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Large deviations for the empirical distribution
in the branching random walk*
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Abstract

We consider the branching random walk (Zn)n≥0 on R where the underlying motion
is of a simple random walk and branching is at least binary and at most decaying
exponentially in law. For a large class of measurable sets A ⊆ R, it is well known
that Z̄n(

√
nA)→ ν(A) almost surely as n→∞, where Z̄n is the particles empirical

distribution at generation n and ν is the standard Gaussian measure on R. We
therefore analyze the rate at which P(Z̄n(

√
nA) > ν(A) + ε) and P(Z̄n(

√
nA) <

ν(A) − ε) go to zero for any ε > 0. We show that the decay is doubly exponential
in either n or

√
n, depending on A and ε and find the leading coefficient in the top

exponent. To the best of our knowledge, this is the first time such large deviation
probabilities are treated in this model.
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1 Introduction and Results

In this work we analyze the decay of probabilities of certain unlikely deviation events
involving the Branching Random Walk (henceforth BRW). As far as we know, very little
has been done in this direction, although, after optimal law of large numbers and central
limit theorem type results have been fully obtained, both the question and the events
we consider seem to us natural and fundamental. To fix notation and context, we begin
by briefly describing the model (1.1) and giving a short account of some of the relevant
results in its analysis (1.2). Precise statements for the results in this paper then follow
(1.3), along with the idea of the proof and accompanying remarks. Complete proofs for
all statements are given in Section 2.
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LDP for the empirical distribution in the BRW

1.1 Setup

The BRW model traces the evolution by means of reproduction and motion of a
population of particles on the real line, carried out synchronously in discrete steps or
generations. We denote by Zn (henceforth the particles measure) the population at time
n = 0, 1, . . . , which we describe as a point measure on R with a mass 1 per particle. The
process is formally defined as follows. Initially there is a single particle at the origin
Z0 = δ0. It evolves in one generation to a random point measure Z1. Although one
may consider any law for Z1, often and in this paper as well, attention is restricted to
evolution by means of independent reproduction and motion. That is, Z1 is realized by
the particle giving birth to a random number of descendants, which are then moving
independently (of each other and of their number) according to some common spatial
distribution F , while the original particle is dying.

At any further generation n ≥ 2 we have (conditioned on Zn−1),

Zn =
∑

x∈Zn−1

Z̃x1 , (1.1)

where Z̃x1 (·) has the same distribution as Z1(· − x) and {Z̃x1 : x ∈ Zn−1} are independent.
Here and later, for a point measure ζ with integer masses, we write x ∈ ζ iff x is an atom
of ζ, that is if ζ(x) = ζ({x}) > 0. We use (x : x ∈ ζ) for the multi-set of atoms of ζ, where
each atom x is repeated ζ(x) times. Moreover, if this multi-set is used as an index set (as
above), different copies of the same atom are considered different indices.

Despite the old age of this model it is still quite central in pure and applied probability.
It remains a popular model for describing and analyzing phenomena in various applied
disciplines, such as biology, population dynamics and computer science. At the same
time, due to the fundamentality of the stochastic dynamics it captures, it is frequently
found in various seemingly unrelated mathematical models (e.g. the Gaussian Free
Field [12], Interacting Particle System [20]). Finally, there are aspects of the model
which are still not understood or only beginning to be understood now (e.g. its extremal
process [2]). For the classical theory of BRW, we direct the reader to the survey by
Ney [22] and the books by Révész [25], Harris [15], and Asmussen and Hering [3].

1.2 Known Results

Since the population-size process (|Zn|)n≥0 = (Zn(R))n≥0 is a standard Galton Watson
process, it is well known that once reproduction is super-critical

β = E|Z1| > 1 (1.2)

and assuming
E|Z1| log |Z1| <∞ (1.3)

then for the normalized particles measure Ẑn = β−nZn we have almost surely

lim
n→∞

|Ẑn| = |Ẑ| , (1.4)

where |Ẑ| is some non-negative random variable with E|Ẑ| = 1 and almost-surely,

|Ẑ| > 0 ⇐⇒ |Zn| > 0 , ∀n ≥ 1 . (1.5)

The optimal version of this theorem is due to Kesten and Stigum [19]. If β ≤ 1 and
P(|Z1| = 1) 6= 1 the population dies out with probability 1. From now on, we shall assume
both (1.2) and

P(|Z1| = 0) = 0 , (1.6)
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LDP for the empirical distribution in the BRW

This will guarantee the non-trivial survival of the process almost-surely.
When displacement is considered as well, an analogous result to the above, conjec-

tured by Harris [15], first proved by Stan [26], and then proved under optimal conditions
by Kaplan [18] is

lim
n→∞

Ẑn(
√
nA) = |Ẑ|ν(A) P-a.s. , (1.7)

Here A ∈ A0 where
A0 = {(−∞, x] : x ∈ R} , (1.8)

ν is the standard Gaussian measure on R, and the assumptions are (1.2), (1.3) for
branching, and zero mean and unit variance for the motion, that is∫

xdF(x) = 0 ;

∫
x2 dF(x) = 1 . (1.9)

Writing ζ̄ = ζ/|ζ| for a finite measure ζ, if follows from (1.4) and (1.7) that the particles
empirical distribution Z̄n satisfies

lim
n→∞

Z̄n(
√
nA) = ν(A) (1.10)

(recall that we assume also (1.6)).
Once leading order asymptotics (1.4), (1.7) have been obtained, second-order terms,

or the question of the rate of the convergence, can be approached. For the population
size, Heyde [16] has shown that under E|Z1|2 <∞, for some (explicit) α0 > 0, as n→∞

α0|Ẑ|−1/2βn/2(|Ẑn| − |Ẑ|)⇒ N(0, 1) . (1.11)

For the particles measures, more recently Chen [13] has proved that for all A ∈ A0,

√
n
(
Ẑn(
√
nA)− |Ẑ|ν(A)

)
= ϕ1(n)|Ẑ|+ α1M̂ + o(1) , (1.12)

as n→∞, where α1 > 0, ϕ1(·) is a bounded function, and M̂ is some random variable
- all explicitly defined. In this case, motion is of a simple random walk and branching
admits the same assumptions as in Heyde’s.

Having settled the main questions in the “typical deviations” regime, it is natural to
turn to the regime of atypical or large deviations. Results here are not as abundant. For
|Zn|, Athreya [4] has considered the following probabilities:

P
(∣∣|Zn+1|/|Zn| − β

∣∣ > ∆
)

and P
(∣∣|Ẑn| − |Ẑ|∣∣ > ∆

)
, (1.13)

for ∆ > 0 and under the assumptions of exponential moments. If p = P(|Z1| = 1) > 0, he
showed that the probability on the left is

λ0(∆)pn(1 + o(1)) (1.14)

for some explicitly defined λ0(∆) > 0 and otherwise, it is at most

α1(∆) exp(−λ1(∆)bn) , (1.15)

where b is the first integer for which P(|Z1| = b) > 0 and λ1(∆), α1(∆) > 0. For the
probability on the right, he obtained the bound

P
(∣∣|Ẑn| − |Ẑ|∣∣ > ∆

)
≤ C exp

(
− C ′∆2/3(β1/3)n

)
. (1.16)

Above C,C ′ > 0 are some universal constants. See also [23, 14]. Different atypicality is
treated by Jones [17] and Biggins and Bingham [8] who investigate the left and right tail
of |Ẑ|.
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For the BRW, much effort has been directed into estimating the number of particles
which deviate linearly away from the mean displacement in the underlying motion. It is
a classical result by Biggins [7] that for any A ∈ A0,

lim
n→∞

n−1 logZn(nA) = − inf
x∈A

Λ∗(x) P-a.s. , (1.17)

if the r.h.s. is positive and otherwise Zn(nA)→ 0 a.s. Here Λ∗ is the Legendre-Fenchel
transform of Λ(θ) = logE

∫
eθx dZ1(x), which is assumed to be finite. This can be also

used to obtain the speed of the left (or right) most particle as inf{x : Λ∗(x) < 0}, although
to obtain sharper results, different methods have been used (c.f. Bramson [10, 11], and
Addario-Berry and Reed [1]).

Perhaps closest to the type of large-deviation analysis we do here is the result by
Athreya and Kang in [5], where instead of a motion in R, particles move according to
some positive-recurrent Markov chain with invariant measure π. Along with a local
version of (1.10), they find that the probability that at time n the fraction of particles at
state s is at least ∆ > 0 away from π(s) decays exponentially as λ(∆)pn for some explicit
λ(∆) > 0 and with p as in (1.14), which is assumed to be positive. Nevertheless, this is
still quite far from what we do here. First, a random walk on R is typically null recurrent
or transient (unless degenerate). Second, we in fact assume p1 = 0 and thus obtain very
different decay scales.

1.3 New Results

In this work we analyze large deviation probabilities of the form:

P(|Z̄n(
√
nA)− ν(A)| > ∆) , (1.18)

for a large class of measurable sets A ⊆ R and ∆ > 0. In light of (1.10), the above clearly
decays in n and we aim to understand how fast.

1.3.1 Assumptions

We make the following assumptions. For branching, we shall assume that |Z1| is non-
deterministic, that Eeθ|Z1| < ∞ for θ in some neighborhood of 0 and that P(|Z1| ≥
2) = 1. The last condition guarantees that exponential growth of the population size is
unavoidable. Although the case of P(|Z1| ≥ 2) < 1 is an interesting problem, it is of a
different nature as it permits using strategies which suppress the branching in order to
realize large deviation events. This will result in a different scale for the decay in (1.18).
For the underlying motion, we shall assume simple random walk steps. The precise
step distribution will not change the result, as long as it has mean zero and bounded
or rapidly decaying (at least doubly exponential) tails. Again, allowing for steps with
fatter tails would have given rise to strategies which exploit these tails to achieve the
unlikely events, resulting in a problem of a different nature and a different scale for the
decay of (1.18). For the same reason, branching at fixed times is crucial for our results.
Branching at random times (e.g. exponentially distributed, as in the branching Brownian
motion model), would also result in a different scale of decay.

1.3.2 Main Theorems

We are now ready to state our main result. Let A be the algebra generated by A0

(defined in (1.8)) and set b = min{k : P(|Z1| = k) > 0} ≥ 2. For A ∈ A non-empty define
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ĨA, J̃A, IA, JA : (0, 1)→ R+ ∪ {∞} by

ĨA(p) = inf{|x| : ν(A− x) ≥ p , x ∈ R} , (1.19)

J̃A(p) = inf
{
r : sup

x∈R
ν
(
(A− x)/

√
1− r

)
≥ p , r ∈ [0, 1)

}
(1.20)

and

IA(p) = (log b)ĨA(p) , (1.21)

JA(p) = (log b)J̃A(p) . (1.22)

Then,

Theorem 1.1. Let A ∈ A \ {∅} and p ∈
(
ν(A), 1

)
. If IA(p) <∞ then

lim
n→∞

1√
n

log
[
− logP

(
Z̄n(
√
nA) ≥ p

)]
= IA(p) , (1.23)

whenever p is a continuity point of IA. If IA(p) =∞ then

lim
n→∞

1

n
log
[
− logP

(
Z̄n(
√
nA) ≥ p

)]
= JA(p) , (1.24)

whenever p is a continuity point of JA.

Replacing A by Ac and p by 1− p in Theorem 1.1, one has
Theorem 1′. Let A ∈ A \ {R} and p ∈

(
0, ν(A)

)
. If IAc(1− p) <∞ then

lim
n→∞

1√
n

log
[
− logP

(
Z̄n(
√
nA) ≤ p

)]
= IAc(1− p) , (1.25)

whenever 1− p is a continuity point of IAc . If IAc(1− p) =∞ then

lim
n→∞

1

n
log
[
− logP

(
Z̄n(
√
nA) ≤ p

)]
= JAc(1− p) , (1.26)

whenever 1− p is a continuity point of JAc .

1.3.3 Remarks.

As follows from Lemma 2.1 below, for A ∈ A \ {∅} and p ∈
(
ν(A), 1

)
, either IA(p) ∈ (0,∞)

or IA(p) =∞ and JA(p) ∈ (0, log b). Thus on a double-exponential scale, Theorem 1.1 (and
Theorem 1′) capture the right first-order asymptotics for the decay of the probability of
a large deviation in the empirical distribution for such A’s and p’s. A double-exponential
scale of large deviations appears in a handful of earlier works (eg. [21]), but here it is a
natural scale, as the number of particles is exponential in n.

The restriction to continuity points of the rate function is commensurate with the
usual large deviation formulation applied to sets of the form [p,∞) (only that in our case,
the scale of decay is double exponential). Indeed, in an LDP formulation the upper bound
on the lim sup for the decay rate of the measure of [p,∞) is given as the infimum of the
rate function over the interior of this set, namely (p,∞). The lower bound on the lim inf

is the infimum over the closure of the set, namely [p,∞). Only at continuity points of the
rate function, is it guaranteed that these infima match and a limit for the rate of decay
exists. In our case, there are indeed choices of sets A and discontinuity points p such
that the limits in Theorem 1.1 (and Theorem 1’) do not exist, as the next proposition
exemplifies. Nevertheless for any A ∈ A, it is easy to see that the functions IA and JA
possess only finitely many discontinuity points.
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Proposition 1.2. There exists a, x > 0 such that with A = x+ [−a, a] and p = ν([−a,+a])

we have IA(p) ∈ (0,∞), IA(p+) =∞ and (1.23) does not hold.

The statement in the theorem still holds if we replace the weak inequality in (1.23),
(1.24), (1.25), (1.26) by a strong one. Our proof for the lower bound on P(Z̄n(

√
nA) ≥ p)

works verbatim for P(Z̄n(
√
nA) > p).

The restriction to intervals of the form (−∞, x], (y, x] and (y,∞) in A is quite arbitrary
and the theorem still holds if A is the algebra generated by sets of the form (−∞, x) or
more generally, the set of all finite unions of disjoint intervals which either contain their
endpoints or do not, or contain only one of them and can be finite or infinite, but as long
as their interior is non-empty.

On the other hand, Theorem 1.1 cannot be expected to hold for all Borel sets, nor even
all continuity sets of ν. Indeed, the following shows that there are simple enough sets
for which the decay in (1.18) has neither linear nor radical rate on a double exponential
scale.

Proposition 1.3. For all α ∈ (1/2, 1) and p ∈ (0, 1), there exists a set A, which is a
countable union of disjoint finite intervals, such that as n→∞

log
[
− logP

(
Z̄n(
√
nA) ≥ p

)]
∼ (log b)nα (1.27)

1.3.4 Idea of Proof

It is usually the case in the realm of large deviations that obtaining decay asymptotics
for probabilities of unlikely events amounts to finding (and proving that it is such) an
optimal (that is least “costly” in terms of probability) “strategy” for realizing the unlikely
event. Consider therefore A ∈ A and p ∈ (ν(A), 1) as in the conditions of Theorem 1.1.
What is the optimal strategy for having at least p fraction of the population in the set√
nA at time n instead of the likely ν(A)?

As it turns out, among all possible strategies one needs to consider only two: a shift
strategy and a dilation strategy. Given x ∈ R, in the shift strategy all particles move
together and constantly in either the left or the right direction for w = |x|

√
n generations,

so that in the end they are all at x
√
n (up to rounding). This can be done with probability

exp(−b|x|
√
n(1+o(1)) by keeping the number of particles at its minimum. Relative to the

position of the particles at generation w, the target set has now “shifted” by −x
√
n.

Therefore after dividing by the CLT scaling of
√
n, each particle at generation w will

typically have (asymptotically) a fraction of ν(A− x) of its descendants in
√
nA, and this

will also be the fraction for the entire population. Consequently, if there exists x for
which ν(A− x) ≥ p, this strategy will realize the event {Z̄n(

√
nA) ≥ p} at the sole cost of

“steering” the population for the first w generations. This can be done with probability at
least exp(−eIA(p)

√
n(1+o(1)) if x is chosen closest to 0.

If there is no x for which ν(A − x) ≥ p, a dilation strategy is employed, whereby
all particles move together for w′ = r′n + |x′|

√
n generations (x′ ∈ R, r′ ∈ (0, 1)) such

that at generation w′ they are all at position x′
√
n (up to rounding effects, this can be

achieved, for instance, by all particles moving in a constant direction |x′|
√
n steps and

then alternate between +1 and −1 steps for r′n steps more). If r′, x′ are chosen such
that ν((A−x′)/

√
1− r′) ≥ p then, as in the shift case, the typical fraction of decedents in√

nA at time n, coming from each particle at time w′ will be at least p and hence also the
fraction among the total population. The probabilistic cost of this strategy is therefore
incurred just in the first w′ generations, and by keeping reproduction at its minimum,
it can be exp(−br′n(1+o(1))). Choosing the smallest r′ possible, {Z̄n(

√
nA) ≥ p} can be

achieved by a strategy which has probability exp(−eJA(p)n(1+o(1)).
Of course these strategies only give lower bounds for the probability in question.
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One therefore must also show that other strategies would not cost less, namely a
corresponding upper bound. This is indeed done in the proof of the theorem. In fact, the
optimal strategy is, in some sense, unique. To state a formal version of this assertion, let
BA(p) for A ∈ A \ {∅} and p ∈ (0, 1) be the set

BA(p) = {x : ν(A− x) ≥ p} . (1.28)

Then,

Proposition 1.4. Let A ∈ A \ {∅} and p ∈
(
ν(A), 1

)
. If IA(p) < ∞ and p is a continuity

point of IA(p), then for any small enough ε > 0,

lim
n→∞

P
(
Z̄wε(n)

(√
nBA(p− ε)

)
≥ 1− ε

∣∣∣ Z̄n(
√
nA) ≥ p

)
= 1 , (1.29)

where

wε(n) = (ĨA(p) + ε3)
√
n . (1.30)

If IA(p) =∞ and p is a continuity point of JA(p) then for any small enough ε > 0,

lim
n→∞

P
(
Z̄wε(n)

(√
n(1− J̃A(p)B

A/
√

1−J̃A(p)
(p− ε)

)
≥ 1− ε

∣∣∣ Z̄n(
√
nA) ≥ p

)
= 0 , (1.31)

where

wε(n) = (J̃A(p) + ε3)n . (1.32)

1.3.5 Extension to higher dimensions

The results presented here carry over to any dimension d ≥ 2 (for the underlying motion)
with only straight-forward modifications. On a qualitative level, both the phenomenon
and the proofs are the same. More explicitly, we now have a simple d-dimensional
random walk. The collection of subsets to consider A now contains all unions of disjoint
multi-dimensional rectangles (bounded or unbounded) in Rd. The definitions of ĨA(p)

and J̃A(p) (and subsequently IA(p) and JA(p)) are similar, only that Rd replaces R and
the l1 norm replaces the absolute value. With these changes, Theorem 1 holds without
change. Similarly, the proofs only necessitate simple modifications.

2 Proofs

In this section we provide proofs for the statements in (1.3). We first introduce further
notation (2.1) and prove some preliminary lemmas (2.2). These are then used to prove
Theorem 1.1 and Theorem 1′ (2.3) and Propositions 1.2, 1.3 and 1.4 (2.4 - 2.6).

2.1 A bit more notation

The space of all particles measures, that is, finite point measures on R with integer
masses, will be denoted by Z. For ζ ∈ Z, we denote by (Zζn)n≥0 a BRW process with a
similar evolution as (Zn)n≥0, only that initially Z0 = ζ. We will write Zxn in place of Zδxn
for short. νn is the distribution of the position of a simple random walk after n steps.
For u ∈ R, as usual, u+ = max(0, u) and u− = −(−u)+. We will use C, C ′, C ′′ to denote
positive constants whose value is immaterial and changes from one use to the other.
Constant values which are used more than once are denoted C0, C1, .., and their values
become fixed the first time they appear in the text.
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2.2 Preliminaries

Lemma 2.1. Let A ∈ A be non-empty and p ∈ (0, 1).

1. (ρ, ξ) 7→ ν(ρA+ ξ) ∈ C∞(R2).

2. If ĨA(p) ∈ [0,∞) then there exists x ∈ R with |x| = ĨA(p) such that

ν(A− x) ≥ p . (2.1)

3. J̃A(p) ∈ [0, 1) and there exists x ∈ R such that with r = J̃A(p)

ν
(
(A− x)/

√
1− r

)
≥ p . (2.2)

4. If p > ν(A) then either ĨA(p) ∈ (0,∞) or ĨA(p) =∞, J̃A(p) ∈ (0, 1).

Proof. Part 1 follows from the dominated convergence theorem and standard arguments
once we write

ν(ρA+ ξ) =

∫
A

1√
2π
e−

(ρt+ξ)2

2 ρdt (2.3)

since the integrand is in C∞(R2).
For part 2 and 3, if A = R, then ĨA(p) = J̃A(p) = 0, and there is nothing to prove.

Otherwise, define
ϕA(r, x) = ν((A− x)/

√
1− r) (2.4)

which is in C∞([0, 1) × R) by part 1. Therefore {x ∈ R : ϕA(0, x) ≥ p} is a closed set,
which, if non-empty, must contain a minimizer of | · |. This shows part 2.

For part 3, if A contains a half-infinite interval, then since ϕA(0, x)→ 1 > p if x→ +∞
or x → −∞, we must have ĨA(p) < ∞. Therefore J̃A(p) = 0, and (2.2) is satisfied with
r = 0 and x from part 2. Otherwise, A is a finite union of finite intervals, and so there
must exist R < 1, M <∞ such that

• ϕA(r, x) ≥ p for some 0 ≤ r ≤ R and x with |x| ≤M .

• ϕA(r, x) < p/2 for all 0 ≤ r ≤ R and x with |x| > M .

Thus, J̃A(p) is the infimum of the continuous function r over the non-empty compact set

{(r, x) : ϕA(r, x) ≥ p, 0 ≤ r ≤ R, |x| ≤M} , (2.5)

which gives part 3.
Finally, if p > ν(A), then ĨA(p) > 0 by part 2. At the same time, if J̃A(p) = 0, then

ĨA(p) <∞ by part 3. This takes care of part 4.

Below is a standard result concerning the uniformity of the convergence to the
Normal distribution under the CLT.

Lemma 2.2. Let A ⊆ R be a continuity set of ν(A), i.e. ν(∂A) = 0 and R > 0. Then,

lim
n→∞

sup
ρ∈[R−1,R]

sup
ξ∈R
|νn(
√
n(ρA+ ξ))− ν(ρA+ ξ)| = 0 . (2.6)

Proof. By Theorem 2 in [9], it is enough to check that

lim
δ→0

sup
ξ,ρ

ν
(
(∂(ρA+ ξ))δ

)
= 0, (2.7)

where for a set D ⊂ R, we set Dδ = {x ∈ R : infy∈D |x − y| < δ} and the supremum
is over ρ and ξ as in the statement in the lemma. Since ν is equivalent to λ, Lebesgue
measure on R, we may show (2.7) with λ in place of ν. But,

λ
(
(∂(ρA+ ξ))δ

)
= λ

(
ρ(∂A)δ/ρ + ξ

)
≤ Rλ

(
(∂A)Rδ

)
, (2.8)

The last term goes to 0 as δ → 0, since λ(∂A) = 0.
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LDP for the empirical distribution in the BRW

We shall need the following uniform Chernoff-Cramér-type upper bound.

Lemma 2.3. Let X be a family of random variables on R with zero mean such that for
some θ0 > 0

sup
X∈X

Eeθ0X <∞ and sup
X∈X

E(X−)2 <∞ . (2.9)

Then there exists C > 0 such that for any ∆ > 0 small enough, any m ≥ 1 and X1, . . . , Xm

independent copies of random variables in X

P
(

1
m

m∑
i=1

Xi > ∆
)
≤ e−C∆2m (2.10)

Proof. Using the exponential Chebyshef’s inequality we may bound the l.h.s. in (2.10)
for any 0 < θ ≤ θ1 < θ0 by

exp
{
−m

(
∆θ −m−1

m∑
i=1

LXi(θ)
)}
, (2.11)

where we use LX(θ) = logEeθX for the log moment generating function of X. Since
LX(θ) is in C∞([0, θ0)) due to (2.9), we may use Taylor expansion to write (note that the
first two terms are 0)

LX(θ) = 1
2L
′′
X(θ̂)θ2 , (2.12)

for some θ̂ ∈ (0, θ). Now if we denote by MX(θ̂) = Eeθ̂X the moment generating function
of X then

L′′X(θ̂) =
M ′′X(θ̂)MX(θ̂)− (M ′X(θ̂))2

M2
X(θ̂)

< CMX(θ0) + E(X−)2 . (2.13)

This follows since MX(θ̂) ≥ 1 via Jensen’s inequality and since

M ′′X(θ̂) = EX2eθ̂X ≤ EX21X<0 + CEeθ0X1X≥0 , (2.14)

for some C > 0 independent of X ∈ X. Therefore (2.9) implies that there exists K > 0

for which

sup
X∈X

sup
θ̂∈(0,θ1)

L′′X(θ̂) < K (2.15)

and thus

∆θ −m−1
m∑
i=1

LXi(θ) ≥ ∆θ − 1
2Kθ

2 . (2.16)

Using this bound with θ = ∆/K in (2.11) and assuming ∆ is small enough, the result
follows with C = (2K)−1 in (2.10).

The last lemma can be used to prove the following.

Lemma 2.4. There exists C,C ′ > 0 such that for all ∆ > 0 sufficiently small, A ⊂ R,
ζ ∈ Z and n ≥ 1,

P
(
Z̄ζn(A) > 1

|ζ|

∑
x∈ζ

νn(A− x) + ∆
)
≤ Ce−C

′∆2|ζ| . (2.17)

The same holds if we replace > with < and +∆ with −∆.
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Proof. Using

Z̄ζn(A) =

1
|ζ|
∑
x∈ζ Ẑ

x
n(A)

1
|ζ|
∑
x∈ζ |Ẑxn|

, (2.18)

the l.h.s. of (2.17) is bounded above by

P
(

1
|ζ|

∑
x∈ζ

Ẑxn(R) < 1− ∆
2

)
+ P

(
1
|ζ|

∑
x∈ζ

Ẑxn(A) > 1
|ζ|

∑
x∈ζ

νn(A− x) + ∆
3

)
(2.19)

as long as ∆ is small enough. Now Theorem 4 in [4] gives a uniform bound on the
moment generating function eθẐn(R) for all n ≥ 1 and θ ∈ [0, θ0], for some θ0 > 0. This
uniform bound can be extended to include also the moment generating functions of
(the stochastically smaller) Ẑxn(A) for all A ⊆ R and x ∈ R in the same range of θ. The
non-negativity of all these random variables imply that we may extend the bound also to
all θ < 0. Thus, it is not difficult to see that the family of random variables

X = {±(Ẑn(A)− νn(A)) : n ≥ 1, A ⊆ R} (2.20)

satisfies the conditions in Lemma 2.3, whence (2.19) is bounded above by Ce−C
′∆2|ζ| for

some C,C ′ > 0 as desired.
Replacing A with Ac , we obtain (2.17) with <, −∆ in place of >, +∆.

2.3 Proof of Theorem 1.1

Fix A and p as in the conditions of the theorem. There are two cases to consider,
according to whether IA(p) is finite or not.

2.3.1 The Case IA(p) <∞.

We shall prove the lower and upper bounds separately.
Lower bound. Let ε > 0 be arbitrarily small. From the assumed continuity of IA (and
therefore ĨA) at p and Lemma 2.1 part 2, it follows that there exists x ∈ R, δ > 0 such
that

ν(A− x) ≥ p+ δ and |x| < ĨA(p) + ε . (2.21)

Set

w = b|x|
√
ncsgn(x) ; m = n− |w| ; ζ = b|w|δw (2.22)

and write

P(Z̄n(
√
nA) ≥ p) ≥ P(Z|w| = ζ) P(Z̄ζm(

√
nA) ≥ p) (2.23)

The first factor can be lower bounded by exp{−Cb|w|} as the event {Z|w| = ζ} is equiva-
lent to having all particles in the first |w| generations give birth to b children, all of whom
take either a +1 step or a −1 step, depending on the sign of x. This requires that at most
C ′b|w| independent particles make certain branching/walking choices, all of which have
a uniformly positive probability.

The second factor in (2.23) can be bounded below by(
P(Z̄m(

√
nA− w) ≥ p)

)|ζ|
. (2.24)

By (2.21), the probability in the above expression is further bounded below by

P

(
Z̄m

(√
m

(√
n

m
(A− x) +

x
√
n− w√
m

))
≥ ν

(
A− x

)
− δ
)
. (2.25)
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Now, set ρ =
√

n
m and ξ = x

√
n−w√
m

. Since ρ = 1 + O(1/
√
n) and ξ = O(1/

√
n), by

Lemma 2.1 part 1 and Lemma 2.2 we have∣∣∣ν(A− x)− νm
(√
m(ρ(A− x) + ξ)

)∣∣∣ = o(1) . (2.26)

Therefore, for n large enough (2.25) is bounded below by

P
(
Z̄m
(√
m(ρ(A− x) + ξ)

)
≥ νm

(√
m(ρ(A− x) + ξ)

)
− δ/2

)
. (2.27)

Applying Lemma 2.4 we see that the latter goes to 1 when n→∞.
Plugging this back into (2.24), recalling that |ζ| = b|w|, the second factor in (2.23)

is bounded below by exp{−C ′b|w|}. Combining the bounds on both factors in (2.23) we
arrive at

P(Z̄n(
√
nA) ≥ p) ≥ exp{−Cb|x|

√
n} = exp

{
− e(log b)(ĨA(p)+ε)

√
n+C′

}
(2.28)

for n large enough. Since ε was arbitrary, the lower bound follows.

Upper bound. Let ε > 0 be arbitrarily small and set

|w| = b(ĨA(p)− ε)
√
nc ; m = n− |w| . (2.29)

Conditioning on the particles measure ζ at generation |w|, we have

P(Z̄n(
√
nA) ≥ p) =

∑
ζ

P(Z̄ζm(
√
nA) ≥ p)P(Z|w| = ζ) . (2.30)

Any such ζ must satisfy supp(ζ) ⊆ [−|w|,+|w|]. Therefore there exists δ > 0, such that
for all such ζ and z ∈ ζ,

ν(A− z/
√
n) ≤ max

|y|≤ĨA(p)−ε
ν(A− y) = p− δ . (2.31)

This follows from the definition of ĨA(p).
Using Lemma 2.1 and Lemma 2.2, we further obtain for n large,

1

|ζ|
∑
z∈ζ

νm(
√
nA− z) ≤ 1

|ζ|
∑
z∈ζ

ν
(√

n
mA−

z√
m

)
+
δ

2
< p− δ

3
. (2.32)

Then Lemma 2.4 implies that P(Z̄ζm(
√
nA) ≥ p) is bounded above by

P
(
Z̄ζm(
√
nA) ≥ 1

|ζ|

∑
z∈ζ

νm(
√
nA− z) + δ

3

)
≤ Ce−C

′|ζ| . (2.33)

As |ζ| ≥ b|w| we have from (2.30) for n large enough,

P(Z̄n(
√
nA) ≥ p) ≤ exp

{
− e(log b)(ĨA(p)−ε)

√
n−C} , (2.34)

and this concludes the upper bound as ε was arbitrary.

2.3.2 The Case IA(p) =∞.

The proof in this case is technically similar to the proof in the previous case, although
the “optimal” strategy for achieving the desired deviation is different.
Lower bound. Let ε > 0 be arbitrarily small. By continuity of JA (and therefore J̃A) at p
and Lemma 2.1 part 3, we may find r ∈ (0, 1), x ∈ R and δ > 0, such that

r <
(
J̃A(p) + ε

)
and ν

(
(A− x)/

√
1− r

)
≥ p+ δ (2.35)
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Set

q = 2brn/2c ; w = b|x|
√
ncsgn(x) ; s = q + |w| ; ζ = bsδw (2.36)

and write

P(Z̄n(
√
nA) ≥ p) ≥ P(Zs = ζ)P(Z̄ζn−s(

√
nA) ≥ p) . (2.37)

The first factor on the r.h.s. is at least exp{−Cbs} since the event there can be achieved
by having all particles give birth to b children in the first s generations, make only +1

or −1 steps in the first |w| generations (depending on the sign of x), and then alternate
between +1 and −1 steps in the succeeding q generations. This requires that C ′bs

independent particles make certain branching/walking choices, all of which have a
uniformly positive probability.

The second factor is bounded below by(
P(Z̄n−s(

√
nA− w) ≥ p)

)|ζ|
(2.38)

Setting

m = n− s , ρ =

√
n

m
(1− r) , ξ =

x
√
n− w√
m

, (2.39)

and using (2.35), we may bound below the probability in (2.38) by

P
(
Z̄m
(√
m
(
ρ A−x√

1−r + ξ
))
≥ ν

(
ρ A−x√

1−r + ξ
)

+ ν
(
A−x√

1−r

)
− ν
(
ρ A−x√

1−r + ξ
)
− δ
)
. (2.40)

Now ρ = 1 + O(1/
√
n) and ξ = O(1/

√
n). Hence by Lemma 2.1 and Lemma 2.2 for n

large enough, the latter is at least

P
(
Z̄m
(√
m
(
ρ A−x√

1−r + ξ
))
≥ νm

(√
m
(
ρ A−x√

1−r + ξ
)
− δ/2

)
. (2.41)

In light of Lemma 2.4, this goes to 1 as n → ∞ and therefore for n large the second
factor in (2.37) is bounded below by e−C|ζ| ≥ exp{−C ′bs}.

Plugging the two lower bounds in (2.37) we obtain for n large enough

P(Z̄n(
√
nA) ≥ p) ≥ exp{−e(log b)s+C} ≥ exp

{
− e(log b)(J̃A(p)+2ε)n

}
. (2.42)

The lower bound then follows from the arbitrariness of ε.

Upper bound. As in the previous case, let ε > 0 be small enough and set

qε =
⌊(
J̃A(p)− ε

)
n
⌋

; m = n− qε . (2.43)

This time we condition on the particles measure ζ at generation qε:

P(Z̄n(
√
nA) ≥ p) =

∑
ζ

P(Z̄ζm(
√
nA) ≥ p)P(Zqε = ζ) . (2.44)

Now, from the definition of J̃A(p) it follows that there exists δ > 0 such that for all
ε′ ∈ [ε, 2ε] and z ∈ R,

ν
(

A−z√
1−J̃A(p)+ε′

)
≤ p− δ . (2.45)

Therefore, for any measure ζ and n large enough by Lemma 2.1 and 2.2

1

|ζ|
∑
z∈ζ

νm(
√
nA− z) ≤ 1

|ζ|
∑
z∈ζ

ν
(√

n
mA−

z√
m

)
+
δ

2
≤ p− δ

2
. (2.46)
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Using Lemma 2.4 we have that P(Z̄ζm(
√
nA) ≥ p) is bounded above by

P

P(Z̄ζm(
√
nA) ≥ 1

|ζ|
∑
z∈ζ

νm(
√
nA− z) +

δ

2

 ≤ Ce−C′|ζ| . (2.47)

But if ζ is a possible particle measure at generation qε, then |ζ| ≥ bqε . Hence from (2.44)
we obtain for n large enough,

P(Z̄n(
√
nA) ≥ p) ≤ e−Cb

qε ≤ exp
{
− e(log b)(J̃A(p)−ε)n−C′} , (2.48)

and since ε is arbitrary the upper bound follows.

2.4 Proof of Proposition 1.2

Fix a = 3
8M

−1 and x = 1
2M

−1 for some positive integer M whose value will be
determined later. Set A = x+ [−a, a] and p = ν([−a,+a]). Since x 7→ ν(x+ [−a, a]) has a
unique maximizer x = 0, it is clear that IA(p) = (log b)x and IA(p+) =∞. We shall now
show that for M large enough we also have

lim sup
n→∞

1√
n

log
(
− logP(Z̄n(

√
nA) ≥ p

))
≥ 2(log b)x , (2.49)

lim inf
n→∞

1√
n

log
(
− logP(Z̄n(

√
nA) ≥ p

))
≤ (log b)x . (2.50)

which shows that a limit indeed fails to exist.
In what follows, we shall make use of the following three facts. The first is a sharp

estimate on the error term in CLT, given by the Edgeworth Expansion (see Theorem VI.6
in [24]). Recall that the latter says that if t ∈ N tends to∞ then uniformly in z ∈ R

νt
(
(−∞, z)

)
= ν

((
−∞, z√

t

))
+ t−1/2S(z)f(z/

√
t) + o

(
t−1/2

)
, (2.51)

where f is the standard Normal density, S is the 1-periodic odd function on R given by

S(u) =

{
1
2 − (umod 1) umod 1 ∈ (0, 1) ,

0 umod 1 = 0
(2.52)

and umod 1 means u− buc.
The second is the Taylor expansion of (ρ, ξ) 7→ ν

(
ρ[−z, z] + ξ

)
around (ρ, ξ) = (1, 0) for

some z > 0:

ν
(
ρ[−z, z] + ξ

)
= ν([−z, z]) + Cz(ρ− 1)− C ′zξ2 +Oz

(
(ρ− 1)2 + ξ3

)
, (2.53)

where Cz = 2zf(z) > 0 and C ′z = −f ′(z) > 0. The third is the easily verified assertion
that for any z > 0,

d

dξ
ν([−z, z] + ξ) > 0 if ξ < 0 and

d

dξ
ν([−z, z] + ξ) < 0 if ξ > 0 . (2.54)

Starting with (2.49), let w = b2x
√
nc, m = n− w and note that√

n
m = 1 + xn−1/2 +O(n−1) . (2.55)

We would like to bound from above νm
(√
nA − y

)
for any y ∈ Z and n large enough.

Writing:

νm
(√
nA− y

)
= ν

(√
n
mA−

y√
m

)
+m−1/2

(
S
(√
n(a+ x)− y

)
f
(√

n
m (a+ x)− y√

m

)
− S

(√
n(−a+ x)− y

)
f
(√

n
m (−a+ x)− y√

m

))
+ o
(
m−1/2

) (2.56)
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and using (2.53), (2.54) and (2.55), we see that

νm
(√
nA− y

)
≤ p− C , (2.57)

if |y − x
√
n| ≥ n1/2 and

νm
(√
nA− y

)
≤ p− C ′an−1/3 +O

(
n−1/2

)
. (2.58)

if |y − x
√
n| ∈

(
n1/3, n1/2

)
.

If, on the other hand, |y − x
√
n| ≤ n1/3 then the r.h.s. of (2.56) is bounded above by

p+ Caxn
−1/2 + n−1/2f(a)

(
S
(√
n(a+ x)

)
− S

(√
n(−a+ x)

))
+ o
(
n−1/2

)
. (2.59)

This is because y ∈ Z and S is 1-periodic. Therefore for n =
(
(8k + 2)M

)2
where k is a

positive integer, we have (
√
nx) mod 1 = 0 and (

√
na) mod 1 = 3

4 , which imply together
with (2.59) that

νm(
√
nA− y) ≤ p+ n−1/2

(
2af(a)x+ 2f(a)S(3/4)

)
+ o
(
n−1/2

)
. (2.60)

We may therefore choose M large enough such that the coefficient of n−1/2 above is
smaller than −δ for some δ > 0.

All together, with the above choice of M , we have

νm
(√
nA− y

)
≤ p− δn−1/2 (2.61)

for all y ∈ Z, n =
(
(8k+ 2)M

)2
and k ∈ N large enough. Therefore for any measure ζ for

the particles at time w, we have

1

|ζ|
∑
y∈ζ

νm
(√
nA− y

)
≤ sup
y∈Z

νm
(√
nA− y

)
≤ p− δn−1/2 . (2.62)

It follows then from Lemma 2.4 and |ζ| ≥ bw that

P
(
Z̄ζm(
√
nA) ≥ p

)
≤ Ce−C

′|ζ|δ2n−1

≤ e−e
2(log b)x

√
n(1−o(1))

. (2.63)

By conditioning on the particle measure in generation w, the same bound holds for
P
(
Z̄ζn(
√
nA) ≥ p

)
for all n as above. This gives (2.49).

Turning to (2.50), let this time n = (8kM)2 for k integer and large enough, w = x
√
n

and m = n− w. Observe that√
n

m
= 1 + 1

2xn
−1/2 +O(n−1) , wmod 1 = (x

√
n) mod 1 = (a

√
n) mod 1 = 0 . (2.64)

Therefore, by (2.51) and (2.53) for some δ > 0 and k large enough,

νm
(√
nA− w

)
= ν

(√
n
m [−a, a]

)
+ o
(
n−1/2

)
≥ p+ 1

2Caxn
−1/2 + o

(
n−1/2

)
≥ p+ δn−1/2 .

(2.65)
We may now set ζ = bwδw and use Lemma 2.4 to write

P(Z̄n(
√
nA) ≥ p) ≥ P(Zw = ζ)P

(
Z̄ζm(
√
nA) ≥ p

)
≥ e−Cb

w
(

1− P
(
Z̄ζm(
√
nA) < −δn−1/2 + 1

|ζ|

∑
y∈ζ

νm(
√
nA− y)

))
≥ e−e

(log b)x
√
n(1+o(1))(

1− C ′e−C
′′bwδ2n−1)

≥ e−e
(log b)x

√
n(1+o(1))

.

(2.66)

The latter holds for all n as above and this shows (2.50).
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2.5 Proof of Proposition 1.3

Let α ∈ (1/2, 1) and p ∈ (0, 1) be given. Fix some δ > 0 (small enough for the
arguments below to hold), γ ∈ (1 − α, 1/2) and a > 0 such that ν(A0) = p where
A0 = [−a,+a]. For any integer k ≥ 1 set Ak = xk + rk ·A0 where

xk = k1+δ , rk =

√
1− k−

(1−α)(1+δ)
α−1/2 + k

−
γ(1+δ)
α−1/2 . (2.67)

Finally, for some k0 > 0 to be chosen later, set

A =

∞⋃
k=k0

Ak . (2.68)

We shall now argue that (1.27) is satisfied with the above A, α and p.

Lower bound. For any n large enough, set k = dn(α−1/2)/(1+δ)e, w = bxk
√
nc, m =

n− w, ζ = bwδw and write

P(Z̄n(
√
nA) ≥ p) ≥ P(Zw = ζ) P(Z̄ζm(

√
nA) ≥ p) . (2.69)

The first factor in the r.h.s. is at least exp{−Cbw} ≥ exp{−bnα(1+o(1)}, as the event can
be achieved by all particles multiplying at rate b and having their descendants take a +1

step for w generations.
For the second factor in the r.h.s. of (2.69), observe that

νm
(√
nA− w

)
= νm

(√
n(A− xk) +O(1)

)
≥ νm

(√
nrkA0 +O(1)

)
= νm

(√
m
(√

n
mrkA0 +O

(
m−1/2

)))
= ν

(√
n
mrkA0

)
+O

(
m−1/2

)
,

(2.70)

where the last inequality follows from Lemma 2.1 part 1 and the fact that |νm(ρA0 + ξ)−
ν(ρA0 + ξ)| = O(m−1/2) uniformly in (ρ, ξ) ∈ R+ ×R, as shown in [6] (see (2.5) and the
paragraph that follows). Now since ρ 7→ ν(ρA0) is smooth and strictly increasing and
since

rk ≥
(
1− n−(1−α)

)1/2
+ n−γ

(
1 + o(1)

)
,
√

n
m ≥

(
1− n−(1−α)

)−1/2(
1 +O

(
n−1

))
(2.71)

the right most term in (2.70) is at least

ν
(
A0

(
1 + n−γ(1 + o(1))

)
≥ p+ Cn−γ . (2.72)

for some C > 0. Setting ∆ = Cn−γ , with C as above, the second factor in the r.h.s.
of (2.69) is at least (

P
(
Z̄m(
√
nA− w) ≥ νm(

√
nA− w)−∆

))|ζ|
. (2.73)

Since ∆2|ζ| → ∞, Lemma 2.4 then shows that the latter goes to 1 with n.

Upper bound. Let ε > 0 be arbitrarily small and set w = b(1− ε)nαc and m = n− w.
By conditioning on the particles measure in generation w, it is clear that

P(Z̄n(
√
nA) ≥ p) ≤ max

ζ
P(Z̄ζm(

√
nA) ≥ p) (2.74)

where the maximum is taken over all feasible particles measures ζ for generation w. For
such ζ, we may write

1

|ζ|
∑
z∈ζ

νm(
√
nA− z) ≤ max

z∈ζ
νm(
√
nA− z) (2.75)

≤ max
z∈ζ

ν
(√

n
mA−

z√
m

)
+O(n−1/2) (2.76)

≤ max
|y|≤(1−ε)nα−1/2

ν
(√

n
m (A− y)

)
+O(n−1/2) , (2.77)
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where for the second inequality, we have used

lim sup
m→∞

sup
ρ∈[1/2,2]

sup
ξ∈R

m1/2|νm(
√
m(ρA+ ξ))− ν(ρA+ ξ)| <∞ , (2.78)

which holds for the set A in light of (2.5) of [6].
Consider now some y in the range of the maximum in (2.77) and find the index k of

the closest point to y among (xk)k≥k0 . We can then write√
n
m (A− y) =

√
n
m

(
Ak − y

)
∪
√

n
m

(
(A \Ak)− y

)
(2.79)

and bound the Gaussian measure of each set separately.
The measure of the first set is upper bounded by (using Lemma 2.1)

ν
(√

n
m (Ak − xk)

)
= ν

(√
n
mrk ·A0

)
(2.80)

≤ ν(A0)− C
(
1−

√
n
mrk

)
(2.81)

≤ p− C
((

1− rk
)
−
(√

n
m − 1

))
. (2.82)

For the second set in (2.79), note that from the definition of A it follows that

(A \Ak)− y ⊆ (−Ckδ,+Ckδ)c , (2.83)

for large enough k. Then, using a standard bound on the tails of ν, we obtain

ν
(√

n
m

(
(A \Ak)− y

))
≤ C ′e−Ck

2δ

. (2.84)

Combining the two bounds, we have

ν
(√

n
m (A− y)

)
≤ p− C ′′

((
1− rk

)
− C ′e−Ck

2δ

−
(√

n
m − 1

))
(2.85)

Now if k0 is chosen large enough, the r.h.s. above is maximized when k is the largest
possible. At the same time, the choices of k and y imply

(k − 1)1+δ < y ≤ (1− ε)nα−1/2 (2.86)

which gives an upper bound on k. Using this in (2.85) we infer that the r.h.s. of (2.77) is
bounded above by

p− C
(
n−(1−α)/2− (1− ε)n−(1−α)/2

)
(1− o(1)) ≤ p− C ′εn−(1−α) . (2.87)

We may now use Lemma 2.4 and the fact that |ζ| ≥ bw to conclude that

P(Z̄ζm(
√
nA) ≥ p) ≤ C exp(−C ′ε2n−2(1−α)b(1−ε)n

α

) . (2.88)

This finishes the proof as ε was arbitrary.

2.6 Proof of Proposition 1.4

By Theorem 1.1 and Bayes rule, it is enough to show that

lim
n→∞

1√
n

log
[
− logP

(
Z̄n(
√
nA) ≥ p

∣∣∣ Z̄wε(n)

(√
nBc

A(p− ε)
)
> ε
)
> IA(p)

]
. (2.89)

Since |Zwε(n)| > e(IA(p)+ε3)
√
n, this will follow by conditioning on Zwε(n) and using Lemma

2.4, provided that we can show that on{
Z̄wε(n)

(√
nBc

A(p− ε)
)
> ε
}

(2.90)
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we have
1

|Zwε(n)|
∑

x∈Zwε(n)

νn−wε(n)

(√
nA− x

)
< p−∆ε (2.91)

for all n large enough and some ∆ε > 0.
To check this, let ζ be any realization of Zwε(n) satisfying (2.90) and use Lemma 2.1

and 2.2 to write

1

|ζ|
∑
x∈ζ

νn−wε(n)

(√
nA− x

)
≤ 1

|ζ|
∑
x∈ζ

ν
(
A− x/

√
n
)

+ o(1)

=
1

|ζ|
∑

x∈ζ∩
√
nBc

A(p−ε)

ν
(
A− x/

√
n
)

+
1

|ζ|
∑

x∈ζ∩
√
nBA(p−ε)

ν
(
A− x/

√
n
)

+ o(1)

≤ (p− ε)ζ̄
(√
nBc

A(p− ε)
)

+ (p+ Cε3)ζ̄
(√
nBA(p− ε)

)
+ o(1) ,

(2.92)

where the last inequality comes from the definition of BA(p− ε) and the bound

sup
x∈ζ

ν
(
A− x/

√
n
)
≤ sup
|x|≤wε(n)

ν
(
A− x/

√
n
)

=

= sup
|x|≤ĨA(p)+ε3

ν
(
A− x

)
≤ p+ ε3

(2.93)

which is valid in light of the definition of ĨA(p) and Lemmas 2.1 and 2.2.
Bounding the last expression in (2.92) above by p− εζ̄

(√
nBc

A(p− ε)
)

+ ε3 + o(1) and
using the fact that ζ is a realization of Zwε(n) on (2.90) we infer that (2.91) can be made
to hold with ∆ε = 1

2ε
2 for ε small enough and any large n, as desired.

Turning to the case IA(p) =∞, since in this case wε(n) is chosen such that |Zwε(n)| >
e(JA(p)+ε3)n, here also the desired result will follow once we show that (2.91) holds on{

Z̄wε(n)

(√
n(1− J̃A(p)Bc

A/
√

1−J̃A(p)
(p− ε)

)
> ε
}

(2.94)

Proceeding as before, we take ζ which is a possible realization of Zwε(n) on the event
(2.94) and use Lemmas 2.1 and 2.2 to write

1

|ζ|
∑
x∈ζ

νn−wε(n)

(√
nA− x

)
≤ 1

|ζ|
∑
x∈ζ

ν
(

A√
1−J̃A(p)

− x√
n(1−J̃A(p))

)
+ ε3 + o(1)

≤ (p− ε)ζ̄
(√

n(1− J̃A(p)Bc

A/
√

1−J̃A(p)
(p− ε)

)
+ pζ̄

(√
n(1− J̃A(p)B

A/
√

1−J̃A(p)
(p− ε)

)
+ ε3 + o(1) ,

(2.95)

where the last inequality follows by the definition of the set BA(p) and from

sup
x∈ζ

ν
(

A√
1−J̃A(p)

− x√
n(1−J̃A(p))

)
= p , (2.96)

which holds in light of the definition of J̃A(p) and Lemma 2.1.
Bounding the last expression in (2.95) above by

p− εζ̄
(√

n(1− J̃A(p)Bc

A/
√

1−J̃A(p)
(p− ε)

)
+ ε3 + o(1) , (2.97)

we may again choose ∆ε = 1
2ε

2 for (2.91) to hold on the event (2.94) for small ε > 0 and
all n large enough, as desired.

EJP 20 (2015), paper 18.
Page 17/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-2147
http://ejp.ejpecp.org/


LDP for the empirical distribution in the BRW

References

[1] L. Addario-Berry and B. Reed. Minima in branching random walks. Ann. Probab., 37(3):1044–
1079, 2009. MR-2537549

[2] L.-P. Arguin, A. Bovier, and N. Kistler. The extremal process of branching brownian motion.
Probability Theory and Related Fields, 157(3-4):535–574, 2013. MR-3129797

[3] S. Asmussen and H. Hering. Branching processes. Springer, 1983. MR-0701538

[4] K. Athreya. Large deviation rates for branching processes–i. single type case. The Annals of
Applied Probability, 4(3):779–790, 1994. MR-1284985

[5] K. B. Athreya and H.-J. Kang. Some limit theorems for positive recurrent branching Markov
chains. I, II. Adv. in Appl. Probab., 30(3):693–710, 711–722, 1998. MR-1663545

[6] R. Bhattacharya. On errors of normal approximation. The Annals of Probability, pages
815–828, 1975. MR-0467879

[7] J. Biggins. Chernoff’s theorem in the branching random walk. Journal of Applied Probability,
pages 630–636, 1977. MR-0464415

[8] J. D. Biggins and N. H. Bingham. Large deviations in the supercritical branching process.
Adv. in Appl. Probab., 25(4):757–772, 1993. MR-1241927

[9] P. Billingsley and F. Topsoe. Uniformity in weak convergence. Probability Theory and Related
Fields, 7:1–16, 1967. 10.1007/BF00532093. MR-0209428

[10] M. Bramson. Maximal displacement of branching brownian motion. Communications on Pure
and Applied Mathematics, 31(5):531–581, 1978. MR-0494541

[11] M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem.
Amer. Math. Soc., 44(285):iv+190, 1983. MR-0705746

[12] M. Bramson and O. Zeitouni. Tightness of the recentered maximum of the two-dimensional
discrete Gaussian free field. Comm. Pure Appl. Math., 65(1):1–20, 2012. MR-2846636

[13] X. Chen. Exact convergence rates for the distribution of particles in branching random walks.
Annals of Applied Probability, pages 1242–1262, 2001. MR-1878297

[14] K. Fleischmann and V. Wachtel. Lower deviation probabilities for supercritical Galton–Watson
processes. Annales de l’Institut Henri Poincare (B) Probability and Statistics, 43(2):233–255,
2007. MR-2303121

[15] T. E. Harris. The theory of branching processes. Die Grundlehren der Mathematischen
Wissenschaften, Bd. 119. Springer-Verlag, Berlin, 1963. MR-0163361

[16] C. C. Heyde. Some central limit analogues for supercritical Galton-Watson processes. J. Appl.
Probability, 8:52–59, 1971. MR-0282422

[17] O. D. Jones. Large deviations for supercritical multitype branching processes. J. Appl. Probab.,
41(3):703–720, 2004. MR-2074818

[18] N. Kaplan. A note on the branching random walk. Journal of Applied Probability, 19(2):pp.
421–424, 1982. MR-0649980

[19] H. Kesten and B. P. Stigum. A limit theorem for multidimensional Galton-Watson processes.
Ann. Math. Statist., 37:1211–1223, 1966. MR-0198552

[20] T. M. Liggett. Stochastic interacting systems: contact, voter and exclusion processes,
volume 324 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1999. MR-1717346

[21] P. Mörters and N. Sidorova. A class of weakly self-avoiding walks. Journal of Statistical
Physics, 133(2):255–269, 2008. MR-2448533

[22] P. Ney. Branching random walk. In Spatial stochastic processes, volume 19 of Progr. Probab.,
pages 3–22. Birkhäuser Boston, Boston, MA, 1991. MR-1144089

[23] P. E. Ney and A. N. Vidyashankar. Local limit theory and large deviations for supercritical
branching processes. Ann. Appl. Probab., 14(3):1135–1166, 2004. MR-2071418

[24] V. V. Petrov. Sums of independent random variables. Berlin, 1975. MR-0388499

[25] P. Révész. Random walks of infinitely many particles. World Scientific Publishing Co. Inc.,
River Edge, NJ, 1994. MR-1645302

EJP 20 (2015), paper 18.
Page 18/19

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2537549
http://www.ams.org/mathscinet-getitem?mr=3129797
http://www.ams.org/mathscinet-getitem?mr=0701538
http://www.ams.org/mathscinet-getitem?mr=1284985
http://www.ams.org/mathscinet-getitem?mr=1663545
http://www.ams.org/mathscinet-getitem?mr=0467879
http://www.ams.org/mathscinet-getitem?mr=0464415
http://www.ams.org/mathscinet-getitem?mr=1241927
http://www.ams.org/mathscinet-getitem?mr=0209428
http://www.ams.org/mathscinet-getitem?mr=0494541
http://www.ams.org/mathscinet-getitem?mr=0705746
http://www.ams.org/mathscinet-getitem?mr=2846636
http://www.ams.org/mathscinet-getitem?mr=1878297
http://www.ams.org/mathscinet-getitem?mr=2303121
http://www.ams.org/mathscinet-getitem?mr=0163361
http://www.ams.org/mathscinet-getitem?mr=0282422
http://www.ams.org/mathscinet-getitem?mr=2074818
http://www.ams.org/mathscinet-getitem?mr=0649980
http://www.ams.org/mathscinet-getitem?mr=0198552
http://www.ams.org/mathscinet-getitem?mr=1717346
http://www.ams.org/mathscinet-getitem?mr=2448533
http://www.ams.org/mathscinet-getitem?mr=1144089
http://www.ams.org/mathscinet-getitem?mr=2071418
http://www.ams.org/mathscinet-getitem?mr=0388499
http://www.ams.org/mathscinet-getitem?mr=1645302
http://dx.doi.org/10.1214/EJP.v20-2147
http://ejp.ejpecp.org/


LDP for the empirical distribution in the BRW

[26] A. Stam. On a conjecture by Harris. Probability Theory and Related Fields, 5(3):202–206,
1966.

Acknowledgments. The authors would like to thank Dima Ioffe and Anna Levit for the
discussions which gave rise to this problem, Scott Sheffield for fruitful conversations in
the early stages of this project and Eve Styles for her interest in the problem. The referee
is acknowledged for many useful comments and suggestions as well as for pointing out a
mistake in an earlier version of this manuscript.

EJP 20 (2015), paper 18.
Page 19/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-2147
http://ejp.ejpecp.org/


Electronic Journal of Probability

Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS1)

• Non profit, sponsored by IMS2, BS3, PKP4

• Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

	Introduction and Results
	Setup
	Known Results
	New Results
	Assumptions
	Main Theorems
	Remarks.
	Idea of Proof
	Extension to higher dimensions


	Proofs
	A bit more notation
	Preliminaries
	Proof of Theorem 1.1
	The Case IA(p) < .
	The Case IA(p) = .

	Proof of Proposition 1.2
	Proof of Proposition 1.3
	Proof of Proposition 1.4

	References

