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Abstract

We consider multiple time scales systems of stochastic differential equations with small noise in
random environments. We prove a quenched large deviations principle with explicit characterization
of the action functional. The random medium is assumed to be stationary and ergodic. In the course
of the proof we also prove related quenched ergodic theorems for controlled diffusion processes in
random environments that are of independent interest. The proof relies entirely on probabilistic
arguments, allowing to obtain detailed information on how the rare event occurs. We derive a
control, equivalently a change of measure, that leads to the large deviations lower bound. This
information on the change of measure can motivate the design of asymptotically efficient Monte
Carlo importance sampling schemes for multiscale systems in random environments.
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1 Introduction

Let 0 < ε, δ � 1 and consider the process (Xε, Y ε) = {(Xε
t , Y

ε
t ) , t ∈ [0, T ]} taking values in the

space Rm ×Rd−m that satisfies the system of stochastic differential equation (SDE’s)

dXε
t =

[ ε
δ
b (Y εt , γ) + c (Xε

t , Y
ε
t , γ)

]
dt+

√
εσ (Xε

t , Y
ε
t , γ) dWt,

dY εt =
1

δ

[ ε
δ
f (Y εt , γ) + g (Xε

t , Y
ε
t , γ)

]
dt+

√
ε

δ
[τ1 (Y εt , γ) dWt + τ2 (Y εt , γ) dBt] , (1.1)

Xε
0 = x0, Y ε0 = y0

where δ = δ(ε) ↓ 0 such that ε/δ ↑ ∞ as ε ↓ 0. Here, (Wt, Bt) is a 2κ−dimensional standard Wiener
process. We assume that for each fixed x ∈ Rm, b(·, γ), c(x, ·, γ), σ(x, ·, γ), f(·, γ), g(x, ·, γ), τ1(·, γ) and
τ2(·, γ) are stationary and ergodic random fields. We denote by γ ∈ Γ the element of the related
probability space. If we want to emphasize the dependence on the initial point and on the random
medium, we shall write

(
Xε,(x0,y0),γ , Y ε,(x0,y0),γ

)
for the solution to (1.1).

The system (1.1) can be interpreted as a small-noise perturbation of dynamical systems with
multiple scales. The slow component is X and the fast component is Y . We study the regime where
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the homogenization parameter goes faster to zero than the strength of the noise does. The goal
of this paper is to obtain the quenched large deviations principle associated to the component X,
that is associated with the slow motion. The case of large deviations for such systems in periodic
media for all possible interactions between ε and δ, i.e., ε/δ → 0, c ∈ (0,∞) or ∞, was studied in
[33], see also [1, 6, 11]. In [33] (see also [7]), it was assumed that the coefficients are periodic
with respect to the y−variable and based on the derived large deviations principle, asymptotically
efficient importance sampling Monte Carlo methods for estimating rare event probabilities were
obtained. In the current paper, we focus on quenched (i.e. almost sure with respect to the random
environment) large deviations for the case ε/δ ↑ ∞ and the situation is more complex when compared
to the periodic case since the coefficients are now random fields themselves and the fast motion
does not take values in a compact space.

We treat the large deviations problem via the lens of the weak convergence framework, [5],
using entirely probabilistic arguments. This framework transforms the large deviations problem to
convergence of a stochastic control problem. The current work is certainly related to the literature
in random homogenization, see [15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 29]. Our work is most
closely related to [16, 20], where stochastic homogenization for Hamilton-Jacobi-Bellman (HJB)
equations was studied. The authors in [16, 20] consider the case δ = ε with the fast motion being
Y = X/δ and with the coefficients b = f = 0 in a general Hamiltonian setting. In both papers the
authors briefly discuss large deviations for diffusions (i.e., when the Hamiltonian is quadratic) and
the action functional is given as the Legendre-Fenchel transform of the effective Hamiltonian and
the case studied there is δ = ε. Moreover, in [19, 36] the large deviations principle for systems like
(1.1) is considered in the case ε = δ with the coefficients b = f = 0. In [19, 36] the coefficients are
deterministic (i.e., not random fields as in our case) and stability type conditions for the fast process
Y are assumed in order to guarantee ergodicity. Lastly, related annealed homogenization results (i.e.
on average and not almost sure with respect to the medium) for uncontrolled multiscale diffusions
as in (1.1) in the case ε = 1, δ ↓ 0 and Y = X/δ have been recently obtained in [29]. Under different
assumptions on the structure of the coefficients, the opposite case to ours where ε/δ ↓ 0 has been
partially considered in [6, 11, 32, 33].

In contrast to most of the aforementioned literature, in this paper, we study the case ε/δ ↑ ∞ and
we use entirely probabilistic arguments. Because ε/δ ↑ ∞, we also need to consider the additional
effect of the macroscopic problem (i.e., what is called cell problem in the periodic homogenization
literature) due to the highly oscillating term ε

δ

∫ T
0
b (Y εt , γ) dt. We use entirely probabilistic arguments

and because the homogenization parameter goes faster to zero that the strength of the noise does,
we are able to derive an explicit characterization of the quenched large deviations principle and
detailed information on the change of measure leading to its proof, Theorem 3.5. Due to the presence
of the highly oscillatory term ε

δ

∫ T
0
b (Y εt , γ) dt, the change of measure in question depends on the

macroscopic problem and we determine this dependence explicitly. Additionally, in the course of
the proof, we obtain quenched (i.e., almost sure with respect to the random environment) ergodic
theorems for uncontrolled and controlled random diffusion processes that may be of independent
interest, Theorem 3.3 and Appendix A. It is of interest to note that for the purposes of proving
the Laplace principle, which is equivalent to the large deviations principle, one can constrain the
variational problem associated with the stochastic control representation of exponential functionals
to a class of L2 controls with specific dependence on δ, ε, Lemma 5.1.

Partial motivation for this work comes from chemical physics, molecular dynamics and climate
modeling, e.g., [35, 8, 30, 37], where one is often interested in simplified models that preserve the
large deviation properties of the system in the case where δ � ε, i.e., in the case where δ is orders
of magnitude smaller than ε. Other related models where the regime of interest is ε/δ ↑ ∞ have
been considered in [1, 6, 7, 10, 11, 13, 33]. When rare events are of interest, then large deviations
theory comes into play. As mentioned before, we are able to derive an explicit characterization of the
quenched large deviations principle, Theorem 3.5. The explicit form of the derived large deviations
action functional and of the control achieving the large deviations bound give useful information
which can be used to design provably efficient importance sampling schemes for estimation of related
rare event probabilities. In the case of a periodic fast motion, the design of large deviations inspired
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efficient Monte Carlo importance sampling schemes was investigated in [7, 8, 33]. The paper [7]
also includes importance sampling numerical simulations in the case of diffusion moving in a random
multiscale environment in dimension one. In the present paper, we focus on rigorously developing
the large deviations theory and the design of asymptotically efficient importance sampling schemes
in random environments is addressed in [34].

The rest of the paper is organized as follows. In Section 2 we set-up notation, state our assump-
tions and review known results from the literature on random homogenization that will be useful for
our purposes. In Section 3 we state our main results. Sections 4, 5 and 6 contain the proofs of the
main results of the paper, i.e., quenched homogenization results for pairs of controlled diffusions and
occupation measures in random environments and the large deviations principle with the explicit
characterization of the action functional. The Appendix A contains the proofs of the necessary
quenched ergodic theorems for controlled diffusion processes in random environments.

2 Assumptions, notation and review of useful known results

In this section we setup notation and pose the main assumptions of the paper. In this section, and
for the convenience of the reader, we also review well known results from the literature on random
homogenization that will be useful for our purposes. The content of this section is classical.

We start by describing the properties of the random medium. Let (Γ,G, ν) be the probability space
of the random medium and as in [14], a group of measure-preserving transformations {τy, y ∈ Rd}
acting ergodically on Γ.

Definition 2.1. We assume that the following hold.

i. τy preserves the measure, namely ∀y ∈ Rd−m and ∀A ∈ G we have ν(τyA) = ν(A).

ii. The action of {τy : y ∈ Rd−m} is ergodic, that is if A = τyA for every y ∈ Rd then ν(A) = 0 or 1.

iii. For every measurable function f on (Γ,G, ν), the function (y, γ) 7→ f(τyγ) is measurable on(
Rd−m × Γ,B(Rd−m)⊗ G

)
.

For φ̃ ∈ L2(Γ) (i.e., a square integrable function in Γ), we define the operator Tyφ̃(γ) = φ̃(τyγ). It
is known, e.g. [22], that Ty forms a strongly continuous group of unitary maps in L2(Γ). Moreover, if
the limit exists, the infinitesimal generator Di of Ty in the direction i is defined by

Diφ̃ = lim
h↓0

Thei φ̃− φ̃
h

. (2.1)

and is a closed and densely defined generator.
Next, for φ̃ ∈ L2(Γ), we define φ(y, γ) = φ̃(τyγ). This definition guarantees that φ will be a

stationary and ergodic random field on Rd−m. Similarly, for a measurable function φ̃ : Rm × Γ 7→ Rm

we consider the (locally) stationary random field (x, y) 7→ φ̃(x, τyγ) = φ(x, y, γ).
We follow this procedure to define the random fields b, c, σ, f, g, τ1, τ2 that play the role of the

coefficients of (1.1), which then guarantees that they are ergodic and stationary random fields.
In particular, we start with L2(Γ) functions b̃(γ), c̃(x, γ), σ̃(x, γ), f̃(γ), g̃(x, γ), τ̃1(γ), τ̃2(γ) and we
define the coefficients of (1.1) via the relations b(y, γ) = b̃(τyγ), c(x, y, γ) = c̃(x, τyγ), σ(x, y, γ) =

σ̃(x, τyγ), f(y, γ) = f̃(τyγ), g(x, y, γ) = g̃(x, τyγ), τ1(y, γ) = τ̃1(τyγ) and τ2(y, γ) = τ̃2(τyγ).
The main assumption for the coefficients of (1.1) is as follows.

Condition 2.2. i. The functions b(y, γ), c(x, y, γ), σ(x, y, γ), f(y, γ), g(x, y, γ), τ1(y, γ) and τ2(y, γ)

are C1(Rd−m) in y and C1(Rm) in x with all partial derivatives continuous and globally bounded
in x and y.

ii. For every fixed γ ∈ Γ, the diffusion matrices σσT and τ1τT1 + τ2τ
T
2 are uniformly nondegenerate.

It is known that under Condition 2.2, there exists a filtered probability space (Ω,F ,Ft,P) such
that for every given initial point (x0, y0) ∈ Rm ×Rd−m, for every γ ∈ Γ and for every ε, δ > 0 there
exists a strong Markov process (Xε

t , Y
ε
t , t ≥ 0) satisfying (1.1). However, if we define a probability

measure P = ν ⊗ P on the product space Γ × Ω, then when considered on the probability space
(Γ× Ω,G ⊗ F ,P), {(Xε

t , Y
ε
t ) , t ≥ 0} is not a Markov process.
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From the previous discussion it is easy to see that the periodic case is a special case of the
previous setup. Indeed, we can consider the periodic case with period 1, Γ to be the unit torus and ν
to be Lebesgue measure on Γ. For every γ ∈ Γ, the shift operators τyγ = (y + γ) mod 1 and we have
φ(y, γ) = φ̃(y + γ) for a periodic function φ̃ with period 1.

For every γ ∈ Γ, we define next the operator

Lγ = f(y, γ)∇y ·+tr
[(
τ1(y, γ)τT1 (y, γ) + τ2(y, γ)τT2 (y, γ)

)
∇y∇y·

]
and we let Y γt to be the corresponding Markov process. It follows from [26, 24, 22], that we can
associate the canonical process on Γ defined by the environment γ, which is a Markov process on Γ

with continuous transition probability densities with respect to d-dimensional Lebesgue measure,
e.g., [22]. In particular, we let

γt = τY γt γ (2.2)

γ0 = τy0γ

Definition 2.3. We denote the infinitesimal generator of the Markov process γt by

L̃ = f̃(γ)D ·+tr
[(
τ̃1(γ)τ̃T1 (γ) + τ̃2(γ)τ̃T2 (γ)

)
D2·
]
,

where D was defined in (2.1).

Following [24], we assume the following condition on the structure of the operator defined in
Definition 2.3. This condition allows to have a closed form for the unique ergodic invariant measure
for the environment process {γt}t≥0, Proposition 2.6.

Condition 2.4. We can write the operator L̃ in the following generalized divergence form

L̃ =
1

m̃(γ)

∑
i,j

Di

(
ããTi,j(γ)Dj ·

)
+
∑
j

β̃j(γ)Dj ·


where β̃j = m̃f̃j −

∑
iDi

((
τ̃1τ̃

T
1 + τ̃2τ̃

T
2

)
i,j
m̃
)

and ããTi,j =
(
τ̃1τ̃

T
1 + τ̃2τ̃

T
2

)
i,j
m̃. We assume that m̃(γ)

is bounded from below and from above with probability 1, that there exist smooth d̃i,j(γ) such that
β̃j =

∑
j Dj d̃i,j with |d̃i,j | ≤M for some M <∞ almost surely and

div β̃ = 0 in distribution, i.e.,

∫
Γ

d∑
j=1

β̃j(γ)Dj φ̃(γ)ν(dγ) = 0, ∀φ̃ ∈ H1,

where the Sobolev space H1 = H1(ν) is the Hilbert space equipped with the inner product

(f̃ , g̃)1 =

d∑
i=1

(Dif̃ , Dig̃).

Example 2.5. A trivial example that satisfies Condition 2.4 is the gradient case. Let f̃(γ) = −DQ̃(γ)

and τ̃1(γ) =
√

2D = constant and τ̃2(γ) = 0. Then, we have that m̃(γ) = exp[−Q̃(γ)/D] and β̃j = 0 for
all 1 ≤ j ≤ d. Moreover, if m̃ = 1 and d̃i,j are constants then the operator is of divergence form.

Next, we recall some classical results from random homogenization.

Proposition 2.6 ([24] and Theorem 2.1 in [22]). Assume Conditions 2.2 and 2.4. Define a measure
on (Γ,G) by

π(dγ)
.
=

m̃(γ)

Eνm̃(·)
ν(dγ).

Then π is the unique ergodic invariant measure for the environment process {γt}t≥0.
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We will denote by Eν and by Eπ the expectation operator with respect to the measures ν and π
respectively. We remark here that since m̃ is bounded from above and from below, H1(ν) and H1(π)

are equivalent. We also need to introduce the macroscopic problem, known as cell problem in the
periodic homogenization literature or corrector in the homogenization literature in general. This
is needed in order to address the situation b̃ 6= 0. For every ρ > 0, we consider the solution to the
auxiliary problem on Γ.

ρχ̃ρ − L̃χ̃ρ = b̃. (2.3)

Let us review some well known facts related to the solution to this auxiliary problem, e.g., see
[22, 15]. By Lax-Milgram lemma, equation (2.3) has a unique weak solution in the abstract Sobolev
space H1. Moreover, letting Rρh̃(γ) =

∫∞
0
e−ρtEγ h̃(γt)dt, for every h̃ ∈ L2(Γ), we have

χ̃ρ(·) = Rρb̃(·),

As in [24, 26], there is a constant K that is independent of ρ such that

ρEπ [χ̃ρ(·)]2 + Eπ [Dχ̃ρ(·)]2 ≤ K

By Proposition 2.6 in [22] we then get that χ̃ρ has anH1 strong limit, i.e., there exists a χ̃0 ∈ H1(π)

such that
lim
ρ↓0
‖χ̃ρ(·)− χ̃0(·)‖1 = 0

and that
lim
ρ↓0

ρEπ [χ̃ρ(·)]2 = 0.

This implies that Dχ̃ρ ∈ L2(π) and that it has a L2(π) strong limit, i.e., there exists a ξ̃ ∈ L2(π)

such that

lim
ρ↓0

∥∥∥Dχ̃ρ − ξ̃∥∥∥2

L2
= 0

In addition, since b̃ is bounded under Condition 2.2, χ̃ρ is also bounded. This follows because the
resolvent operator Rρ corresponding to the operator ρI − L is associated to a L∞(Γ) contraction
semigroup, see Section 2.2 of [22].

Moreover, as in Proposition 3.2. of [24], we have that for almost all γ ∈ Γ

δχ0(y/δ, γ)→ 0, as δ ↓ 0, a.s. y ∈ Y.

3 Main results

In this section we present the statement of the main results of the paper. In preparation for
stating the large deviations theorem, we first recall the concept of a Laplace principle.

Definition 3.1. Let {Xε, ε > 0} be a family of random variables taking values in a Polish space S
and let I be a rate function on S. We say that {Xε, ε > 0} satisfies the Laplace principle with rate
function I if for every bounded and continuous function h : S → R

lim
ε↓0
−ε lnE

[
exp

{
−h(Xε)

ε

}]
= inf
x∈S

[I(x) + h(x)] . (3.1)

If the level sets of the rate function (equivalently action functional) are compact, then the Laplace
principle is equivalent to the corresponding large deviations principle with the same rate function
(Theorems 2.2.1 and 2.2.3 in [5]).

In order to establish the quenched Laplace principle, we make use of the representation the-

orem for functionals of the form E
[
e−

1
εh(Xε,γ)

]
in terms of a stochastic control problem. Such

representations were first derived in [4].
LetA be the set of all Fs−progressively measurable n-dimensional processes u

.
= {u(s), 0 ≤ s ≤ T}

satisfying

E

∫ T

0

‖u(s)‖2 ds <∞,
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In the present case, let Z(·) = (W (·), B(·)) and n = 2k. Then, for the given γ ∈ Γ we have the
representation

− ε lnEx0,y0

[
exp

{
−h(Xε)

ε

}]
= inf
u∈A

Ex0,y0

[
1

2

∫ T

0

[
‖u1(s)‖2 + ‖u2(s)‖2

]
ds+ h(X̄ε)

]
(3.2)

where the pair (X̄ε, Ȳ ε) is the unique strong solution to

dX̄ε
t =

[ ε
δ
b
(
Ȳ εt , γ

)
+ c

(
X̄ε
t , Ȳ

ε
t , γ

)
+ σ

(
X̄ε
t , Ȳ

ε
t , γ

)
u1(t)

]
dt+

√
εσ
(
X̄ε
t , Ȳ

ε
t , γ

)
dWt,

dȲ εt =
1

δ

[ ε
δ
f
(
Ȳ εt , γ

)
+ g

(
X̄ε
t , Ȳ

ε
t , γ

)
+ τ1

(
Ȳ εt , γ

)
u1(t) + τ2

(
Ȳ εt , γ

)
u2(t)

]
dt

+

√
ε

δ

[
τ1
(
Ȳ εt , γ

)
dWt + τ2

(
Ȳ εt , γ

)
dBt

]
, (3.3)

X̄ε
0 = x0, Ȳ ε0 = y0

This representation implies that in order to derive the Laplace principle for {Xε}, it is enough to
study the limit of the right hand side of the variational representation (3.2). The first step in doing so
is to consider the weak limit of the slow motion X̄ε of the controlled couple (3.3).

Fix γ ∈ Γ and let us define for notational convenience Z = Rκ and Y = Rd−m. Due to the involved
controls, it is convenient to introduce the following occupation measure. Let ∆ = ∆(ε) ↓ 0 as ε ↓ 0

that will be chosen later on and is used to exploit a time-scale separation. Let A1, A2, B,Θ be Borel
sets of Z,Z,Γ, [0, T ] respectively. Let uεi ∈ Ai, i = 1, 2 and let (X̄ε, Ȳ ε) solve (3.3) with uεi in place of
ui. We associate with (X̄ε, Ȳ ε) and uεi a family of occupation measures Pε,∆,γ defined by

Pε,∆,γ(A1 ×A2 ×B ×Θ) =

∫
Θ

[
1

∆

∫ t+∆

t

1A1
(uε1(s))1A2

(uε2(s))1B

(
τȲ εs γ

)
ds

]
dt,

assuming that uεi(t) = 0 for i = 1, 2 if t > T . Next, we introduce the notion of a viable pair, see also
[6]. Such a notion will allow us to characterize the limiting behavior of the pair

(
X̄ε,γ ,Pε,∆,γ

)
.

Definition 3.2. Define the function in L2(Γ)

λ̃(x, γ, z1, z2) = c̃(x, γ) + ξ̃(γ)g̃(x, γ) + σ̃(x, γ)z1 + ξ̃(γ) (τ̃1(γ)z1 + τ̃2(γ)z2)

where ξ̃ is the L2 limit of Dχ̃ρ as ρ ↓ 0 that is defined in Section 2. Consider the operator L̃ defined in
Definition 2.3. We say that a pair (ψ,P) ∈ C ([0, T ];Rm)×P (Z × Z × Γ× [0, T ]) is viable with respect
to (λ̃, L̃) and we write (ψ,P) ∈ V, if the following hold.

• The function ψ is absolutely continuous and P is square integrable in the sense that∫
Z×Z×Γ×[0,T ]

|z|2P(dz1dz2dγdt) <∞.

• For all t ∈ [0, T ], P (Z × Z × Γ× [0, t]) = t. Thus, P can be decomposed as P(dz1dz2dγdt) =

Pt(dz1dz2dγ)dt such that Pt(Z × Z × Γ) = 1.

• For all t ∈ [0, T ], (ψ,P) satisfy the ODE

ψt = x0 +

∫ t

0

[∫
Z×Z×Γ

λ̃(ψs, γ, z1, z2)Ps(dz1dz2dγ)

]
ds. (3.4)

and for a given P, there is a unique well defined ψ satisfying (3.4).

• For a.e. t ∈ [0, T ], ∫
Z×Z×Γ

L̃f̃(γ)Pt(dz1dz2dγ) = 0 (3.5)

for all f̃ ∈ D(L̃).
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For notational convenience later on, let us also define

λ̃ρ(x, γ, z1, z2) = c̃(x, γ) +Dχ̃ρ(γ)g̃(x, γ) + σ̃(x, γ)z1 +Dχ̃ρ(γ) (τ̃1(γ)z1 + τ̃2(γ)z2)

Now, that we have defined the notion of a viable pair we are ready to present the law of large
numbers results for controlled pairs

(
X̄ε,γ ,Pε,∆,γ

)
.

Theorem 3.3. Assume Conditions 2.2 and 2.4. Fix the initial point (x0, y0) ∈ Rm × Y and consider a
family {uε = (uε1, u

ε
2), ε > 0} of controls (that may depend on γ) in A satisfying a.s. with respect to

γ ∈ Γ, the bound A.11 and

sup
ε>0

E

∫ T

0

[
‖uε1(s)‖2 + ‖uε2(s)‖2

]
ds <∞ (3.6)

Then the family {(X̄ε,γ ,Pε,∆,γ), ε > 0} is tight almost surely with respect to γ ∈ Γ. Given any
subsequence of {(X̄ε,Pε,∆), ε > 0}, there exists a subsubsequence that converges in distribution
with limit (X̄,P) almost surely with respect to γ ∈ Γ. With probability 1, the limit point (X̄,P) ∈ V,
according to Definition 3.2.

Next, we are ready to state the quenched Laplace principle for {Xε, ε > 0}.
Theorem 3.4. Let {(Xε, Y ε) , ε > 0} be, for fixed γ ∈ Γ, the unique strong solution to (1.1) and
assume that ε/δ ↑ ∞. We assume that Conditions 2.2 and 2.4 hold. Define

S(φ) = inf
(φ,P)∈V

[
1

2

∫
Z×Z×Y×[0,T ]

[
‖z1‖2 + ‖z2‖2

]
P(dz1dz2dydt)

]
, (3.7)

with the convention that the infimum over the empty set is∞. Then, we have

i. The level sets of S are compact. In particular, for each s <∞, the set

Φs = {φ ∈ C([0, T ];Rm) : S(φ) ≤ s}

is a compact subset of C([0, T ];Rm).

ii. For every bounded and continuous function h mapping C([0, T ];Rm) into R

lim
ε↓0
−ε lnEx0,y0

[
exp

{
−h(Xε,γ)

ε

}]
= inf
φ∈C([0,T ];Rm),φ0=x0

[S(φ) + h(φ)] .

almost surely with respect to γ ∈ Γ.

In other words, under the imposed assumptions, {Xε,γ , ε > 0} satisfies the quenched large
deviations principle with action functional S.

Actually, it turns out that in this case we can compute the quenched action functional in closed
form.

Theorem 3.5. Let {(Xε,γ , Y ε,γ) , ε > 0} be, for fixed γ ∈ Γ, the unique strong solution to (1.1).
Under Conditions 2.2 and 2.4, {Xε,γ , ε > 0} satisfies, almost surely with respect to γ ∈ Γ, the large
deviations principle with rate function

S(φ) =

{
1
2

∫ T
0

(φ̇(s)− r(φ(s)))T q−1(φ(s))(φ̇(s)− r(φ(s)))ds if φ ∈ AC([0, T ];Rm) and φ(0) = x0

+∞ otherwise.

where
r(x) = lim

ρ↓0
Eπ [c̃(x, ·) +Dχ̃ρ(·)g̃(x, ·)] = Eπ[c̃(x, ·) + ξ̃(·)g̃(x, ·)]

q(x) = lim
ρ↓0

Eπ
[
(σ̃(x, ·) +Dχ̃ρ(·)τ̃1(·))(σ̃(x, ·) +Dχ̃ρ(·)τ̃1(·))T + (Dχ̃ρ(·)τ̃2(·)) (Dχ̃ρ(·)τ̃2(·))T

]
= Eπ

[
(σ̃(x, ·) + ξ̃(·)τ̃1(·))(σ̃(x, ·) + ξ̃(·)τ̃1(·))T +

(
ξ̃(·)τ̃2(·)

)(
ξ̃(·)τ̃2(·)

)T]
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Notice that the coefficients r(x) and q(x) that enter into the action functional are those obtained
if we had first taken to (1.1) δ ↓ 0 with ε fixed and then consider the large deviations for the
homogenized system. This is in accordance to intuition since in the case ε/δ ↑ ∞, δ goes to zero
faster than ε. This implies that homogenization should occur first as it indeed does and then large
deviations start playing a role.

4 Proof of Theorem 3.3

In this section we prove Theorem 3.3. Tightness is established in Subsection 4.1, whereas the
identification of the limit point is done in Subsection 4.2.

4.1 Tightness of the controlled pair
{

(X̄ε,γ ,Pε,∆,γ), ε,∆ > 0
}
.

In this section we prove that the family {(X̄ε,γ ,Pε,∆,γ), ε > 0}, is almost surely tight with respect to
γ ∈ Γ where ∆ = ∆(ε) ↓ 0. The following proposition takes care of tightness and uniform integrability
of {Pε,∆,γ , ε > 0}.
Lemma 4.1. Assume Conditions 2.2 and 2.4. Let {uε,γ , ε > 0, γ ∈ Γ} be a family of controls in A such
that Conditions A.10 and A.11 of Lemma A.6 hold. The following hold

i. For every η > 0, there is a set Nη (the same Nη identified in Lemma A.6) with π(Nη) ≥ 1 − η
such that for every γ ∈ Nη and for every bounded sequence ∆ ∈ HNη1 (i.e. a sequence that
satisfies Condition A.2), the family {Pε,∆,γ , ε > 0} is tight as ε ↓ 0.

ii. The family {Pε,∆,γ , ε > 0} is uniformly integrable, in the sense that

lim
M→∞

sup
ε>0,γ∈Γ

E

∫
{(z1,z1)∈Z2:[‖z1‖+‖z2‖]≥M}×Γ×[0,T ]

[‖z1‖+ ‖z2‖] Pε,∆,γ(dz1dz1dγ̃dt) = 0

Proof. (i). Let us first prove the first part of the Lemma. It is clear that we can write

Pε,∆,γ(A1 ×A2 ×B ×Θ) =

∫
Θ

Pε,∆,γt (A1 ×A2 ×B)dt

where

Pε,∆,γt (A1 ×A2 ×B) =

[
1

∆

∫ t+∆

t

1A1(uε,γ1 (s))1A2(uε,γ2 (s))1B

(
τȲ εs γ

)
ds

]
dt,

Let us denote by Pε,∆,γ1,t (A1 ×A2) and by Pε,∆,γ2,t (B) the first and second marginals of Pε,∆,γt (A1 ×
A2 ×B) respectively. Namely,

Pε,∆,γ1,t (A1 ×A2) = Pε,∆,γt (A1 ×A2 × Γ), and Pε,∆,γ2,t (B) = Pε,∆,γt (Z × Z ×B)

It is clear that tightness of {Pε,∆,γ , ε > 0} is a consequence of tightness of {Pε,∆,γ1,t , ε > 0} and of

{Pε,∆,γ2,t , ε > 0}.
Let us first consider tightness of {Pε,∆,γ1,t , ε > 0}. For this purpose, we claim that the function

g(r) =

∫
Z×Z×[0,T ]

[
‖z1‖2 + ‖z2‖2

]
r(dz1dz2dt), r ∈ P(Z × Z × [0, T ])

is a tightness function, i.e., it is bounded from below and its level sets Rk = {r ∈ P(R2k × [0, T ]) :

g(r) ≤ k} are relatively compact for each k < ∞. Notice that the second marginal of every
r ∈ P(Z × Z × [0, T ]) is the Lebesgue measure.

Chebyshev’s inequality implies

sup
r∈Rk

r ({(z1, z2) ∈ Z × Z : [‖z1‖+ ‖z2‖] > M} × [0, T ]) ≤ sup
r∈Rk

g(r)

M2
≤ k

M2
.

Hence, Rk is tight and thus relatively compact as a subset of P.
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Since g is a tightness function, by Theorem A.3.17 of [5] tightness of {Pε,∆,γ1,t , ε > 0} will follow if
we prove that

sup
ε∈(0,1]

E
[
g(Pε,∆,γ1,t ⊗ Leb[0,T ])

]
<∞,

where Leb[0,T ] denotes Lebesgue measure in [0, T ]. However, by (3.6)

sup
ε∈(0,1]

E
[
g(Pε,∆,γ1,t ⊗ Leb[0,T ])

]
= sup
ε∈(0,1]

E

[∫ T

0

∫
Z×Z

[
‖z1‖2 + ‖z2‖2

]
Pε,∆,γ1,t (dz1dz2)dt

]

= sup
ε∈(0,1]

E

∫ T

0

1

∆

∫ t+∆

t

[
‖uε1(s)‖2 + ‖uε2(s)‖2

]
dsdt

<∞,

uniformly in γ ∈ Γ, which concludes the tightness proof for {Pε,∆,γ1,t , ε > 0}.
Let us now consider tightness of {Pε,∆,γ2,t , ε > 0}. For this purpose we notice that for every γ ∈ Γ

and every φ̃ ∈ L2(Γ) ∩ L1(π) we have∫
Γ

φ̃(γ̃)Pε,∆,γ2,t (dγ̃) =
1

∆

∫ t+∆

t

φ̃
(
τȲ εs γ

)
ds =

1

∆

∫ t+∆

t

φ
(
Ȳ εs , γ

)
ds.

Let us fix η > 0. Then, by Lemma A.6 we know that there exists Nη ⊂ Γ with π(Nη) ≥ 1− η such

that for every bounded sequence ∆ ∈ HNη1 we have

lim
ε↓0

sup
γ∈Nη

sup
0≤t≤T

E

∣∣∣∣∣ 1

∆

∫ t+∆

t

φ
(
Ȳ εs , γ

)
ds− φ̄

∣∣∣∣∣ = 0

or equivalently

lim
ε↓0

sup
γ∈Nη

sup
0≤t≤T

E

∣∣∣∣∫
Γ

φ̃(γ̃)Pε,∆,γ2,t (dγ̃)− φ̄
∣∣∣∣ = 0 (4.1)

Now, as a probability measure in a Polish space π is itself tight. So, there exists a compact subset of
Γ, say Kη, such that

π(Kη) ≥ 1− η/2.

Therefore, using (4.1) and the latter bound, we get that for ε sufficiently small, say ε < ε0(η) and
for every γ ∈ Nη and t ∈ [0, T ], we have

inf
ε∈(0,ε0(η))

E
[
Pε,∆,γ2,t (Kη)

]
≥ 1− η

which implies that, uniformly in γ ∈ Nη, the measure valued random variables {Pε,∆,γ2,t (·), ε ∈
(0, ε0(η))} are tight.

(ii). Uniform integrability of the family {Pε,∆,γ , ε > 0} follows by

E

[∫
{(z1,z2)∈Z×Z:[‖z1‖+‖z2‖]>M}×Γ×[0,T ]

[‖z1‖+ ‖z2‖] Pε,∆(dz1dz2dγ̃dt)

]

≤ 2

M
E

[∫
Z×Z×Γ×[0,T ]

[
‖z1‖2 + ‖z2‖2

]
Pε,∆(dz1dz2dγ̃dt)

]

=
2

M
E

∫ T

0

1

∆

∫ t+∆

t

[
‖uε1(s)‖2 + ‖uε2(s)‖2

]
dsdt

and the fact that

sup
ε>0,γ∈Γ

E

∫ T

0

1

∆

∫ t+∆

t

[
‖uε1(s)‖2 + ‖uε2(s)‖2

]
dsdt <∞.

This concludes the proof of the lemma.
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Lemma 4.2. Assume Conditions 2.2 and 2.4. Let {uε,γ , ε > 0, γ ∈ Γ} be a family of controls in A as
in Lemma 4.1. Moreover, fix η > 0, and consider the set Nη with π(Nη) ≥ 1 − η from Lemma A.6.
Then, for every γ ∈ Nη, the family {X̄ε,γ , ε > 0} is relatively compact as ε ↓ 0.

Proof. It suffices to prove that for every η > 0

lim
θ↓0

lim sup
ε↓0

P

[
sup

t1,t2<T,|t1−t2|<θ

∥∥X̄ε,γ
t1 − X̄

ε,γ
t2

∥∥ > η

]
= 0

Recalling the auxiliary problem (2.3) and the discussion succeeding it, we apply Itô formula (see
also [24]), to rewrite X̄ε,γ

t1 − X̄
ε,γ
t2 as

X̄ε,γ
t1 − X̄

ε,γ
t2 =

∫ t2

t1

λ
(
X̄ε,γ
s , Ȳ ε,γs , u1(s), u2(s)

)
ds

−δ
[
χ0

(
Ȳ ε,γt2

)
− χ0

(
Ȳ ε,γt1

)]
+
√
ε

∫ t2

t1

(σ + ξτ1)
(
X̄ε,γ
s , Ȳ ε,γs

)
dWs +

√
ε

∫ t2

t1

ξτ2
(
Ȳ ε,γs

)
dBs

= Bε,γ1 +Bε,γ2 +Bε,γ3

where Bε,γi is the ith line of the right hand side of the last display.

First we treat the term Bε,γ3 . It suffices to discuss one of the two stochastic integrals, let’s say the
first one. In particular, by Itô isometry, Lemma A.6, we have, that there is a set Nη with π(Nη) ≥ 1−η
such that for every γ ∈ Nη,

lim
ε↓0

∣∣∣∣∣E
∥∥∥∥∫ t2

t1

(
σ̃
(
X̄ε,γ
s , ·

)
+ ξ̃τ̃1 (·)

)
dWs

∥∥∥∥2

−
∫ t2

t1

Eπ
[∥∥∥(σ̃ (X̄ε,γ

s , ·
)

+ ξ̃τ̃1 (·)
)∥∥∥2

]
ds

∣∣∣∣∣→ 0

as ε ↓ 0. In a similar fashion we can also treat the stochastic integral with respect to the Brownian
motion B. Hence, for every γ ∈ Nη

lim
ε↓0
E ‖Bε,γ3 ‖

2
= 0

Next, we treat Bε,γ1 . Lemma A.6 and the uniform bound (A.10), implies that for every γ ∈ Nη

lim
|t2−t1|→0

lim
ε↓0
E
∥∥Bε,γ,t2−t11

∥∥2
= 0

Similarly, one can show that limε↓0E ‖Bε,γ2 ‖ = 0. Therefore, tightness of {X̄ε,γ , ε > 0} follows for
γ ∈ Nη.

4.2 Identification of the limit points.

In this section we prove that any weak limit point of the tight sequence
{

(X̄ε,γ ,Pε,∆,γ), ε > 0
}

is
a viable pair, i.e., it satisfies Definition 3.2. Let (X̄,P) be an accumulation point (in distribution)
of (X̄ε,γ ,Pε,∆,γ) as ε,∆ ↓ 0. Due to the Skorokhod representation, we may assume that there is a
probability space, where this convergence holds with probability 1. The constraint (3.6) and Fatou’s
lemma guarantee that with probability 1,∫

Z×Z×Γ×[0,T ]

[
‖z1‖2 + ‖z2‖2

]
P̄(dz1dz2dγdt) <∞.

Moreover, since Pε,∆,γ (Z × Z × Γ× [0, t]) = t for every t ∈ [0, T ] and using the fact that P̄ (Z × Z × Γ× [0, t])

is continuous as a function of t ∈ [0, T ] and that P̄ (Z × Z × Γ× {t}) = 0 we obtain P̄ (Z × Z × Γ× [0, t]) =

t and that P̄ can be decomposed as P(dz1dz2dγdt) = Pt(dz1dz2dγ)dt with Pt(Z × Z × Γ) = 1.
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Let us next prove that (X̄, P̄) satisfy (3.4). We will use the martingale problem. In particular, let ζ
be a smooth bounded function, φ ∈ C2(Rm) compactly supported, {z̃j}qj=1 be a family of bounded,
smooth and compactly supported functions and for r ∈ P (Z × Z × Γ× [0, T ]), t ∈ [0, T ] define

(r, z̃j)t =

∫
Z×Z×Γ×[0,t]

z̃j(z1, z2, γ, s)r(dz1dz2dγds)

Then, in order to show (3.4), it is enough to show that for any 0 < t1 < t2 < · · · < tm < t < t+r ≤ T ,
the following limit holds almost surely with respect to γ ∈ Γ as ε ↓ 0

E
{
ζ
(
X̄ε,γ
ti , (P

ε,∆,γ , zj)ti , i ≤ m, j ≤ q
) [
φ(X̄ε,γ

t+r)− φ(X̄ε,γ
t )

−
∫ t+r

t

[
lim
ρ→0

∫
Z×Z×Γ

λ̃ρ(X̄
ε,γ
s , γ, z1, z2)Ps(dz1dz2dγ)

]
∇φ̄(X̄ε,γ

s )ds

]}
→ 0 (4.2)

Let us define

Lε,∆,ρs φ(x) =

∫
Z×Z×Γ

λ̃ρ(x, γ, z1, z2)Pε,∆,γs (dz1dz2dγ)∇φ(x)

where

Pε,∆,γs (dz1dz2dγ) =
1

∆

∫ s+∆

s

1z1(uε1(θ))1z2(uε2(θ))1B

(
τȲ ε,γθ

γ
)
dθ

Then, weak convergence of the pair (X̄ε,γ ,Pε,∆,γ) and uniform integrability of Pε,∆,γ as indicated
by Lemma 4.1, shows that almost surely with respect to γ ∈ Γ

E

[∫ t+r

t

Lε,∆,ρs φ(X̄ε,γ
s )ds−

∫ t+r

t

[
lim
ρ→0

∫
Z×Z×Γ

λ̃ρ(X̄
ε,γ
s , γ, z1, z2)Ps(dz1dz2dγ)

]
∇φ(X̄ε,γ

s )ds

]
→ 0

as ε ↓ 0 and ρ = ρ(ε) ↓ 0. Hence, in order to prove (4.2), it is sufficient to prove that almost surely
with respect to γ ∈ Γ

E

{
ζ
(
X̄ε,γ
ti , (P

ε,∆,γ , zj)ti , i ≤ m, j ≤ q
) [
φ(X̄ε,γ

t+r)− φ(X̄ε,γ
t )−

∫ t+r

t

Lε,∆,ρs φ(X̄ε,γ
s )ds

]}
→ 0

Recall the auxiliary problem (2.3) and consider a function φ ∈ C2(Rm) with compact support.
Let us write χρ = (χ1,ρ, . . . , χm,ρ) for the components of the vector solution to (2.3), and consider
ψ`,ρ(x, y, γ) = χ`,ρ(y, γ)∂x`φ(x) for ` ∈ {1, . . . ,m}. Set ψρ(x, y, γ) = (ψ1,ρ, . . . , ψm,ρ). It is easy to see
that ψ̃ρ(x, γ) satisfies the resolvent equation

ρψ̃`,ρ(x, ·)− L̃ψ̃`,ρ(x, ·) = h̃`(x, ·) (4.3)

where we have defined h̃`(x, ·) = b̃`(·)∂x`φ(x). By Itô formula and making use of (4.3), we obtain
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E

{
ζ
(
X̄ε,γ
ti , (P

ε,∆,γ , zj)ti , i ≤ m, j ≤ q
) [
φ(X̄ε,γ

t+r)− φ(X̄ε,γ
t )−

∫ t+r

t

Lε,∆,ρs φ(X̄ε,γ
s )ds

]}
= E

{
ζ (· · · )

[∫ t+r

t

λρ
(
X̄ε,γ
s , Ȳ ε,γs , γ, uε1(s), uε2(s)

)
∇φ(X̄ε,γ

s )ds−
∫ t+r

t

Lε,∆,ρs φ(X̄ε,γ
s )ds

]}
+ δE

{
ζ (· · · )

∫ t+r

t

m∑
`=1

(
(c+ σuε1(s))∂xψ`,ρ + ε

1

2
tr
[
∂2
xψ`,ρ

]) (
X̄ε,γ
s , Ȳ ε,γs

)}
ds

+ εE

{
ζ (· · · )

∫ t+r

t

m∑
`=1

tr
[
στT1 D∂xψ`,ρ

] (
X̄ε,γ
s , Ȳ ε,γs

)}
ds

+ ε2E

{
ζ (· · · )

∫ t+r

t

tr
[
σσT

(
Ȳ ε,γs

)
∇2φ

(
X̄ε,γ
s

)]}
ds

+
ε

δ
ρE

{
ζ (· · · )

∫ t+r

t

χρ
(
Ȳ ε,γs

)
∇φ(X̄ε,γ

s )ds

}
− δ

m∑
`=1

E
{
ζ (· · · )

(
ψ`,ρ

(
X̄ε,γ
t+r, Ȳ

ε,γ
t+r

)
− ψ`,ρ

(
X̄ε,γ
t , Ȳ ε,γt

))}
=

6∑
i=1

EBε,γi (4.4)

where EBε,γi is the ith line on the right hand side of (4.4). We want to show that each of those terms
goes to zero almost surely with respect to γ ∈ Γ.

Condition 2.2 and the bound (3.6) give us that

E |Bε,γ2 |+ E |B
ε,γ
3 | → 0, as ε ↓ 0

Due to the boundedness and compact support of functions ζ and φ, we also get that almost surely
in γ ∈ Γ

E |Bε,γ4 | → 0, as ε ↓ 0

By choosing ρ = ρ(ε) = δ2

ε , we also have that almost surely in γ ∈ Γ

E |Bε,γ5 |+ E |B
ε,γ
6 | → 0, as ε ↓ 0

Let us next consider Bε,γ1 . We have

EBε,γ1 = E

{
ζ (· · · )

[∫ t+r

t

λρ
(
X̄ε,γ
s , Ȳ ε,γs , γ, uε1(s), uε2(s)

)
∇φ(X̄ε,γ

s )ds−
∫ t+r

t

Lε,∆,ρs φ(Xε,γ
s )ds

]}
= E

{
ζ (· · · )

[∫ t+r

t

λρ
(
X̄ε,γ
s , Ȳ ε,γs , γ, uε1(s), uε2(s)

)
∇φ(X̄ε,γ

s )ds−

−
∫ t+r

t

1

∆

∫ s+∆

s

λρ
(
X̄ε,γ
s , Ȳ ε,γθ , γ, uε1(θ), uε2(θ)

)
∇φ(X̄ε,γ

s )dθds

]}

= E

{
ζ (· · · )

[∫ t+r

t

1

∆

∫ s+∆

s

λρ
(
X̄ε,γ
θ , Ȳ ε,γθ , γ, uε1(θ), uε2(θ)

)
∇φ(X̄ε,γ

θ )dθds−

−
∫ t+r

t

1

∆

∫ s+∆

s

λρ
(
X̄ε,γ
s , Ȳ ε,γθ , γ, uε1(θ), uε2(θ)

)
∇φ(X̄ε,γ

s )dθds

]}

+ E

{
ζ (· · · )

[∫ t+r

t

λρ
(
X̄ε,γ
s , Ȳ ε,γs , γ, uε1(s), uε2(s)

)
∇φ(X̄ε,γ

s )ds−

−
∫ t+r

t

1

∆

∫ s+∆

s

λρ
(
X̄ε,γ
θ , Ȳ ε,γθ , γ, uε1(θ), uε2(θ)

)
∇φ(X̄ε,γ

θ )dθds

]}
= EBε,γ1,1 + EBε,γ1,2
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Let us first treat EBε,γ1,1 .

EBε,γ1,1 =

= E

{
ζ (· · · )

[∫ t+r

t

1

∆

∫ s+∆

s

λρ
(
X̄ε,γ
θ , Ȳ ε,γθ , γ, uε1(θ), uε2(θ)

)
∇φ(X̄ε,γ

θ )dθds−

−
∫ t+r

t

1

∆

∫ s+∆

s

λρ
(
X̄ε,γ
s , Ȳ ε,γθ , γ, uε1(θ), uε2(θ)

)
∇φ(X̄ε,γ

s )dθds

]}

= E

{
ζ (· · · )

[∫ t+r

t

1

∆

∫ s+∆

s

λ̃ρ

(
X̄ε,γ
θ , τȲ ε,γθ

γ, uε1(θ), uε2(θ)
)
∇φ(X̄ε,γ

θ )dθds−

−
∫ t+r

t

1

∆

∫ s+∆

s

λ̃ρ

(
X̄ε,γ
s , τȲ ε,γθ

γ, uε1(θ), uε2(θ)
)
∇φ(X̄ε,γ

s )dθds

]}
→ 0, as ε ↓ 0,

by continuity of λ̃ρ on the first argument, stationarity and the uniform integrability obtained in
Lemma 4.1.

Next we treat EBε,γ1,2 . We have

E
∣∣Bε,γ1,2

∣∣ ≤ C0

{
E

∫ ∆

0

∣∣λρ (X̄ε,γ
s , Ȳ ε,γs , γ, uε1(s), uε2(s)

)
∇φ(X̄ε,γ

s )
∣∣ ds

+E

∫ t+∆

t

∣∣λρ (X̄ε,γ
s , Ȳ ε,γs , γ, uε1(s), uε2(s)

)
∇φ(X̄ε,γ

s )
∣∣ ds}

where C0 is a finite constant. Choose ∆ ↓ 0 such that ∆/ δ
2

ε ↑ ∞. Then, we have

E

∫ ∆

0

∣∣λρ (X̄ε,γ
s , Ȳ ε,γs , γ, uε1(s), uε2(s)

)
∇φ(X̄ε,γ

s )
∣∣ ds

≤ E
∫ ∆

0

∣∣(c (X̄ε,γ
s , Ȳ ε,γs , γ

)
+Dχρ

(
Ȳ ε,γs , γ

)
g
(
X̄ε,γ
s , Ȳ ε,γs , γ

))
∇φ(X̄ε,γ

s )
∣∣ ds

+E

∫ ∆

0

∣∣(σ (X̄ε,γ
s , Ȳ ε,γs , γ

)
uε1(s) +Dχρ

(
Ȳ ε,γs , γ

) [
τ1
(
Ȳ ε,γs , γ

)
uε1(s) + τ2

(
Ȳ ε,γs , γ

)
uε2(s)

])
∇φ(X̄ε,γ

s )
∣∣ ds

≤ ∆
δ2

ε

∆
E

∫ ∆/ δ
2

ε

0

∣∣∣(c(X̄ε,γ

(δ2/ε)s
, Ȳ ε,γ

(δ2/ε)s
, γ
)

+Dχρ
(
Ȳ ε,γ

(δ2/ε)s
, γ
)
g
(
X̄ε,γ

(δ2/ε)s
, Ȳ ε,γ

(δ2/ε)s
, γ
))
∇φ(X̄ε,γ

(δ2/ε)s
)
∣∣∣ ds

+
√

∆

√
δ2

ε

∆
E

∫ ∆/ δ
2

ε

0

∥∥∥(σ (X̄ε,γ

(δ2/ε)s
, Ȳ ε,γ

(δ2/ε)s
, γ
)

+Dχρ
(
Ȳ ε,γ

(δ2/ε)s
, γ
)
τ1
(
Ȳ ε,γ

(δ2/ε)s
, γ
))
∇φ
∥∥∥2

dsE

∫ ∆

0

‖uε1(s)‖2 ds

+
√

∆

√
δ2

ε

∆
E

∫ ∆/ δ
2

ε

0

∥∥∥(Dχρ (Ȳ ε,γ(δ2/ε)s
, γ
)
τ2
(
Ȳ ε,γ

(δ2/ε)s
, γ
))
∇φ
∥∥∥2

dsE

∫ ∆

0

‖uε2(s)‖2 ds

≤ ∆
δ2

ε

∆
E

∫ ∆/ δ
2

ε

0

∥∥∥∥(c̃(X̄ε,γ

(δ2/ε)s
, τȲ ε,γ

(δ2/ε)s
γ

)
+Dχ̃ρ

(
τȲ ε,γ

(δ2/ε)s
γ

)
g̃

(
X̄ε,γ

(δ2/ε)s
, τȲ ε,γ

(δ2/ε)s
γ

))
∇φ
∥∥∥∥ ds

+
√

∆

√√√√ δ2

ε

∆
E

∫ ∆/ δ
2

ε

0

∥∥∥∥(σ̃(X̄ε,γ

(δ2/ε)s
, τȲ ε,γ

(δ2/ε)s
γ

)
+Dχ̃ρ

(
τȲ ε,γ

(δ2/ε)s
γ

)
τ̃1

(
τȲ ε,γ

(δ2/ε)s
γ

))
∇φ
∥∥∥∥2

dsE

∫ ∆

0

‖uε1(s)‖2 ds

+
√

∆

√√√√ δ2

ε

∆
E

∫ ∆/ δ
2

ε

0

∥∥∥∥(Dχ̃ρ(τȲ ε,γ
(δ2/ε)s

γ

)
τ̃2

(
τȲ ε,γ

(δ2/ε)s
γ

))
∇φ
∥∥∥∥2

dsE

∫ ∆

0

‖uε2(s)‖2 ds

→ 0, as ε,∆ ↓ 0,∆/
δ2

ε
↑ ∞,
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by Lemma A.6, Condition 2.2 and the uniform bound (3.6). Hence, we obtain that almost surely
with respect to γ ∈ Γ,

E
∣∣Bε,γ1,2

∣∣→ 0.

This concludes the proof of (3.4). Next, we treat (3.5). Consider φ̃ ∈ L2(Γ) stationary, ergodic
random field on Rd−m. Let φ(y, γ) = φ̃(τyγ) and assume that φ(·, γ) ∈ C2

b (Rd−m). Define the formal
operators

G0,γ
x,y,γ,z1,z2φ(y, γ) = [g(x, y, γ) + τ1(y, γ)z1 + τ2(y, γ)z2]Dφ(y, γ)

and

G1,ε,γ
x,y,γ,z1,z2φ(y, γ) =

ε

δ2
Lγφ(y, γ) +

1

δ
G0,γ
x,y,z1,z2φ(y, γ)

Following the customary notation we write G̃0,γ
x,γ,z1,z2 φ̃(γ) = [g̃(x, γ) + τ̃1(γ)z1 + τ̃2(γ)z2]Dφ̃(γ) and

analogously for G̃1,ε,γ
x,γ,z1,z2 φ̃(γ).

For each fixed γ ∈ Γ, the process

M ε,γ
t = φ(Ȳ ε,γt )− φ(Ȳ ε,γ0 )−

∫ t

0

G1,ε,γ
X̄ε,γs ,Ȳ ε,γs ,uε1(s),uε2(s)

φ(Ȳ ε,γs )ds

=

√
ε

δ

∫ t

0

〈
Dφ(Ȳ ε,γs ), τ1(Ȳ ε,γs )dWs

〉
+

√
ε

δ

∫ t

0

〈
Dφ(Ȳ ε,γs ), τ2(Ȳ ε,γs )dBs

〉
is an Ft−martingale. Set h(ε) = δ2

ε and write

h(ε)M ε,γ
t − h(ε)

[
φ(Ȳ ε,γt )− φ(Ȳ ε,γ0 )

]
+ h(ε)

[∫ t

0

1

∆

(∫ s+∆

s

G1,ε,γ

X̄ε,γθ ,Ȳ ε,γθ ,uε1(θ),uε2(θ)
φ(Ȳ ε,γθ )dθ

)
ds−

∫ t

0

G1,ε,γ

X̄ε,γs ,Ȳ ε,γs ,uε1(s),uε1(s)
φ(Ȳ ε,γs )ds

]

= −δ
ε

∫ t

0

1

∆

[∫ s+∆

s

(
G0,γ

X̄ε,γθ ,Ȳ ε,γθ ,uε1(θ),uε2(θ)
φ(Ȳ ε,γθ )− G0,γ

X̄ε,γs ,Ȳ ε,γθ ,uε1(θ),uε2(θ)
φ(Ȳ ε,γθ )

)
dθ

]
ds

− δ

ε

∫
Z×Z×Γ×[0,t]

G̃0,γ

X̄ε,γs ,γ,z1,z2
φ̃(γ)P̄ε,∆,γ(dz1dz2dγds)

−
∫ t

0

1

∆

∫ s+∆

s

Lγφ(Ȳ ε,γθ , γ)dθds (4.5)

The boundedness of φ and of its derivatives imply that almost surely in γ ∈ Γ

E
[
|h(ε)M ε,γ

t |
2

+
∣∣h(ε)

[
φ(Ȳ ε,γt )− φ(Ȳ ε,γ0 )

]∣∣]→ 0, as ε ↓ 0

Moreover, we have almost surely in γ ∈ Γ

h(ε)E

∣∣∣∣∣
∫ t

0

1

∆

(∫ s+∆

s

G1,ε,γ

X̄ε,γθ ,Ȳ ε,γθ ,uε1(θ),uε2(θ)
φ(Ȳ ε,γθ )dθ

)
ds−

∫ t

0

G1,ε,γ
X̄ε,γs ,Ȳ ε,γs ,uε1(s),uε2(s)

φ(Ȳ ε,γs )ds

∣∣∣∣∣
≤ h(ε)E

∫ ∆

0

∣∣∣G1,ε,γ
X̄ε,γs ,Ȳ ε,γs ,uε1(s),uε2(s)

φ(Ȳ ε,γs )
∣∣∣ ds+ h(ε)E

∫ t+∆

t

∣∣∣G1,ε,γ
X̄ε,γs ,Ȳ ε,γs ,uε1(s),uε2(s)

φ(Ȳ ε,γs )
∣∣∣ ds

≤ E
∫ ∆

0

∣∣Lφ(Ȳ ε,γs )
∣∣ ds+

δ

ε
Eγ
∫ ∆

0

∣∣∣G0,γ
X̄ε,γs ,Ȳ ε,γs ,uε1(s),uε2(s)

φ(Ȳ ε,γs )
∣∣∣ ds

+ E

∫ t+∆

t

∣∣Lφ(Ȳ ε,γs )
∣∣ ds+

δ

ε
Eγ
∫ t+∆

t

∣∣∣G0,γ
X̄ε,γs ,Ȳ ε,γs ,uε1(s),uε2(s)

φ(Ȳ ε,γs )
∣∣∣ ds

≤ ∆C0

[
1 +

δ

ε
E

∫ T

0

‖uε(s)‖2 ds

]
→ 0, as ε ↓ 0,
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due to (3.6) and ∆ = ∆(ε) ↓ 0. The constant C0 depends on the upper bound of the coefficients and
on β, T .

The first term on the right hand side of (4.5) goes to zero in probability, almost surely with respect
to γ ∈ Γ, due to continuous dependence of G0,γ

x,y,z1,z2φ(y, γ) on x ∈ Rm, tightness of X̄ε,γ , stationarity
and δ/ε ↓ 0.

The second term on the right hand side of (4.5) also goes to zero in probability, almost surely
with respect to γ ∈ Γ, due to continuous dependence of G0,γ

x,y,z1,z2φ(y, γ) on x ∈ Rm, tightness of
(X̄ε,γ ,Pε,∆,γ), uniform integrability of Pε,∆,γ (Lemma 4.1) and the fact that δ/ε ↓ 0.

Lastly, we consider the third term on the right hand side of (4.5). We have∫ t

0

1

∆

∫ s+∆

s

Lγφ(Ȳ ε,γθ , γ)dθds =

∫ t

0

1

∆

∫ s+∆

s

L̃φ̃(τȲ ε,γθ
γ)dθds

=

∫ t

0

∫
Z×Γ

L̃φ̃(γ)Pε,∆,γ(dzdγds)

Due to weak convergence of (X̄ε,γ ,Pε,∆,γ), the last term converges, almost surely with respect to
φ ∈ Γ to

∫ t
0

∫
Z×Z×Γ

L̃φ̃(γ)P̄(dz1dz2dγds). Hence, since the rest of the terms converge to 0, as ε ↓ 0,
we obtain in probability, almost surely in γ ∈ Γ∫ t

0

∫
Z×Z×Γ

L̃φ̃(γ)P̄(dz1dz2dγds) = 0

for almost all t ∈ [0, T ], which together with continuity in t ∈ [0, T ] conclude the proof of (3.5).

5 Compactness of level sets and quenched lower and upper bounds

Compactness of level sets of the rate function is standard and will not be repeated here (e.g.,
Subsection 4.2. of [6] or [12]).

Let us now prove the quenched lower bound. First we remark that we can restrict attention to
controls that satisfy Conditions A.10 and A.11, which are required in order for Lemma A.6 to be true.
For this purpose we have the following lemma, whose proof is deferred to the end of this section.

Lemma 5.1. Let (X̄ε,γ
s , Ȳ ε,γs ) be the strong solution to (3.3) and assume Conditions 2.2 and 2.4. Then,

the infimum of the representation in (3.2) can be taken over all controls that satisfy Conditions A.10
and A.11.

Based on Lemma 5.1, we can restrict attention to controls satisfying Conditions A.10 and A.11.
Given such controls, we construct the controlled pair (X̄ε,γ ,Pε,∆,γ) based on such a family of controls.
Then, Theorem 3.3 implies tightness of the pair

{
(X̄ε,γ ,Pε,∆,γ), ε,∆ > 0

}
. Let us denote by (X̄, P̄) ∈ V

an accumulation point of the controlled pair in distribution, almost surely with respect to γ ∈ Γ.
Then, by Fatou’s lemma we conclude the proof of the lower bound. Indeed

lim inf
ε↓0

−ε logE
[
e−

1
εh(Xε)

]
≥ lim inf

ε↓0
E

[
1

2

∫ T

0

[
‖uε,γ1 (s)‖2 + ‖uε,γ2 (s)‖2

]
ds+ h(X̄ε,γ)

]

≥ lim inf
ε↓0

E

[
1

2

∫ T

0

∫
Z×Z×Γ

[
‖z1‖2 + ‖z2‖2

]
Pε,∆,γ(dz1dz2dγds) + h(X̄ε,γ)

]

≥ inf
(φ,P)∈V

[
1

2

∫
Z×Z×Γ×[0,T ]

[
‖z1‖2 + ‖z2‖2

]
P(dz1dz2dγds) + h(φ)

]

which concludes the proof of the Laplace principle lower bound.
It remains to prove the quenched upper bound for the Laplace principle. To do so, we fix a

bounded and continuous function h : C ([0, T ];Rm) 7→ R, and we show that

lim sup
ε↓0

−ε logE
[
e−

1
εh(Xε)

]
≤ inf
φ∈C([0,T ];Rm)

{S(φ) + h(φ)}
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The idea is to fix a nearly optimizer of the right hand side of the last display and construct the
control which attains the given upper bound. Fix η > 0 and consider ψ ∈ C ([0, T ];Rm) with ψ0 = x0

such that
S(ψ) + h(ψ) ≤ inf

φ∈C([0,T ];Rm)
{S(φ) + h(φ)}+ η <∞

Boundedness of h implies that S(ψ) <∞ which means that ψ is absolutely continuous. Since the
local rate function Lo(x, v), defined in (6.2), is continuous and bounded as a function of (x, v) ∈ Rm,
standard mollification arguments (Lemmas 6.5.3 and 6.5.5 in [5]) allow to assume that ψ̇ is piecewise
constant. Next, we define the elements of L2(Γ)

ũ1,ρ(t, x, γ) = (σ̃(x, γ) +Dχ̃ρ(γ)τ̃1(γ))
T
q−1(x)(ψ̇t − r(x))

and
ũ2,ρ(t, x, γ) = (Dχ̃ρ(γ)τ̃2(γ))

T
q−1(x)(ψ̇t − r(x))

and the associated stationary fields u1,ρ(t, x, y, γ) = ũ1,ρ(t, x, τyγ) and u2,ρ(t, x, y, γ) = ũ2,ρ(t, x, τyγ).
We recall that χ̃ρ satisfies the auxiliary problem in (2.3). Let us consider now the solution

(
X̄ε
t , Ȳ

ε
t

)
of

(3.3) with the control u(t) = (u1(t), u2(t)) being

uε,ρ,γt =
(
u1,ρ

(
t, X̄ε

t , Ȳ
ε
t , γ

)
, u2,ρ

(
t, X̄ε

t , Ȳ
ε
t , γ

))
.

Then, replacing c(x, y, γ) by c(t, x, y, γ) = c(x, y, γ)+σ(y, γ)u1,ρ(t, x, y, γ), and g(x, y, γ) by g(t, x, y, γ) =

g(x, y, γ) + τ1(y, γ)u1,ρ(t, x, y, γ) + τ2(y, γ)u2,ρ(t, x, y, γ) Theorem A.6 implies that

X̄ε → X̄ in law, almost surely with respect to γ ∈ Γ,

as ε ↓ 0 where we have that w.p. 1 the limit is

X̄t = x0 +

∫ t

0

lim
ρ↓0

Eπ
[
c̃(X̄s, ·) +Dχ̃ρ(·)g̃(X̄s, ·) +

(
σ̃(X̄s, ·) +Dχ̃ρ(·)τ̃1(·)

)
ũ1,ρ(s, X̄s, ·)

+ (Dχ̃ρ(·)τ̃2(·)) ũ2,ρ(s, X̄s, ·)
]
ds

= x0 +

∫ t

0

lim
ρ↓0

Eπ
[
c̃(X̄s, ·) +Dχ̃ρ(·)g̃(X̄s, ·)

]
ds

+

∫ t

0

lim
ρ↓0

Eπ
[(
σ̃(X̄s, ·) +Dχ̃ρ(·)τ̃1(·)

)
ũ1,ρ(s, X̄s, ·) + (Dχ̃ρ(·)τ̃2(·)) ũ2,ρ(s, X̄s, ·)

]
ds

= x0 +

∫ t

0

r(X̄s)ds+

∫ t

0

lim
ρ↓0

Eπ
{[(

σ̃(X̄s, ·) +Dχ̃ρ(·)τ̃1(·)
) (
σ̃(X̄s, ·) +Dχ̃ρ(·)τ̃1(·)

)T
+ (Dχ̃ρ(·)τ̃2(·)) (Dχ̃ρ(·)τ̃2(·))T

]
q−1(X̄s)(ψ̇s − r(X̄s))

}
ds

= x0 +

∫ t

0

r(X̄s)ds+

∫ t

0

Eπ
{[(

σ̃(X̄s, ·) +Dξ̃(·)τ̃1(·)
)(

σ̃(X̄s, ·) +Dξ̃(·)τ̃1(·)
)T

+
(
Dξ̃(·)τ̃2(·)

)(
Dξ̃(·)τ̃2(·)

)T]
q−1(X̄s)(ψ̇s − r(X̄s))

}
ds

= x0 +

∫ t

0

r(X̄s)ds+

∫ t

0

q(X̄s)q
−1(X̄s)(ψ̇s − r(X̄s))ds

= x0 + ψt − ψ0

= ψt.

Moreover, by Theorem A.6 we have that for any η > 0, there exists a Nη with ν [Nη] > 1− η such
that

lim
ε↓0

sup
γ∈Nη

sup
0≤t≤T

E

[
1

2

∫ T

0

[∥∥uε,γ1,ρ(s)
∥∥2

+
∥∥uε,γ2,ρ(s)

∥∥2
]
ds

−1

2

∫ T

0

lim
ρ↓0

Eπ
[∥∥uε,γ1,ρ(s,X

ε
s , ·)
∥∥2

+
∥∥uε,γ2,ρ(s,X

ε
s , ·)
∥∥2
]
ds

∣∣∣∣∣ = 0
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Therefore, noticing that for each fixed x ∈ Rm and almost every t ∈ [0, T ]

lim
ρ↓0

Eπ
[∥∥uε,γ1,ρ(s, x, ·)

∥∥2
+
∥∥uε,γ2,ρ(s, x, ·)

∥∥2
]
ds = (ψ̇s − r(x))T q−1(x)q(x)q−1(x)(ψ̇s − r(x))

= L0(x, ψ̇s),

we finally obtain

lim sup
ε↓0

−ε logE
[
e−

1
εh(Xε)

]
= lim sup

ε↓0
inf
u∈A

E

[
1

2

∫ T

0

[
‖u1(s)‖2 + ‖u2(s)‖2

]
ds+ h(X̄ε)

]

≤ lim sup
ε↓0

E

[
1

2

∫ T

0

[∥∥uε,γ1,ρ(s)
∥∥2

+
∥∥uε,γ2,ρ(s)

∥∥2
]
ds+ h(X̄ε)

]
≤ [S(ψ) + h(ψ)]

≤ inf
φ∈C([0,T ];Rm)

{S(φ) + h(φ)}+ η.

The first line follows from the representation (3.2) and the second line from the choice of the
particular control. The third line follows from he convergence of the Xε and of the cost functional
using the continuity of h. Then, the fourth line follows from the fact X̄t = ψt. Since the last statement
is true for every η > 0 the proof of the upper bound is done.

We conclude this section with the proof of Lemma 5.1.

Proof of Lemma 5.1. First, we explain why Condition A.10 can be assumed without loss of generality.
Without loss of generality, we can consider a function h(x) that is bounded and uniformly Lipschitz
continuous in Rm. Namely, there exists a constant Lh such that

|h(x)− h(y)| ≤ Lh ‖x− y‖

and ‖h‖∞ = supx∈Rm |h(x)| <∞. We recall that the representation

− ε logE
[
e−

1
εh(XεT )

]
= inf
u∈A

E

[
1

2

∫ T

0

‖u(s)‖2 ds+ h(X̄ε
T )

]
(5.1)

is valid in a γ by γ basis.
Fix a > 0. Then for every ε > 0, there exists a control uε ∈ A such that

− ε logE
[
e−

1
εh(XεT )

]
≥ E

[
1

2

∫ T

0

‖uε(s)‖2 ds+ h(X̄ε
T )

]
− a. (5.2)

So, letting M0 = ‖h‖∞ = supx∈Rm |h(x)| we easily see that such a control uε should satisfy

sup
ε>0,γ∈Γ

E

[
1

2

∫ T

0

‖uε(s)‖2 ds

]
≤M1 = 2M0 + a.

Given that the latter bound has been established, the claim that in proving the Laplace principle
lower bound one can assume Condition A.10 without loss of generality, follows by the last display
and the representation (5.1) as in the proof of Theorem 4.4 of [3]. In particular, it follows by the
arguments in [3] that if the last display holds, then it is enough to assume that for given a > 0 the
controls satisfy the bound ∫ T

0

‖uε(s)‖2 ds < N,

with

N ≥ 4M0(4M0 + a)

a
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which proves that in proving the Laplace principle lower bound one can assume Condition A.10
without loss of generality.

Second, we explain why Condition A.11 can be assumed without loss of generality. It is clear by
the representation (5.1) that the trivial bound holds

−ε logE
[
e−

1
εh(XεT )

]
≤ Eh(Xε

T ),

where the control uε(·) = 0 is used to evaluate the right hand side. Thus, we only need to consider
controls that satisfy

E

[
1

2

∫ T

0

‖uε,γ(s)‖2 ds+ h(X̄ε
T )

]
≤ Eh(Xε

T )

which by the Lipschitz assumption on h, implies that

E

[∫ T

0

‖uε,γ(s)‖2 ds

]
≤ E

∣∣h(Xε
T )− h(X̄ε

T )
∣∣

≤ LhE
∥∥Xε

T − X̄ε
T

∥∥ .
Let us next define the processes

(
ˆ̄Xε
t ,

ˆ̄Y εt

)
=

(
X̄ε

δ2t
ε

, Ȳ ε
δ2t
ε

)
and

(
X̂ε
t , Ŷ

ε
t

)
=

(
Xε

δ2t
ε

, Y ε
δ2t
ε

)
. It is

easy to see that
(

ˆ̄Xε
t ,

ˆ̄Y εt

)
satisfies the SDE

d ˆ̄Xε
t = δb

(
ˆ̄Y εt , γ

)
dt+

δ2

ε

[
c
(

ˆ̄Xε
t ,

ˆ̄Y εt , γ
)

+ σ
(

ˆ̄Xε
t ,

ˆ̄Y εt , γ
)
u1(δ2t/ε)

]
dt+ δσ

(
ˆ̄Xε
t ,

ˆ̄Y εt , γ
)
dWt,

d ˆ̄Y εt = f
(

ˆ̄Y εt , γ
)
dt+

δ

ε

[
g
(

ˆ̄Xε
t ,

ˆ̄Y εt , γ
)

+ τ1

(
ˆ̄Y εt , γ

)
u1(δ2t/ε) + τ2

(
ˆ̄Y εt , γ

)
u2(δ2t/ε)

]
dt

+
[
τ1

(
ˆ̄Y εt , γ

)
dWt + τ2

(
ˆ̄Y εt , γ

)
dBt

]
,

ˆ̄Xε
0 = x0,

ˆ̄Y ε0 = y0,

and
(
X̂ε
t , Ŷ

ε
t

)
satisfies the same SDE with the control uε1(·) = uε2(·) = 0.

So, we basically have that

1

ε
E

[∫ δ2T
ε

0

‖uε,γ(s)‖2 ds

]
≤ Lh

1

ε
E

∥∥∥Xε
δ2T
ε

− X̄ε
δ2T
ε

∥∥∥
= Lh

δ

ε
E

∥∥∥∥1

δ
X̂ε
T −

1

δ
ˆ̄Xε
T

∥∥∥∥ .
For notational convenience, we define

νεT
.
=

1

ε
E

[∫ δ2T
ε

0

‖uε,γ(s)‖2 ds

]

and

mε
T
.
= E

∥∥∥∥1

δ
X̂ε
T −

1

δ
ˆ̄Xε
T

∥∥∥∥2

+ E
∥∥∥Ŷ εT − ˆ̄Y εT

∥∥∥2

.

Since for x > 0, the function x2 is increasing, the latter inequality, followed by Jensen’s inequality
give us

|νεT |
2 ≤

∣∣∣∣Lh δε
∣∣∣∣2mε

T .
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The next step is to derive an upper bound of mε
T in terms of |νεT |2. Writing down the differences

of X̂ε
T − ˆ̄Xε

T and Ŷ εT − ˆ̄Y εT , squaring, taking expectation and using Lipschitz continuity of the functions
b, c, f, g, σ, τ1, τ2 and boundedness of σ, τ1, τ2 we obtain the inequality

mε
T ≤ C0

∫ T

0

mε
sds+ C1


∣∣∣∣∣δεE

[∫ T

0

∥∥∥∥uε,γ1

(
δ2s

ε

)∥∥∥∥ ds
]∣∣∣∣∣

2

+

∣∣∣∣∣δεE
[∫ T

0

∥∥∥∥uε,γ2

(
δ2s

ε

)∥∥∥∥ ds
]∣∣∣∣∣

2
 ,

where the constants C0, C1 depends only on the Lipschitz constants of b, c, f, g, σ, τ1, τ2 and on the
sup norm of σ, τ1, τ2. Defining for notational convenience

|aεT |
2 .

=
δ

ε
E

[∫ T

0

∥∥∥∥uε,γ1

(
δ2s

ε

)∥∥∥∥ ds
]

+
δ

ε
E

[∫ T

0

∥∥∥∥uε,γ2

(
δ2s

ε

)∥∥∥∥ ds
]
.

Gronwall lemma, gives us

mε
T ≤ C1 |aεT |

2
+ C0C1

∫ T

0

|aεs|
2
eC0(T−s)ds.

Let us now rewrite and upper bound |aεT |
2. We notice that, Hölder inequality followed by Young’s

inequality give us

|aεT |
2

=

∣∣∣∣∣ εδ 1

ε
E

[∫ δ2T
ε

0

‖uε,γ1 (s)‖ ds

]∣∣∣∣∣
2

+

∣∣∣∣∣ εδ 1

ε
E

[∫ δ2T
ε

0

‖uε,γ2 (s)‖ ds

]∣∣∣∣∣
2

≤ 1

δ2

δ2T

ε
E

[∫ δ2T
ε

0

‖uε,γ (s)‖2 ds

]

= T
1

ε
E

[∫ δ2T
ε

0

‖uε,γ (s)‖2 ds

]
= TνεT

≤ T 2

2
+
|νεT |

2

2
.

Putting these estimates together, we obtain

|νεT |
2 ≤ L2

h

∣∣∣∣δε
∣∣∣∣2mε

T

≤ L2
hC1

∣∣∣∣δε
∣∣∣∣2
[
|aεT |

2
+ C0

∫ T

0

|aεs|
2
eC0(T−s)ds

]

≤ L2
hC1

∣∣∣∣δε
∣∣∣∣2
[(

T 2

2
+
|νεT |

2

2

)
+ C0

∫ T

0

(
s2

2
+
|νεs|

2

2

)
eC0(T−s)ds

]
.

Therefore, by choosing δ/ε sufficiently small such that L2
hC1

∣∣ δ
ε

∣∣2 ≤ 1, we have

|νεT |
2

2
≤ L2

hC1

∣∣∣∣δε
∣∣∣∣2
[
T 2

2
+ C0

∫ T

0

(
s2

2
+
|νεs|

2

2

)
eC0(T−s)ds

]

≤ L2
hC1

∣∣∣∣δε
∣∣∣∣2
[
T 2

2
+
T 2

2
(eC0T − 1) + C0

∫ T

0

|νεs|
2

2
eC0(T−s)ds

]

= L2
hC1

∣∣∣∣δε
∣∣∣∣2
[
T 2

2
eC0T + C0

∫ T

0

|νεs|
2

2
eC0(T−s)ds

]
.
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Thus, we have

e−C0T
|νεT |

2

2
≤ L2

hC1

∣∣∣∣δε
∣∣∣∣2
[
T 2

2
+ C0

∫ T

0

e−C0s
|νεs|

2

2
ds

]
.

So, letting βεT = L2
hC1

T 2

2

∣∣ δ
ε

∣∣2 and θε = L2
hC1C0

∣∣ δ
ε

∣∣2, Gronwall lemma guarantees that

e−C0T
|νεT |

2

2
≤ βεT + θε

∫ T

0

βεse
θε(T−s)ds.

Since βεT and θε go uniformly in γ ∈ Γ to zero at the speed O(
(
δ
ε

)2
) as ε ↓ 0, we get that

|νεT |
2 ≤ C(δ/ε)2,

where the constant C, depends on T , but not on ε, δ or γ. This concludes the argument of why
Condition A.11 can be assumed without loss of generality.

6 Proof of Theorem 3.5

In this section we prove that the explicit expression of the large deviation’s action functional is
given by Theorem 3.5.

Due to Theorem 3.4, we only need to prove that the rate function given in (3.7) can be written in
the form of Theorem 3.5. First, we notice that one can write (3.7) in terms of a local rate function, in
the form

S(φ) =

∫ T

0

Lr(φs, φ̇s)ds

where we have defined

Lr(x, v) = inf
P∈Arx,v

1

2

∫
Z×Z×Γ

[
‖z1‖2 + ‖z2‖2

]
P(dz1dz2dγ)

and

Arx,v =

{
P ∈ P (Z × Z × Γ) :

∫
Z×Z×Γ

L̃f̃(γ)P(dz1dz2dγ) = 0, ∀ f̃ ∈ D(L̃)∫
Z×Z×Γ

[
‖z1‖2 + ‖z2‖2

]
P(dz1dz2dγ) <∞, and v = lim

ρ→0

∫
Z×Z×Γ

λ̃ρ(x, γ, z1, z2)P(dz1dz2dγ)

}
This follows directly by the definition of a viable pair (Definition 3.2). We call this representation

the “relaxed” formulation since the control is characterized as a distribution on Z ×Z rather than
an element of Z × Z. However, as we shall demonstrate below, the structure of the problem allows
us to rewrite the relaxed formulation of the local rate function in terms of an ordinary formulation
of an equivalent local rate function, where the control is indeed given as an element of Z × Z. In
preparation for this representation, we notice that any element P ∈ P (Z × Z × Γ) can be written of
a stochastic kernel on Z × Z given Γ and a probability measure on Γ, namely

P(dz1dz2dγ) = η(dz1dz2|γ)π(dγ).

Hence, by the definition of viability, we obtain for every f̃ ∈ D(L̃) that∫
Γ

L̃f̃(γ)π(dγ) = 0

where we used the independence of L̃ on z to eliminate the stochastic kernel η. Then Proposition 2.6
guarantees that π takes the form

π(dγ)
.
=

m̃(γ)

Eνm̃(·)
ν(dγ)
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and is actually an invariant, ergodic and reversible probability measure for the process associated
with the operator L̃, or equivalently for the environment process γt as given by (2.2). Next, since the
cost ‖z‖2 is convex in z = (z1, z2) and λ̃ρ is affine in z, the relaxed control formulation can be easily
written in terms of the ordinary control formulation

Lo(x, v) = inf
ũ∈Aox,v

1

2
Eπ
[
‖ũ1(·)‖2 + ‖ũ2(·)‖2

]
(6.1)

and

Aox,v =

{
ũ = (ũ1, ũ2) : Γ 7→ Rd : Eπ

[
‖ũ1(·)‖2 + ‖ũ2(·)‖2

]
<∞, and v = lim

ρ→0
Eπ
[
λ̃ρ(x, ·, ũ1(·), ũ2(·))

]}
.

Jensen’s inequality and the fact that λ̃ρ(x, γ, z1, z2) is affine in z imply Lr(x, v) ≥ Lo(x, v). For
the reverse inequality, for given ũ = (ũ1, ũ2) one can define a corresponding relaxed control by
P(dz1dz2dγ) = δ(ũ1(γ),ũ2(γ))(dz1dz2)π(dγ).

The next step is to prove that the infimization problem in (6.1) can be solved explicitly and in
particular that

Lo(x, v) =
1

2
(v − r(x))T q−1(x)(v − r(x)) (6.2)

where
r(x) = lim

ρ↓0
Eπ [c̃(x, ·) +Dχ̃ρ(·)g̃(x, ·)] = Eπ[c̃(x, ·) + ξ̃(·)g̃(x, ·)]

q(x) = lim
ρ↓0

Eπ
[
(σ̃(x, ·) +Dχ̃ρ(·)τ̃1(·))(σ̃(x, ·) +Dχ̃ρ(·)τ̃1(·))T + (Dχ̃ρ(·)τ̃2(·)) (Dχ̃ρ(·)τ̃2(·))T

]
= Eπ

[
(σ̃(x, ·) + ξ̃(·)τ̃1(·))(σ̃(x, ·) + ξ̃(·)τ̃1(·))T +

(
ξ̃(·)τ̃2(·)

)(
ξ̃(·)τ̃2(·)

)T]
Let us first prove that for every ũ = (ũ1, ũ2) ∈ Aox,v

Eπ ‖ũ(x, ·)‖2 ≥ (v − r(x))T q−1(x)(v − r(x)). (6.3)

By definition, any ũ = (ũ1, ũ2) ∈ Aox,v satisfies

v = lim
ρ→0

Eπ
[
λ̃ρ(x, ·, ũ1(·), ũ1(·))

]
= r(x) + lim

ρ→0
Eπ [(σ̃(x, ·) +Dχ̃ρ(·)τ̃1(·)) ũ1(·) +Dχ̃ρ(·)τ̃2(·)ũ2(·)] .

Treating x as a parameter, define

v̂ = v − r(x) = lim
ρ→0

Eπ [(σ̃(x, ·) +Dχ̃ρ(·)τ̃1(·)) ũ1(·) +Dχ̃ρ(·)τ̃2(·)ũ2(·)] ,

and for notational convenience set

κ̃1,ρ(x, γ) = σ̃(x, γ) +Dχ̃ρ(γ)τ̃1(γ) and κ̃2,ρ(x, γ) = Dχ̃ρ(γ)τ̃2(γ)

Next, we drop writing explicitly the dependence on the parameter x and we write q−1 = WTW ,
where W is an invertible matrix, so that v̂T q−1v̂ = ‖Wv̂‖2. Without loss of generality, we assume that
ũ ∈ L2(Γ) is such that Eπ ‖ũ(·)‖2 = 1. By Cauchy-Schwartz inequality in Rm we have

‖Wv̂‖2 =

〈
Wv̂,W lim

ρ↓0
Eπ [κ̃1,ρ(·)ũ1(·) + κ̃2,ρ(·)ũ2(·)]

〉
= lim

ρ↓0
Eπ
[〈
ũ1(·), κ̃T1,ρ(·)WTWv̂

〉
+
〈
ũ2(·), κ̃T2,ρ(·)WTWv̂

〉]
≤ lim

ρ↓0

(
Eπ
[∥∥κ̃T1,ρ(·)WTWv̂

∥∥2
+
∥∥κ̃T2,ρ(·)WTWv̂

∥∥2
])1/2

= lim
ρ↓0

(
v̂TWTWEπ

[
κ̃1,ρ(·)κ̃T1,ρ(·) + κ̃2,ρ(·)κ̃T2,ρ(·)

]
WTWv̂

)1/2
=
(
v̂TWTWqWTWv̂

)1/2
= ‖Wv̂‖ .
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If ‖Wv̂‖ = 0, then (6.3) holds automatically. If ‖Wv̂‖ 6= 0, then the last display implies ‖Wv̂‖ ≤ 1,
which directly proves that

Eπ ‖ũ(x, ·)‖2 = 1 ≥ ‖Wv̂‖2 = (v − r(x))T q−1(x)(v − r(x)).

To prove that the inequality becomes an equality when taking the infimum over all ũ ∈ Aox,v, we
need to find a ũ ∈ L2(Γ) which attains the infimum. Define the elements of L2(Γ)

ũ1,ρ(x, γ; v) = (σ̃(γ) +Dχ̃ρ(γ)τ̃1(γ))
T
q−1(x)(v − r(x))

and
ũ2,ρ(x, γ; v) = (Dχ̃ρ(γ)τ̃2(γ))

T
q−1(x)(v − r(x))

and set ũρ(x, ·; v) = (ũ1,ρ(x, ·; v), ũ2,ρ(x, ·; v)). A straightforward computation yields

Eπ ‖ũρ(x, ·; v)‖2 = (v − r(x))T q−1(x)Eπ
[
(σ̃(x, ·) +Dχ̃ρ(·)τ̃1(·))(σ̃(x, ·) +Dχ̃ρ(·)τ̃1(·))T+

+ (Dχ̃ρ(·)τ̃2(·)) (Dχ̃ρ(·)τ̃2(·))T
]
q(x)(v − r(x))

Thus, letting ρ ↓ 0, we obtain

lim
ρ↓0

Eπ ‖ũρ(x, ·; v)‖2 = (v − r(x))T q−1(x)(v − r(x))

Hence, the element ũ ∈ L2(Γ) that we are looking for is the L2(π) limit of ũρ as defined above.
This is well defined, since by Proposition 2.6 in [22] Dχ̃ρ has a well defined L2(π) strong limit.
Therefore, we have proven that

Lo(x, v) =
1

2
(v − r(x))T q−1(x)(v − r(x))

which concludes the proof of Theorem 3.5.

A Quenched ergodic theorems

In this appendix we prove quenched ergodic theorems that are required for the proof of Theorem
3.3. For notational convenience and without loss of generality, we mostly consider a process Y driven
by a single Brownian motion with diffusion coefficient κ(y, γ) such that κκT = τ1τ

T
1 + τ2τ

T
2 .

We prove the required ergodic result, Lemma A.6 in a progressive way. First, in Lemma A.1 we
recall the classical ergodic theorem. This is strengthened in Lemma A.3 to cover cases of time shifts,
uniformly with respect to t ∈ [0, T ]. Then, in Lemmas A.4-A.5 we consider the case of perturbing
the drift of the process by small perturbations (uncontrolled and controlled case). The latter result
together with the standard technique of freezing the slow component yield the proof of the ergodic
statement in Lemma A.6.

A.1 No time shifts, i.e. t = 0

Lemma A.1. Consider the process Y ε,y0,γt satisfying the SDE

Y ε,y0,γt = y0 +
ε

δ2

∫ t

0

f(Y ε,y0,γs , γ)ds+

√
ε

δ

∫ t

0

κ(Y ε,y0,γs , γ)dWs. (A.1)

Consider also a function Ψ̃ ∈ L2(Γ) ∩ L1(π) and define Ψ(y, γ) = Ψ̃(τyγ). Assume that Ψ :

Rd−m × Γ 7→ R is measurable.
Denote Ψ̄

.
=
∫

Γ
Ψ̃(γ)π(dγ). Then for any sequence h(ε) that is bounded from above and such that

δ2/[εh(ε)] ↓ 0 (note that in particular h(ε) could be a constant), there is a set N of full π−measure
such that for every γ ∈ N

lim
ε↓0
E

∣∣∣∣∣ 1

h(ε)

∫ h(ε)

0

Ψ(Y ε,y0,γs , γ)ds− Ψ̄

∣∣∣∣∣ = 0.
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Proof of Lemma A.1. Let Ŷ y0,γt = Y ε,y0,γδ2t/ε . Note that Ŷ y0,γt satisfies

Ŷ y0,γt = y0 +

∫ t

0

f(Ŷ y0,γs , γ)ds+

∫ t

0

κ(Ŷ y0,γs , γ)dWs, (A.2)

and also that π(dγ) is the invariant ergodic probability measure for the environment process γt =

τŶ y0,γt
γ (Proposition 2.6).

Suppose that δ2/[εh(ε)] ↓ 0. By the ergodic theorem, there is a set N of full π−measure such that
for any γ ∈ N

lim
ε↓0
E

[
1

h(ε)

∫ h(ε)

0

Ψ(Y ε,y0,γs , γ)ds

]
= lim

ε↓0
E

[
δ2

εh(ε)

∫ εh(ε)

δ2

0

Ψ(Ŷ y0,γs , γ)ds

]

= lim
ε↓0
E

[
δ2

εh(ε)

∫ εh(ε)

δ2

0

Ψ̃(τŶ y0,γs
γ)ds

]

= lim
ε↓0
E

[
δ2

εh(ε)

∫ εh(ε)

δ2

0

Ψ̃(γs)ds

]
= Ψ̄.

It follows from Egoroff’s theorem that for every η > 0 there is a set Nη with π [Nη] > 1− η, such
that

lim
ε↓0

sup
γ∈Nη

E

∣∣∣∣∣ 1

h(ε)

∫ h(ε)

0

Ψ(Y ε,y0,γs )ds− Ψ̄

∣∣∣∣∣ = 0.

A.2 Time shifts and uniformity

For notational purposes we will write that h(ε) ∈ HNη1 , if the pair (h(ε), Nη) satisfies Condition
A.2.

Condition A.2. Let Ψ̃ ∈ L2(Γ) ∩ L1(π) and define the measurable function Ψ(y, γ) = Ψ̃(τyγ). For
γ ∈ Γ define

θγ(u) = sup
r>u

E

∣∣∣∣1r
∫ r

0

Ψ(Ŷ y0,γs , γ)ds− Ψ̄

∣∣∣∣ .
For any η ∈ (0, 1), there exists a set Nη with π(Nη) ≥ 1− η and a sequence {h(ε), ε > 0} such that the
following are satisfied:

i. δ2/ε
h(ε) → 0 as ε ↓ 0,

ii. there exists β ∈ (0, 1) such that
supγ∈Nη θ

γ

(
1

(δ2/ε)β

)
h(ε) → 0, as ε ↓ 0, and

iii. 1
h(ε) supγ∈Nη supt∈[0,T ]E

∣∣∣∣(δ2/ε
) ∫ t

δ2/ε

0 Ψ(Ŷ y0,γs , γ)ds− tΨ̄
∣∣∣∣→ 0 as ε ↓ 0

Lemma A.3 shows that one in fact can find a pair (h(ε), Nη) satisfies Condition A.2 in order to
prove a uniform in time t ∈ [0, T ], ergodic theorem.

Lemma A.3. Consider the setup and notations of Lemma A.1. Fix η > 0. Then there exists a set Nη
such that π(Nη) ≥ 1− η and h(ε) ∈ HNη1 such that

lim
ε↓0

sup
γ∈Nη

sup
t∈[0,T ]

E

∣∣∣∣∣ 1

h(ε)

∫ t+h(ε)

t

Ψ(Y ε,y0,γs , γ)ds− Ψ̄

∣∣∣∣∣ = 0. (A.3)
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Proof of Lemma A.3. We start with the following decomposition

E

∣∣∣∣∣ 1

h(ε)

∫ t+h(ε)

t

Ψ(Y ε,y0,γs , γ)ds− Ψ̄

∣∣∣∣∣ = E

∣∣∣∣∣δ2/ε

h(ε)

∫ t+h(ε)

δ2/ε

t
δ2/ε

Ψ(Ŷ y0,γs , γ)ds− Ψ̄

∣∣∣∣∣
= E

∣∣∣∣∣δ2/ε

h(ε)

∫ t+h(ε)

δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− δ2/ε

h(ε)

∫ t
δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− Ψ̄

∣∣∣∣∣
= E

∣∣∣∣∣ t+ h(ε)

h(ε)

(
δ2/ε

t+ h(ε)

∫ t+h(ε)

δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− Ψ̄

)
− t

h(ε)

(
δ2/ε

t

∫ t
δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− Ψ̄

)∣∣∣∣∣
≤ T + h(ε)

h(ε)
E

∣∣∣∣∣ δ2/ε

t+ h(ε)

∫ t+h(ε)

δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− Ψ̄

∣∣∣∣∣+
1

h(ε)
E

∣∣∣∣∣δ2/ε

∫ t
δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− tΨ̄

∣∣∣∣∣
≤ T + h(ε)

h(ε)
sup

r>
t+h(ε)

δ2/ε

E

∣∣∣∣1r
∫ r

0

Ψ(Ŷ y0,γs , γ)ds− Ψ̄

∣∣∣∣+
1

h(ε)
E

∣∣∣∣∣δ2/ε

∫ t
δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− tΨ̄

∣∣∣∣∣
≤ T + 1

h(ε)
θγ
(
t+ h(ε)

δ2/ε

)
+

1

h(ε)
Eγ

∣∣∣∣∣(δ2/ε
) ∫ t

δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− tΨ̄

∣∣∣∣∣
by choosing h(ε) < 1 and defining

θγ(u) = sup
r>u

E

∣∣∣∣1r
∫ r

0

Ψ(Ŷ y0,γs , γ)ds− Ψ̄

∣∣∣∣ .
Thus, we have proven that

sup
t∈[0,T ]

E

∣∣∣∣∣ 1

h(ε)

∫ t+h(ε)

t

Ψ(Y ε,y0,γs , γ)ds− Ψ̄

∣∣∣∣∣ ≤
≤ T + 1

h(ε)
sup
t∈[0,T ]

θγ
(
t+ h(ε)

δ2/ε

)
+

1

h(ε)
sup
t∈[0,T ]

E

∣∣∣∣∣(δ2/ε
) ∫ t

δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− tΨ̄

∣∣∣∣∣ (A.4)

Let us first treat the second term on the right hand side of (A.4). By the ergodic theorem, Lemma
A.1, and Egoroff’s theorem we know that there exists a set Nη with π(Nη) ≥ 1− η such that

lim
ε↓0

sup
γ∈Nη

sup
t∈[0,T ]

E

∣∣∣∣∣(δ2/ε
) ∫ t

δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− tΨ̄

∣∣∣∣∣ = 0

So, if we choose h(ε) ↓ 0 such that

lim
ε↓0

1

h(ε)
sup
γ∈Nη

sup
t∈[0,T ]

Eγ

∣∣∣∣∣(δ2/ε
) ∫ t

δ2/ε

0

Ψ(Ŷ y0,γs , γ)ds− tΨ̄

∣∣∣∣∣ = 0

we have that the second term on the right hand side of (A.4) goes to zero. Next, we treat the first
term on the right hand side of (A.4). Since, the function θγ(u) is decreasing, we get that

θγ
(
t+ h(ε)

δ2/ε

)
≤ θγ

(
h(ε)

δ2/ε

)
Thus, we have obtained that for every γ ∈ Γ

sup
t∈[0,T ]

θγ
(
t+ h(ε)

δ2/ε

)
≤ sup
t∈[0,T ]

θγ
(
h(ε)

δ2/ε

)
= θγ

(
h(ε)

δ2/ε

)
Notice that because h(ε) is chosen such that δ2/ε

h(ε) ↓ 0, Lemma A.1 and Egoroff’s theorem, imply that

lim
ε↓0

sup
γ∈Nη

θγ
(
h(ε)

δ2/ε

)
= 0
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Therefore, the first term on the right hand side of (A.4) goes to zero, if we can choose h(ε), such

that supγ∈Nη θ
γ
(
h(ε)
δ2/ε

)
/h(ε) ↓ 0. This is a little bit tricky here because the argument of θ depends on

h(ε). However, this can be done as follows. Fix β ∈ (0, 1) (e.g., β = 1/2) and choose h(ε) ≥
(
δ2/ε

)1−β
.

Then, the monotonicity of f , implies that

θγ
(
h(ε)

δ2/ε

)
≤ θγ

(
1

(δ2/ε)
β

)
↓ 0

This proves that we can choose h(ε) such that the first term of the right hand of (A.4) goes to
zero. The claim follows, by noticing that the previous computations imply that we can choose h(ε)

that may go to zero, but slowly enough, such that both the first and the second term on the right
hand side of (A.4) go to zero.

A.3 Ergodic theorems with perturbation by small drift-Uncontrolled case

Lemma A.4. Consider the process Y ε,y0,γt satisfying the SDE

Y ε,x,y0,γt = y0 +
ε

δ2

∫ t

0

f(Y ε,x,y0,γs , γ)ds+
1

δ

∫ t

0

g(s, x, Y ε,x,y0,γs , γ)ds+

√
ε

δ

∫ t

0

κ(Y ε,x,y0,γs , γ)dWs

Let us consider a function Ψ̃ : [0, T ] × Rm × Γ such that Ψ̃(t, x, ·) ∈ L2(Γ) ∩ L1(π) and define
Ψ(t, x, y, γ) = Ψ̃(t, x, τyγ). We assume that the function Ψ : [0, T ]×Rm×Rd−m×Γ 7→ R is measurable,
piecewise constant in t and uniformly continuous in x with respect to (t, y).

Denote Ψ̄(t, x)
.
=
∫

Γ
Ψ̃(t, x, γ)π(dγ) for all (t, x) ∈ [0, T ] × Rm. Fix η > 0. Then there exists a set

Nη such that π(Nη) ≥ 1− η and h(ε) ∈ HNη1 such that

lim
ε↓0

sup
γ∈Nη

sup
0≤t≤T

E

∣∣∣∣∣ 1

h(ε)

∫ t+h(ε)

t

Ψ(s, x, Y ε,x,y0,γs , γ)ds− Ψ̄(t, x)

∣∣∣∣∣ = 0

locally uniformly with respect to the parameter x ∈ Rm.

Proof of Lemma A.4. Let us set Ŷ ε,x,y0,γt = Y ε,x,y0,γδ2t/ε . Notice that Ŷ ε,x,y0,γt satisfies

Ŷ ε,x,y0,γt = y0 +

∫ t

0

f(Ŷ ε,x,y0,γs , γ)ds+
δ

ε

∫ t

0

g

(
δ2

ε
s, x, Ŷ ε,x,y0,γs , γ

)
ds+

∫ t

0

κ(Ŷ ε,x,y0,γs , γ)dWs

Slightly abusing notation, we denote by Y ε,y0,γt and Ŷ y0,γt the processes corresponding to Y ε,x,y0,γt

and Ŷ ε,x,y0,γt with c(t, x, y) = 0.
Lemma A.3 guarantees that the statement of the Lemma is true for Y ε,y0,γt , namely that there

exists a set Nη such that π(Nη) ≥ 1− η and h(ε) ∈ HNη1 such that

lim
ε↓0

sup
γ∈Nη

sup
t∈[0,T ]

E

∣∣∣∣∣ 1

h(ε)

∫ t+h(ε)

t

Ψ(s, x, Y ε,y0,γs , γ)ds− Ψ̄(t, x)

∣∣∣∣∣ = 0. (A.5)

The fact that the convergence is also locally uniform with respect to the parameter x ∈ Rm
follows by the uniform continuity of Ψ in x. This implies that in Lemma A.3, we can choose the
sequence h(ε) so that the convergence holds uniformly with respect to x in each bounded region, see
for example Theorem II.3.11 in [31].

To translate this statement to what we need we use Girsanov’s theorem on the absolutely
continuous change of measures on the space of trajectories in C([0, T ];Rd−m). Let

φ(s, x, y, γ) = −κ−1(y, γ)g(s, x, y, γ)

and define the quantity

M ε,γ
T = e

δ
ε

1√
2

∫ T
0
φ(δ2s/ε,x,Ŷ y0,γs ,γ)dWs− 1

2 ( δε )
2 1

2

∫ T
0 ‖φ(δ2s/ε,x,Ŷ y0,γs ,γ)‖2ds
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Then, by the aforementioned Girsanov’s theorem, for eachγ ∈ Γ, M ε,γ
T is a Pγ martingale.

Therefore, we obtain

E
1

h(ε)

∫ t+h(ε)

t

Ψ(s, x, Y ε,x,y0,γs , γ)ds = E
δ2/ε

h(ε)

∫ t+h(ε)

δ2/ε

t
δ2/ε

Ψ(s, x, Ŷ ε,x,y0,γs , γ)ds

= E

[(
δ2/ε

h(ε)

∫ t+h(ε)

δ2/ε

t
δ2/ε

Ψ(s, x, Ŷ y0,γs , γ)ds

)
M ε,γ
T

]

Next, we prove that, for every γ ∈ Γ, M ε,γ
T converges to 1 in probability as ε ↓ 0. For this purpose,

let us write M ε,γ
T = eE

ε,γ
T , where

Eε,γT =
δ

ε

1√
2

∫ T

0

φ(δ2s/ε, x, Ŷ y0,γs , γ)dWs −
1

2

(
δ

ε

)2
1

2

∫ T

0

∥∥∥φ(δ2s/ε, x, Ŷ y0,γs , γ)
∥∥∥2

ds

Notice that

Eε,γT = N ε,γ
T − 1

2
〈N ε,γ〉T

where

N ε,γ
T =

δ

ε

1√
2

∫ T

0

φ(δ2s/ε, x, Ŷ y0,γs , γ)dWs

Since, φ is by assumption bounded, we obtain that N ε,γ
T is a continuous martingale and 〈N ε,γ〉T is

its quadratic variation. Boundedness of φ and the assumption δ/ε ↓ 0 as ε ↓ 0, implies that

lim
ε↓0

sup
γ∈Γ

E 〈N ε,γ〉T = lim
ε↓0

sup
γ∈Γ

1

2

(
δ

ε

)2

E

∫ T

0

∥∥∥φ(δ2s/ε, x, Ŷ y0,γs , γ)
∥∥∥2

ds

= 0. (A.6)

Hence, uniformly in γ ∈ Γ, 〈N ε,γ〉T converges to 0 in probability and by Problem 1.9.2 in [21], the
same convergence holds for the martingale N ε,γ

T as well. Thus, we have obtained that uniformly in
γ ∈ Γ

M ε,γ
T = eE

ε,γ
t converges to 1 in probability, as ε ↓ 0. (A.7)

Moreover, (A.7) together with Scheffé’s theorem (Theorem 16.12 in [2]) imply that

sup
γ∈Γ

E |M ε,γ
T − 1| → 0, as ε ↓ 0. (A.8)

In fact, boundedness of φ implies that for every ε ∈ (0, 1) and γ ∈ Γ, M ε,γ
T is a square integrable

martingale. The latter statement and convergence in probability (A.7), imply that

sup
γ∈Γ

E |M ε,γ
T − 1|2 → 0, as ε ↓ 0. (A.9)

Now that (A.9) has been established, we continue with the proof of the lemma. Choose h(ε), such
that (A.5) holds, we obtain

E

∣∣∣∣∣ 1

h(ε)

∫ t+h(ε)

t

Ψ(s, x, Y ε,x,y0,γs , γ)ds− Ψ̄(t, x)

∣∣∣∣∣
= E

∣∣∣∣∣
(
δ2/ε

h(ε)

∫ t+h(ε)

δ2/ε

t
δ2/ε

Ψ(s, x, Ŷ y0,γs , γ)ds

)
M ε,γ
T − Ψ̄(t, x)

∣∣∣∣∣
≤ E

∣∣∣∣∣δ2/ε

h(ε)

∫ t+h(ε)

δ2/ε

t
δ2/ε

Ψ(s, x, Ŷ y0,γs , γ)ds− Ψ̄(t, x)

∣∣∣∣∣
+ E

∣∣∣∣∣
(
δ2/ε

h(ε)

∫ t+h(ε)

δ2/ε

t
δ2/ε

Ψ(s, x, Ŷ y0,γs , γ)ds

)
(M ε,γ

T − 1)

∣∣∣∣∣
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Clearly, the first term converges to zero by (A.5). The second term also converges to zero by
Hölder’s inequality, Lemma A.3 applied to Ψ2 and (A.9).

The claim that the convergence is locally uniformly with respect to the parameter x ∈ Rm follows
by the fact that this is true for (A.5).

A.4 Ergodic theorems with perturbation by small drift-Controlled case

Lemma A.5. Fix T <∞ and consider A to be the set of progressively measurable controls such that∫ T

0

‖uε(s)‖2 ds < N, (A.10)

where the constant N does not depend on ε, δ, T or γ and additionally such that for δ/ε� 1

1

ε
E

∫ δ2T
ε

0

‖uε(s)‖2 ds ≤ Cδ/ε, (A.11)

where the constant C depends on T , but not on ε, δ or γ. Consider the process Ȳ ε,x,y0,γt satisfying the
SDE

Ȳ ε,x,y0,γt = y0 +
ε

δ2

∫ t

0

f(Ȳ ε,x,y0,γs , γ)ds+
1

δ

∫ t

0

[
g(s, x, Ȳ ε,x,y0,γs , γ) + κ(Ȳ ε,x,y0,γs , γ)uε(s)

]
ds

+

√
ε

δ

∫ t

0

κ(Ȳ ε,x,y0,γs , γ)dWs

Let us consider a function Ψ̃ : [0, T ] × Rm × Γ such that Ψ̃(t, x, ·) ∈ L2(Γ) ∩ L1(π) and define
Ψ(t, x, y, γ) = Ψ̃(t, x, τyγ). We assume that the function Ψ : [0, T ]×Rm×Rd−m×Γ 7→ R is measurable,
piecewise constant in t and uniformly continuous in x with respect to (t, y).

Denote Ψ̄(t, x)
.
=
∫

Γ
Ψ̃(t, x, γ)π(dγ) for all (t, x) ∈ [0, T ] × Rm. Fix η > 0. Then there exists a set

Nη such that π(Nη) ≥ 1− η and h(ε) ∈ HNη1 such that

lim
ε↓0

sup
γ∈Nη

sup
0≤t≤T

E

∣∣∣∣∣ 1

h(ε)

∫ t+h(ε)

t

Ψ(s, x, Ȳ ε,x,y0,γs , γ)ds− Ψ̄(t, x)

∣∣∣∣∣ = 0

locally uniformly with respect to the parameter x ∈ Rm.

Proof of Lemma A.5. Let us set ˆ̄Y ε,x,y0,γt = Ȳ ε,x,y0,γδ2t/ε . Notice that ˆ̄Y ε,x,y0,γt satisfies

ˆ̄Y ε,x,y0,γt = y0 +

∫ t

0

f( ˆ̄Y ε,x,y0,γs , γ)ds+
δ

ε

∫ t

0

[
g

(
δ2

ε
s, x, ˆ̄Y ε,x,y0,γs , γ

)
+ κ( ˆ̄Y ε,x,y0,γs , γ)uε

(
δ2s/ε

)]
ds

+

∫ t

0

κ( ˆ̄Y x,y0,γ,εs , γ)dWs

Essentially, based on the condition of the allowable controls (A.10), the arguments of the un-
controlled case, Lemma A.4, go through verbatim. The only place that needs some discussion is in
regards to the proof of the statement corresponding to (A.6). Let us show now how this term can be
treated. In the controlled case we have that

φ(s, x, y, γ) = −κ−1(y, γ)g(s, x, y, γ)− uε(s)

and we want to prove that for every γ ∈ Γ

lim
ε↓0
E 〈N ε,γ〉T = lim

ε↓0

1

2

(
δ

ε

)2

E

∫ T

0

∥∥∥φ(δ2s/ε, x, Ŷ y0,γs , γ)
∥∥∥2

ds = 0. (A.12)
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It is clear that

E 〈N ε,γ〉T =
1

2

(
δ

ε

)2

E

∫ T

0

∥∥∥φ(δ2s/ε, x, Ŷ y0s , γ)
∥∥∥2

ds

≤
(
δ

ε

)2

E

∫ T

0

∥∥∥κ−1(Ŷ y0s , γ)g(δ2s/ε, x, Ŷ y0s , γ)
∥∥∥2

ds+

(
δ

ε

)2

E

∫ T

0

∥∥uε (δ2s/ε
)∥∥2

ds

The first term of the right hand side of the last display goes to zero by the boundedness of
∥∥κ−1g

∥∥2

(as in Lemma A.4). So we only need to consider the second term. Here we use Condition A.11. In
particular, we notice that Condition A.11 gives

lim
ε↓0

(
δ

ε

)2

E

∫ T

0

∥∥uε (δ2s/ε
)∥∥2

ds = lim
ε↓0

1

ε
E

∫ δ2T/ε

0

‖uε(s)‖2 ds = 0

uniformly in γ ∈ Γ. Thus we have completed the proof of (A.12). This concludes the proof of the
lemma.

A.5 Ergodic theorem with explicit dependence on the slow process.

In this subsection we consider the pair (X̄ε,γ
s , Ȳ ε,γs ) satisfying (3.3) and the purpose is to prove

Lemma A.6.

Lemma A.6. Consider the set-up, assumptions and notations of Lemma A.5. Fix η > 0. Then there
exists a set Nη such that π(Nη) ≥ 1− η and h(ε) ∈ HNη1 such that

lim
ε↓0

sup
γ∈Nη

sup
0≤t≤T

E

∣∣∣∣∣ 1

h(ε)

∫ t+h(ε)

t

Ψ
(
s, X̄ε,γ

s , Ȳ ε,γs , γ
)
ds− Ψ̄(t, X̄ε,γ

t )

∣∣∣∣∣ = 0.

Sketch of proof of Lemma A.6. Due to Lemma A.5, the statement follows by using the standard
argument of freezing the slow component, see for example Chapter 7.9 of [12] or [28]. Details are
omitted.
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