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Abstract

A random n-permutation may be generated by sequentially removing random cards
C1, ..., Cn from an n card deck D = {1, ..., n}. The permutation σ is simply the
sequence of cards in the order they are removed. This permutation is itself uniformly
random, as long as each random card Ct is drawn uniformly from the remaining set
at time t. We consider, here, a variant of this simple procedure in which one is given
a choice between k random cards from the remaining set at each step, and selects
the lowest numbered of these for removal. This induces a bias towards selecting
lower numbered of the remaining cards at each step, and therefore leads to a final
permutation which is more “ordered” than in the uniform case (i.e. closer to the
identity permutation id = (1, 2, 3, ..., n)).

We quantify this effect in terms of two natural measures of order: The number of
inversions I and the length of the longest increasing subsequence L. For inversions,
we establish a weak law of large numbers and central limit theorem, both for fixed and
growing k. For the longest increasing subsequence, we establish the rate of scaling,
in general, and existence of a weak law in the case of growing k. We also show that
the minimum strategy, of selecting the minimum of the k given choices at each step,
is optimal for minimizing the number of inversions in the space of all online k-card
selection rules.
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1 Introduction

A random n-permutation may be generated with a deck of n cards D = {1, ..., n} as
follows. Draw a random card C1 from the deck and remove it, then draw and remove
another random card C2 from the remaining cards, and so forth until all n cards have
been removed. The permutation is σ = (C1, ..., Cn), where Ct is the card removed at time
t. This permutation is itself uniformly random, as long as each random card Ct is drawn
uniformly from the remaining cards in the deck at time t.
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Inversion and longest increasing subsequence for random permutations

If, however, one is given a choice between k ≥ 2 (uniformly) random cards to remove
at each step one can bias the resulting permutation by an appropriate selection rule
to achieve a particular objective. For example, one can seek to maximize the number
of fixed points, number of cycles, length of the longest cycle, etc. Our aim here is to
create a permutation which is as “ordered” as possible. That is, closest to the identity
permutation id = (1, 2, 3, ..., n). For this, we choose the natural strategy of selecting the
lowest numbered, or minimum, of the k random card choices at each step.

We refer to the resulting procedure for constructing our random permutation as the
k-card-minimum procedure. Formally, it is defined below.

Definition 1.1. For k, n ∈ N the k-card-minimum (kCM) procedure is the following
random algorithm for generating a permutation σ of the integers 1, ..., n.

• D1 = {1, ..., n}
• For t = 1, ..., n :

Ct,1, ..., Ct,k are i.i.d uniform samples from Dt

Ct = min{Ct,1, ..., Ct,k}
Dt+1 = Dt/{Ct}

• σ = (C1, ..., Cn)

Here, Dt represents the set of cards remaining in the deck at time t, just before the
t-th card is selected. Ct,1, ..., Ct,k are the k random card choices from the remaining
set Dt, and the minimum of these, Ct, is selected for removal. The final permutation
σ = (C1, ..., Cn) is simply the sequence of cards in the order they are removed.

With k = 1, of course, the kCM procedure reduces to the original procedure in
which a single random card is drawn at each step, and the final permutation σ is
uniform. However, for any k ≥ 2 one expects the selection rule to create a more ordered
permutation. We allow the case k = 1 in the definition only because it facilitates easy
comparison to the uniform case from our theorems, and does not add any increased
difficulty in the proofs.

1.1 Measures of Order

The extent to which a permutation is “ordered” is not, a priori, a well-defined mathe-
matical concept, but we will consider two natural measures of order for our analysis:
The number of inversions I and the length of the longest increasing subsequence L.

Definition 1.2. For an n-permutation σ = (σ(1), ..., σ(n)),

I(σ) = |{i < j : σ(i) > σ(j)}| and

L(σ) = max{` : ∃ 1 ≤ i1 < ... < i` ≤ n with σ(i1) < ... < σ(i`)}.

Intuitively, of course, a more ordered permutation should have fewer inversions and
a longer longest increasing subsequence, and, in fact, this intuition can be justified
concretely in the following sense.

I(σ) = dAT (σ, id) and L(σ) = n− dR(σ, id)

where dAT and dR are the standard permutation metrics defined by

dAT (σ, σ′) = min # adjacent transpositions required to transform σ into σ′,

dR(σ, σ′) = min # reinsertions required to transform σ into σ′.
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Here, as usual, two permutations σ and σ′ are said to differ by a single adjacent
transposition if they are of the form

σ = (i1, ..., in) , σ′ = (i1, ..., im−1, im+1, im, im+2, ..., in)

and to differ by a single reinsertion if they are of the form

σ = (i1, ..., in) , σ′ = (i1, ..., im−1, im+j, im, ..., im+j−1, im+j+1, ..., in)

or the form

σ = (i1, ..., in) , σ′ = (i1, ..., im−1, im+1, ..., im+j , im, im+j+1, ..., in).

1.2 Summary of Results and Comparison to Uniform Case

For a uniformly random permutation, I ∼ n2/4 and converges to a standard normal
distribution when appropriately centered and rescaled [9], whereas L ∼ 2

√
n [1, 12, 17]

and converges to a Tracy-Widom distribution when appropriately centered and rescaled
[4]. For fixed k, we find that I and L still obey the same n2 and

√
n scalings, but

decreased and increased, respectively, by constant factors. However, if k = kn →∞ then
the scaling rates are altered. In particular, if kn → ∞ with kn = o(n), then I scales as
n2/kn and L scales as

√
knn. More precise statements, including weak laws and central

limit theorems, will be given below in Section 2.

1.3 Motivation and Related Work

If n balls are placed into n bins independently and uniformly at random, then the
number of balls in the fullest bin or maximum load is roughly log(n)/ log log(n) with high
probability. If, however, the balls are placed sequentially, and at each step one is allowed
to choose from among k independent randomly selected bins, then the maximum load
can be reduced dramatically to log log(n)/ log(k), by always choosing to place the ball in
the least full bin of the given choices [3]. This is one of the first, and most remarkable,
examples of the power of choice in stochastic models.

Another important example is the Achlioptas model, which is a modification of the
standard Erdös-Rényi random graph process (G(n,m))m, in which one is allowed to
select from among k independently chosen random edges to add to the n-vertex graph at
each step, rather than simply adding a given random edge. Using appropriate selection
rules with k = 2 in this model, one can accelerate or delay the onset of the giant
component from the Erdös-Rényi critical point of m = n/2 edges by a constant factor: to
as early as 0.385n or as late as 0.829n [6, 15]. Using other selection rules one can also
substantially delay (with fixed k) or accelerate (with growing k) the first appearance
time mH of a fixed subgraph H [10, 11].

Our random permutation model is, of course, mathematically quite different than
either the balls and bins selection model or the Achlioptas random graph model, but the
questions we are interested in are very similar in spirit. We begin with a well studied
base model, the uniform permutation, which can be generated by a sequential procedure,
removing cards one at a time. Then, we add choice to the procedure with the goal of
modifying some statistical property of the resulting random object. In particular, we
wish to make the final permutation more ordered, so we select at each step the lowest
numbered card from among the k given choices.

This is a very simple strategy, essentially a greedy algorithm. However, as we
will show below (Proposition 2.11) it is, in fact, optimal for minimizing the number of
inversions I, just as the simple greedy strategy of selecting the least full bin from among
the k choices is optimal for reducing the maximum load in the balls and bins model
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[3]. For maximizing L our greedy selection rule is not optimal, but it still substantially
increases L for large fixed k or growing k.

Another motivation for the study of kCM random permutations comes from the Mal-
lows random permutation model [13]. Heuristic arguments and simulations suggest that
the kCM model should have a similar band structure to the Mallows model as discussed
in [5], and our theorems, along with the previous work on Mallows permutations in
[5, 14], show that with an appropriate choice of parameters both I and L scale at the
same rate in the two models. That is, if one chooses parameters to ensure roughly
the same number of inversions, then one also gets roughly the same length of longest
increasing subsequence. A more thorough discussion of the connection between the
kCM and Mallows models will be given in Section 6.

2 Statement of Results

In this section we state formally our results for the statistics of inversions and the
longest increasing subsequence in kCM random permutations. These are divided into
four subsections: inversion results for fixed k, inversion results for growing k, scaling
results for L (both for fixed and growing k), and optimality results for the minimum
strategy. Proofs will be given later in Sections 3, 4, and 5.

Throughout we use the following notation:

• [n] = {1, ..., n}.

•
p.−→ and

d.−→ denote, respectively, convergence in probability and convergence in
distribution.

• σ = (C1, ..., Cn) is a random permutation generated according to the kCM proce-
dure of Definition 1.1.

• I is the number of inversions in σ, and L is the length of the longest increasing
subsequence in σ.

• Pn,k is the probability measure when the kCM procedure is run on a deck of n
cards with given k.

• En,k(X) and Varn,k(X) denote, respectively, the expectation and variance of a
random variable X under the measure Pn,k.

2.1 Inversion Results for Fixed k

For k ∈ N, let

ak =
1

2(k + 1)
and bk =

k

3(k + 1)2(k + 2)
.

Then, we have the following asymptotics for En,k(I) and Varn,k(I), as n goes to infinity
with fixed k.

Proposition 2.1. For any fixed k ∈ N,

En,k(I) = akn
2 + O(n) and Varn,k(I) = bkn

3 +O(n2). (2.1)

Moreover, a weak law of large numbers and central limit theorem both hold.

Theorem 2.2 (Weak Law of Large Numbers). For any fixed k ∈ N,

I

n2
p.−→ ak, as n→∞. (2.2)
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Theorem 2.3 (Central Limit Theorem). For any fixed k ∈ N,

I − En,k(I)√
Varn,k(I)

d.−→ Z , as n→∞ (2.3)

where Z is a standard normal random variable. Equivalently,

I − ak · n2√
bk · n3/2

d.−→ Z , as n→∞. (2.4)

2.2 Inversion Results for Growing k

Throughout this section we assume that (kn)∞n=1 is a nondecreasing sequence of
positive integers such that kn →∞ with kn = o(n). Our first proposition gives asymptotic
estimates for the expectation and variance of the number of inversions I, analogous to
Proposition 2.1.

Proposition 2.4.

En,kn(I) =
1

2
· n

2

kn
+ o

(
n2

kn

)
and Varn,kn(I) =

1

3
· n

3

k2n
+ o

(
n3

k2n

)
. (2.5)

Using this proposition, along with some intermediate estimates used in its proof, we
also obtain a weak law of large numbers and central limit theorem for the number of
inversions I, analogous to Theorems 2.2 and 2.3.

Theorem 2.5 (Weak Law of Large Numbers).

I · kn
n2

p.−→ 1

2
, as n→∞. (2.6)

Theorem 2.6 (Central Limit Theorem).

I − En,kn(I)√
Varn,kn(I)

d.−→ Z , as n→∞ (2.7)

where Z is a standard normal random variable.

2.3 Scaling of L

The following theorem is our primary result for the longest increasing subsequence
in kCM random permutations. It establishes the scaling rate of L as n → ∞ up to a
universal constant factor, both for fixed and growing k.

Theorem 2.7. If (kn)∞n=1 is any sequence of positive integers satisfying kn = o(n), then

1/2 ≤ lim inf
n→∞

En,kn(L)√
knn

≤ lim sup
n→∞

En,kn(L)√
knn

≤ 4e. (2.8)

Moreover, for any ε > 0,

lim
n→∞

Pn,kn

(
1/2− ε ≤ L/

√
knn ≤ 4e+ ε

)
= 1. (2.9)

In the case kn → ∞, we also obtain the existence of a weak law of large numbers,
though we do not know the exact constant for the weak law.

Theorem 2.8 (Weak Law of Large Numbers). If (kn)∞n=1 is any sequence of positive
integers such that kn →∞ with kn = o(n), then

L

En,kn(L)

p.−→ 1 , as n→∞.
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A central piece of the proof of Theorem 2.8 is the following variance estimate for L,
which, interestingly, does not depend on k.

Proposition 2.9. For any k, n ∈ N,

Varn,k(L) ≤ n/4. (2.10)

Remarks.

1. The constants 1/2 and 4e in Theorem 2.7 can be improved a bit by a somewhat
more careful analysis than we give here. However, we do not believe they can be
made to match without substantially different methods.

2. Our theorem shows that L is increased by roughly a factor of
√
kn from the uniform

2
√
n scaling, up to moderate corrections. However, for kn = k fixed and small these

moderate corrections are of the same order as the
√
k increase. Thus, the theorem

is most informative only for fixed large k or growing k.

3. It is natural to consider how fast the sequence (kn) must grow to increase the
scaling rate of L from the order n1/2 uniform scaling to a larger power law nα,
for some α > 1/2. According to our theorem, one must also take kn as a power
law, kn ≈ nβ where α = 1/2 + β/2. Since any β ∈ (0, 1) is possible, while still
maintaining kn = o(n), any α ∈ (1/2, 1) is also possible.

2.4 Optimality Results for the Minimum Strategy

In the kCM procedure we are given k independent random card choices Ct,1, ..., Ct,k
from the remaining set Dt at each step, and we select the lowest numbered of these.
This selection rule was chosen in order to create a more ordered final permutation, and
it is a simple and natural rule for doing so. However, it is reasonable to ask if some other
selection rule may be better for this purpose. More generally, given any real-valued
statistic X = X(σ) to maximize or minimize (for us X = I or L), one may ask if a given
selection rule or strategy is optimal for maximizing or minimizing this statistic.

The kCM strategy Smin, in which the minimum of the k card choices is always
selected, is quite simple. It does not depend explicitly on n or k, or on any of the
previously removed cards C1, ..., Ct−1. In principal, though, it is reasonable to allow a
strategy to depend explicitly on both n and k, as well as the cards C1, ..., Ct−1 removed
before time t, as these will be known to an individual making the card selections. We,
thus, define a (k, n) choice strategy as follows.

Definition 2.10. For k, n ∈ N, a (k, n) choice strategy S is an n-tuple of choice functions
S = (f1, ..., fn) where for each t ∈ [n] :

• The domain of ft is the set of allowable input pairs ((c1, ..., ct−1), (ct,1, ..., ct,k)) such
that each cτ , ct,i ∈ [n], cτ 6= cτ ′ for all τ 6= τ ′, and ct,i 6= cτ for each 1 ≤ i ≤ k and
1 ≤ τ ≤ t− 1.

• ft((c1, ..., ct−1), (ct,1, ..., ct,k)) ∈ {ct,1, ..., ct,k} for each possible input
((c1, ..., ct−1), (ct,1, ..., ct,k)).

On the event {Cτ = cτ , 1 ≤ τ ≤ t − 1 and Ct,i = ct,i, 1 ≤ i ≤ k} the strategy S selects
Ct ∈ {ct,1, ..., ct,k} by the rule Ct = ft((c1, ..., ct−1), (ct,1, ..., ct,k)).

We say a (k, n) choice strategy S is stochastically optimal for maximizing a real-valued
statistic X = X(σ) if for every other (k, n) choice strategy Ŝ we have

PSn,k(X ≥ x) ≥ PŜn,k(X ≥ x) , for all x ∈ R.
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Similarly, we say a (k, n) choice strategy S is stochastically optimal for minimizing a
real-valued statistic X = X(σ) if for every other (k, n) choice strategy Ŝ we have

PSn,k(X ≤ x) ≥ PŜn,k(X ≤ x) , for all x ∈ R.

The following proposition shows that the simple strategy Smin is actually the best
strategy for minimizing inversions.

Proposition 2.11. For each k, n ∈ N, the k-card-minimum strategy Smin is stochastically
optimal for minimizing I.

The situation for the longest increasing subsequence is more complicated, though,
and Smin is no longer optimal. In fact, no optimal strategy exists for any k ≥ 2 and n ≥ 5.

Proposition 2.12. For any k ≥ 2 and n ≥ 5 there is no (k, n) stochastically optimal
strategy for maximizing L. However, for each k ≥ 2 and n ≥ 4 there exists a strategy
Scopy, which is strictly better than the k-card-minimum strategy for maximizing L. That
is,

P
Scopy
n,k (L ≥ x) ≥ PSmin

n,k (L ≥ x)

for all x ∈ R, with strict inequality for some values of x.

Nevertheless, as shown by Theorem 2.7, the minimum strategy Smin still increases
L substantially compared to the uniform case for large fixed k or growing k. Moreover,
although the minimum strategy is strictly dominated by Scopy, this dominance is very
weak. As the name suggests, Scopy copies Smin almost all of the time, and only behaves
differently in very specific instances, for which it can increase L by 1. Thus, Smin may
still be “essentially optimal” in the sense of the scaling rate given by Theorem 2.7. A
natural question, for which we do not yet have an answer, is whether the minimum
strategy is, indeed, optimal in terms of this scaling rate. More precisely:

Question - Does there exist some absolute constant B > 0 such that for any sequence
(kn)∞n=1 with kn = o(n) and any sequence of (kn, n) choice strategies (Sn)∞n=1,

lim
n→∞

PSnn,kn

(
L ≤ B

√
knn

)
= 1 ?

3 Analysis of Inversions

In this section we analyze statistics of the number of inversions I in a kCM random
permutation, proving the results of Sections 2.1 and 2.2. We treat separately the case of
fixed k in Section 3.3 and the case of growing k in Section 3.4. First, however, we begin
with some general set up in Sections 3.1 and 3.2 that will be used in both cases.

3.1 Preliminaries

3.1.1 Relative Positions

The sequence (Ct)
n
t=1 is highly dependent. Partly this is because of simple exclusion; if

Ct = i then Cτ 6= i, for all τ 6= t. However, unlike in the uniform case, there is strong
dependence beyond this as well since the kCM procedure has a bias towards selecting
lower numbered of the remaining cards at each step. Theoretically at least, at any time
t > max{i− 1, n− i} card i could be the lowest or highest remaining card in the deck,
or anything in between. So, the probability that Ct = i (assuming i is still left at time t)
depends heavily on which cards were removed at earlier times τ < t. The main idea for
analyzing inversions is to consider the relative card positions, which are independent,
and, thus, circumvent this difficulty.
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For t = 1, ..., n we define C̃t to be the relative position of card Ct in the remaining set
of cards Dt from which it is selected:

C̃t = j ⇐⇒ Ct is the j-th lowest numbered card in Dt.

Since the selection rule for the kCM procedure depends only on the relative values of the
k card choices Ct,1, ..., Ct,k, and not on the actual numbers of these cards, the relative

position C̃t of the t-th card selected is independent of the previously removed cards
C1, ..., Ct−1. Equivalently, C̃t is independent of the relative positions of the previously
removed cards C̃1, ..., C̃t−1. Since this holds for each t = 1, ..., n, it follows that the
sequence of relative card positions C̃1, ..., C̃n is independent, as claimed above.

The relation to inversions is as follows. If we define

It = |{t+ 1 ≤ τ ≤ n : Ct > Cτ}|

to be the number of cards selected at later times τ > t, which are inverted with card Ct,
then

It = C̃t − 1. (3.1)

To see this, note that if the j-th lowest numbered of the remaining cards is selected at
time t (i.e. C̃t = j), then there are exactly j − 1 lower numbered cards remaining in the
deck at time t+ 1, which eventually must be removed at times τ ≥ t+ 1. Thus, there will
be exactly j − 1 cards removed at times τ ≥ t+ 1, which are inverted with card Ct (i.e.
It = j − 1).

From (3.1) and independence of the relative positions C̃1, ..., C̃n it follows that I1, ..., In
are independent as well. These facts are summarized below in the following proposition,
which also characterizes the distribution of the random variables C̃t and It.

Proposition 3.1. For any k, n ∈ N, the random variables C̃1, ..., C̃n are independent and
the random variables I1, ..., In are independent. Moreover, for each t = 1, ..., n we have

Pn,k(C̃t > j) =

(
n− t+ 1− j
n− t+ 1

)k
, j = 0, 1, ..., n− t+ 1 (3.2)

and

Pn,k(It > j) =

(
n− t− j
n− t+ 1

)k
, j = 0, 1, ..., n− t. (3.3)

Proof. Independence of the C̃t’s and independence of It’s was established above, and
(3.3) follows from (3.1) and (3.2). Thus, it remains only to prove (3.2).

To see (3.2), note that at time t there are exactly n− t+ 1 cards left in the deck to pick
from (i.e. |Dt| = n− t+ 1), and C̃t > j if and only if each of the k independent random
choices Ct,1, ..., Ct,k is greater than Dt,j ≡ j-th lowest card in Dt. Thus,

Pn,k(C̃t > j) =

k∏
i=1

Pn,k(Ct,i > Dt,j) =

k∏
i=1

(n− t+ 1)− j
n− t+ 1

.

Now, of course, the total number of inversions I is simply

I =

n−1∑
t=1

It. (3.4)

So, by Proposition 3.1, we have I expressed as a sum of independent random variables
It, t = 1, ..., n − 1, with explicit distribution (3.3). The analysis of I (both for fixed and
growing k) is based upon this decomposition.
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3.1.2 The Lindberg-Feller Central Limit Theorem

The It’s are independent, but not identically distributed. Our proof of the central limit
theorem for the number of inversions I (both in the case of fixed and growing k) will use
the following general central limit theorem for sums of independent random variables.
See, e.g., [8].

Theorem 3.2 (Lindberg-Feller Central Limit Theorem). Let X(n)
t , n ∈ N and 1 ≤ t ≤ n, be

independent mean zero random variables such that:

(i) For each n ∈ N,
∑n
t=1 Var

(
X

(n)
t

)
= 1.

(ii) For each ε > 0, limn→∞

{∑n
t=1E

(∣∣X(n)
t

∣∣2;
∣∣X(n)

t

∣∣ > ε
)}

= 0.

Then
∑n
t=1X

(n)
t ≡ X(n) d.−→ Z, as n→∞, where Z is a standard normal random variable.

3.1.3 Some Basic Estimates for Sums

For calculation of the expectation and variance of the random variables It we will need
the following basic estimates for sums.

Lemma 3.3. For positive integers m, k

mk+1

k + 1
≤

m∑
τ=1

τk ≤ (m+ 1)k+1

k + 1
(3.5)

and

(m+ 1)k+2

(k + 1)(k + 2)
− 4(m+ 1)k+1

k + 1
≤

m∑
τ=1

(m− τ)τk ≤ mk+2

(k + 1)(k + 2)
+

2mk+1

k + 1
.

(3.6)

Remark. The constants 2 and 4 in (3.6) are likely not optimal and are chosen only for
convenience.

Proof. If a, b ∈ Z with a ≤ b and f : [a − 1, b + 1] → R is a continuous nondecreasing
function, then

∫ b

a−1
f(x)dx ≤

b∑
τ=a

f(τ) ≤
∫ b+1

a

f(x)dx. (3.7)

Similarly, if a, b ∈ Z with a ≤ b and f : [a− 1, b+ 1]→ R is a continuous nonincreasing
function, then

∫ b

a−1
f(x)dx ≥

b∑
τ=a

f(τ) ≥
∫ b+1

a

f(x)dx. (3.8)

The first pair of inequalities (3.5) is immediate from (3.7) since the function xk is
increasing on [0,m + 1]. To prove the second pair of inequalities (3.6) note that the
function f(x) = (m− x)xk is increasing on [0,m( k

k+1 )] and decreasing on [m( k
k+1 ),m+ 1]

with maxx∈[0,m+1] f(x) ≡ fmax = f
(
m( k

k+1 )
)
≤ mk+1

k+1 . Thus, letting A = bm( k
k+1 )c,
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B = dm( k
k+1 )e and applying the inequalities (3.7) and (3.8), we have

m∑
τ=1

f(τ) ≤
A−1∑
τ=1

f(τ) +

m∑
τ=B+1

f(τ) + 2 · fmax

≤
∫ A

1

f(x)dx +

∫ m

B

f(x)dx + 2 · fmax

≤
∫ m

1

f(x)dx + 2 · fmax

≤ mk+2

(k + 1)(k + 2)
+

2mk+1

k + 1

and

m∑
τ=1

f(τ) ≥
A−1∑
τ=1

f(τ) +

m∑
τ=B+1

f(τ)

≥
∫ A−1

0

f(x)dx +

∫ m+1

B+1

f(x)dx

=

∫ m+1

0

f(x)dx −
∫ B+1

A−1
f(x)dx

≥
∫ m+1

0

f(x)dx − 3 · fmax

≥ (m+ 1)k+2

(k + 1)(k + 2)
− 4(m+ 1)k+1

k + 1

for all m ≥ 2. In the case m = 1, the inequalities (3.6) may be verified directly.

3.2 Estimates for En,k(It) and V arn,k(It)

For a random variable X taking values in {0, 1, ...,m},

E(X) =

m−1∑
j=0

P(X > j) and E(X2) = E(X) +

m−1∑
j=0

2j · P(X > j). (3.9)

Using these formulas along with Proposition 3.1 and Lemma 3.3, we now obtain estimates
for En,k(It), En,k(I2t ), and Varn,k(It).

Claim 3.4. Uniformly in 1 ≤ t ≤ n− 1 and k ∈ N,

En,k(It) =
n− t
k + 1

+O(1). (3.10)

Proof. By (3.3) and (3.9),

En,k(It) =

n−t−1∑
j=0

(
n− t− j
n− t+ 1

)k
=

∑n−t
τ=1 τ

k

(n− t+ 1)k
.

Applying (3.5) gives

En,k(It) ≤
(n− t+ 1)k+1/(k + 1)

(n− t+ 1)k
=
n− t
k + 1

+
1

k + 1
(3.11)

EJP 20 (2015), paper 11.
Page 10/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3602
http://ejp.ejpecp.org/


Inversion and longest increasing subsequence for random permutations

and

En,k(It) ≥
(n− t)k+1/(k + 1)

(n− t+ 1)k

=
n− t
k + 1

+
n− t
k + 1

((
1− 1

n− t+ 1

)k
− 1

)

≥ n− t
k + 1

+
n− t
k + 1

((
1− k

n− t+ 1

)
− 1

)
≥ n− t
k + 1

− 1.

In the second to last inequality we use the fact that
∏k
i=1(1− xi) ≥ 1−

∑k
i=1 xi, for real

numbers x1, ..., xk ∈ [0, 1].

Claim 3.5. Uniformly in 1 ≤ t ≤ n− 1 and k ∈ N,

En,k(I2t ) =
2(n− t)2

(k + 1)(k + 2)
+
O(n)

k
. (3.12)

Proof. By (3.3) and (3.9),

En,k(I2t ) = En,k(It) +

n−t−1∑
j=0

2j

(
n− t− j
n− t+ 1

)k
,

and, by (3.6), we have the estimates

n−t−1∑
j=0

2j

(
n− t− j
n− t+ 1

)k
=

2

(n− t+ 1)k
·
n−t∑
τ=1

((n− t)− τ)τk

≤ 2

(n− t+ 1)k
·
[

(n− t)k+2

(k + 1)(k + 2)
+

2(n− t)k+1

k + 1

]
≤ 2(n− t)2

(k + 1)(k + 2)
+

4(n− t)
k + 1

,

n−t−1∑
j=0

2j

(
n− t− j
n− t+ 1

)k
=

2

(n− t+ 1)k
·
n−t∑
τ=1

((n− t)− τ)τk

≥ 2

(n− t+ 1)k
·
[

(n− t+ 1)k+2

(k + 1)(k + 2)
− 4(n− t+ 1)k+1

k + 1

]
≥ 2(n− t)2

(k + 1)(k + 2)
− 8(n− t+ 1)

k + 1
.

Using (3.11) and the fact that It is nonnegative gives

2(n− t)2

(k + 1)(k + 2)
− 8n

k
≤ En,k(I2t ) ≤ 2(n− t)2

(k + 1)(k + 2)
+

6n

k
.

Claim 3.6. Uniformly in 1 ≤ t ≤ n− 1 and k ∈ N,

Varn,k(It) =
k(n− t)2

(k + 1)2(k + 2)
+
O(n)

k
+O(1). (3.13)
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Proof. By Claims 3.4 and 3.5,

Varn,k(It) =

(
2(n− t)2

(k + 1)(k + 2)
+
O(n)

k

)
−
(
n− t
k + 1

+O(1)

)2

=
k(n− t)2

(k + 1)2(k + 2)
+
O(n)

k
+O(1).

3.3 The Case of Fixed k

Throughout Section 3.3 we assume k ∈ N is a fixed positive integer.

Proof of Proposition 2.1. By Claim 3.4 and linearity of expectation

En,k(I) =

n−1∑
t=1

(
n− t
k + 1

+ O(1)

)
=

n2

2(k + 1)
+ O(n).

By Claim 3.6 and independence of the It’s

Varn,k(I) =

n−1∑
t=1

(
k(n− t)2

(k + 1)2(k + 2)
+

O(n)

k
+ O(1)

)
=

kn3

3(k + 1)2(k + 2)
+ O(n2).

Proof of Theorem 2.2. By Proposition 2.1 we have En,k(I/n2)→ ak and Varn,k(I/n2)→
0, as n→∞. Thus, the theorem follows by Chebyshev’s inequality.

Proof of Theorem 2.3. Run the k-card-minimum procedure independently on decks of
each size n = 1, 2, ... with given k. Denote by I(n)t the random variable It for the n card
deck, and by I(n) the random variable I for the n card deck. Also, denote the probability
measure for this joint process simply by P and expectations and variances under this
measure simply by E(·) and Var(·).

For n ∈ N and 1 ≤ t ≤ n define random variables X(n)
t by

X
(n)
t =

I
(n)
t − E

(
I
(n)
t

)√
Var(I(n))

. (3.14)

Note that the X(n)
t ’s are independent with zero mean, and moreover the following both

hold.

(i) For each n,
∑n
t=1 Var(X

(n)
t ) = 1

Var(I(n))
·
∑n
t=1 Var(I

(n)
t ) = 1, since I

(n)
n ≡ 0, and

I
(n)
1 , ..., I

(n)
n−1 are independent.

(ii) With probability 1, uniformly in t,

|X(n)
t | ≤

n

(bkn3 +O(n2))
1/2

= O(1/n1/2).

So, for any ε > 0,

lim
n→∞

n∑
t=1

E
(∣∣X(n)

t

∣∣2;
∣∣X(n)

t

∣∣ > ε
)

= 0.
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Thus, we may apply Theorem 3.2 to conclude that

I(n) − E
(
I(n)

)√
Var(I(n))

=

n∑
t=1

X
(n)
t

d.−→ Z, as n→∞

proving (2.3). (2.4) follows since

lim
n→∞

E
(
I(n)

)
− akn2√

Var(I(n))
= 0 and lim

n→∞

√
bk · n3/2√
Var(I(n))

= 1.

3.4 The Case of Growing k

Throughout Section 3.4 we assume that (kn)∞n=1 is a nondecreasing sequence of
positive integers such that kn →∞ with kn = o(n). We will give proofs of Proposition 2.4
and Theorems 2.5 and 2.6. The methods are very similar to those used in the previous
section to establish the corresponding results in the case of fixed k.

Proof of Proposition 2.4. By Claim 3.4 and linearity of expectation

En,kn(I) =

n−1∑
t=1

(
n− t
kn + 1

+ O(1)

)
=

1

2
· n

2

kn
+ o

(
n2

kn

)
.

By Claim 3.6 and independence of the It’s

Varn,kn(I) =

n−1∑
t=1

(
kn(n− t)2

(kn + 1)2(kn + 2)
+

O(n)

kn
+ O(1)

)
=

1

3
· n

3

k2n
+ o

(
n3

k2n

)
.

Proof of Theorem 2.5. By Proposition 2.4 we have En,kn
(
I · knn2

)
→ 1/2 and

Varn,kn
(
I · knn2

)
→ 0, as n→∞. Thus, the theorem follows by Chebyshev’s inequality.

Proof of Theorem 2.6. Run the k-card-minimum procedure independently on decks of
each size n = 1, 2, ... with k = kn on the n card deck. As in the proof of Theorem 2.3, let
I(n) and I

(n)
t be the random variables I and It for the n card deck, and define X(n)

t by
(3.14). Also, denote the probability measure for this joint process by P and expectations
and variances under this measure by E(·) and Var(·).

Again, the X(n)
t ’s are independent with zero mean and satisfy

∑n
t=1 Var(X

(n)
t ) = 1,

for each n. So, the theorem will follow from Theorem 3.2 if we can show that

lim
n→∞

n∑
t=1

E
(∣∣X(n)

t

∣∣2;
∣∣X(n)

t

∣∣ > ε
)

= 0 , for any ε > 0.

Now, by Claim 3.4 and Proposition 2.4, E(I
(n)
t )√

Var(I(n))
= O(1/n1/2), uniformly in t =

1, ..., n. So, for any fixed ε > 0, we know that for all sufficiently large n

P
(
X

(n)
t < −ε

)
= P

(
I
(n)
t − E(I

(n)
t )√

Var(I(n))
< −ε

)
= 0 , (3.15)

for each t = 1, ..., n.
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On the other hand, by Proposition 2.4 we also have the following upper bound on

P
(
X

(n)
t > ε

)
for all sufficiently large n and each 1 ≤ t ≤ n:

P
(
X

(n)
t > ε

)
≤ P

(
I
(n)
t√

Var(I(n))
> ε

)
≤ P

(
I
(n)
t > ε ·

√
n3/(4k2n)

)
.

Since I(n)t takes only integer values between 0 and n − t, it follows that P
(
X

(n)
t > ε

)
can be nonzero only if kn ≥ 1

2εn
3/2/(n − t). In this case, the probability may be upper

bounded as follows using Proposition 3.1, for all n sufficiently large that εn3/2/(2kn) ≥ 1:

P
(
X

(n)
t > ε

)
≤ P

(
I
(n)
t > εn3/2/(2kn)

)
=
[(

(n− t)− bεn3/2/(2kn)c
)/

(n− t+ 1)
]kn

≤
[(
n− εn3/2/(4kn)

)/
n
]kn

=

(
1− (ε/4)n1/2

kn

)kn
≤ e−(ε/4)n

1/2

. (3.16)

Combining (3.15) and (3.16) shows that for all sufficiently large n

P
(∣∣X(n)

t

∣∣ > ε
)
≤ e−(ε/4)n

1/2

, 1 ≤ t ≤ n.

To complete the proof, we note that
∣∣∣I(n)t − E

(
I
(n)
t

)∣∣∣ can be at most n, for any t. So, by

Proposition 2.4, with probability 1 for all sufficiently large n∣∣X(n)
t

∣∣ ≤ n√
Var(I(n))

≤ n1/2 , 1 ≤ t ≤ n.

Hence,

lim
n→∞

n∑
t=1

E
(∣∣X(n)

t

∣∣2;
∣∣X(n)

t

∣∣ > ε
)
≤ lim
n→∞

n ·
[
e−(ε/4)n

1/2

·
(
n1/2

)2]
= 0.

4 Analysis of Longest Increasing Subsequence

In this section we establish the results of Section 2.3 for the length of the longest
increasing subsequence in a kCM random permutation. An outline of the steps is as
follows.

• In Section 4.1 we establish a (high probability) upper bound on L. The general
method of proof is to divide the time set [n] = {1, ..., n} into blocks Bi in an
appropriate way, and use Markov’s inequality to upper bound the probability of
having too long an increasing subsequence in any time block.

• In Section 4.2 we establish a (high probability) lower bound on L. The proof
method is constructive, showing that a particular type of long enough increasing
subsequence will occur with high probability.

• In Section 4.3 we establish the variance estimate of Proposition 2.9 using the
Efron-Stein inequality.

• Finally, in Section 4.4 we prove Theorems 2.7 and 2.8, using Proposition 2.9 and
the estimates of Sections 4.1 and 4.2.
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4.1 Upper Bound on L

In this section we prove the following proposition.

Proposition 4.1. Let (kn)∞n=1 be a sequence of positive integers satisfying kn = o(n).
Then, for any n ∈ N and ε > 0 sufficiently small that 4e(1 + 2ε)

√
knn ≤ n,

Pn,kn

(
L > 4e(1 + 2ε)

√
knn

)
≤

(
log
√
n/(ε2kn)

log 4

)
·
(

1

1 + ε

)8e
√
ε(1+ε)k3/4n n1/4

.

Before proceeding to the proof, however, we must first introduce a bit more ter-
minology and notation. We say s = ((j1, ..., j`), (t1, ..., t`)) is a time-indexed increasing
subsequence of [n] if 1 ≤ j1 < ... < j` ≤ n and 1 ≤ t1 < ... < t` ≤ n. Also, we say that s is
contained in the random permutation σ (written s ⊂ σ) if Ct1 = j1, ..., Ct` = j`. Finally,
for a subset of times A ⊂ [n], we define SA,`,n to be the set of all length-` time-indexed
increasing subsequences with times ti ⊂ A, and NA,`,n to be the (random) number of
these that occur in σ.

SA,`,n = {s = ((j1, ..., j`), (t1, ..., t`)) : 1 ≤ j1 < ... < j` ≤ n, t1 < ... < t`, ti ∈ A,∀i},
NA,`,n = |{s ∈ SA,`,n : s ⊂ σ}|.

The structure of the proof is as follows. We divide the time set [n] into blocks Bi
according to a 4-adic splitting, estimate En,kn(NBi,`,n) for each block Bi, and then use
this estimate and Markov’s inequality to show that, with high probability, the length
Li of the longest increasing subsequence in the i-th block cannot be too large. Hence,
L ≤

∑
i Li also is not too large, with high probability. The details are given below.

Proof of Proposition 4.1. Fix any n ∈ N and ε > 0 sufficiently small that 4e(1+2ε)
√
knn ≤

n. Note that the condition on ε implies
log
√
n/(ε2kn)

log 4 ≥ 1. Define i0 ∈ N and the time
blocks Bi, i = 1, ..., i0, by

i0 =

⌊
log
√
n/(ε2kn)

log 4

⌋
and Bi = {n−

⌊
n/4i−1

⌋
+ 1, ..., n−

⌊
n/4i

⌋
} ,

so that B1, ..., Bi0 form a partition of the time set {1, ..., n−
⌊
n/4i0

⌋
}.

The first piece of the proof is to bound En,kn(NBi,`,n), for each i = 1, ..., i0, which we
do through a series of three steps as follows.

1. At time t there are n− t+ 1 cards in Dt left to pick from. So, by the union bound,
for each card j and any choices c1, ..., ct−1 for the first t− 1 cards such that cτ 6= j,
τ = 1, ..., t− 1, we have

Pn,kn(Ct = j|C1 = c1, ..., Ct−1 = ct−1)

≤ Pn,kn(∃ 1 ≤ m ≤ kn : Ct,m = j|C1 = c1, ..., Ct−1 = ct−1)

≤ kn/(n− t+ 1). (4.1)

Hence, for any choices c1, ..., cn−bn/4i−1c of the first n −
⌊
n/4i−1

⌋
cards removed

before time n−
⌊
n/4i−1

⌋
+ 1 = min{t : t ∈ Bi} and any s = ((j1, ..., j`), (t1, ..., t`)) ∈

SBi,`,n such that j1, ..., j` 6∈ {c1, ..., cn−bn/4i−1c}, we have

Pn,kn(s ⊂ σ|C1 = c1, ..., Cn−bn/4i−1c = cn−bn/4i−1c)

=
∏̀
m=1

Pn,kn
(
Ctm = jm|C1 = c1, ..., Cn−bn/4i−1c = cn−bn/4i−1c, Ct1 = j1, ..., Ctm−1

= jm−1
)

≤
∏̀
m=1

kn
n− tm + 1

≤
(

kn
bn/4ic+ 1

)`
≤
(
kn4i

n

)`
. (4.2)
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2. For any particular choices c1, ..., cn−bn/4i−1c of the first n−
⌊
n/4i−1

⌋
cards,

|{s ∈ SBi,`,n : j1, ..., j` ∈ d}| ≤
(⌊
n/4i−1

⌋
`

)2

(4.3)

where

d = [n]/{c1, ..., cn−bn/4i−1c}

is the remaining set of cards at time n−
⌊
n/4i−1

⌋
+ 1 . The first factor of

(bn/4i−1c
`

)
comes from possible choices for the cards j1, ..., j`, and the second factor of(bn/4i−1c

`

)
, which is an over estimate, comes from possible choices for the times

t1, ..., t`.

3. Combining the estimates (4.2) and (4.3) shows that for any particular choices
c1, ..., cn−bn/4i−1c for the first n−

⌊
n/4i−1

⌋
cards

En,kn(NBi,`,n|C1 = c1, ..., Cn−bn/4i−1c = cn−bn/4i−1c)

=
∑

{s∈SBi,`,n:j1,...,j`∈d}

Pn,kn
(
s ⊂ σ|C1 = c1, ..., Cn−bn/4i−1c = cn−bn/4i−1c

)
≤
(
kn4i

n

)`
·
(⌊
n/4i−1

⌋
`

)2

≤
(
e2knn

4i−2`2

)`
.

Hence, the same estimate also holds non-conditionally:

En,kn(NBi,`,n) ≤
(
e2knn

4i−2`2

)`
. (4.4)

Now, let `i =
⌈
4e(1 + ε)

√
knn/4i

⌉
, and let Li be the length of the longest increasing

subsequence for cards in the time block Bi:

Li = max{` : ∃ t1, ..., t` ∈ Bi with t1 < ... < t` and Ct1 < ... < Ct`}.

Then, applying Markov’s inequality to (4.4) gives

Pn,kn(Li ≥ `i) = Pn,kn(NBi,`i,n ≥ 1) ≤
(
e2knn

4i−2`2i

)`i
≤
(

1

1 + ε

)2`i

.

Further, by the definition of i0, we know that for each i = 1, ..., i0,

`i ≥ 4e(1 + ε)
√
knn/4i0 ≥ 4e(1 + ε)

√
εk3/4n n1/4.

Thus,

Pn,kn(∃ 1 ≤ i ≤ i0 : Li ≥ `i) ≤ i0 ·
(

1

1 + ε

)8e(1+ε)
√
εk3/4n n1/4

.

The claim follows, since on the event {Li < `i, i = 1, ..., i0}, we have

L ≤
i0∑
i=1

(`i − 1) +
⌊
n/4i0

⌋
<

∞∑
i=1

4e(1 + ε)
√
knn/4i + 4ε

√
knn

< 4e(1 + 2ε)
√
knn.
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Remarks.

1. One may consider partitioning the time set [n] with an x-adic splitting, for any
x > 1, rather than specifically with the 4-adic splitting we use. That is, one may
replace 4 by x in the definition of Bi. Doing this for general x, using estimates as
above, gives an upper bound on L of roughly ex√

x−1 ·
√
knn, up to ε corrections. This

bound is minimized by taking x = 4.

2. A more straightforward approach would be to not partition the time set into
blocks at all, and simply bound the expected total number of length-` time-indexed
increasing subsequences occurring in σ by

En,kn(N`,n) ≤ |S`,n| · max
s∈S`,n

Pn,kn(s ⊂ σ)

where S`,n is the set of all length-` time-indexed increasing subsequences of [n].
However, this does not work as easily, because the bound (4.1) is not good if t is too
large, and, therefore, obtaining a good bound on Pn,kn(s ⊂ σ) for an arbitrary time-
indexed increasing subsequence s = ((j1, ..., j`), (t1, ..., t`)), without any constraint
on the times t1, ..., t`, is more difficult.

4.2 Lower Bound on L

In this section we prove the following proposition.

Proposition 4.2. Let (kn)∞n=1 be a sequence of positive integers satisfying kn = o(n).
Then, for any 0 < ε < 1/2 there exists n0 ∈ N such that

Pn,kn

(
L < (1/2− ε)

√
knn

)
≤ exp

(
− ε2

4(1− ε)
·
√
knn

)
(4.5)

for all n ≥ n0.

Proof. Throughout 0 < ε < 1/2 is fixed and n0 = n0(ε) is chosen sufficiently large that
for all n ≥ n0,

n/2⌈√
n/kn

⌉ − 1 ≥ (1/2− ε)
√
knn and e−

√
kn/n ≤ 1− (1− ε)

√
kn/n.

Our proof is based upon the constructive procedure given below.

• Let T0 = 0 and R+
0 = [n].

• Then, for m = 1, 2, ... :

* Let Sm be the set consisting of the lowest
⌈√

n/kn

⌉
cards in R+

m−1.

* Let Tm = min{t > Tm−1 : Ct ∈ Sm} be the first time some card in the next
target set Sm is picked.

* Let R+
m = {j ∈ DTm+1 : j > CTm} be the set of cards remaining in the deck

after time Tm, which are higher than card CTm .

• Continue in this fashion until the first time m, such that there are fewer than⌈√
n/kn

⌉
cards in the remaining set R+

m. That is, R+
m, Sm, and Tm are defined

inductively by the above relations for m = 1, ...,M where

M = min
{
m : |R+

m| <
⌈√

n/kn

⌉}
.
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With this construction we have CTm+1
> CTm , for each 1 ≤ m < M , so the random

sequence CT1
, ..., CTM is an increasing subsequence in σ. Therefore, it suffices to show

that for all n ≥ n0,

Pn,kn

(
M < (1/2− ε)

√
knn

)
≤ exp

(
− ε2

4(1− ε)
·
√
knn

)
. (4.6)

To this end, we define the following additional random variables.

• 1 ≤ Am ≤
⌈√

n/kn

⌉
is the relative position of card CTm in the m-th target interval

Sm, and Bm is the number of cards greater than CTm−1
which are removed from

the deck between times Tm−1 and Tm:

Am = |{j ∈ Sm : CTm ≥ j}| and Bm = |{Tm−1 < t < Tm : Ct > CTm−1
}|

where CT0 = C0 ≡ 0.

• m(t) is the index of the most recent stopping time Tm, and T is the set of times
t ≤ TM at which the random card chosen, Ct, is greater than the card chosen at
the most recent stopping time:

m(t) = max{0 ≤ m ≤M : Tm < t} and T = {t ≤ TM : Ct > CTm(t)
}.

• N = |T | and, for 1 ≤ i ≤ N , ti is the i-th lowest element of T .

We observe that:

(i)
∑M
m=1Am ≤M

⌈√
n/kn

⌉
.

(ii)
∑M
m=1Bm = N −M ≤ N − 1.

(iii) |R+
m| = n−

∑m
i=1Am−

∑m
i=1Bm, for each 1 ≤ m ≤M . So, in particular,

∑M
m=1Am+∑M

m=1Bm > n−
⌈√

n/kn

⌉
.

Points (i) and (ii) follow directly from the definitions, and (iii) is easily shown by induction
on m. Our proof is based on these simple facts and the following claim.

Claim: For n ≥ n0,

Pn,kn

(
N ≥ dn/2e ,M < (1/2− ε)

√
knn

)
≤ exp

(
− ε2

4(1− ε)
·
√
knn

)
. (4.7)

If N < dn/2e, then (ii) and (iii) imply that
∑M
m=1Am > n/2−

⌈√
n/kn

⌉
, which, in turn,

implies M > n/2⌈√
n/kn

⌉ − 1 ≥ (1/2− ε)
√
knn, for all n ≥ n0, by (i). Thus, if (4.7) holds so

does (4.6). So, it remains only to show (4.7). This we do through a series of four steps
below.

1. The event {m(t) < M} depends only on C1, ..., Ct−1, and conditioned on m(t) < M

and Ct > CTm(t)
the kn random card choices Ct,1, ..., Ct,kn are i.i.d. uniform on

D+
t ≡ {j ∈ Dt : j > CTm(t)

}. Thus, if c1, ..., ct−1 are any particular choices for the
first t− 1 cards such that C1 = c1, ..., Ct−1 = ct−1 implies m(t) < M , we have

Pn,kn(Ct 6∈ Sm(t)+1|C1 = c1, ..., Ct−1 = ct−1, Ct > CTm(t)
)

=

(
d−

⌈√
n/kn

⌉
d

)kn
≤

(
n−

√
n/kn
n

)kn
≤ e−

√
kn/n
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where
⌈√

n/kn

⌉
≤ d ≤ n is the size of the set D+

t on the event {C1 = c1, ..., Ct−1 =

ct−1}. Hence, for all n ≥ n0 and any such c1, ..., ct−1, we have

Pn,kn(Ct ∈ Sm(t)+1|C1 = c1, ..., Ct−1 = ct−1, Ct > CTm(t)
) ≥ (1− ε)

√
kn/n. (4.8)

2. Let (Zi)i∈N be defined by

Zi =

{
1{Cti ∈ Sm(ti)+1}, if i ≤ N
0, otherwise.

Then, by (4.8), for any particular values z1, ..., zi−1 of the random variables Z1, ..., Zi−1
such that the event {Z1 = z1, ..., Zi−1 = zi−1, N ≥ i} is possible we have

Pn,kn(Zi = 1|Z1 = z1, ..., Zi−1 = zi−1, N ≥ i) ≥ (1− ε)
√
kn/n. (4.9)

3. Let pε,n = (1 − ε)
√
kn/n. Then, by (4.9), it is possible to couple a sequence of

i.i.d. Ber(pε,n) random variables, (Xi)i∈N, to the kCM process such that, for all
1 ≤ i ≤ N , Zi = 1 whenever Xi = 1. That is, by enlarging the underlying probability
space for the kCM process (Ct)

n
t=1, we may define this process along with the i.i.d.

Bernoulli sequence (Xi) on a common probability space Ω, such that Zi = 1, for all
1 ≤ i ≤ N with Xi = 1. The measure for this joint space will, with a slight abuse of
notation, continue to be denoted Pn,kn .

4. If X has Bin(m, p) distribution, then by [2, Theorem A.1.13],

P(X < mp− x) ≤ e−
(
x2

2mp

)
, ∀x ≥ 0.

Taking X =
∑dn/2e
i=1 Xi and x = ε

√
kn/n dn/2e gives

Pn,kn

( dn/2e∑
i=1

Xi < (1/2− ε)
√
knn

)

≤ Pn,kn

( dn/2e∑
i=1

Xi < (1− ε)
√
kn/n dn/2e − ε

√
kn/n dn/2e

)

≤ exp

(
−

(
ε
√
kn/n dn/2e

)2
2 dn/2e (1− ε)

√
kn/n

)
≤ exp

(
− ε2

4(1− ε)
·
√
knn

)
.

Thus, since M =
∑N
i=1 Zi, the coupling between the Xi’s and Zi’s implies

Pn,kn

(
N ≥ dn/2e ,M < (1/2− ε)

√
knn

)
= Pn,kn

(
N ≥ dn/2e ,

N∑
i=1

Zi < (1/2− ε)
√
knn

)

≤ Pn,kn
(
N ≥ dn/2e ,

dn/2e∑
i=1

Zi < (1/2− ε)
√
knn

)

≤ Pn,kn
(
N ≥ dn/2e ,

dn/2e∑
i=1

Xi < (1/2− ε)
√
knn

)

≤ Pn,kn
( dn/2e∑

i=1

Xi < (1/2− ε)
√
knn

)
≤ exp

(
− ε2

4(1− ε)
·
√
knn

)
proving (4.7).
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4.3 Variance Estimate for L

In this section we prove Proposition 2.9. For this we will need the following two
lemmas.

Lemma 4.3 (Efron-Stein Inequality). Let X1, ..., Xn be independent random variables
and let Y = f(X1, ..., Xn), for some measurable function f : Rn → R. Then

Var(Y ) ≤
n∑
t=1

E
{

Var(Y |X1, ..., Xt−1, Xt+1, ..., Xn)
}
.

Lemma 4.4. Let j1, ..., jn ∈ [n] × ... × [1] be any sequence of possible choices for the
relative card positions C̃1, ..., C̃n and let i1, ..., in be the associated choices of actual cards
C1, ..., Cn. That is,

C̃1 = j1, ..., C̃n = jn ⇐⇒ C1 = i1, ..., Cn = in.

Also, let t ∈ [n], let j′t 6= jt be another possible choice for the relative position of the
t-th card, and let i′1, ..., i

′
n be the associated sequence of cards C1, ..., Cn obtained with

relative choices C̃t = j′t and C̃τ = jτ , for all τ 6= t. That is,

C̃t = j′t and C̃τ = jτ ,∀τ 6= t⇐⇒ C1 = i′1, ..., Cn = i′n.

Finally, let ` and `′ denote, respectively, the lengths of the longest increasing subse-
quences in the permutations σ = (i1, ..., in) and σ′ = (i′1, ..., i

′
n). Then

|`− `′| ≤ 1.

Using these lemmas the proof of the proposition is actually quite simple. So, we
present this first, followed by the more involved proof of Lemma 4.4, which requires
analysis of several different cases. For a proof of Lemma 4.3, see [7]. An earlier proof in
the case of i.i.d. random variables is also given in [16].

Proof of Proposition 2.9. L is a (deterministic) function of the relative card choices
C̃1, ..., C̃n, and by Proposition 3.1 these relative card choices are independent. So, by
Lemma 4.3, we have

Varn,k(L) ≤
n∑
t=1

En,k

{
Varn,k(L|C̃1, ..., C̃t−1, C̃t+1, ..., C̃n)

}
. (4.10)

Moreover, by Lemma 4.4, L can take only one of two possible consecutive integer values
if C̃1, ..., C̃t−1, C̃t+1, ..., C̃n are fixed. So, for each t,

En,k{Varn,k(L|C̃1, ..., C̃t−1, C̃t+1, ..., C̃n)} ≤ max
p∈[0,1]

Var {Ber(p)} = 1/4. (4.11)

Together (4.10) and (4.11) imply the claim.

Proof of Lemma 4.4. For the proof we will need the following additional notation.

• `t and `′t denote, respectively, the lengths of the longest increasing subsequences
in σt = (i1, ..., it−1, it+1, ..., in) and σ′t = (i′1, ..., i

′
t−1, i

′
t+1, ..., i

′
n).

• For each τ ∈ [n], dτ = [n]/{i1, ..., iτ−1} and d′τ = [n]/{i′1, ..., i′τ−1}. Also, dτ,j is j-th
lowest numbered element in the set dτ , and d′τ,j is j-th lowest numbered element
in the set d′τ .
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• Finally, for convenience, we write ` ∼ (it1 , ..., it`) to mean that (it1 , ..., it`) is a
longest increasing subsequence in σ (i.e. t1 < ... < t` and it1 < ... < it`). Similar
notation is also used with `′, `t, and `′t.

From the definitions, it is immediate that:

(i) ` ∈ {`t, `t + 1} and `′ ∈ {`′t, `′t + 1}.
(ii) iτ = i′τ , for each τ = 1, ..., t− 1.

(iii) The position of card dt+1,j in σ is the same as the position of card d′t+1,j in σ′, for
each j = 1, ..., n − t. That is, for any τ > t, iτ = dt+1,j if and only if i′τ = d′t+1,j .
Hence, for any sequence of times t < t1 < ... < tm ≤ n, it1 < ... < itm if and only if
i′t1 < ... < i′tm .

In the remainder of the proof we will assume, without out loss of generality, that
j′t > jt. Under this assumption we have also the following relations between the elements
of dt, dt+1, and d′t+1.

(iv)

For j = 1, ..., jt − 1 , dt+1,j = d′t+1,j = dt,j .

For j = jt, ..., j
′
t − 1 , dt+1,j = dt,j+1.

For j = jt, ..., j
′
t − 1 , d′t+1,j = dt,j .

For j = j′t, ..., n− t , dt+1,j = d′t+1,j = dt,j+1.

In particular, dt+1,j ≥ d′t+1,j for each j = 1, ..., n− t. So, iτ ≥ i′τ , for all τ > t, by (iii).

Using facts (i)-(iv) we now prove the lemma through a series of two claims.

Claim 1 : `′ ≤ `+ 1.

Proof : Let `′t ∼ (i′t1 , ..., i
′
t`′t

) and let M = max{m : tm < t}, with the convention M = 0 if

there is no such m. If M = `′t then it1 < ... < it`′t
by (ii), and if M = 0 then it1 < ... < it`′t

by (iii). If 0 < M < `′t then it1 < ... < itM by (ii), itM+1
< ... < it`′t

by (iii), and

itM+1
≥ i′tM+1

> i′tM = itM by (iv). Thus, again, it1 < ... < it`′t
. It follows that `t ≥ `′t, from

which the claim follows by (i).

Claim 2 : ` ≤ `′ + 1.
Proof : Let ` ∼ (it1 , ..., it`) and let M = max{m : tm < t}, with the convention M = 0 if
there is no such m. We consider separately two cases: M ∈ {0, `−1, `} and 0 < M < `−1.

Case 1 : M ∈ {0, `− 1, `}.
If M = ` or M = `− 1, then i′t1 < ... < i′t`−1

by (ii), which implies `′ ≥ `− 1. If M = 0 then
it is possible t1 = t, but t2, ..., t` are all greater than t. Thus, by (iii), i′t2 < ... < i′t` , which
implies `′ ≥ `− 1.

Case 2 : 0 < M < `− 1.
In this case, itM+1

= dt,a for some a and itM+2
= dt,b for some b > a, and it follows from

(iii) and (iv) that i′tM+2
= dt,b′ for some b′ ≥ b − 1. Thus, we have i′tM+2

= dt,b′ ≥ dt,a =

itM+1 > itM = i′tM . Also, i′t1 < ... < i′tM by (ii), and i′tM+2
< ... < i′t` by (iii). So, altogether,

we have i′t1 < ... < i′tM < i′tM+2
< ... < i′t` , which implies `′ ≥ `− 1.
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4.4 Scaling of L and the Weak Law

In this section we prove Theorems 2.7 and 2.8.

Proof of Theorem 2.7. (2.9) is immediate from Propositions 4.1 and 4.2, and the lower
bound in (2.9) gives

1/2 ≤ lim inf
n→∞

En,kn(L)/
√
knn.

Thus, it remains only to show

lim sup
n→∞

En,kn(L)/
√
knn ≤ 4e. (4.12)

To do this we will use the upper bound of Proposition 4.1.
For n ∈ N, let ymax = ymax(n) be defined by 4e(1 + 2ymax)

√
knn = n, and, for ε > 0,

let cε > 0 be defined by e−cε =
(

1
1+ε

)8e
. Then, by Proposition 4.1, we know that for any

ε > 0 the following estimate holds for all sufficiently large n and each ε ≤ y ≤ ymax(n):

Pn,kn

(
L > 4e(1 + 2y)

√
knn

)
≤

(
log
√
n/(y2kn)

log 4

)
·
(

1

1 + y

)8e
√
y(1+y)k3/4n n1/4

≤ log(n) · e−cεn
1/4y.

Thus, using the change of variables x = 4e(1 + 2y)
√
knn, we have

En,kn(L) =

∫ n

0

Pn,kn(L > x)dx

≤ 4e(1 + 2ε)
√
knn +

∫ n

4e(1+2ε)
√
knn

Pn,kn(L > x)dx

≤ 4e(1 + 2ε)
√
knn + 8e

√
knn

∫ ymax

ε

log(n) · e−cεn
1/4y dy

≤ 4e(1 + 2ε)
√
knn + 8e

√
knn · log(n) · e

−cεn1/4ε

cεn1/4

for all sufficiently large n. So,

lim sup
n→∞

En,kn(L)/
√
knn ≤ 4e(1 + 2ε).

Since ε > 0 is arbitrary this shows that (4.12) holds, completing the proof.

Proof of Theorem 2.8. By Theorem 2.7, En,kn(L) ≥ 1
4

√
knn for all sufficiently large n. So,

by Chebyshev’s inequality and Proposition 2.9, we have

Pn,kn

(∣∣∣∣ L

En,kn(L)
− 1

∣∣∣∣ > ε

)
≤ Varn,kn(L)

ε2 · (En,kn(L))
2 ≤

4

ε2kn
(4.13)

for all sufficiently large n. The theorem follows, since the right hand side of (4.13) tends
to 0, if kn →∞.

5 Analysis of Optimality for the k-Card-Minimum Procedure

In this section we prove Propositions 2.11 and 2.12. Random variables and probability
measures are defined as above for the kCM procedure, but with superscripts to indicate
the strategy used as needed.
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Proof of Proposition 2.11. Fix k, n ∈ N and let Sother 6= Smin be any other (k, n) choice
strategy. Couple the Smin and Sother processes so that in both processes the k ran-
dom card choices Ct,1, ..., Ct,k at each time t occupy the same relative positions in the
remaining sets Dt. That is, for each 1 ≤ t ≤ n and 1 ≤ i ≤ k,

Cmin
t,i = j-th lowest card in Dmin

t ⇐⇒ Cothert,i = j-th lowest card in Dother
t .

Then, under this coupling, we will have C̃min
t ≤ C̃othert with probability 1, for each t.

Hence, also, Imin
t ≤ Iothert with probability 1, and Imin ≤ Iother with probability 1, by

relations (3.1) and (3.4). The claim follows.

Proof of Proposition 2.12. We show separately the two claims of the proposition.

Claim 1 : For any k ≥ 2 and n ≥ 5 there is no (k, n) stochastically optimal strategy for
maximizing L.

Proof : Fix k ≥ 2, n ≥ 5 and let ` = bn/2c, m = dn/2e. Assume there exists a (k, n)

optimal strategy S, and consider the event A that:

1. C1 = `+ 1, C2 = `+ 2, ..., Cm−2 = `+m− 2 = n− 2, and

2. Cm−1,1 = 1 and Cm−1,j = n− 1, for each 2 ≤ j ≤ k.

There are two possibilities on the event A. Either card 1 or card n− 1 is selected with
the strategy S for Cm−1. In either case, we define the strategy Ŝ as follows:

• Ŝ uses exactly the same selection rules as S for all 1 ≤ t ≤ m− 2.

• If A does not occur, Ŝ also uses the same selection rules as S for all t ≥ m− 1.

• If A does occur, then Ŝ makes the opposite selection as S for card Cm−1, and then
uses the choices of the minimum strategy Smin for all t ≥ m.

We consider separately two cases, depending on which of the two possible choices the
strategy S selects for Cm−1 on the event A. In each case, we will show that

PŜn,k(L ≥ x) > PSn,k(L ≥ x), for some x,

which contradicts the fact that S is stochastically optimal.

Case 1 : S selects Cm−1 = 1 on the event A.
In this case, Ŝ selects Cm−1 = n− 1 on the event A, and thereby guarantees a length m
increasing subsequence (`+ 1, `+ 2, ..., `+m = n) in the final permutation σ. Whereas,
under S one is only guaranteed a length m− 1 longest increasing subsequence on the
event A. Since there is positive probability that A will occur, and S and Ŝ behave
identically if A does not occur, it follows that

PŜn,k(L ≥ m) > PSn,k(L ≥ m).

Case 2 : S selects Cm−1 = n− 1 on the event A.
In this case, Ŝ selects Cm−1 = 1 on the event A, and there is some chance of ending
with a length `+ 2 increasing subsequence (1, ..., `, n− 1, n) in the final permutation σ.
Whereas, under S the maximum possible length of increasing subsequence is only `+ 1

on the event A. Since there is positive probability that A will occur, and S and Ŝ behave
identically if A does not occur, it follows that

PŜn,k(L ≥ `+ 2) > PSn,k(L ≥ `+ 2).
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Claim 2 : For any k ≥ 2 and n ≥ 4 there exists a strategy Scopy, which is strictly better
than Smin for maximizing L.

Proof : Define Scopy to be the strategy that uses exactly the same selection rules as
Smin for 1 ≤ t ≤ n− 3, and also the same selection rules as Smin for t ≥ n− 2 unless both
of the following conditions hold:

1. C1 = 2, C2 = 3, ..., Cn−3 = n− 2.

2. {Cn−2,1, ..., Cn−2,k} = {1, n − 1}. That is, one is given only copies of cards 1 and
n− 1 to pick from at time n− 2, and at least one copy of each.

In this case, the strategy Scopy selects Cn−2 = n− 1 (instead of Cn−2 = 1, as selected by
Smin).

In the critical case when the two strategies select differently for Cn−2, Scopy ensures
a length n − 1 increasing subsequence (2, 3, ..., n) in the final permutation σ, whereas
with Smin one is only guaranteed a length n−2 longest increasing subsequence. Since no
length n increasing subsequence is possible in this instance, as C1 6= 1, Scopy is strictly
better for maximizing L in this instance than Smin. In all other instances Scopy and Smin

behave identically, so the claim follows.

6 Connection to the Mallows Model

The Mallows measure introduced in [13] gives to a permutation σ probability propor-
tional to qI(σ), where q ∈ (0,∞) is a parameter and I(σ) is the number of inversions in
σ:

PMall
n,q (σ) =

1

Zn,q
qI(σ).

The quantity Zn,q is a normalizing constant with the following explicit form:

Zn,q =

n∏
i=1

1− qi

1− q
, q 6= 1 and Zn,1 = n!.

For q > 1 the Mallows measure favors permutations with more inversions, whereas
for q < 1 the Mallows measure favors permutations with fewer inversions, like the kCM
measure (k ≥ 2). For q = 1, the Mallows measure is simply the uniform measure.

In this section we present some rough heuristic arguments connecting the Mallows
model of random permutations to the kCM model and some simulations supporting these
heuristics. Throughout it is assumed that q < 1, so the Mallows permutation is biased
towards having fewer inversions than in the uniform case, like a kCM permutation. This
connection between the kCM and Mallows models was pointed out to us by Ron Peled.

6.1 Algorithmic Construction of a Mallows Permutation

Similarly to the kCM construction, a permutation with any prescribed distribution can
be constructed by removing cards C1, ..., Cn sequentially from an n card deck, accord-
ing to an appropriate (random, possibly history dependent) selection rule, and setting
σ = (C1, ..., Cn). For a Mallows permutation the relative position C̃t of the t-th card
removed has a truncated geometric distribution with parameter 1− q. More formally, we
have the following:
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Procedure to Construct an (n, q)-Mallows Permutation σ

• D1 = {1, ..., n}
• For t = 1, ..., n:

C̃t is sampled according to ν1−q,n−t+1

Ct = C̃t-th lowest numbered card in Dt

Dt+1 = Dt/{Ct}

• σ = (C1, ..., Cn)

Here, for p ∈ (0, 1) and m ∈ N, νp,m is the truncated geometric measure

νp,m(j) =
(1− p)j−1∑m
i=1(1− p)i−1

, 1 ≤ j ≤ m.

6.2 The kCM–Mallows Correspondence

From the algorithmic construction of a Mallows permutation given above, it follows
that, for any fixed ε ∈ (0, 1), the relative position C̃t of the t-th card selected in construct-
ing a Mallows permutation is roughly geometrically distributed with parameter 1− q, for
all sufficiently large n and 1 ≤ t ≤ (1− ε)n. On the other hand, it follows from (3.2) that
in a kCM permutation

Pn,k(C̃t > j) =

(
n− t+ 1− j
n− t+ 1

)k
≈ e−( j

n−t+1 )k ≈
(

1− k

n− t+ 1

)j
for large n, 1 ≤ t ≤ (1 − ε)n, and j, k � εn. This approximation is not so good for j of
order n, but as long as k = kn →∞ with k = o(n) we have Pn,k(C̃t > cn)→ 0, as n→∞,

for any c > 0. So, over the range of j with a “reasonable probability" that C̃t = j the
distribution of C̃t is roughly geometric with parameter k

n−t+1 .
This suggests the time-dependent correspondence

1− qeff(t) =
k

n− t+ 1
. (6.1)

That is, the kCM model is something like a Mallows model with a time-dependent
“effective q value". As t increases the effective q decreases, giving a greater bias in the
selection of C̃t.

Nevertheless, roughly speaking, one may expect a kCM permutation to behave
something like a Mallows permutation under the correspondence

1− qeff = 1− qeff(1) =
k

n
. (6.2)

The actual effective bias in the kCM selections is greater than this for t > 1, but not
so much greater as long as t is not too close to n. In fact, at this very rough level of
correspondence it should not be necessary that k →∞ as n→∞, only that k = o(n).

6.3 Graphical Representations and Band Structure

A permutation σ can be depicted graphically as a set of n points (t, σ(t)), t ∈ {1, ..., n},
in the square [1, n]×[1, n]. In [5] it is shown that for a Mallows permutation most points in
this graphical representation lie in a strip around the main diagonal with width of order
1/(1− q). Thus, if n is large and k � n, so that the correspondence (6.2) is reasonable,
one expects that in the graphical representation of a kCM permutation most points will
be concentrated in a strip around the main diagonal with width of order 1/(1−qeff) = n/k.
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Furthermore, since the bias in the selection of C̃t in a kCM permutation increases with
t, one expects that the points (t, σ(t)) should be concentrated more closely around the
main diagonal for larger values of t in the graphical representation. Figure 1 presents
some simulation results confirming this intuition.

6.4 Scaling of I and L

According to results from [5] and [14], if q = qn → 1 and n(1 − q) → ∞ then for
an (n, q)-Mallows permutation L is of order n

√
1− q and I is of order n/(1 − q). Thus,

by (6.2), one expects that for a kCM permutation if k = kn → ∞ with k = o(n), then
L should be of order n

√
1− qeff =

√
kn and I should be of order n/(1 − qeff) = n2/k.

These are indeed the correct orders of magnitude given by our theorems.

Figure 1: Graphical representations of simulated kCM permutations for various values of
n and k. The diagonal strip between the black lines in each plot has width proportional
to n/k. The size of the markers for points (t, σ(t)) in the different plots is adjusted based
on the number of points and width of the strip.
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