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Abstract

We study parabolic stochastic partial differential equations (SPDEs), driven by two
types of operators: one linear closed operator generating a C0−semigroup and
one linear bounded operator with Wick-type multiplication, all of them set in the
infinite dimensional space framework of white noise analysis. We prove existence
and uniqueness of solutions for this class of SPDEs. In particular, we also treat the
stationary case when the time-derivative is equal to zero.
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1 Introduction and definitions

We consider a stochastic Cauchy problem of the form

d

dt
U(t, x, ω) = AU(t, x, ω) + B♦U(t, x, ω) + F (t, x, ω)

U(0, x, ω) = U0(x, ω),
(1.1)

where t ∈ (0, T ], ω ∈ Ω, and U(t, ·, ω) belongs to some Banach space X. The operator
A is densely defined, generating a C0−semigroup and B is a linear bounded operator
which combined with the Wick product ♦ introduces convolution-type perturbations into
the equation. All stochastic processes are considered in the setting of Wiener-Itô chaos
expansions. A comprehensive explanation of the action of the operators A and B in this
framework will be provided in Section 2.

Our investigations in this paper are inspired by [12] where the authors provide a
comprehensive analysis of equations of the form

d

dt
u(t, x, ω) = Au(t, x, ω) + δ(Mu(t, x, ω)) = Au(t, x, ω) +

∫
Mu(t, x, ω)♦W (x, ω) dx,
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Stochastic evolution equations

where δ denotes the Skorokhod integral and W denotes the spatial white noise process.
In Proposition 2.8 we prove that for every operator M there exists a corresponding
operator B such that B♦u = δ(Mu). On the other hand, the class of operators B is
much larger. This holds also for the class of operators A we consider (a comprehensive
analysis of all operators is given in Section 2.1). Thus, we extend the results of [12] and
[13] to a more general class of stochastic differential equations which are driven by two
linear multiplicative operators: A acting with ordinary multiplication, while B♦ is acting
with the convolution-type Wick product.

We have studied elliptic SPDEs, in particular the stochastic Dirichlet problem of the
form L♦u+ f = 0 in our previous papers [11], [18], [19]. As a conclusion to this series
of papers we study parabolic SPDEs of the form (2.1). Such equations also include as
a special case equations of the form d

dtu = Lu + f and d
dtu = L♦u + f , where L is a

strictly elliptic second order partial differential operator. These equations describe the
heat conduction in random media (inhomogeneous and anisotropic materials), where the
properties of the material are modeled by a positively definite stochastic matrix.

Other special cases of (2.1) include the heat equation with random potential d
dtu =

∆u+B♦u, the Schrödinger equation (i~) ddtu = ∆u+B♦u+f , the transport equation d
dtu =

d2

dx2u+W♦ d
dxu driven by white noise as in [20], the generalized Langevin equation d

dtu =

Ju+ C(Y ′), where Y is a Lévy process, J the infinitesimal generator of a C0−semigroup
and C a bounded operator, which was studied in [1], as well as the equation d

dtu =

Lu+W♦u, where L is a strictly elliptic partial differential operator as studied in [3] and
[8].

Equations of the form d
dtu = Au + BW were also studied in [14] and [15], where

A is not necessarily generating a C0−semigroup, but an r-integrated or a convolution
semigroup.

In order to solve (2.1) we apply the method of Wiener-Itô chaos expansions, also
known as the propagator method. With this method we reduce the SPDE to an infinite
triangular system of PDEs, which can be solved by induction. Summing up all coefficients
of the expansion and proving convergence in an appropriate weight space, one obtains
the solution of the initial SPDE.

We also consider the case of stationary equations AU + B♦U + F = 0. In particular,
elliptic SPDEs have been studied in [11], [13], [18] and [19]. With the method of chaos
expansions one can also treat hyperbolic SPDEs [9] and SPDEs with singularities [21].
One of its advantages is that it provides explicit solutions in terms of a series expansion,
which can be easily implemented also to numerical approximations and computational
simulations.

1.1 C0−semigroups

We recall some well-known facts which will be used in the sequel (see [16]). LetX be a
Banach space. If B is a bounded linear operator on X and A is the infinitesimal generator
of a C0−semigroup {Tt}t≥0 satisfying ||Tt||L(X) ≤Mewt, t ≥ 0, for some M,w > 0, then
A+B is the infinitesimal generator of a C0−semigroup {St}t≥0, on X satisfying

‖St‖L(X) ≤Me(w+M‖B‖L(X))t, t ≥ 0.

Let u(0) = u0 ∈ D = Dom(A) and f ∈ C([0,∞), X). Recall that u : [0, T ] → X is a
(classical) solution on [0, T ] to

d

dt
u(t) = Au(t) + f(t), t ∈ (0, T ], u(0) = u0, (1.2)

if u is continuous on [0, T ], continuously differentiable on (0, T ], u(t) ∈ D, t ∈ (0, T ] and
the equation is satisfied on (0, T ]. If f ∈ L1((0, T ), X), then u(t) = Ttu

0+
∫ t
0
Tt−sf(s)ds, t ∈
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Stochastic evolution equations

[0, T ] belongs to C([0, T ], X), and it is called a mild solution. Clearly, a mild solution that
is continuously differentiable on (0, T ] is a classical solution.

Let f ∈ L1((0, T ), X)∩C((0, T ], X) and v(t) =
∫ t
0
Tt−sf(s)ds, t ∈ [0, T ]. The initial value

problem has a solution u for every u0 ∈ D if one of the following conditions is satisfied
(see [16]):

(i) v is continuously differentiable on (0, T ).

(ii) v(t) ∈ D for 0 < t ≤ T and Av(t) is continuous on (0, T ].

If the initial value problem has a solution on [0, T ] for some u0 ∈ D, then v(t) satisfies
both (i) and (ii). Note that if f ∈ C1([0, T ], X) then conditions (i) and (ii) are fulfilled.
Moreover, if f ∈ C1([0, T ], X) and u0 ∈ D(A), then for the solution u of (1.2) we have
that u ∈ C1([0, T ], X) and d

dtu(0) = Au0 + f(0).

1.2 Generalized stochastic processes

Denote by (Ω,F , P ) the Gaussian white noise probability space (S′(R),B, µ), where
S′(R) denotes the space of tempered distributions, B the Borel sigma-algebra generated
by the weak topology on S′(R) and µ the Gaussian white noise measure corresponding
to the characteristic function∫

S′(R)

ei〈ω,φ〉dµ(ω) = exp

[
−1

2
‖φ‖2L2(R)

]
, φ ∈ S(R),

given by the Bochner-Minlos theorem.
We recall the notions related to L2(Ω, µ) (see [7]) where Ω = S′(R) and µ is Gaussian

white noise measure. Define the set of multi-indices I to be (NN0 )c, i.e. the set of
sequences of non-negative integers which have only finitely many nonzero components.
Especially, we denote by 0 = (0, 0, 0, . . .) the multi-index with all entries equal to zero.
The length of a multi-index is |α| =

∑∞
i=1 αi for α = (α1, α2, . . .) ∈ I, and it is always finite.

Similarly, α! =
∏∞
i=1 αi!, and all other operations are also carried out componentwise. We

will use the convention that α− β is defined if αn − βn ≥ 0 for all n ∈ N, i.e., if α− β ≥ 0,
and leave α− β undefined if αn < βn for some n ∈ N.

The Wiener-Itô theorem (sometimes also referred to as the Cameron-Martin theorem)
states that one can define an orthogonal basis {Hα}α∈I of L2(Ω, µ), where Hα are
constructed by means of Hermite orthogonal polynomials hn and Hermite functions ξn,

Hα(ω) =

∞∏
n=1

hαn(〈ω, ξn〉), α = (α1, α2, . . . , αn . . .) ∈ I, ω ∈ Ω = S′(R).

Then, every F ∈ L2(Ω, µ) can be represented via the so called chaos expansion

F (ω) =
∑
α∈I

fαHα(ω), ω ∈ S′(R),
∑
α∈I
|fα|2α! <∞, fα ∈ R, α ∈ I.

Denote by εk = (0, 0, . . . , 1, 0, 0, . . .), k ∈ N the multi-index with the entry 1 at the kth
place. Denote by H1 the subspace of L2(Ω, µ), spanned by the polynomials Hεk(·), k ∈ N.
The subspace H1 contains Gaussian stochastic processes, e.g. Brownian motion is given
by the chaos expansion B(t, ω) =

∑∞
k=1

∫ t
0
ξk(s)ds Hεk(ω).

Denote by Hm the mth order chaos space, i.e. the closure of the linear subspace
spanned by the orthogonal polynomials Hα(·) with |α| = m, m ∈ N0. Then the Wiener-Itô
chaos expansion states that L2(Ω, µ) =

⊕∞
m=0Hm, where H0 is the set of constants in

L2(Ω, µ).
It is well-known that the time-derivative of Brownian motion (white noise process)

does not exist in the classical sense. However, changing the topology on L2(Ω, µ) to
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a weaker one, T. Hida [6] defined spaces of generalized random variables containing
the white noise as a weak derivative of the Brownian motion. We refer to [6], [7] for
white noise analysis (as an infinite dimensional analogue of the Schwartz theory of
deterministic generalized functions).

Let (2N)α =
∏∞
n=1(2n)αn , α = (α1, α2, . . . , αn, . . .) ∈ I. We will often use the fact

that the series
∑
α∈I(2N)−pα converges for p > 1. Define the Banach spaces

(S)1,p = {F =
∑
α∈I

fαHα ∈ L2(Ω, µ) : ‖F‖2(S)1,p =
∑
α∈I

(α!)2|fα|2(2N)pα <∞}, p ∈ N0.

Their topological dual spaces are given by

(S)−1,−p = {F =
∑
α∈I

fαHα : ‖F‖2(S)−1,−p
=
∑
α∈I
|fα|2(2N)−pα <∞}, p ∈ N0.

The Kondratiev space of generalized random variables is (S)−1 =
⋃
p∈N0

(S)−1,−p en-
dowed with the inductive topology. It is the strong dual of (S)1 =

⋂
p∈N0

(S)1,p, called the
Kondratiev space of test random variables which is endowed with the projective topology.
Thus,

(S)1 ⊆ L2(Ω, µ) ⊆ (S)−1

forms a Gelfand triplet.
The time-derivative of the Brownian motion exists in the generalized sense and

belongs to the Kondratiev space (S)−1,−p for p ≥ 5
12 . We refer to it as to white noise and

its formal expansion is given by W (t, ω) =
∑∞
k=1 ξk(t)Hεk(ω).

We extended in [17] the definition of stochastic processes also to processes of the
chaos expansion form U(t, ω) =

∑
α∈I uα(t)Hα(ω), where the coefficients uα are ele-

ments of some Banach space X. We say that U is an X-valued generalized stochastic
process, i.e. U(t, ω) ∈ X ⊗ (S)−1 if there exists p > 0 such that ‖U‖2X⊗(S)−1,−p

=∑
α∈I ‖uα‖2X(2N)−pα <∞.
The Wick product of stochastic processes F =

∑
α∈I fαHα, G =

∑
β∈I gβHβ ∈ X ⊗

(S)−1 is

F♦G =
∑
γ∈I

∑
α+β=γ

fαgβHγ =
∑
α∈I

∑
β≤α

fβgα−βHα,

and the nth Wick power is defined by F♦n = F♦(n−1)♦F , F♦0 = 1. Note that Hnεk = H♦n
εk

for n ∈ N0, k ∈ N.
For example, let X = Ck[0, T ], k ∈ N. In [18] we proved that differentiation of a

stochastic process can be carried out componentwise in the chaos expansion, i.e. due
to the fact that (S)−1 is a nuclear space it holds that Ck([0, T ], (S)−1) = Ck[0, T ]⊗ (S)−1.
This means that a stochastic process U(t, ω) is k times continuously differentiable if and
only if all of its coefficients uα(t), α ∈ I are in Ck[0, T ].

The same holds for Banach space valued stochastic processes i.e. elements of
Ck([0, T ], X)⊗ (S)−1, where X is an arbitrary Banach space. By the nuclearity of (S)−1,
these processes can be regarded as elements of the tensor product space

Ck([0, T ], X ⊗ (S)−1) = Ck([0, T ], X)⊗ (S)−1 =

∞⋃
p=0

Ck([0, T ], X)⊗ (S)−1,−p.

2 Stochastic operators

Definition 2.1. Let X be a Banach space and O : X ⊗ (S)−1 → X ⊗ (S)−1 an oper-
ator acting on the space of stochastic processes. We will call O to be a coordinate-
wise operator if there exists a family of operators oα : X → X, α ∈ I, such that
O(
∑
α∈I fαHα) =

∑
α∈I oα(fα)Hα for all F =

∑
α∈I fαHα ∈ X ⊗ (S)−1.
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Clearly, not all operators are coordinatewise, for example O(F ) = F♦2 can not be
written in this form.

Definition 2.2. The subclass of simple coordinatewise operators consists of operators
for which oα = oβ = o, α, β ∈ I, that is, they can be written in form of O(

∑
α∈I fαHα) =∑

α∈I o(fα)Hα for some operator o : X → X.

For example, the operator of differentiation [18] and the Fourier transform [21] are
simple coordinatewise operators. The Ornstein-Uhlenbeck operator is a coordinatewise
operator but it is not a simple coordinatewise operator.

Note that even if all oα, α ∈ I, are bounded linear operators, the coordinatewise
operator O itself does not need to be bounded. If oα, α ∈ I, are uniformly bounded by
some C > 0, then O is also a bounded operator. This follows from

‖O(F )‖2X⊗(S)−1,−p
≤
∑
α∈I
‖oα‖2L(X)‖fα‖

2
X(2N)−pα

≤ C2
∑
α∈I
‖fα‖2X(2N)−pα = C2‖F‖2X⊗(S)−1,−p

<∞,

for F ∈ X ⊗ (S)−1,−p.
This condition is sufficient, but not necessary, and can be loosened by the embedding

(S)−1,−p ⊆ (S)−1,−q, q ≥ p.
Lemma 2.3. Let O be a coordinatewise operator for which all oα, α ∈ I, are polynomially
bounded i.e. ‖oα‖L(X) ≤ R(2N)rα for some r,R > 0. Then, there exists q ≥ p such that
O : X ⊗ (S)−1,−p → X ⊗ (S)−1,−q is bounded.

Proof. Let q ≥ p+ 2r. Then,

‖O(F )‖2X⊗(S)−1,−q
≤ R2

∑
α∈I

(2N)2rα‖fα‖2X(2N)−qα = R2
∑
α∈I
‖fα‖2X(2N)−(q−2r)α

≤ R2
∑
α∈I
‖fα‖2X(2N)−pα = R2‖F‖2X⊗(S)−1,−p

<∞.

Thus, ‖O‖L(X)⊗(S)−1
≤ R.

Note that the condition ‖oα‖L(X) ≤ R(2N)rα for some r,R > 0 is actually equivalent
to stating that there exists r > 0 such that

∑
α∈I ‖oα‖2L(X)(2N)−rα <∞.

Throughout the paper we will consider the equation

d

dt
U(t, ω) = AU(t, ω) + B♦U(t, ω) + F (t, ω), t ∈ (0, T ], ω ∈ Ω,

U(0, ω) = U0(ω),
(2.1)

where both operators A and B are assumed to be coordinatewise operators, i.e. com-
posed out of a family of operators {Aα}α∈I , {Bα}α∈I , respectively. The operators Aα,
α ∈ I, are assumed to be infinitesimal generators of C0−semigroups with a common
domain D dense in X and the action of A is given by A(U) =

∑
α∈I Aα(uα)Hα, for

U =
∑
α∈I uαHα ∈ Dom(A) ⊆ D ⊗ (S)−1, where

Dom(A) = {U =
∑
α∈I

uαHα ∈ D ⊗ (S)−1 : ∃pU > 0,
∑
α∈I
‖Aα(uα)‖2X(2N)−pUα <∞}.
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The operators Bα, α ∈ I, are assumed to be bounded and linear on X, and the action of
the operator B♦ : X ⊗ (S)−1 → X ⊗ (S)−1 is defined by

B♦(U) =
∑
α∈I

∑
β≤α

Bβ(uα−β)Hα =
∑
γ∈I

∑
α+β=γ

Bα(uβ)Hγ .

In the next two lemmas we provide two sufficient conditions that ensure the operator
B♦ to be well-defined. Both conditions are actually equivalent to the fact that Bα, α ∈ I,
are polynomially bounded, but they provide finer estimates on the stochastic order
(Kondratiev weight) of the domain and codomain of B♦.

Lemma 2.4. If the operators Bα, α ∈ I, satisfy
∑
α∈I ‖Bα‖2L(X)(2N)−rα < ∞, then B♦

is well-defined as a mapping B♦ : X ⊗ (S)−1,−p → X ⊗ (S)−1,−(p+r+m), m > 1.

Proof. For U ∈ X ⊗ (S)−1,−p and q = p+ r +m we have∑
γ∈I
‖
∑

α+β=γ

Bα(uβ)‖2X(2N)−qγ ≤
∑
γ∈I

[ ∑
α+β=γ

‖Bα‖L(X)‖uβ‖X
]2

(2N)−(p+r+m)γ

=
∑
γ∈I

(2N)−mγ

 ∑
α+β=γ

‖Bα‖2L(X)(2N)−rγ

 ∑
α+β=γ

‖uβ‖2X(2N)−pγ


≤M

(∑
α∈I
‖Bα‖2L(X)(2N)−rα

)∑
β∈I

‖uβ‖2X(2N)−pβ

 <∞,

where M =
∑
γ∈I(2N)−mγ <∞, for m > 1.

Lemma 2.5. If the operators Bα, α ∈ I, satisfy
∑
α∈I ‖Bα‖L(X)(2N)−

r
2α <∞, for some

r > 0, then B♦ is well-defined as a mapping B♦ : X ⊗ (S)−1,−r → X ⊗ (S)−1,−r.

Proof. For U ∈ X ⊗ (S)−1,−r, we have by the generalized Minkowski inequality that∑
γ∈I
‖
∑

α+β=γ

Bα(uβ)‖2X(2N)−rγ ≤
∑
γ∈I

[ ∑
α+β=γ

‖Bα‖L(X)‖uβ‖X
]2

(2N)−rγ

≤
∑
γ∈I

[ ∑
α+β=γ

‖Bα‖L(X)(2N)−
r
2α‖uβ‖X(2N)−

r
2β
]2

≤

(∑
α∈I
‖Bα‖L(X)(2N)−

r
2α

)2∑
β∈I

‖uβ‖2X(2N)−rβ <∞.

2.1 Special cases and relationship to other works

Some of the most important operators of stochastic calculus are the operators of the
Malliavin calculus. We recall their definitions in the generalized S′(R) setting [10].

• The Malliavin derivative, D, as a stochastic gradient in the direction of white noise,
is a linear and continuous mapping D : X ⊗ (S)−1 → X ⊗ S′(R)⊗ (S)−1 given by

Du =
∑
α∈I

∑
k∈N

αk uα ⊗ ξk ⊗Hα−εk , for u =
∑
α∈I

uα ⊗Hα.

In terms of quantum theory it corresponds to the annihilation operator reducing
the order of the chaos space ( D : Hm → Hm−1).
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• The Skorokhod integral, δ, as an extension of the Itô integral to non-anticipating
processes, is a linear and continuous mapping δ : X ⊗ S′(R)⊗ (S)−1 → X ⊗ (S)−1
given by

δ(F ) =
∑
α∈I

∑
k∈N

fα ⊗ vα,k ⊗Hα+εk , for F =
∑
α∈I

fα ⊗

(∑
k∈N

vα,k ξk

)
⊗Hα.

It is the adjoint operator of the Malliavin derivative and in terms of quantum theory
it corresponds to the creation operator increasing the order of the chaos space
(δ : Hm → Hm+1).

• The Ornstein-Uhlenbeck operator, R, as the composition of the previous ones δ ◦D,
is the stochastic analogue of the Laplacian. It is a linear and continuous mapping
R : X ⊗ (S)−1 → X ⊗ (S)−1 given by

R(u) =
∑
α∈I
|α|uα ⊗Hα, for u =

∑
α∈I

uα ⊗Hα.

In terms of quantum theory it corresponds to the number operator. It is a selfadjoint
operator R : Hm → Hm with eigenvectors equal to the basis elements Hα, α ∈ I,
i.e. R(Hα) = |α|Hα, α ∈ I. Thus, Gaussian processes with zero expectation are the
only fixed points for the Ornstein-Uhlenbeck operator.

Clearly, the Ornstein-Uhlenbeck operator is a coordinatewise operator, while the Malli-
avin derivative and the Skorokhod integral are not coordinatewise operators.

The Ornstein-Uhlenbeck operator is the infinitesimal generator of the semigroup
Tt = etR, t ≥ 0, given by Tt(u) =

∑
α∈I e

−|α|tuα⊗Hα, for u =
∑
α∈I uα⊗Hα ∈ X⊗ (S)−1.

It is also closely connected to the Ornstein-Uhlenbeck process. The Ornstein-
Uhlenbeck process is the solution of the SDE du(t, ω) = −u(t, ω)dt+ dB(t, ω), u(0, ω) =

u0(x, ω), and it is given by u(t, ω) = e−tu0(ω) +
∫ t
0
et−sdB(s, ω). It is a Markov pro-

cess with transition semigroup {Tt}t≥0 [2]. The solution of the generalized heat equa-
tion d

dtu + R(u) = 0, u(0) = u0, is given by u = Tt(u0), i.e. u(t, x) = (Ttu0)(x) and
(Ttϕ)(x) = E(ϕ(u(t, x)) for any ϕ ∈ Cb(R) and u is the Ornstein-Uhlenbeck process.

Now we turn to our equation

d

dt
U(t, ω) = AU(t, ω) + B♦U(t, ω) + F (t, ω), (2.2)

where A and B are coordinatewise operators as described in Section 2, composed out of
a family of operators {Aα}α∈I , {Bα}α∈I , respectively, where Aα are infinitesimal gener-
ators on X and Bα are bounded linear operators on X, both families being polynomially
bounded, and their actions given by

AU =
∑
α∈I

Aα(uα)Hα, for U =
∑
α∈I

uαHα, (2.3)

B♦U =
∑
α∈I

∑
β≤α

Bβ(uα−β)Hα, for U =
∑
α∈I

uαHα. (2.4)

Some important special cases include the following:

I) Special cases for A:

1) A is a simple coordinatewise operator, i.e. Aα = A,α ∈ I, where A is the
infinitesimal generator of a C0−semigroup on X. Such operators are, for
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example the Laplacian ∆ on X = W 2,2(Rn) or any strictly elliptic linear
partial differential operator of even order P (x,D) =

∑
|ι|≤2m aι(x)Dι. For

example, second order elliptic operators can be written in divergence form
L = ∇ · (Q∇ ·+b) + c∇·, where Q is a positively definite function matrix.

2) Aα = A+Rα, α ∈ I, where A is as in 1), while Rα, α ∈ I, are bounded linear
operators on X so that R is a coordinatewise operator

RU(t, ω) =
∑
α∈I

Rαuα(t)Hα(ω).

Especially, if we take A = 0 and Rα to be multiplication operators Rα(x) =

rα · x, x ∈ X, then the resulting operator R is a self-adjoint operator with
eigenvalues rα corresponding to the eigenvectors Hα and thus represents a
natural generalization of the Ornstein-Uhlenbeck operator. For rα = |α|, α ∈ I,
we retrieve the Ornstein-Uhlenbeck operator R.

Finally, we note that every bounded linear coordinatewise operator R can be
written in the form Ru = δ(Mu) where M is a generalization of the Malliavin
derivative. This will be done in Proposition 2.6.

II) Special cases for B:

1) B is an operator acting as a multiplication operator with a deterministic
function, i.e. Bα = b for α = (0, 0, 0, 0, . . .) and Bα = 0 for all other α ∈ I. Its
action is thus

B♦U(t, ω) =
∑
α∈I

b · uα(t)Hα(ω).

For example, we may take X = L2(Rn) and b = b(x), x ∈ Rn, for an essentially
bounded function b.

2) B is multiplication with spatial white noise onX = L2(Rn). LetBk := Bεk = ξk,
k ∈ N, and Bα = 0 for α 6= εk, i.e. Bk(v(x)) = ξk(x) · v(x), k ∈ N. Then,

B♦U(t, ω) = W (x, ω)♦U(t, ω).

Clearly,

B♦U =
∑
γ∈I

∑
k∈N

Bk(uα−εk)Hγ =
∑
γ∈I

∑
k∈N

uα−εkξkHγ

=
∑
γ∈I

∑
α+εk=γ

uαξkHγ = W♦U.

Multiplication with spatial white noise is important for applications since it
describes stationary perturbations.

3) B is of the form Bεk = Bk, k ∈ N, and Bα = 0 for α 6= εk, where Bk : X → X,
k ∈ N, are bounded linear operators.

Note that in this case there is a one-to-one correspondence between opera-
tors of the form B♦ and operators of the form δ(Mu) where M is a simple
coordinatewise operator. This will be done in Proposition 2.8.

4) B is a simple coordinatewise operator, i.e. Bα = B,α ∈ I, where B is a
bounded linear operator on X. Alternatively, we may also regard operators as
B : X → X ′ in order to make them bounded; such operators are for example
the divergence ∇· as a mapping from X = W 1,2(Rn) to X ′ = W−1,2(Rn).

5) B♦ = ∇ ·♦(Q♦∇ ·+b♦) + c♦∇· as a strictly elliptic second order operator with
random coefficients. This operator is obtained for Bα = ∇· (Qα∇·+bα) + cα∇·,
α ∈ I, and was studied in [18] and [19].
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Proposition 2.6. Let R : X ⊗ (S)−1 → X ⊗ (S)−1 be a bounded linear coordinatewise
operator defined by Ru(t, ω) =

∑
α∈I Rαuα(t)Hα(ω).

1. There exists an operator M : X ⊗ (S)−1 → X ⊗ S′(R)⊗ (S)−1 of the form

Mu =

∞∑
k=1

Mku⊗ ξk, u ∈ X ⊗ (S)−1,

for some coordinatewise operators Mk : X ⊗ (S)−1 → X ⊗ (S)−1, k ∈ N, such that

Ru = δ(Mu)

holds.
2. Especially, if R is a selfadjoint operator, then M is a generalization of the Malliavin

derivative.

Proof. a) In [10] we proved that the Skorokhod integral is invertible, i.e. there exists a
unique solution to equations of the form δ(v) = f . Considering the equation δ(Mu) =∑
α∈I Rαuα Hα and applying the result from [10], we obtain Mu in the form

Mu =
∑
α∈I

∑
k∈N

(αk + 1)
Rα+εk(uα+εk)

|α+ εk|
⊗ ξk ⊗Hα.

By defining

Mku =
∑
α∈I

(αk + 1)
Rα+εk(uα+εk)

|α+ εk|
⊗Hα, k ∈ N,

we obtain the assertion.
b) Let R be a self-adjoint operator with eigenvalues rα and eigenvectors Hα, α ∈ I,

i.e., an operator of the form Ru =
∑
α∈I rαuαHα. Assume that rα =

∑
k∈N rk,α for some

rk,α ∈ R, k ∈ N, α ∈ I, is an arbitrary decomposition of the value rα.
Define

Mku =
∑
α∈I

rk,αuα ⊗Hα−εk .

Then Mu =
∑
k∈NMku⊗ ξk =

∑
k∈N

∑
α∈I rk,αuα ⊗Hα−εk ⊗ ξk and

δ(Mu) =
∑
k∈N

∑
α∈I

rk,αuα ⊗Hα =
∑
α∈I

rαuα ⊗Hα.

Remark 2.7. The converse is not true. Even if each Mk, k ∈ N, is a simple coordinate-
wise operator (and so is M), R := δ ◦M does not need to be a coordinatewise operator.
This would require that the system Rα(uα) =

∑
k∈Nmk(uα−εk), α ∈ I, is solvable for

Rα(·) given the functions mk(·), k ∈ N, which is not true in general.

Proposition 2.8. Let M : X ⊗ (S)−1 → X ⊗ S′(R)⊗ (S)−1 be of the form

Mu =

∞∑
k=1

Mku⊗ ξk, u ∈ X ⊗ (S)−1, (2.5)

for some simple coordinatewise operators Mk : X ⊗ (S)−1 → X ⊗ (S)−1, k ∈ N. Then,
there exists a coordinatewise operator B such that Bα = 0 for α 6= εk, k ∈ N, and

δ(Mu) = B♦u

holds.
Conversely, for any coordinatewise operator B such that Bα = 0 for α 6= εk, k ∈

N, there exists an operator M of the form Mu =
∑∞
k=1 Mku ⊗ ξk for some simple

coordinatewise operators Mk, k ∈ N, such that δ(Mu) = B♦u holds.
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Proof. Let M be an operator as stated above and since Mk are simple coordinatewise
operators, we can write them as

Mk(u) =
∑
α∈I

mk(uα)Hα, u =
∑
α∈I

uαHα,

for some operators mk : X → X, k ∈ N. Thus,

Mu =

∞∑
k=1

∑
α∈I

mk(uα)Hα ⊗ ξk

which further implies

δ(Mu) =

∞∑
k=1

∑
α∈I

mk(uα)Hα+εk =

∞∑
k=1

∑
α∈I

mk(uα−εk)Hα. (2.6)

On the other hand, if B is such that Bα = 0 for α 6= εk, k ∈ N, and we denote by
Bk := Bεk , k ∈ N, the operators acting on X, then

B♦u =
∑
α∈I

∞∑
k=1

Bk(uα−εk)Hα. (2.7)

From (2.6) and (2.7) it follows that δ(Mu) = B♦u if and only if mk = Bk for all k ∈ N.
Thus, there is a one-to-one correspondence between the operators B♦ and δ ◦M.

Remark 2.9. In [12] and [13] Rozovskii and Lototsky considered the equation d
dt =

Au + δ(Mu) + f , where M is of the form (2.5). They implicitly assumed that all their
operators A and Mk, k ∈ N, belong to our class of simple coordinatewise operators.
This corresponds to our special cases I-1) and II-3).

Some special cases of stochastic differential equations covered by (2.2) include the
following:

• The heat equation with random potential

d

dt
u = ∆u+ B♦u.

In particular, if the random potential is modeled by stationary perturbations, we
may take spatial white noise as a model and obtain d

dtu = ∆u + W♦u. This
corresponds to the special choice of operators I-1) and II-2).

• The heat equation in random (inhomogeneous and anisotropic) media, where the
physical properties of the medium are modeled by a stochastic matrix Q. This
corresponds to the case I-1) with A = 0 and II-5) leading to an equation of the form

d

dt
u = ∇ · ♦(Q♦∇ · u+ b♦u) + c♦∇ · u+ f.

• Taking A = 0 and Bk := Bεk = ξk∇·, k ∈ N, (see special cases II-2) and II-4)) we
obtain the transport equation driven by white noise

d

dt
u = ∆u+W♦∇ · u.

• The Langevin equation
d

dt
u = −λu+W (t),
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λ > 0, corresponding to the case I-1) with A = −λ, f = W and B = 0. Its solution
is the Ornstein-Uhlenbeck process describing the spatial position of a Brownian
particle in a fluid with viscosity λ.

In [1] the authors considered the generalized Langevin equation leading to gener-
alized Ornstein-Uhlenbeck operators driven by Lévy processes

d

dt
u = Ju+ C(

d

dt
Y ),

where Y is a Lévy process, J the infinitesimal generator of a C0−semigroup and C
a bounded operator. All processes are Hilbert space valued. This corresponds to
our case with X being this Hilbert space, A = J , B = 0 and f = C(Y ′).

• The equation d
dt = Au+ δ(Mu) + f , that was extensively studied in [12] and [13].

This corresponds to our special cases I-1) and II-3).

• The equation
d

dt
u = Lu+W♦u,

where L is a strictly elliptic partial differential operator as studied in [3] and [8].
This corresponds to the special case I-1) and II-2).

3 Stochastic evolution equations

Now we turn to the general case of stochastic Cauchy problems of the form d
dtU(t, ω) =

AU(t, ω)+B♦U(t, ω)+F (t, ω), t ∈ (0, T ], ω ∈ Ω, with initial value U(0, ω) = U0(ω), ω ∈ Ω,
and all processes are X-valued for a Banach space X.

Definition 3.1. It is said that U is a solution to (2.1) if U ∈ C([0, T ], X) ⊗ (S)−1 ∩
C1((0, T ], X)⊗ (S)−1 and U satisfies (2.1).

Theorem 3.2. Let A be a coordinatewise operator of the form (2.3), where the operators
Aα, α ∈ I, defined on the same domain D dense in X, are infinitesimal generators of
C0−semigroups (Tt)α, t ≥ 0, α ∈ I, uniformly bounded by

‖(Tt)α‖L(X) ≤Mewt, t ≥ 0, for some M,w > 0. (3.1)

Let B♦ be of the form (2.4), where Bα, α ∈ I, are bounded linear operators on X so that
there exists p > 0 such that

K :=
∑
α∈I
‖Bα‖(2N)−p

α
2 <∞. (3.2)

Let the initial value U0 ∈ X ⊗ (S)−1 be such that U0 ∈ Dom(A) i.e.

U0(ω) =
∑
α∈I

u0αHα(ω) ∈ X ⊗ (S)−1,−p, satisfies
∑
α∈I
‖u0α‖2X(2N)−pα <∞; (3.3)

and

AU0(ω) =
∑
α∈I

Aαu
0
αHα(ω) ∈ X ⊗ (S)−1,−p, satisfies

∑
α∈I
‖Aαu0α‖2X(2N)−pα <∞.

(3.4)

Moreover, let

F (t, ω) =
∑
α∈I

fα(t)Hα(ω) ∈ C1([0, T ], X)⊗ (S)−1, t 7→ fα(t) ∈ C1([0, T ], X), α ∈ I,

so that
∑
α∈I
‖fα‖2C1([0,T ],X)(2N)−pα =

∑
α∈I

(
sup
t∈[0,T ]

‖fα(t)‖X + sup
t∈[0,T ]

‖f ′α(t)‖X
)2

(2N)−pα <∞.

(3.5)
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Then, the stochastic Cauchy problem (2.1) has a unique solution U in C1([0, T ], X)⊗
(S)−1,−p.

Proof. We seek for the solution in form of U(t, ω) =
∑
α∈I uα(t)Hα(ω). Then, the Cauchy

problem (2.1) is equivalent to the infinite system:

d

dt
uα(t) = Aαuα(t) +

∑
β≤α

Bβuα−β(t) + fα(t), t ∈ (0, T ],

uα(0) = u0α ∈ D, α ∈ I.
(3.6)

Let 0 be the multi-index 0 = (0, 0, ...). We rewrite (3.6) as

d

dt
uα(t) = (Aα +B0)uα(t) +

∑
0<β≤α

Bβuα−β(t) + fα(t), t ∈ (0, T ],

uα(0) = u0α ∈ D, α ∈ I.
(3.7)

Next, Aα +B0 are infinitesimal generators of C0−semigroups (St)α in X such that

‖(St)α‖ ≤Me(w+M‖B0‖)t, t ≥ 0, α ∈ I. (3.8)

According to Subsection 1.1, if fα, α ∈ I, fulfills condition (i) or (ii), the inhomoge-
neous initial value problem (3.7) has a solution uα(t) ∈ C([0, T ], X)∩C1((0, T ], X), α ∈ I,
given by

u0(t) = (St)0u
0
0 +

∫ t

0

(St−s)0f0(s)ds, t ∈ [0, T ]

uα(t) = (St)αu
0
α +

∫ t

0

(St−s)α

( ∑
0<β≤α

Bβuα−β(s) + fα(s)
)
ds, t ∈ [0, T ].

(3.9)

Since fα ∈ C1([0, T ], X) it follows by induction on α that∑
0<β≤α

Bβuα−β(s) + fα(s) ∈ C1([0, T ], X), for all α ∈ I.

Thus, uα ∈ C1([0, T ], X) and d
dtuα(0) = (Aα +B0)u0α +

∑
0<β≤αBβu

0
α−β + fα(0), α ∈ I.

Note that for each fixed α ∈ I, uα(t) exists for all t ∈ [0, T ] and it is the unique
(classical) solution on the whole interval [0, T ]. It remains to prove that

∑
α∈I uα(t)Hα(ω)

converges in C1([0, T ], X)⊗ (S)−1,−p.
First, we show that U(t, ω) =

∑
α∈I uα(t)Hα(ω) ∈ C1([0, T0], X)⊗ S−1,−p for appropri-

ate T0 ∈ (0, T ], i.e. we show that∑
α∈I
‖uα‖2C1([0,T0],X)(2N)−pα =

∑
α∈I

(
sup

t∈[0,T0]

‖uα(t)‖X + sup
t∈[0,T0]

‖ d
dt
uα(t)‖X

)2
(2N)−pα <∞.

(3.10)
Later on we will prove that the same holds if we take in (3.10) supremums over the

intervals [T0, 2T0], [2T0, 3T0], ... etc. Since [0, T ] can be covered by finitely many intervals
of the form [kT0, (k + 1)T0], k ∈ N0, we conclude that∑
α∈I
‖uα‖2C1([0,T ],X)(2N)−pα =

∑
α∈I

(
sup
t∈[0,T ]

‖uα(t)‖X + sup
t∈[0,T ]

‖ d
dt
uα(t)‖X

)2
(2N)−pα <∞.

(3.11)
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In order to do this, we introduce a notation for subsets of multi-indices

In,m = {α ∈ I : |α| ≤ n ∧ Index(α) ≤ m}, n,m ∈ N,

where, for α = (α1, α2, . . . , αm, 0, 0, . . . ) ∈ I, we have |α| = α1+α2+ · · ·+αm and Index(α)

is last coordinate where α has a nonzero entry. For later reference, we introduce the
function

C(t) =
M2

(w +M‖B0‖)2
(e(w+M‖B0‖)t − 1)2 (3.12)

and fix T0 ∈ (0, T ] such that C(T0) < 1
5K2 .

First, we show that∑
α∈I
‖uα(t)‖2C([0,T0],X)(2N)−pα =

∑
α∈I

sup
t∈[0,T0]

‖uα(t)‖2X(2N)−pα <∞,

by proving that partial sums
∑
α∈In,m supt∈[0,T0] ‖uα(t)‖2X(2N)−pα, n,m ∈ N, are bounded

from above.

Using (3.9) we obtain

1

3

∑
α∈In,m

‖uα(t)‖2X(2N)−pα ≤
∑

α∈In,m

‖(St)α‖2‖u0α‖2X(2N)−pα

+
∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖
∑

0<β≤α

‖Bβuα−β(s)‖Xds
]2

(2N)−pα

+
∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖‖fα(s)‖Xds
]2

(2N)−pα.

The first term on the right-hand side, for all t ∈ [0, T0], having in mind (3.3) and (3.8),
satisfies∑

α∈In,m

‖(St)α‖2‖u0α‖2X(2N)−pα ≤
∑
α∈I
‖(St)α‖2‖u0α‖2X(2N)−pα

≤M2e2(w+M‖B0‖)T0

∑
α∈I
‖u0α‖2X(2N)−pα := Q1 <∞.

(3.13)

Similarly, for all t ∈ [0, T0], using (3.5) and (3.8), the third term satisfies

∑
α∈In,m

[ ∫ t

0

‖(St−s)α‖‖fα(s)‖Xds
]2

(2N)−pα ≤
∑
α∈I

[ ∫ t

0

‖(St−s)α‖‖fα(s)‖Xds
]2

(2N)−pα

≤
[ ∫ t

0

Me(w+M‖B0‖)(t−s)ds
]2∑

α∈I
sup
s∈[0,t]

‖fα(s)‖2X(2N)−pα

≤ M2

(w +M‖B0‖)2
(
e(w+M‖B0‖)T0 − 1

)2∑
α∈I

sup
t∈[0,T ]

‖fα(t)‖2X(2N)−pα := G <∞.

(3.14)

Note that in (3.14) we took the supremum over the whole interval [0, T ].

For the second term, using (3.2), (3.8), (3.12) and the generalized Minkowski inequal-
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ity, we obtain

∑
α∈In,m

[ ∫ t

0

‖(St−s)α‖
∑

β+γ=α

‖Bβ‖‖uγ(s)‖Xds
]2

(2N)−pα

≤ M2

(w +M‖B0‖)2
(
e(w+M‖B0‖)t − 1

)2 ∑
α∈In,m

[ ∑
β+γ=α

sup
s∈[0,t]

‖Bβ‖‖uγ(s)‖X
]2

(2N)−pα

≤ C(T0)
( ∑
β∈In,m

‖Bβ‖(2N)−p
β
2

)2( ∑
γ∈In,m

sup
t∈[0,T0]

‖uγ(t)‖2X(2N)−pγ
)

≤ C(T0)K2
∑

α∈In,m

sup
t∈[0,T0]

‖uα(t)‖2X(2N)−pα. (3.15)

Finally, for all n,m ∈ N, we obtain

1

3

∑
α∈In,m

sup
t∈[0,T0]

‖uα(t)‖2X(2N)−pα ≤ Q1 +G+ C(T0)K2
∑

α∈In,m

sup
t∈[0,T0]

‖uα(t)‖2X(2N)−pα.

Since 1
3 − C(T0)K2 > 1

5 − C(T0)K2 > 0, we have

∑
α∈In,m

sup
t∈[0,T0]

‖uα(t)‖2X(2N)−pα ≤ Q1 +G
1
3 − C(T0)K2

. (3.16)

Let (mn)n∈N be an arbitrary sequence of positive integers tending to infinity. Then,

∑
α∈I

sup
t∈[0,T0]

‖uα(t)‖2X(2N)−pα = lim
n→∞

∑
α∈In,mn

sup
t∈[0,T0]

‖uα(t)‖2X(2N)−pα ≤ Q1 +G
1
3 − C(T0)K2

,

since it is a series of positive numbers and thus does not depend on the order of
summation.

Now we show that

∑
α∈I
‖ d
dt
uα(t)‖2C([0,T0],X)(2N)−pα =

∑
α∈I

sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα <∞.

In order to acomplish that, we differentiate (3.9) with respect to t, and obtain

d

dt
u0(t) = (St)0(A0 +B0)u00 +

∫ t

0

(St−s)0
d

ds
f0(s)ds+ (St)0f(0), t ∈ [0, T ],

d

dt
uα(t) = (St)α(Aα +B0)u0α +

∫ t

0

(St−s)α

( ∑
0<β≤α

Bβ
d

ds
uα−β(s) +

d

ds
fα(s)

)
ds

+ (St)α

( ∑
0<β≤α

Bβuα−β(0) + fα(0)
)
, t ∈ [0, T ], α ∈ I.

(3.17)

In the sequel we estimate partial sums of
∑
α∈I supt∈[0,T0] ‖

d
dtuα(t)‖2X(2N)−pα. So,
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1

5

∑
α∈In,m

‖ d
dt
uα(t)‖2X(2N)−pα ≤

∑
α∈In,m

‖(St)α‖2‖(Aα +B0)u0α‖2X(2N)−pα

+
∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖
∑

0<β≤α

‖Bβ
d

ds
uα−β(s)‖Xds

]2
(2N)−pα

+
∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖‖
d

ds
fα(s)‖Xds

]2
(2N)−pα

+
∑

α∈In,m

‖(St)α‖2
[ ∑
0<β≤α

‖Bβuα−β(0)‖X
]2

(2N)−pα

+
∑

α∈In,m

‖(St)α‖2‖fα(0)‖2X(2N)−pα.

According to (3.3) and (3.4), we obtain
∑
α∈I(Aα +B0)u0αHα(ω) ∈ X ⊗ (S)−1,−p. So the

first term on the right-hand side can be evaluated by∑
α∈In,m

‖(St)α‖2‖(Aα +B0)u0α‖2X(2N)−pα ≤
∑
α∈I
‖(St)α‖2‖(Aα +B0)u0α‖2X(2N)−pα

≤M2e2(w+M‖B0‖)T0

∑
α∈I
‖(Aα +B0)u0α‖2X(2N)−pα := Q′1 <∞. (3.18)

The third term, for all t ∈ [0, T0], satisfies

∑
α∈In,m

[ ∫ t

0

‖(St−s)α‖‖
d

ds
fα(s)‖ds

]2
(2N)−pα ≤

∑
α∈I

[ ∫ t

0

‖(St−s)α‖‖
d

ds
fα(s)‖Xds

]2
(2N)−pα

≤ M2

(w +M‖B0‖)2
(
e(w+M‖B0‖)T0 − 1

)2∑
α∈I

sup
t∈[0,T ]

‖ d
ds
fα(t)‖2X(2N)−pα := G′ <∞.

(3.19)

The fourth term, using (3.2), (3.3), (3.8) and the generalized Minkowski inequality, can
be estimated by∑
α∈In,m

‖(St)α‖2
[ ∑
0<β≤α

‖Bβuα−β(0)‖X
]2

(2N)−pα ≤
∑
α∈I
‖(St)α‖2

[ ∑
β+γ=α

‖Bβu0γ‖X
]2

(2N)−pα

≤M2e2(w+M‖B0‖)t
∑
α∈I

[ ∑
β+γ=α

‖Bβ‖‖u0γ‖X
]2

(2N)−pα

≤M2e2(w+M‖B0‖)T0

(∑
β∈I

‖Bβ‖(2N)−p
β
2

)2(∑
γ∈I
‖u0γ‖2X(2N)−pγ

)
:= H ′1 <∞.

(3.20)

For the fifth term, using (3.5) and (3.8), we have∑
α∈In,m

‖(St)α‖2‖fα(0)‖2X(2N)−pα ≤
∑
α∈I
‖(St)α‖2‖fα(0)‖2X(2N)−pα

≤M2e2(w+M‖B0‖)T0

∑
α∈I

sup
t∈[0,T ]

‖fα(t)‖2X(2N)−pα := N ′ <∞. (3.21)

Finally, for the second term, using (3.2), (3.8), (3.12) and the generalized Minkowski
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inequality, we obtain∑
α∈In,m

[ ∫ t

0

‖(St−s)α‖
∑

β+γ=α

‖Bβ‖‖
d

ds
uγ(s)‖Xds

]2
(2N)−pα

≤ M2

(w +M‖B0‖)2
(
e(w+M‖B0‖)t − 1

)2 ∑
α∈In,m

[ ∑
β+γ=α

sup
s∈[0,t]

‖Bβ‖‖
d

ds
uγ(s)‖X

]2
(2N)−pα

≤ C(t)
( ∑
β∈In,m

‖Bβ‖(2N)−p
β
2

)2( ∑
γ∈In,m

sup
s∈[0,t]

‖ d
dt
uγ(s)‖2X(2N)−pγ

)
≤ C(T0)K2

∑
α∈In,m

sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα. (3.22)

Finally, for all n,m ∈ N, we obtain

1

5

∑
α∈In,m

sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα ≤Q′1 +G′ +H ′1 +N ′

+ C(T0)K2
∑

α∈In,m

sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα.

Since 1
5 − C(T0)K2 > 0, we have∑

α∈In,m

sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα ≤ Q′1 +G′ +H ′1 +N ′

1
5 − C(T0)K2

. (3.23)

Again, taking (mn)n∈N to be an arbitrary sequence of positive integers tending to infinity,
we have∑
α∈I

sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα = lim

n→∞

∑
α∈In,mn

sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα ≤ Q′1 +G′ +H ′1 +N ′

1
5 − C(T0)K2

.

Therefore, we obtain

U(t, ω) ∈ C1([0, T0], X)⊗ (S)−1,−p, i.e.∑
α∈I

(
sup

t∈[0,T0]

‖uα(t)‖X + sup
t∈[0,T0]

‖ d
dt
uα(t)‖X

)2
(2N)−pα ≤

2
∑
α∈I

(
sup

t∈[0,T0]

‖uα(t)‖2X + sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X

)
(2N)−pα <∞.

(3.24)

Next, we consider in (3.24) supremums over the interval [T0, 2T0]. On [T0, 2T0] one
can rewrite the initial value problem (3.6) in the following equivalent form:

d

dt
vα(t) = Aαvα(t) +

∑
β≤α

Bβvα−β(t) + fα(T0 + t), t ∈ (0, T0]

vα(0) = v0α := uα(T0), α ∈ I.
(3.25)

The semigroup corresponding to the generator Aα +B0 in (3.25) is again the semigroup
(St)α, t ≥ 0. Using (3.6) and (3.24), we have that U(t, ω) ∈ Dom(A), for all t ∈ [0, T0], and
AU(t, ω) ∈ X ⊗ (S)−1,−p, t ∈ [0, T0]. According to this we have that V 0(ω) = U(T0, ω) =∑

α∈I v
0
αHα(ω) ∈ Dom(A) and AV 0(ω) ∈ X ⊗ (S)−1,−p. Thus,

vα(t) = (St)αv
0
α +

∫ t

0

(St−s)α

( ∑
0<β≤α

Bβvα−β(s) + fα(T0 + s)
)
ds, t ∈ [0, T0],
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and clearly vα(t) = uα(T0 + t), t ∈ [0, T0], α ∈ I.
When approximating partial sums of

∑
α∈I supt∈[0,T0] ‖vα(t)‖2X(2N)−pα, comparing to

the previous calculations for uα(t), only the constant Q1 will be different, and here, we
denote it by Q2, so we again obtain∑

α∈I
sup

t∈[0,T0]

‖vα(t)‖2X(2N)−pα =
∑
α∈I

sup
t∈[T0,2T0]

‖uα(t)‖2X(2N)−pα ≤ Q2 +G
1
3 − C(T0)K2

.

Similarly, for the derivative d
dtV (t, ω) we obtain

∑
α∈I

sup
t∈[0,T0]

‖ d
dt
vα(t)‖2X(2N)−pα ≤ Q′2 +G′ +H ′2 +N ′

1
5 − C(T0)K2

,

where, comparing to the estimates of d
dtU(t, ω), only the constants Q′1 and H ′1 have

changed and we denoted them here by Q′2 and H ′2.
For arbitrary T > 0, one can cover the interval [0, T ] by intervals of the form [kT0, (k+

1)T0], k ∈ N0, in finitely many steps (say in l steps). So we have∑
α∈I

sup
t∈[0,T ]

‖uα(t)‖2X(2N)−pα ≤ Q+G
1
3 − C(T0)K2

,

where Q = max1≤k≤l{Qk}. Thus,

U(t, ω) =
∑
α∈I

uα(t)Hα(ω) ∈ C([0, T ], X)⊗ (S)−1,−p.

Also, ∑
α∈I

sup
t∈[0,T ]

‖ d
dt
uα(t)‖2X(2N)−pα ≤ Q′ +G′ +H ′ +N ′

1
5 − C(T0)K2

,

where Q′ = max1≤k≤l{Q′k}, H ′ = max1≤k≤l{H ′k}. Since d
dtuα(t) ∈ C([0, T ], X), α ∈ I, we

have
d

dt
U(t, ω) =

∑
α∈I

d

dt
uα(t)Hα(ω) ∈ C([0, T ], X)⊗ (S)−1,−p.

Therefore, U(t, ω) ∈ C1([0, T ], X)⊗ (S)−1,−p and thus, U is a solution of (2.1) in the sense
of Definition 3.1.

The solution U is unique due to the uniqueness of the coordinatewise (classical)
solutions uα in (3.9) and due to uniqueness in the Wiener-Itô chaos expansion.

Note that according to the previous theorem the solution U remains in the same
stochastic order space (S)−1,−p where the input data U0, AU0 and F belong to.

Example 3.3. We provide three examples of equation (2.1) where A is a uniformly
bounded (not a simple) coordinatewise operator. Consider the Banach space X =

Lp(R), 1 ≤ p <∞, and the stochastic Cauchy problem

d

dt
U(t, x, ω) = AU(t, x, ω) +W♦U(t, x, ω) + F (t, x, ω),

U(0, x, ω) = U0(x, ω),
(3.26)

where the operator A : Dom(A) → X ⊗ (S)−1 is a coordinatewise operator composed
out of a family of closed operators {Aα}α∈I of the form Aα = aαD, α ∈ I, where the
functions aα ∈ L∞(R), α ∈ I, are uniformly bounded, i.e. supx∈R |aα(x)| ≤M, α ∈ I, for
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some M > 0, and D is one of the following differential operators: ∂
∂x ,

∂2

∂x2 or ∂2

∂x2 + ∂
∂x ,

and W =
∑
k∈N ξkHεk represents spatial white noise. Then, (3.26) is equivalent to the

infinite system

d

dt
uα(t, x) = Aαuα(t, x) +

∑
k∈N

ξk(x)uα−εk(t, x) + fα(t, x)

uα(0, x) = u0α(x), α ∈ I.

The C0−semigroup that corresponds to the closed operator D, denoted by Tt, t ≥ 0,

is, respectively,

Ttg(x) = g(t+ x), g ∈ Lp(R), for D =
∂

∂x
,

Ttg(x) =
1√
4πt

∫
R

g(x− y)e−
y2

4t dy, g ∈ Lp(R), for D =
∂2

∂x2
,

Ttg(x) =
1√
4πt

∫
R

g(x− y)e−
(y+t)2

4t dy, g ∈ Lp(R), for D =
∂2

∂x2
+

∂

∂x
.

In all cases, we have, using Young’s inequality, that ‖Tt‖ ≤ 1, t ≥ 0. The C0−semigroups
corresponding to the operators Aα, α ∈ I, are of the form (St)α = aαTt. Thus, ‖(St)α‖ ≤
M, α ∈ I. The operators Bα, α ∈ I, are given by Bεk = ξk, k ∈ N and Bα = 0, α 6= εk.

Thus, ‖Bα‖ ≤ supk∈N ‖ξk‖L∞(R) ≤ 1, α ∈ I. Now, according to Theorem 3.2, equation
(3.26) has a unique solution U(t, x, ω) =

∑
α∈I uα(t, x)Hα(ω), where

uα(t, x) = (St)αu
0
α(x) +

∫ t

0

(St−s)α(
∑
k

ξk(x)uα−εk(s, x) + fα(s, x))ds, α ∈ I.

Example 3.4. Consider the Cauchy problem

d

dt
U(t, ω) = AU(t, ω) + B♦U(t, ω) + F (t, ω)

U(0, ω) = U0(ω),

where A is a simple coordinatewise operator Aα = A, α ∈ I, generating a C0−semigroup,
Bα 6= 0 only for α = εk, k ∈ N, are such that

∑
k∈N ‖Bεk‖(2k)−

p
2 <∞, and U0 and F are

deterministic functions, i.e. u0α = 0 and fα = 0 for all α ∈ I \ {0}.
The solution of this system, according to Theorem 3.2, is

u0(t) = Ttu
0
0 +

∫ t

0

Tt−sf0(s)ds,

uα(t) =

∫ t

0

Tt−s

(∑
k∈N

Bεkuα−εk(s)
)
ds, α ∈ I \ 0,

the same form as it was obtained in [12].

We provide two generalisations of Theorem 3.2: one possibility is to allow the
operatorsBα to depend on the time variable t (except forB0 which must be free of t). This
embraces for example SPDEs driven by space-time noises which have zero expectation
(and are thus free of t). The other possibility is to allow B0 to be unbounded but satisfying
certain properties so that Aα +B0 are infinitesimal generators of C0−semigroups. For
example, if Aα = ∂2

∂x2 and B0 = ∂
∂x , then although B0 is unbounded, Aα + B0 is the

generator of a contraction semigroup. Following [4] we will enlist some sufficient
conditions which ensure that Aα +B0 is the generators of a C0−semigroup.
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Remark 3.5. In Theorem 3.2 one can consider operators Bα(t), α ∈ I \ {0}, depending
on t, so that Bα ∈ C1([0, T ], L(X)), α ∈ I \ {0}, B0(t) = B0 ∈ L(X), for all t ∈ [0, T ], and

K : =
∑
α∈I,
α>0

‖Bα‖C1([0,T ],L(X))(2N)−p
α
2

=
∑
α∈I,
α>0

(
sup
t∈[0,T ]

‖Bα(t)‖L(X) + sup
t∈[0,T ]

‖ d
dt
Bα(t)‖L(X)

)
(2N)−p

α
2 <∞. (3.27)

Replacing (3.2) by (3.27) and retaining all other assumptions of Theorem 3.2, one can
again obtain a unique solution U in C1([0, T ], X)⊗ (S)−1,−p of the corresponding Cauchy
problem (2.1).

The solution is U(t, ω) =
∑
α∈I uα(t)Hα(ω), uα(t) ∈ C1([0, T ], X), α ∈ I, where (see

(3.9))

u0(t) = (St)0u
0
0 +

∫ t

0

(St−s)0f0(s)ds, t ∈ [0, T ],

uα(t) = (St)αu
0
α +

∫ t

0

(St−s)α

( ∑
0<β≤α

Bβ(s)uα−β(s) + fα(s)
)
ds, t ∈ [0, T ].

(3.28)

Its derivative is d
dtU(t, ω) =

∑
α∈I

d
dtuα(t)Hα(ω), where (see (3.17))

d

dt
u0(t) = (St)0(A0 +B0)u00 +

∫ t

0

(St−s)0
d

ds
f0(s)ds+ (St)0f(0), t ∈ [0, T ],

d

dt
uα(t) = (St)α(Aα +B0)u0α

+

∫ t

0

(St−s)α

( ∑
0<β≤α

(
Bβ(s)

d

ds
uα−β(s) +

d

ds
Bβ(s)uα−β(s)

)
+

d

ds
fα(s)

)
ds

+ (St)α

( ∑
0<β≤α

Bβ(0)uα−β(0) + fα(0)
)
, t ∈ [0, T ], α ∈ I.

(3.29)

The proof can be performed in the same manner as in Theorem 3.2, now taking T0 ∈ (0, T ]

to be small enough so that C(T0) < 1
6K2 , since now we have six summands in (3.29)

instead of the previous five in (3.17).

Remark 3.6. In Theorem 3.2 one can consider the operator B0 to be unbounded, densely
defined on D (the same domain which is common for all Aα) so that either of the following
holds:

(i) Aα, α ∈ I, are generating contraction semigroups (i.e. M = 1, w = 0), and B0

is dissipative, Aα−bounded with a0α < 1 (i.e. there exist aα, bα > 0 such that
‖B0x‖ ≤ aα‖Aαx‖+ bα‖x‖, x ∈ D, and a0α = inf{aα > 0 : ∃bα > 0,∀x ∈ D, ‖B0x‖ ≤
aα‖Aαx‖+ bα‖x‖}), for all α ∈ I,

(ii) B0 is closable, dissipative and Aα−compact (i.e. B : (D, ‖ · ‖Aα)→ X is compact
where ‖ · ‖Aα denotes the graph norm), for all α ∈ I,

(iii) Aα are generating analytic semigroups (i.e. w < 0), α ∈ I, and B0 is closable and
Aα−compact .

Then, Aα +B0 is the infinitesimal generator of a C0−semigroup (denote it (St)α) for all
α ∈ I. If the semigroups (Tt)α corresponding to Aα are uniformly bounded in α, then
so will be (St)α. Retaining all other assumptions of Theorem 3.2, now we follow the
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same proof pattern with the semigroup (St)α, ‖(St)α‖ ≤ M̃ew̃t, for some M̃ ≥ 1, w̃ ∈ R,
independent of α.

Finally we note that in case (i) and (ii) Aα + B0 will be generating contraction
semigroups, while in case (iii) they will be generating analytic semigroups.

4 Stationary equations

In this section we consider stationary equations of the form

AU + B♦U + F = 0, (4.1)

where A : X ⊗ (S)−1 → X ⊗ (S)−1 and B♦ : X ⊗ (S)−1 → X ⊗ (S)−1 are coordinatewise
operators as in (2.3) and (2.4). We assume that {Aα}α∈I and {Bα}α∈I are bounded
operators and that Aα are of the form

Aα = Ãα + Cα, α ∈ I,

where B0 and Ãα, α ∈ I are compact operators and Cα are self adjoint operators
for all α ∈ I. Denote by rα the eigenvalue corresponding to the orthogonal family of
eigenvectors Hα, i.e. Cα(Hα) = rαHα, α ∈ I. Using classical results of elliptic PDEs and
the Fredholm alternative (see [5]) we prove existence and uniqueness of the solution to
(4.1).

Theorem 4.1. Let X be a Banach space. Let A : X ⊗ (S)−1 → X ⊗ (S)−1 and B♦ :

X⊗(S)−1 → X⊗(S)−1 be coordinatewise operators, for which the following assumptions
hold:

1. A is of the form A = Ã + C, where Ã(U) =
∑
α∈I

Ãα(uα)Hα and Ãα : X → X are

compact operators for all α ∈ I, C(U) =
∑
α∈I

rαuαHα, rα ∈ R, α ∈ I, and B is of

the form (2.4), where B0 : X → X is a compact operator. Assume there exists
K > 0 such that:

− ‖Ãα‖ − ‖B0‖ − rα ≥ 0, for all α ∈ I, (4.2)

and

sup
α∈I

(
1

−rα − ‖Ãα‖ − ‖B0‖

)
< K. (4.3)

2. B is of the form (2.4), where Bβ : X → X, β ∈ I \ {0}, are bounded operators and
there exists p > 0 such that

K
∑
β∈I
β>0

‖Bβ‖ (2N)
−pβ
2 <

1√
2
. (4.4)

3. For every α ∈ I
Ker

(
Ãα + (1 + rα)Id +B0

)
= {0}. (4.5)

Then, for every F ∈ X ⊗ (S)−1,−p there exists a unique solution U ∈ X ⊗ (S)−1,−p to
equation (4.1).

Proof. Equation (4.1) is equivalent to U − (Ã(U) + CU + U + B♦U) = F and

∑
γ∈I

uγ − Ãγuγ − (1 + rγ)uγ −
∑

α+β=γ

Bα(uβ)

Hγ =
∑
γ∈I

fγHγ .
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Due to uniqueness of the Wiener-Itô chaos expansion this is equivalent to

uγ −
(
Ãγ + (1 + rγ)Id+B0

)
uγ = fγ +

∑
0<β≤γ

Bβ(uγ−β), γ ∈ I. (4.6)

By (4.5) it follows that for each γ ∈ I the homogeneous equation

uγ −
(
Ãγ + (1 + rγ)Id+B0

)
uγ = 0

has only trivial solution uγ = 0. Since the operator Ãγ + (1 + rγ)Id+B0 is compact, the
classical Fredholm alternative implies that for each γ ∈ I there exists a unique uγ that
solves (4.6) and it is of the form

uγ = (Id− ((rγ + 1) Id+ Ãγ +B0))−1

fγ +
∑
β>0

Bβ(uγ−β)

 , γ ∈ I,

so that

‖uγ‖X ≤
1

−rγ − ‖Ãγ‖ − ‖B0‖
·

‖fγ‖X +
∑
β>0

‖Bβ‖‖uγ−β‖X

 , γ ∈ I.

We will prove that
∑
γ∈I

uγ ⊗Hγ converges in X ⊗ (S)−1. Indeed,

∑
γ∈I
‖uγ‖2X(2N)−pγ ≤ K2

∑
γ∈I

‖fγ‖X +
∑

γ=α+β,α>0

‖Bα‖‖uβ‖X

2

(2N)−pγ

≤ 2K2

∑
γ∈I
‖fγ‖2X(2N)−pγ +

∑
γ∈I

(
∑

γ=α+β,α>0

‖Bα‖‖uβ‖X)2(2N)−pγ


≤ 2K2

∑
γ∈I
‖fγ‖2X(2N)−pγ + (

∑
α>0

‖Bα‖(2N)−
pα
2 )2

∑
β∈I

‖uβ‖2X(2N)−pβ

 .

Therefore,

(1− 2K2(
∑
α>0

‖Bα‖(2N)−
pα
2 )2) ·

∑
γ∈I
‖uγ‖2X(2N)−pγ ≤ 2K2

∑
γ∈I
‖fγ‖2X(2N)−pγ .

By assumption (4.4) we have that M = 1− 2K2(
∑
α>0
‖Bα‖(2N)−

pα
2 )2 > 0. This implies

∑
γ∈I
‖uγ‖2X(2N)−pγ ≤ 2K2

M

∑
γ∈I
‖fγ‖2X(2N)−pγ <∞.

Example 4.2. We provide some special cases of equation (4.1).

1. If Aα = 0 for all α ∈ I and Bα, α ∈ I are second order strictly elliptic partial
differential operators in divergent form

Bα =

n∑
i=1

Di(

n∑
j=1

aijα (x)Dj + biα(x)) +

n∑
i=1

ciα(x)Di + dα(x) (4.7)
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with essentially bounded coefficients, then equation (4.1) reduces to the elliptic
equation

B♦U = F,

which was solved in [18] and [19].

2. Let Ãα = 0 for all α ∈ I and let Bα, α ∈ I, be second order strictly elliptic partial
differential operators in divergent form (4.7). Let C = c P (R), for some c ∈ R,
where R is the Ornstein-Uhlenbeck operator, P a polynomial of degree m with real
coefficients and P (R) the differential operator P (R) = pmRm + pm−1Rm−1 + ...+

p1R+ p0Id. Then, the corresponding eigenvalues are rα = cP (|α|), α ∈ I. Hence,
equation (4.1) transforms to the elliptic equation with a perturbation term driven
by the polynomial of the Ornstein-Uhlenbeck operator

B♦U + cP (R)U = F,

that was solved in [11].
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