C‖f‖m,εr−α+m+ε+δE

[
|Q1|(|Q1|+ |M1||R1|)α−1−δ

]
and∫

|g|≤1

|ψ(g)|(1 + | log |g||)χdg

≤ C‖f‖m,ε
∫
|g|≤1

|g|−α+m+ε(1 + | log |g||)χE
[
(|Q1|+ |M1||R1|)m+ε−1|Q1|1r|g|−1

]
dg

≤ C‖f‖m,εE
[
|Q1|(|Q|+ |M1||R1|)m+ε−1

∫ r−1(|Q1|+|M1||R1|)

1

sα−m−ε(1 + | log s|)χ ds

s

]
.

Integrating by parts we notice that

∫ r−1(|Q1|+|M1||R1|)

1

sα−m−ε(1 + | log s|)χ ds

s

≤ Cr−(α−m−ε)(|Q1|+ |M1||R1|)α−m−ε
(

log(1 + r−1(|Q1|+ |M1||R1|))
)χ
.

Hence∫
|g|≤1

|ψ(g)|(1 + | log |g||)χdg

≤ C‖f‖m,εr−(α−m−ε)E
[
(|Q1|+ |M1||R1|)α−1

(
log(1 + r−1(|Q1|+ |M1||R1|))

)χ]
.

And the rest follows as in the previous step.
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The following lemma will be used to justify the Tauberian condition (7.6) in Proposition
7.2.

Lemma 6.5. Let 0 < ε ≤ 1, α > ε+m and r > 0. There is a constant C = C(α,m, ε, d, µ̄, ν)

such that for every f ∈ Hm,ε
r

|ψ(etk)− ψ(esk1)| ≤ C max{1, r−(α−m−ε)}‖f‖m,ε
(
|t− s|ε + |k − k1|ε

)
, (6.7)

where |k − k1| is norm of k − k1, as in (1.6).

Proof. In view of Corollary 6.4 we may restrict our attention to |t− s| ≤ 1. We have

ψ(etk)− ψ(esk1) = (e−αt − e−αs)E
[
f(etkR)− f(etkM1R1)

]
+ e−αsE

[
f(etkR)− f(esk1R)

]
− e−αsE

[
f(etkM1R1)− f(esk1M1R1)

]
= I1 + I2 + I3

To estimate I1, by Corollary 6.4, we write

|I1| ≤ αeα|t− s||ψ(etk)| ≤ Cr−(α−m−ε) max
(
rε/2, r−ε/2

)
‖f‖m,ε.|t− s|ε

For I2 assume s > t. Then, if m = 0

|I2| ≤ e−αs‖f‖0,εE
[
|etkR− esk1R|ε1{|R|>re−s}

]
≤ e−αs‖f‖0,εE

[(
|(et − es)R|ε + |es(k − k1)R|ε

)
1{|R|>re−s}

]
= e−αs+εs‖f‖0,εE

[(
|et−s − 1|ε|R|ε + |k − k1|ε|R|ε

)
1{|R|>re−s}

]
≤ e−αs+εs‖f‖0,ε(|t− s|ε + |k − k1|ε)E

[
|R|ε1{|R|>re−s}

]
≤ max{1, r−α+ε}‖f‖0,ε(|t− s|ε + |k − k1|ε),

where for the last inequality we used Theorem 4.1.
If m ≥ 1 then by Lemma 6.2

E
[
|f(etkR)− f(esk1R)|

]
≤ C‖f‖m,ε(et + es)m+ε−1E

[
|R|m+ε−1|etkR− esk1R|

]
≤ C‖f‖m,εes(m+ε)(e+ 1)m+ε−1E

[
|R|m+ε−1(|t− s|+ |k − k1|)|R|

]
.

But again we may assume that |t− s| ≤ 1, also |k − k1| ≤ 2. Therefore,

|I2| ≤ C‖f‖m,εe−(α−m+ε)s(|t− s|ε + |k − k1|ε)E
[
|R|m+ε1{|R|>re−1−s}

]
≤ max{1, r−α+m+ε}‖f‖0,ε(|t− s|ε + |k − k1|ε).

Lemma 6.6. Suppose µ is a probability measure on G and χ > 1 is a constant. Let
ψ ∈ C(G) be a function such that, for some constant Cψ,χ,

|ψ(g)| ≤ Cψ,χ(1 + | log |g||)−χ (g ∈ G).

Then
|ψ ∗ µn(g)| ≤ Cn,ψ,χ (1 + | log |g||)−χ (g ∈ G, n = 1, 2, 3, . . . ),

where

Cn,ψ,β = 2χ−1

(
Cψ,χ + ‖ψ‖∞nχ

∫
G

|log |h||β µ(dh)

)
.
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Proof. Fix any number 0 < η < 1. Suppose |g| < 1, so that log |g| < 0. Since∫
G

| log |h||χ dµn(h) =

∫
G

. . .

∫
G

∣∣ log |h1 . . . hn|
∣∣χ µ(dh1) . . . µ(dhn)

=

∫
G

. . .

∫
G

∣∣∣∣ n∑
j=1

log |hj |
∣∣∣∣χ µ(dh1) . . . µ(dhn)

≤
∫

G

. . .

∫
G

nχ−1
n∑
j=1

∣∣ log |hj |
∣∣χ µ(dh1) . . . µ(dhn)

= nχ
∫

G

∣∣ log |h|
∣∣χ µ(dh).

we have

(1 + | log |g||)χ|ψ ∗ µn(g)| =
∫

G

|(1 + | log |ghh−1||)χψ(gh)| dµn(h)

=

∫
G

|(1 + | log |gh||+ | log |h||)χψ(gh)| dµn(h)

≤ 2χ−1
(∫

G

(
1 + log |gh|

)χ|ψ(gh)| dµn(h) +

∫
G

(
1 + log |h|

)χ|ψ(gh)| dµn(h)
)

≤ 2χ−1

(
Cψ,χ + ‖ψ‖∞nχ

∫
G

|log |h||χ dµ(h)

)

The next two lemmas will be used in the proof of Proposition 4.7, which is the main
step in the proof of Theorem 4.5.

Lemma 6.7. Suppose α > 1 and f ∈ H0,1
r . Consider the function

η(t) = e−αt
∫
Ef(etkR)dk. (6.8)

Then there is C = C(α, ν) such that for every s, t ∈ R,

|η(t)− η(s)| ≤ C max{1, r−α+1}‖f‖0,1|t− s|. (6.9)

If α ≤ 1, f ∈ H0,1
r and additionally suppf ⊂ Br̃(0), r < r̃. Then there is C = C(α, ν) such

that for every s, t ∈ R,

|η(t)− η(s)| ≤ Cr−αr̃‖f‖0,1|t− s|. (6.10)

Proof. Assume first α > 1. Notice that for every t ∈ R,

|η(t)| ≤ C max{1, r−α+1}‖f‖0,1. (6.11)

Indeed, we have

|η(t)| ≤ e−αt
∫
E|f(etkR)− f(0)| dk ≤ e−αt+t‖f‖0,1E

[
|R|1{|R|≥re−t}

]
≤ e−(α−1)t‖f‖0,1E|R|.

The last expectation being finite. For t < 0, applying Theorem 4.1 with f(x) = |x| ·1{|x|>1}
we obtain

E
[
|R|1{|R|≥re−t}

]
≤ Cr−α+1e(α−1)t,
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completing thus proof of (6.11). Hence we may restrict our attention to |t − s| ≤ 1.
Assume s > t. Then we have

|η(t)− η(s)| =
∣∣∣∣e−αt ∫ Ef(etkR)dk − e−αs

∫
Ef(eskR)dk

∣∣∣∣
≤ |e−αt − e−αs|

∣∣∣∣ ∫ Ef(etkR)dk

∣∣∣∣+ e−αs
∣∣∣∣ ∫ [Ef(etkR)− Ef(eskR)

]
dk

∣∣∣∣
≤ |1− e−α(s−t)||η(t)|+ e−αs‖f‖0,1E

[
|etR− esR|1{|R|≥re−s}

]
≤ C max{1, r−α+1}|t− s|‖f‖0,1 + e(−α+1)s|t− s|‖f‖0,1E

[
|R|1{|R|≥re−s}

]
≤ C max{1, r−α+1}|t− s|‖f‖0,1 + C max{1, r−α+1}|t− s|‖f‖0,1
≤ C max{1, r−α+1}|t− s|‖f‖0,1.

Hence (6.9) follows.

In the second case, when α ≤ 1, we have

|η(t)| ≤ e−αtE
[
|etR|1{re−t≤|R|≤r̃e−t}

]
≤ e−αtr̃P[|R| ≥ re−t] ≤ Cr̃r−α‖f‖0,1.

Again we may restrict our attention to |t− s| ≤ 1. Proceeding as above, we obtain

|η(t)− η(s)| ≤
∣∣1− e−α(s−t)∣∣|η(t)|+ e−αs‖f‖0,1E

[
|etR− esR|1{re−s−1≤|R|≤r̃e−s+1}

]
≤ Cr̃r−α|t− s|‖f‖0,1 + e−αs‖f‖0,1|t− s|E

[
|esR|1{re−s−1≤|R|≤r̃e−s+1}

]
.

Finally,

E
[
|esR|1{re−s−1≤|R|≤r̃e−s+1}

]
≤ er̃P

[
|R| > re−s−1

]
≤ Cr−αr̃eαs

and (6.10) follows.

Lemma 6.8. Let m ≥ 1, ε ≤ 1,m+ ε < α, f ∈ Hm,ε
r and let

φ(t) =

∫
K

ψ(etk) dk.

Suppose that (4.10) is satisfied. Then there is C = C(α, ε,m, χ, d, r, µ, ν) such that∫
R

|φ′(t)|(1 + |t|)χ dt ≤ C‖f‖m,ε.

Proof. We have

φ′(t) = −αφ(t) + e−αt
d∑
j=1

∫
E
[
gj(e

tkR)− gj(etkM1R1)
]
dk,

where

gj(x) = xj · ∂xjf(x).

Consider first the case m = 1. Then

|gj(x)− gj(y)| ≤ |∂xjf(x)− ∂xjf(y)||xj |+ |∂xjf(y)− ∂xjf(0)||xj − yj |
≤ ‖f‖m,ε|x− y|ε|x|+ ‖f‖m,ε|y|ε|x− y|.
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Hence, for x = etkR and y = etkM1R1, we have

|φ′(t)| ≤ α|φ(t)|

+ de−αt‖f‖m,εE
[(
eεt+t|Q1|ε|R|+ eεt+t|M1R1|ε|Q1|

)
1{|Q1|+|M1R1|≥re−t}

]
.

Thus, we need to prove that

W =

∫
R

(1 + |t|)χe−(α−ε−1)tE
[
|Q1|ε|R|+ |M1R1|ε|Q1|

)
1{|Q1|+|M1R1|≥re−t}

]
dt <∞.

Let t0 = − log(r−1(|Q1|+ |M1R1|)). Since R = Q1 +M1R1, we see that

W ≤ E
[(
|Q1|1+ε + |Q1|ε|M1||R1|+ |M1R1|ε|Q1|

)
·
∫ ∞
t0

(1 + |t|)χe−(α−ε−1)t dt
]
.

Let t1 = − log(1 + r−1(|Q1|+ |M1R1|)). Notice that there is a constant C(χ) such that∫ ∞
t0

(1 + |t|)χe−(α−ε−1)t dt ≤ C(χ) +

∫ 0

t1

(1 + |t|)χe−(α−ε−1)t dt.

Integrating by parts the second integral we conclude that∫ ∞
t0

(1 + |t|)χe−(α−ε−1)t dt ≤ C(α, r, χ)
(

log(1 + |Q1|+ |M1R1|)
)χ(|Q1|+ |M1R1|

)α−ε−1
.

Therefore,

W ≤ C(r, χ)E
[(
|Q1|1+ε + |Q1|ε|M1||R1|+ |M1R1|ε|Q1|

)
(

log(1 + |Q1|+ |M1R1|)
)χ(|Q1|+ |M1R1|

)α−ε−1
]
,

which is finite by the Hölder inequality and (4.10).

Notice that ‖∂xjf‖m−1,ε ≤ ‖f‖m,ε. If m ≥ 2 then by Lemma 6.2 applied to ∂xjf ∈
Hm−1,ε
r we have ∣∣∂xjf(x)− ∂xjf(y)

∣∣ ≤ C‖f‖m,ε(|x|+ |y|)m+ε−2|x− y|

and so

|gj(x)− gj(y)| ≤ C‖f‖m,ε(|x|+ |y|)m+ε−2|x− y||x|+ C‖f‖m,ε|y|m+ε−2|x− y|.

Then for x = etkR, y = etkM1R1

|φ′(t)| ≤ α|φ(t)|+ de−αtC‖f‖m,εet(m+ε)

· E
[(

(|Q1|+ 2|M1R1|)m+ε−1|Q1|+ |M1R1|m+ε−1|Q1|
)
1{|Q1|+|M1R1|≥re−t}

]
.

As before, we estimate∫ ∞
t0

(1 + |t|)χe−(α−ε−m)t dt ≤ C(r, χ)
(

log(1 + |Q1|+ |M1R1|)
)χ(|Q1|+ |M1R1|

)α−ε−m
.

Finally∫
R

(1 + |t|)χe−(α−ε−1)t

E
[
((|Q1|+ 2|M1R1|)m+ε−1|Q1|+ |M1R1|m+ε−1|Q1|

)
1{|Q1|+|M1R1|≥re−t}

]
dt

≤ E
[(

(|Q1|+ 2|M1R1|)α−1|Q1|+ (|Q1|+ 2|M1R1|)α−1|Q1|
)

·
(

log(1 + |Q1|+ |M1R1|)
)χ]

is finite as, before.
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7 Rate of convergence in the renewal theorem.

The main goal of this section is to prove Proposition 7.2, which says that under the
assumption (2.3) for some class of functions F one can control the rate of convergence
in the classical renewal theorem (2.2). After that we provide a proof of Proposition 4.7.
We show first an auxiliary Lemma giving the same result but for differentiable functions.

Lemma 7.1. Let U be a potential on R satisfying (2.3) Let F be a bounded differentiable
function on R satisfying for some β > 1 the following conditions∫

R

|F (s)|(1 + |s|) ds <∞,
∫
R

|F ′(s)|(1 + |s|)β ds <∞, lim
s→−∞

sF (s) = 0.

Then, as t→ −∞,∣∣∣ ∫
R

F (t− s)U(ds)−A
∫
R

F (s) ds
∣∣∣ ≤ C|t|−min{β−1,δ}.

Proof. Notice that for M > 0 we can write∫ M

−M
F (t− s)U(ds) =

∫ M

−M
F (t− s) dH(s),

where the right hand side is the Riemann-Stieltjes integral. Integrating by parts, [51,
Theorem 6.30], we have∫ M

−M
F (t− s) dH(s) = H(M)F (t−M)−H(−M)F (t+M) +

∫ M

−M
F ′(t− s)H(s) ds. (7.1)

Since, ∫ M

−M
F ′(t− s)s ds = −MF (t−M)−MF (t+M) +

∫ M

−M
F (t− s) ds

and ∫ M

−M
F ′(t− s) ds = F (t−M)− F (t+M),

we have∫ M

−M
F (t− s) dH(s)−A

∫ M

−M
F (s) ds =

∫ M

−M
F ′(t− s)(H(s)−As−B) ds+W (M), (7.2)

where

W (M) = (H(M)−AM −B)F (t−M)− (H(−M) +AM −B)F (t+M)

and by our assumptions
lim
M→∞

W (M) = 0.

Therefore, taking the limit, we obtain∫
R

F (t− s) dU(s)−A
∫
R

F (s) ds =

∫
R

F ′(t− s)(H(s)−As−B) ds. (7.3)

We would like to estimate the last integral as t → ∞. Thus from now on let t > 0. We
split the integral on the right hand side in (7.3) into the following sum∫ t/2

−∞
F ′(t− s)(H(s)−As−B) ds+

∫ ∞
t/2

F ′(t− s)(H(s)−As−B) ds.
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Let us consider the first term. Since by (2.3), |H(s)−As−B| ≤ C(1 + |s|) for all s ∈ R,∣∣∣∣ ∫ t/2

−∞
F ′(t− s)(H(s)−As−B) ds

∣∣∣∣ ≤ ∫ t/2

−∞
|F ′(t− s)|(1 + |s|) ds

=

∫ −t/2
−∞

|F ′(s)|(1 + |s− t|) ds ≤ 3

∫ −t/2
−∞

|F ′(s)|(1 + |s|) ds

≤ 3 · 2β−1

|t|β−1

∫ −t/2
−∞

|F ′(s)|(1 + |s|)β ds.

Also, by (2.3) applied to s > t/2 we have∣∣∣∣ ∫ ∞
t/2

F ′(t− s)(H(s)−As−B) ds

∣∣∣∣ ≤ ∫ ∞
t/2

|F ′(s+ t)||s|−δ ds ≤ 2δ|t|−δ
∫
R

|F ′(s)| ds.

Proposition 7.2. Fix C0, η0 > 0. Let F be a bounded continuous function on R satisfying
the following conditions∫

R

|F (s)|(1 + |s|)β ds < C0, (7.4)

r(t) = U ∗ F (t) is well defined and r̆(t) = U ∗ F̆ (t) (7.5)

and there is s0 such that

U ∗ F (t)− U ∗ F (s) < C0(t− s), for s0 ≤ s < t ≤ s+ η0. (7.6)

Let U be a potential satisfying (2.3). Then, as t→∞,∣∣∣U ∗ F (t)−A
∫
R

F (s) ds
∣∣∣ ≤ O(|t|−min{β−1,δ}/2), (7.7)

where the last estimate depends only on C0 and the bounds in (2.3).

Proof. We are going to prove that F̆ satisfies assumptions of Lemma 7.1. Since

F̆ ′ = F − F̆ ,

it is enough to prove that∫
R

|F̆ (s)|(1 + |s|)β ds < C

∫
R

|F (s)|(1 + |s|)β ds (7.8)

with C independent of F and
lim

s→−∞
sF̆ (s) = 0. (7.9)

The left hand side of (7.8) is equal to∫ ∞
−∞

e−s
(∫ s

−∞
eu|F (u)|

)
(1 + |s|)β ds du =

∫ ∞
−∞

eu|F (u)|du
∫ ∞
u

e−s(1 + |s|)β ds.

Consider first∫ 0

−∞
eu|F (u)|

∫ ∞
u

e−s(1 + |s|)β ds du =

∫ 0

−∞
eu|F (u)|du

∫ ∞
0

e−s(1 + |s|)β ds

+

∫ 0

−∞
eu|F (u)|du

∫ 0

u

e−s(1 + |s|)β ds.
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The first integral is clearly finite. The second one is dominated by∫ 0

−∞
eu|F (u)|(e−u − 1)(1 + |u|)β du ≤

∫ 0

−∞
|F (u)|(1 + |u|)β du <∞.

For the integral on the positive half-line notice that for every γ > 0 there is C(γ) such
that for every u ≥ 0, ∫ ∞

u

e−s(1 + s)γ ds ≤ C(γ)e−u(1 + u)γ . (7.10)

Indeed, integrating by parts we have∫ ∞
u

e−s(1 + s)γ ds = e−u(1 + u)γ + γ

∫ ∞
u

e−s(1 + s)γ−1 ds (7.11)

and so (7.10) holds for γ ≤ 1. If γ > 1 and γ − 1 ≤ 1, then∫ ∞
u

e−s(1 + s)γ−1 ds ≤ e−u(1 + u)γ + γC(γ − 1)e−u(1 + u)γ−1

and (7.10) follows inductively from (7.11). Therefore,∫ ∞
0

eu|F (u)|
∫ ∞
u

e−s(1 + |s|)β ds du ≤
∫ ∞

0

eu|F (u)|C(β)e−u(1 + u)β du <∞ (7.12)

and (7.8) follows.
For (7.9) we consider first t < 0. Then

|tF̆ (t)| ≤ |t|e−t
∫ t

−∞
eu|F (u)| du

= |t|e−t
∫ t

−∞
eu(1 + |u|)−β(1 + |u|)β |F (u)| du

≤ |t|(1 + |t|)−β
∫
R

(1 + |u|)β |F (u)| du ≤ C0|t|(1 + |t|)−β .

Hence limt→−∞ tF̆ (t) = 0. If t > 0 then we write

e−t
∫ t/2

−∞
eu|F (u)| du ≤ ‖F‖∞e−t

∫ t/2

−∞
eu du ≤ Ce−t/2

and

e−t
∫ t

t/2

eu|F (u)| du = e−t
∫ t

t/2

eu(1 + |u|)−β(1 + |u|)β |F (u)| du

≤ C2β(2 + t)−β
∫
R

(1 + |u|)β |F (u)| du ≤ CC0(2 + t)−β .

Hence again limt→∞ tF̆ (t) = 0. Notice that∫
R

F̆ (s) ds =

∫
R

F (s) ds.

Applying now Lemma 7.1 to F̆ we have∣∣∣∣U ∗ F̆ (t)−A
∫
R

F (u)du

∣∣∣∣ ≤ C|t|−min{β−1,δ}, as t→∞ (7.13)
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where C depends only on the bounds in (2.3).
Finally we have to unsmooth inequality (7.13). For this purpose we need to apply a

Tauberian remainder theory. However we are not able to apply the Beurling - Ganelius
Theorem as in [33] (Theorem 9.6). Instead, we refer to the following Tauberian remainder
theorem due to Frennemo (Theorem 2 in [31]). For that we need to introduce the notion
of a weight function. p is a weight function on R+ if p(x) ≥ p(0), p(x + y) ≤ p(x)p(y),
p(sx) ≥ p(x) for s ≥ 1. The following result was proved by Frennemo [31]:

Theorem 7.3. Let K be an integrable function on R such that K̂(θ) does not vanish for
real arguments and that the function g(θ) = 1

K̂(θ)
can be holomorphically extended to a

strip −α < Im θ < β and

|g(θ)| ≤ C1P1(|θ|), |g′(θ)| ≤ C1P2(|θ|), −α < Im θ < β (7.14)

for some weight functions P1 and P2

Let p be a weight function such that lim supx→∞
log p(x)

x < β and let S be the inverse

of x
3
2 (P1(x)P2(x))

1
2 . Fix positive constants d0, d1 and suppose that φ be a measurable

function satisfying

‖φ‖L∞ ≤ d0, and |K ∗ φ(x)| ≤ d1p(x)−1.

Assume moreover, there are C, x0 such that

φ(t)− φ(x) ≥ −CS(p(x))−1, for x0 ≤ x ≤ t ≤ x+ S(p(x))−1.

Then there is a constant d2 independent of φ such that

|φ(x)| ≤ d2S(p(x))−1, x→∞.

In our situation K(t) = 1(0,∞)(t)e
−t and K̂(θ) = 1

1−iθ is nonzero for all real θ. Next
g(θ) = 1− iθ is holomorphic on the whole complex plane and (7.14) holds with P1(x) =

x + 1 and P2(x) = 1. Finally, φ = −r + A
∫
R
F , which by (7.6) satisfies the Tauberian

condition. Hence p(x) = C0(1 + x)min(β−1,δ) and S(x) behaves like x
1
2 at∞ i.e. S(x)x−

1
2

is between two positive constants.

Therefore, ∣∣∣∣U ∗ F (t)−A
∫
R

F (u)du

∣∣∣∣ ≤ C|t|−min(β−1,δ)/2

uniformly for all F satisfying assumptions the Lemma.

Proof of Proposition 4.7. Step 1. First we prove that the required estimates hold for
the function ψK :∣∣∣∣ψK ∗ UR+(a)− 1

m

∫
R+

ψK(b) db

∣∣∣∣ ≤ C3(ψ)| log |a||−β2 , for |a| < 1. (7.15)

Step 1a. Assume α ≤ 1. Let F (t) = ψK(et). We are going to apply Proposition 7.2. Its
assumptions are satisfied by Lemmas 6.3 and 6.7. Namely, notice that

η(t) = UR+ ∗ ψK(et),

for η as in (6.8). Hypothesis (7.6) is satisfied by (6.10) with a constant C0 independent of
F as far as f ∈ F . Choose ε < α. Then ‖f‖0,ε ≤ r̃1−ε. Now (6.5) implies (7.4) with with
C0 independent of F and (6.4) implies (7.5). Hence (7.15) follows.

Step 1a. Assume α > 1.
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For m = 0 we proceed as in the previous case applying Proposition 7.2 to F defined
as above. (7.6) is satisfied by (6.9) with a constant C0 independent of F , (6.5) implies
(7.4) with with C0 independent of φ and (6.4) implies (7.5). Hence (7.15) follows.

For m ≥ 1 we apply Lemma 7.1 to function F . To justify that its hypotheses are
fulfilled in our case we use (6.5), (6.4) and Lemma 6.8. Hence∫

R

|φ′(s)|(1 + |s|)χ ds

is bounded uniformly for f ∈ F . So we obtain (7.15)

Step 2. We estimate for |g| < e−e.∣∣∣ψ ∗ U(g)− 1

m

∫
G

ψ(h) dh
∣∣∣ ≤ ∣∣∣(ψ − ψK) ∗ U(g)

∣∣∣+
∣∣∣ψK ∗ U(g)− 1

m

∫
G

ψ(h) dh
∣∣∣

= I + II

Next, by (4.25) and (4.26), we estimate

I ≤
∑

n<log | log |g||

|(ψ − ψK) ∗ µn(g)|+
∑

n≥log | log |g||

‖(ψ − ψK) ∗ µn‖L∞

≤ C1(log | log |g||)D‖ψ − ψK‖L∞(1 + | log |g||)−β1 +
∑

n≥log | log |g||

C2(ψ)λn

≤ C1(log | log |g||)D2‖ψ‖L∞(1 + | log |g||)−β1 + C2(ψ)| log |g||log λ(1− λ)−1

≤ (2C1‖ψ‖L∞ + C2(ψ)(1− λ)−1)(log | log |g||)D| log |g||−β

and finally by (7.15)

II ≤
∣∣∣∣ψK ∗ UR+(|g|)− 1

m

∫
R+

ψK(b) db

∣∣∣∣ ≤ C3(ψ)| log |g||−β2

≤ C3(ψ)(log | log |g||)D| log |g||−β .

A Spectral gap

Let G be a locally compact group and let Ĝ denote the unitary dual of G. For a
bounded measure µ on G and for an irreducible unitary representation ρ of G realized
on a Hilbert space Vρ, let

µ̂(ρ) =

∫
G

ρ(g)µ(dg) ∈ End(Vρ)

denote the Fourier transform of µ at ρ, as in [26, 18.2]. In particular if µ is of the form
f(g) dg, where dg stands for a Haar measure on G and f ∈ L1(G) then

f̂(ρ) =

∫
G

f(g) dg.

The dual measure dρ on Ĝ is such that the following Plancherel formula holds∫
G

|f(g)|2 dg =

∫
Ĝ

‖f̂(ρ)‖22 dρ

for f ∈ L1(G) ∩ L2(G), see [26, 18.8.2]. Here ‖ · ‖2 stands for the Hilbert-Schmidt norm
on End(Vρ). Denote by ‖ · ‖∞ the operator norm on End(Vρ).
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Lemma A.1. Assume that every irreducible unitary representation of G is finite dimen-
sional. Let µ be a probability measure on G such that suppµ generates G. Then the only
representation ρ such that

‖µ̂(ρ)‖∞ = 1 (A.1)

is the trivial representation.

Proof. Let ρ be as in (A.1). Since dimVρ <∞, there are unit vectors u, v ∈ Vρ such that

‖µ̂(ρ)‖∞ = (µ̂(ρ)u, v).

Also, there is be a unitary transformation T of Vρ such that Tu = v. Hence,

1 = (µ̂(ρ)u, v) = (µ̂(ρ)u, T−1u) = (T µ̂(ρ)u, u) =

∫
G

(Tρ(g)u, u)µ(dg),

which implies that (Tρ(g)u, u) = 1 for g ∈ suppµ. Thus we have the equality in Cauchy’s
inequality |(Tρ(g)u, u)| ≤ ‖Tρ(g)u‖ · ‖u‖ = 1, which shows that there are complex
numbers tg such that Tρ(g)u = tgu. Since the representation ρ is irreducible, the span of
the vectors Rρ(g)u, g ∈ G, equals Vρ. Therefore dimVρ = 1.

Now we see that the transformation T is equal to the multiplication by a complex
number t of absolute value 1 and that there is a unitary character χρ : G→ C× such that
ρ(g) coincides with the multiplication by χρ(g). Furthermore,

1 =

∫
G

(tχρ(g)u, u)µ(dg) =

∫
G

tχρ(g)µ(dg),

which implies that tχρ(g) = 1 for g ∈ suppµ. But suppµ generates G. Hence, tχρ(g) = 1

for all g ∈ G. In particular 1 = tχρ(e) = t. Hence ρ is the trivial representation.

Recall the right regular representation, ρ, (3.1).

Lemma A.2. Let K be a compact group and let G = R+ ×K. Suppose µ is a probability
measure on G which is absolutely continuous with respect to the Haar measure and such
that suppµ generates G. Then

sup{‖ψ ∗ µ‖L2(G); ψ ∈ L2(G),

∫
K

λ(k)ψ dk = 0, ‖ψ‖L2(G) ≤ 1} < 1. (A.2)

Proof. Since Ĝ consists of the tensor products ρ = χ⊗ η, where χ ∈ R̂+ and η ∈ K̂, we
have an identification of the topological spaces Ĝ = R̂+ × K̂ and (A.2) may be rewritten
as

sup{‖ψ ∗ µ‖L2(G); ψ ∈ L2(G), suppψ̂ ⊆ Ξ, ‖ψ‖L2(G) ≤ 1} < 1, (A.3)

where Ξ = Ĝ \ (R̂+ × {triv}). Since,

(ψ ∗ µ)̂ (ρ) = ψ̂(ρ)µ̂(ρ̆),

where ρ̆(g) = ρ(g−1), Plancherel formula shows that the square of the quantity on the
left hand side of (A.3) is equal to

sup{
∫

Ξ

‖ψ̂(ρ)µ̂(ρ̆)‖22 dρ;

∫
Ξ

‖ψ̂(ρ)‖22 dρ ≤ 1, ψ ∈ L2(G)}. (A.4)

However a moment of thought shows that the quantity (A.4) is equal to

sup{‖µ̂(ρ̆)‖2∞; ρ ∈ Ξ}. (A.5)
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Suppose (A.5) is equal to 1. Then

sup{‖µ̂(ρ̆)‖∞; ρ ∈ Ξ} = sup{‖µ̂(ρ̆)‖∞; ρ ∈ Ξ and ‖µ̂(ρ̆)‖∞ ≥
1

2
}

Since µ is absolutely continuous with respect to Haar measure, Riemann-Lebesgue
Lemma [40, (28.40)] shows that the set

Ξ0 =
{
ρ ∈ Ĝ; ‖µ̂(ρ̆)‖∞ ≥

1

2

}
is compact. Then Ξ ∩ Ξ0 is compact and

sup
{
‖µ̂(ρ̆)‖∞; ρ ∈ Ξ ∩ Ξ0

}
= 1.

Hence, there is ρ ∈ Ξ ∩ Ξ0 such that

‖µ̂(ρ̆)‖∞ = 1.

Lemma A.1 implies that ρ̆ is trivial, which contradicts the fact that the trivial representa-
tion does not belong to Ξ.

B Two metrics on a compact group

Let K be a compact connected Lie group with the Lie algebra κ. Choose a Killing
form 〈·, ·〉 on κ and let d(·, ·) denote the corresponding Riemannian distance on K. There
is a neighborhood of identity U ⊆ K on which the logarithm log : U → κ is well defined
and such that

d(k, l) = d(kl−1, e) = 〈log(kl−1), log(kl−1)〉 12 (kl−1 ∈ U). (B.1)

Lemma B.1. Let (ρ,V) be faithful representation of K on a finite dimensional Hilbert
space V over C or R. Denote by ‖ ‖ the operator norm on End(V). Then there is a
constant C such that

‖ρ(k)− ρ(l)‖ ≤ Cd(k, l) (k, l ∈ K).

Proof. Notice that for A ∈ End(V),

‖ exp(A)− I‖ = ‖
∞∑
n=1

1

n!
An‖ = ‖

∞∑
n=1

1

n!
An−1‖‖A‖

≤
∞∑
n=1

1

n!
‖A‖n−1‖A‖ =

exp(‖A‖)− 1

‖A‖
‖A‖.

Since any two norms on a finite dimensional vector space are equivalent, there is a
constant C0 such that

‖ρ(X)‖ ≤ C0〈X,X〉
1
2 (X ∈ κ).

By combining the above two facts with (B.1) we see that there is a constant C such that

‖ρ(k)− ρ(e)‖ ≤ Cd(k, e) (k ∈ U).

For two arbitrary elements k, l ∈ K choose points l = k0, k1, ..., kn = k on the geodesic
from l to k such that kjk

−1
j−1 ∈ U . Then

‖ρ(k)− ρ(l)‖ ≤
n∑
j=1

‖ρ(kj)− ρ(kj−1)‖ =

n∑
j=1

‖ρ(kjk
−1
j−1)− ρ(e)‖

≤ C
n∑
j=1

d(kjk
−1
j−1, e) = C

n∑
j=1

d(kj , kj−1) = Cd(k, l).
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