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Loop clusters on discrete circles
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Abstract
The loop clusters of a Poissonian ensemble of Markov loops on a finite or countable
graph have been studied in [16]. In the present article, we study the loop clusters
associated with a rotation invariant nearest neighbor walk on the discrete circle G(n)

with n vertices. We prove a convergence result of the loop clusters on G(n), as n → ∞,
under suitable condition of the parameters. These parameters are chosen in such a
way that the rotation invariant nearest neighbor walk on G(n), as n → ∞, converges
to a Brownian motion on circle S1 = R/Z with certain drift and killing rate. In the
final section, we show that several limit results are predicted by Brownian loop-soup
on S1.
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1 Introduction

The loop cluster model is a model of random graphs constructed from a Poisson point
process of loops on a finite or countable graph. An edge is defined to be open iff it is
crossed by at least one loop in the Poisson point process. Then the open edges form
loop clusters. The intensity measure of the Poisson point process is determined by some
Markov chain on the same graph. This model was introduced and studied by Y. Le Jan in
[15] and then by S. Lemaire and Y. Le Jan in [16]. As an example in [16], they considered
the loop cluster model associated with simple random walks on Z with uniform killing
measures. In the present paper, we study the following variant: the loop cluster models
associated with rotation-invariant nearest neighbor walks on discrete circles.

1.1 Basic settings

For simplicity, we denote by Model(α, n, pn, cn) the model described in the following:
Consider a discrete circle G(n) with n vertices {1, . . . , n} and 2n directed edges

E(n) = {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1), (2, 1), (3, 2), . . . , (n, n− 1), (1, n)}.

Define the clockwise edge set E(n)
+ = {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)} and the counter

clockwise edge set E(n)
− = E(n) \E(n)

+ . Consider a (sub-)Markovian generator1 L(n) which
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is the following matrix:

• for any e = (e−, e+) ∈ E(n)
+ , (L(n))e−e+ = pn, (L

(n))e+e− = 1 − pn, (L(n))e−e− = −(1 + cn)

for some numbers 0 < pn < 1 and cn > 0,

• L(n) is null elsewhere.

Set (Q(n))xy = 1{x 6=y}
(L(n))xy
−(L(n))xx

. As in [14] and [19], we define a loop measure and a

Poissonian loop ensemble associated with L(n). By a pointed loop ˙̀ = (x1, . . . , xk) of
length k, we mean a bridge on the graph from x1 back to itself: x1 → x2 → · · · → xk → x1.
It is called “non-trivial” when k ≥ 2. We define the non-trivial pointed loop measure by
defining the mass of a pointed loop ` = (x1, . . . , xk) (k ≥ 2) as follows:

µ̇n( ˙̀ = (x1, . . . , xk)) =
1

k
(Q(n))x1

x2
· · · (Q(n))xk−1

xk
(Q(n))xkx1

. (1.1)

A loop is an equivalence class of pointed loops: two pointed loops are equivalent iff they
are the same under a rotation, e.g. the pointed loop (1, 2, 3, 4) is equivalent to (2, 3, 4, 1),
but not (1, 2, 4, 3). We denote by ` the equivalence class of the pointed loop ˙̀. The loop
measure µn is the corresponding push-forward measure of the pointed loop measure µ̇n
on the space of loops.

Denote by DL(n)
α the Poisson point process (or “loop-soup”) of non-trivial loops with

intensity measure αµn where α > 0 is a fixed parameter. We view it as a multiset, by
identifying it with its support. For example, if DL(n)

α = 3δ`1 + 2δ`2 , we write DL(n)
α =

{`1, `1, `1, `2, `2}. As in [16], we define the loop clusters as follows:

Definition 1.1 (Loop clusters). Given a realization of the loop-soup DL, an undirected
edge {x, y} is closed iff there is no loop in the loop-soup DL which covers {x, y} in any
direction. Otherwise, we say that the undirected edge {x, y} is open. For two vertices
x and y, we say that x is connected to y by the loop-soup DL if either x = y or x and y

are connected through open edges, which is denoted by x
DL←→ y. Note that

DL←→ is an
equivalence relation, which naturally defines a partition Π(DL, G) of the vertex set V of
the graph G. Each partition is called a loop cluster. For simplicity of notation, we denote
by C(n)

α the partition Π(DL(n)
α , G(n)) associated with DL(n)

α on the discrete circle G(n).

Note that our definition of loop-soup is slightly different from that considered by
Lemaire, Le Jan and A.-S. Sznitman, as we exclude trivial loops2. The reason is that
trivial loops contribute nothing to the loop clusters according to our definition of open
edges. Therefore, we only consider the non-trivial loops in this paper. Sometimes, we
omit the word “non-trivial” for the simplicity of notation.

1.2 Known results on a subinterval of Z

Definition 1.2. By Model(I, α, κ), we mean the Poisson point process DLα of loops on
discrete interval I ⊂ Z of intensity αµ(κ), where α, κ ≥ 0 are two parameters and the
loop measure µ(κ) is the push forward measure of the following pointed loop measure:

µ̇(κ)( ˙̀ = (x1, . . . , xm)) =

{
1
m

(
1

1+κ/2

)m
if ˙̀ is a nearest-neighbor loop on I,

0 otherwise.
(1.2)

In [15, Section 5], Le Jan studied Model([1, N ], α, 0) and obtained the following
description of the loop clusters and represented the scaling limit by a stable subordinator.
Also, Le Jan pointed out the relation among models on different discrete intervals.

Theorem 1.3. [15, Section 5] Consider the interval I = [1, N ] and κ = 0.

2A (pointed) loop (x) of a single vertex is called trivial.
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• N = ∞: for α ∈]0, 1[, the left end points of the closed edges at time α form a
renewal process with holding times (Wi)i≥1; The generating function of W1 is

1 − s
Liα(s) where Liα denotes the polylogarithm: ∀|s| < 1, Liα(s) =

+∞∑
k=1

sk

kα . Set

Sn =
n∑
i=1

Wi for n ≥ 1. As ε tends to 0, (εSbεα−1tc, t ≥ 0) converges in law towards a

stable subordinator with index 1− α. For α > 1, there are only a finite number of
clusters. In particular, P[S1 =∞] = 1

ζ(α) .

• N <∞: we obtain a renewal process conditioned to jump at point N .

Later, in [16], as an example, Lemaire and Le Jan studied the Model(Z, α, κ). Their
result describes the law of the closed edges and the scaling limit:

Theorem 1.4. [16, Proposition 3.1] Set r(κ) = log

(
1 + κ

2 +
√
κ+ κ2

4

)
.

• The midpoints of the closed edges form a renewal process. Moreover, for n ∈ Z,

P[{n, n+ 1} is closed ] = (1− e−2r(κ))α,

P[{n, n+ 1} is closed |{0, 1} is closed ] =
(1− e−2r(κ))α

(1− e−2(n+1)r(κ))α
. (1.3)

• Assume that α ∈]0, 1[. Denote by ν(κ) the law of this renewal process, that is, the
law of the distance between the left end points of two consecutive closed edges.
For ε > 0, denote by (Wε,i)i∈N+

a sequence of independent random variables

with distribution ν(εκ). For every t > 0, as ε → 0, the variable
√
ε

[ε−(1−α)/2t]∑
i=1

Wε,i

converges in law to the value at t of a subordinator with potential density U(x, y) =(
2
√
κ

1−e−2|x−y|
√
κ

)α
.

Remark 1.5. Although the convergence is stated for a fixed time t, we actually have the
convergence in distribution of the finite marginals by Markov property. Moreover, by
strong Markov property, they satisfy Aldous’ criteria for the tightness, and so, the result
could be strengthened to the convergence in Skorokhod space, see Lemma 3.4.

1.3 Presentation of our results

In this article, we consider the loop clusters in the discrete circle G(n). We fix some
notation which will be frequently used in the sequel.

Definition 1.6. Set κ(n) def
=

1+cn−2
√
pn(1−pn)√

pn(1−pn)
and r(n) = log

(
1 + κ(n)

2 +

√
κ(n) + (κ(n))2

4

)
.

Definition 1.7. For a loop-soup DL (i.e. a Poisson point process of loops), we view it as
a multiset. We write DL = ∅ iff DL = 0 as a random point measure. For two loop-soups
DL and DL′, we write DL ∪ DL′ instead of DL+DL′.

We write DLα as sums of four independent Poisson point processes (DL(n)
α,i )i=1,2,3,4 of

loops, which will be specified later in Definition 4.5. For the present, we would like to
mention that

• DL(n)
α,1 is DL(n)

α restricted on the loops avoiding the vertex 1,

• DL(n)
α,2 ∪ DL

(n)
α,3 ∪ DL

(n)
α,4 are loops passing through the vertex 1.

Our argument contains three steps:

• We study the loop clusters conditionally on that DL(n)
α = DL(n)

α,1. We will use
Theorem 1.4 ([16, Proposition 3.1]) as our starting point.
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• We study the loop clusters conditionally on that DL(n)
α,1 = ∅, which does not appear

in the loop cluster model on discrete intervals.

• By combining the results in the previous two steps, we get a full description of the
loop clusters.

We start with the first step: our first observation is the following description of the
loop clusters given that DL(n)

α = DL(n)
α,1 (or equivalently, DL(n)

α,2 ∪ DL
(n)
α,3 ∪ DL

(n)
α,4 = ∅).

Proposition 1.8. Conditionally on DL(n)
α,2 ∪ DL

(n)
α,3 ∪ DL

(n)
α,4 = ∅,

a) our model is the same as Model([2, n], α, κ(n)) where κ(n) is given by Definition 1.6,

b) [16, Proposition 3.1], the left points of these closed edges, together with the
left points of {0, 1} and {n, n + 1}, form a renewal process (S

(κn)
i )i≥0 (S

(κn)
0 = 0)

conditioned to hit n, where the generating function3 Ψ(κ(n))(s) = P

[
sS

(κ(n))
1 −S(κ(n))

0

]
of the jump distribution S(κ(n))

1 − S(κ(n))
0 is given by

(1−Ψ(κ(n))(s))−1 =
∑
n≥0

(
1− exp{−2r(n)}

1− exp{−(n+ 1)r(n)}

)α
sn, (1.4)

where κ(n) and r(n) are given in Definition 1.6.

It is natural to believe that the renewal processes conditioned to hit n, rescaled by
1/n, as n→∞, converges to a subordinator conditioned to hit 1. Indeed, we will prove
this in the following proposition.

Proposition 1.9. Assume that α ∈]0, 1[ and that lim
n→∞

n2κ(n) = κ. Then, let
(
W

(κ(n))
i

)
i≥1

be a sequence of i.i.d. variables with the generating function Φ(κ(n)) defined in Propo-

sition 1.8. For m ≥ 0, let S(κ(n))
m be the partial sum of

(
W

(κ(n))
i

)
i≥1

, i.e. S
(κ(n))
m

def
=

m∑
i=1

W
(κ(n))
i . Set T (n)

]1,+∞[ = inf{t ≥ 0 : 1
nS

(κ(n))
bn1−αtc > 1}. Let (X

(κ)
t )t≥0 be the subordinator of

the potential density U(x, y) =
(

2
√
κ

1−e−2|x−y|
√
κ

)α
and T]1,+∞[ = inf{t ≥ 0 : X(κ) > 1}. Then,

we have the following convergence result in the Skorokhod space:

lim
n→∞

P

( 1

n
S

(κ(n))
bn1−αtc

)
t∈
[
0,T

(n)

]1,+∞[

[ ∈ ·
∣∣∣∣∣∣S(κ(n)) hits n


= P

[
(Xt)t∈[0,T]1,+∞[[ ∈ ·

∣∣∣XT]1,+∞[− = 1
]
,

where XT]1,+∞[− = lim
s↑T]1,+∞[

Xs.

The conditioned subordinator is a well-defined Feller process, see Lemma 3.3. Our
result, Proposition 1.8 together with Proposition 1.9, is a conditioned version of Theorem
1.4 ([16, Proposition 3.1]). The convergence of conditioned renewal processes is not
included in Theorem 1.4 ([16, Proposition 3.1]). Some additional argument is necessary,
see Subsection 3.2. Also, note that Theorem 1.4 ([16, Proposition 3.1]) is stated for a
fixed time t. Here, we state the convergence result in Skorokhod space. The reason is
that the finite marginal convergence does not imply a convergence result for general
clusters. (For instance, if we split the biggest cluster into two clusters by adding a closed

3This generating function has already been known by Lemaire and Le Jan, see the proof of [16, Proposition
3.1].
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edge in the middle of that cluster, then we still have the same limit for finite marginals
with a different limit for the clusters.) On the other hand, the Skorokhod convergence in
Proposition 1.9 does imply the convergence of the macroscopic jumps. In other words, it
implies the convergence of the loop clusters:

Corollary 1.10. Let R̄ be the closure of the range of (Y
(κ)
t )t∈[0,ζ[ where

P[(Y
(κ)
t )t∈[0,ζ[ ∈ ·]

def
= P[(Xt)t∈[0,T]1,+∞[−[ ∈ ·|XT]1,+∞[− = 1].

Then, its complementary consists of countably many open intervals. We list them in the
decreasing order according to the lengths: (g1, d1), (g2, d2), . . . (g1 − d1 ≥ g2 − d2 ≥ · · · ).
Similarly, conditionally on DL(n)

α,2 ∪ DL
(n)
α,3 ∪ DL

(n)
α,4 = ∅, the discrete circle G(n) is divided

into several discrete arcs4 by closed edges. We list them in decreasing order according
to the lengths: [g

(n)
1 , d

(n)
1 ], [g

(n)
2 , d

(n)
2 ], . . . , [g

(n)
kn
, d

(n)
kn

] where kn = #C(n)
α is the number of

the discrete arcs. Assume that α ∈]0, 1[ and that lim
n→∞

n2κ(n) = κ. Then, for each k ≥ 1,

conditionally on DL(n)
α,2 ∪ DL

(n)
α,3 ∪ DL

(n)
α,4 = ∅, the random variable kn

n1−α converges in

distribution to the time duration ζ of the process Y (κ) and

1

n
(g

(n)
1 , d

(n)
1 , g

(n)
2 , d

(n)
2 , . . . , g

(n)
k , d

(n)
k ) converges in distribution to (g1, d1, g2, d2, . . . , gk, dk).

Equivalently, as n→∞, the compact set 1
n

(
[1, n] \

⋃
i

]g
(n)
i , d

(n)
i [

)
converges in law to R̄,

with respect to the Hausdorff distance between compact sets.

We give the density of the time duration ζ of Y (κ) (or the limit distribution of nα−1kn),
by using the density of the semi-group of the subordinator X(κ) in the following remark.

Remark 1.11. Denote by P (κ)
t (x, dy) the semi-group of the subordinator (X

(κ)
t )t≥0 with

potential density U(x, y) =
(

2
√
κ

1−e−2|x−y|
√
κ

)α
. By Fourier analysis, we can show that

P
(κ)
t (x, dy) has a density p(κ)

t (x, y) with respect to the Lebesgue measure. Moreover,

p
(κ)
t (x, y) is jointly continuous in (t, x, y). Later, we will see in Lemma 3.3 that Y (κ) is a

Doob’s harmonic transform of X(κ) and that the semi-group Q(κ)
t (x, dy) of Y (κ) has the

following form,

Q
(κ)
t (x, dy) =

U(y, 1)

U(x, 1)
P

(κ)
t (x, dy). (1.5)

Immediately, we see thatQ(κ)
t (x,dy) has a density q(κ)

t (x, y) = U(y,1)
U(x,1)p

(κ)
t (x, y) with respect

to the Lebesgue measure such that (t, x, y) → q
(κ)
t (x, y) is jointly continuous. By semi-

group property,

P[ζ > t] =

∫
Q

(κ)
t (0,dy) =

∫
U(y, 1)

U(0, 1)
p

(κ)
t (0, y) =

1

U(0, 1)

∞∫
t

p(κ)
s (0, 1) ds.

Thus, the density of ζ with respect to the Lebesgue measure is exactly p
(κ)
t (0,1)
U(0,1) .

Next, we study the loops passing through the vertex 1 conditionally on that DL(n)
α,1 = ∅.

We need some notation to represent the cluster formed by the loops passing through the
vertex 1.

Definition 1.12. If DL(n)
α,1 = ∅ and if there exist at least two clusters, then there exist

two end points of the discrete loop cluster containing 1. We denote by Jn the graph

4It is possible that some discrete arcs are actually single vertices. For example, if {1, 2} and {2, 3} are both
closed, then the vertex 2 is considered to be a discrete arc [2, 2].
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distance, inside the loop cluster containing 1, between 1 and the left end point, and by
Kn the distance between 1 and the right end point. Necessarily, Jn +Kn ≤ n− 2.

For example, if the left end point is n − 1 and the right end point is 4, then Jn = 2

and Kn = 3. We give an explicit description of the loop clusters conditionally on that
DL(n)

α,1 = ∅:
Proposition 1.13.

P[∃ ≥ 2 loop clusters|DL(n)
α,1 = ∅] =2α

cosh(nr(n))− cosh
(

1
2n log

(
pn

1−pn

))
sinh(nr(n))

α

×

(
n−1∑
m=1

(
sinh(mr(n))

sinh(nr(n))

)α
−
(

sinh((m− 1)r(n))

sinh((n− 1)r(n))

)α)
.

For two non-negative integers m and M such that m+M ≤ n− 2, we have that

P[∃ ≥ 2 loop clusters, Jn ≤ m,Kn ≤M |DL(n)
α,1 = ∅]

= 2α

cosh(nr(n))− cosh
(

1
2n log

(
pn

1−pn

))
sinh(nr(n))

α

×
(

sinh((m+ 1)r(n)) sinh((M + 1)r(n))

sinh((m+M + 2)r(n))

)α
.

Suppose that lim
n→∞

n2κ(n) = κ ≥ 0 and that lim
n→∞

n2cn = ε ∈ [0, κ/2]. Then,

lim
n→∞

P[∃ ≥ 2 loop clusters|DL(n)
α,1 = ∅]

= 2α · α
√
κ

(cosh(
√
κ)− cosh(

√
κ− 2ε))α

(sinh
√
κ)2α+1

1∫
0

(
sinh(a

√
κ)
)α−1 (

sinh((1− a)
√
κ)
)α+1

da.

For a, b ≥ 0 such that a+ b ≤ 1, we have that

lim
n→∞

P

[
∃ ≥ 2 loop clusters,

Jn
n
≤ a, Kn

n
≤ b
∣∣∣∣DL(n)

α,1 = ∅
]

= 2α
(

cosh
√
κ− cosh

√
κ− 2ε

sinh
√
κ

)α(
sinh(a

√
κ) sinh(b

√
κ)

sinh((a+ b)
√
κ)

)α
.

We have obtained the description of the partition of loop clusters Π(DL(n)
α,1, G

(n))

formed by the Loop-soup DL(n)
α,1 avoiding 1, and the loop cluster CL(n) by the loop-soup

DL(n)
α \ DL(n)

α,1 of loops intersecting 1. Then, the loop clusters Π(DL(n)
α , G(n)) formed by

the loop-soup DL(n)
α is determined as follows:

Π(DL(n)
α , G(n)) =

CL
(n) ∪

⋃
P∈Π(DL(n)

α,1,G
(n))

P∩CL(n) 6=∅

P

∪{P : P ∈ Π(DL(n)
α,1, G

(n)), P ∩CL(n) = ∅}.

We give the scaling limit in the following theorem.
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Theorem 1.14. Suppose that lim
n→∞

n2κ(n) = κ where κ(n) def
=

1+cn−2
√
pn(1−pn)√

pn(1−pn)
. Suppose

that lim
n→∞

n2cn = ε ∈ [0, κ/2]. Let C(n)
α be the partition given by loop clusters on discrete

circle which is defined in the introduction. If C(n)
α is not a single partition, then there

exist Gn ≥ 0 and Dn ≥ 0 such that Dn +Gn < n and that

{−Gn + n+ 1, . . . , n, 1, . . . , 1 +Dn}

is the cluster containing 1. In this case, let

1 +Dn = S
(n)
0 < S

(n)
1 < · · · < S

(n)
k(n) = n−Gn

be all the left end points of the closed edges. Define the scaled process by

S̃
(n)
t =

1

n− 1−Gn −Dn
(S

(n)
b(n−1−Gn−Dn)1−αtc − S

(n)
0 ).

Let (G,D) be a pair of variables with the following density

1{x,y>0,x+y<1}
sin(απ)

π

2α−2(1− α)κ sinh
√
κ

sinh(
√
κ(1− α)) [sinh(

√
κ(1− x− y))]

α
[sinh(

√
κ(x+ y))]

2−α .

Let Y (κ) be a conditioned subordinator described in Lemma 3.3.

a) For α ≥ 1, we have that lim
n→∞

P[C(n)
α is a single partition] = 1. For α ∈]0, 1[, we have

that

lim
n→∞

P[C(n)
α is not a single partition]

=
1

sinh
√
κ

2α sinh(
√
κ(1− α))(cosh(

√
κ)− cosh(

√
κ− 2ε))α.

b) Fix α ∈]0, 1[. Conditionally on that C(n)
α is not a single partition, (Gnn ,

Dn
n , S̃

(n))

converges in distribution to (G,D,M). Conditionally on (G,D), the process M
has the same distribution as Y (κ(1−G−D)2). In particular, similar to Corollary 1.10,
this implies the convergence of Π(DL(n)

α , G(n)). To reduce the amount of notation,
we state the convergence result in an equivalent way by considering the closed
edges: Let S(n) = {S(n)

0 , . . . , S
(n)
k(n)} be the set of the left end points of the closed

edges on G(n). Then, 1
nS

(n) ⊂ [0, 1]. Let R̄(M) be the closure of the range of the
process M , then G + (1 − G − D)R̄(M) is a compact subset of [0, 1]. We equip
the space K[0, 1] of compact subsets of [0, 1] with the Hausdorff metric. Then, as

n→∞, conditionally on that C(n)
α is not a single partition, 1

nS
(n) converges in law

to G+ (1−G−D)R̄(M).

1.4 Connection with known results, difficulties and techniques

Let σ(n) be an independent uniform random permutation of {1, . . . , n}. Denote by

σ(n)(C(n)
α ) the permuted partition of {1, . . . , n} such that two vertices x, y belong to the

same cluster of the partition σ(n)(C(n)
α ) iff σ−1(x), σ−1(y) belong to the same cluster of

C(n)
α . Conditionally on DL(n)

α = DL(n)
α,1 (i.e. no loop passes through 1), σ(n)(C(n)

α ) is a Gibbs
partition5: for each particular partition {A1, . . . , Ak} of {1, . . . , n},

P
[
σ(n)(C(n)

α ) = {A1, . . . , Ak}
∣∣∣DL(n)

α = DL(n)
α,1

]
=

vk
k∏
i=1

(w#Ai#Ai!)

Bn
(1.6)

5See [18, Equations (1.47) (1.48), Section 1.5] for a precise definition.
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where vk = k! for k = 1, 2, 3, . . ., w = (wi)i is the jumping distribution of the renewal
process given by Equation (1.4) and Bn is the normalizing constant such that Bn/n!

equals to Equation (1.3) with κ = κ(n) =
1+cn−2

√
pn(1−pn)√

pn(1−pn)
.

For a consistent family of Gibbs partitions, (more generally, for a consistent family
of exchangeable partitions), one has the almost surely convergence of the normalized
sizes of equivalence classes, which is known as Kingman’s representation theorem, see
for example [18, Theorem 2.2]. For κ = 0, conditionally on DL(n)

α = DL(n)
α,1, our family

of permuted partitions form a consistent family of Gibbs partition which is driven by
a mixture of 1 − α stable subordinator bridge, see [18, Theorem 4.6]. However, for
κ 6= 0, conditionally on DL(n)

α = DL(n)
α,1, our family of permuted partitions σ(n)(C(n)

α ) is not
consistent. (One can argue this by using [18, Theorem 4.6].)

There exists convergence results of Gibbs partitions for non-consistent family of Gibbs
partitions, see for example [18, Theorem 2.4,Theorem 2.5] with the references. However,
they put an assumption that the sequence w does not depend on n. From our point of view,
they put this condition to get a convergence towards a subordinator bridge by applying
a local limit theorem of I. A. Ibragimov and Y. V. Linnik [9, Chapter 4]. That local limit
theorem, stated for distributions in the attraction domain of some stable distribution, is
not applicable in our situation (as our limit distribution is not stable, see Proposition 1.9).
Rather than establishing a local limit theorem for our case, we prove the convergence
of the conditioned renewal processes by the convergence of renewal process in [16,
Proposition 3.1]. Also, we would like to mention a general result of O. Kallenberg [12,
Theorem 16.23]6 on the convergence of discrete exchangeable processes towards an
exchangeable process on [0, 1]. Kallenberg formulated an equivalence condition for
convergence in Skorokhod space D[0, 1]. However, for our loop model, roughly speaking,
that condition requires the convergence of macroscopic clusters which needs to be
proven.

For κ > 0, our limit partition is driven by a subordinator different from the stable
1 − α subordinator, which appears in [18, Theorem 2.5] (and corresponds to the case
κ = 0). However, our scaling function n1−α has the same form as in [18, Theorem 2.5].
More precisely, under the assumption that lim

n→∞
n2κ(n) = κ ∈ [0,∞[, the scaling limit of

the partition depends on the limit κ, but the scaling function n1−α doesn’t. We would
like to briefly explain the reason as follows: suppose we have two sequences of models

(Modeln)n and (M̃odeln)n on (G(n))n with parameters (κ(n))n and (κ̃(n))n respectively.
Let us suppose further that

∀n ≥ 1, κ(n) < κ̃(n) and lim
n→∞

n2κ(n) < lim
n→∞

n2κ̃(n).

From the construction of loop-soup as a Poisson point process, the loop-soup DL(n)
α in

the model Modeln can be constructed from the loop-soup D̃L
(n)

α in the model M̃odeln
by adding an additional independent Poisson point process. The intensity measure is
equal to the difference αµ(n) − αµ̃(n), where µ(n) and µ̃(n) are intensity measures of

DL(n)
α and D̃L

(n)

α respectively. Under our assumption, ||αµ(n) − αµ̃(n)|| are uniformly

bounded for all n. Thus, #(D̃L
(n)

α \ DL(n)
α ) is a Poisson random variable with uniformly

bounded expectation. Moreover, with high probability, the loops inside D̃L
(n)

α \ DL(n)
α

are macroscopic loops away from 1. Consequently, inf
n≥1

P[Modeln = M̃odeln] > 0. Also,

we have the same scaling function for different possible limit lim
n→∞

n2κ(n). The same idea

6The result first appeared in his paper [11].
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shows that the convergence result remains the same if we perturb the killing parameter
κ(n) (by changing pn, cn) up to order o(n−2).

Finally, we briefly present the difficulties and the techniques. To prove Proposition 1.9,
we would like to use the convergence result [16, Proposition 3.1] of the renewal processes.
The conditioned subordinator in Proposition 1.9 is well-defined by Doob’s h-transform in
Lemma 3.3. The difficulty of proving the convergence is due to the divergence of the
Radon-Nikodym derivatives between the conditioned renewal processes and the renewal
processes. However, we have the convergence of the conditional expectations of the
Radon-Nikodym derivatives on some sub-σ-fields. As a result, we get a unique candidate
for possible finite marginal limit distributions. Then, we get the convergence of finite
marginal distributions. (Note that the tightness of the finite marginal distributions follows
from the boundedness of the scaled processes.) To get a Skorokhod convergence, we
need the tightness of the family of conditioned renewal processes. By the exchangeability
(due to the connection with the conditioned renewal process in Proposition 1.8), as an
application of Aldous’ criteria of tightness [12, Theorem 16.11], the finite marginals
convergence implies the tightness, see the proof of [12, Theorem 16.23]. Next, we
consider the loops passing through the vertex 1 which are not too large to cover the
whole space. This cluster might cover some edges which are not covered by the loops
avoiding 1. Accordingly, we erase a part of the range of the conditioned subordinator
which is the limit of the edges uncovered by loops avoiding 1. Then, the remaining part
of the range of the subordinator represents the closed edges in the scaling limit. For
this part, the key is the independence between the loops avoiding 1 and those loops
passing through 1 which is guaranteed by the Poisson loop-soup construction. To make
it rigorous, we need the fact that the end points of the cluster formed by the loop-soup
DL(n)

α \ DL(n)
α,1 through 1, fall into the interior of some loop clusters formed by DL(n)

α,1,
with probability tending to 1 as n → ∞. This is guaranteed by 6th part of Lemma 3.3
and the independence between DL(n)

α \ DL(n)
α,1 and DL(n)

α,1. Finally, to express the results
explicitly, we calculate the Lévy measure of the subordinator in Lemma 5.2 by inversing
Laplace transform which is unknown before this paper.

1.5 Organization of the paper

We would like to present the organization of the following sections:

In Section 2, we collect some useful facts on (non-trivial) loop measures by Lemaire
and Le Jan, such as the restriction properties of the loop measures (Lemma 2.3 and
Lemma 2.4) and the invariance under Doob’s h-transform (Lemma 2.6). Also, we provide
a classical result on the determinant of Toeplitz matrices (Lemma 2.5).

In Section 3, we prove Proposition 1.8 and Proposition 1.9, results of loop clusters
conditioned on the absence of loops through 1. We identify the closed edges as a renewal
process conditioned to jump to n. Then, we give a convergence result of the conditioned
renewal processes towards a conditioned subordinator.

In Section 4, we give the proof of Proposition 1.13, a full description of the loop
clusters formed by loops through 1, together with a limit result.

In Section 5, by combining the results in Section 3 and 4, we prove Theorem 1.14
of the limit distribution of the loop clusters on G(n) under certain conditions on the
parameters.

In Section 6, we present an informal relation with Brownian loop clusters on the
circle S1: several limit results can be predicted by Brownian loop clusters.

We postpone several proofs in the 7-th and the last section.
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2 Useful facts

In this section, we collect some useful properties which are frequently used through-
out the paper. Although we are interested in a class of special loop measures on discrete
circles, we will state these properties for a general class of loop measures. For the loop
measures associated with reversible Markovian chains, these results are already known
by Lemaire, Le Jan, Sznitman, . . . . These results also hold in the non-reversible case, for
example, the loop-soup considered in the present paper, see [4].

Let’s begin with a precise description of the loop measure. In this section, we will
consider the (non-trivial) pointed loop measure associated with a discrete Markovian
generator7 L on a countable state space S:

µ̇( ˙̀ = (x1, . . . , xk)) =
1

k
Qx1
x2
· · ·Qxkx1

for k ≥ 2, x1, . . . , xk ∈ S (2.1)

where Qxy
def
=

{
−L

x
y

Lxx
if x 6= y

0 if x = y.
The corresponding (non-trivial) loop measure µ is the

push-forward measure of µ̇. As we have emphasized in Subsection 1.1, we only consider
the non-trivial loops and we will omit the word “non-trivial” for simplicity.

We will be interested in the loops which fulfill certain special requirements:

Definition 2.1. [Inclusion/exclusion property, vertex set version] Let F be a subset of
the state space S and ` a loop on S. We say that ` is inside F if ` does not visit any
state in S \ F , denote it by ` ⊂ F . We say that ` avoids F if ` ⊂ F c, which is denoted by
` ∩ F = ∅. For some state x, we say that ` visits x, denoted it by x ∈ `, if ` doesn’t avoid
{x}.

If we consider S as a vertex set and we put directed edges between each pair x, y ∈ S,
then we get a directed graph. It is natural to extend Definition 2.1 to an edge subset F .

Definition 2.2. [Inclusion/exclusion property, edge set version] Let F ⊂ S × S and `

a loop on S. We say that ` = (x1, . . . , xk) is inside F , which is denoted by ` ⊂ F , if
(x1, x2), . . . , (xk−1, xk), (xk, x1) ∈ F . We say that ` avoids F if ` ⊂ F c, which is denoted by
` ∩ F = ∅.
Lemma 2.3. Let µ be the Markovian loop measure associated with a generator L on a
state space S. Let F be a finite subset of the state space S. Then, µ(` is non-trivial , ` ⊂
F,d`) is the Markovian loop measure associated with the generator L|F×F . Moreover,

µ(` is non-trivial and ` ⊂ F ) = − log det(−L|F×F ) +
∑
x∈F

log(−L)xx

with the convention that − log 0 = +∞ and that the determinant of an empty matrix is 1.

Proof. One can deduce from (2.1) that µ(` ⊂ F,d`) equals the Markovian loop measure
associated with the generator L|F×F . Hence, it remains to show that for a Markovian
loop measure µ associated with the generator L on a finite state space S,

µ(non-trivial loops) = − log det(−L) +
∑
x∈S

log(−L)xx. (2.2)

By (2.1), we see that

µ(non-trivial loops) = µ̇(non-trivial pointed loops) =
∑
k≥2

1

k
TrQk (2.3)

7See [4, Definition 2.1] for a precise definition.
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where Qxy
def
=

{
−L

x
y

Lxx
if x 6= y

0 if x = y
. Since TrQ = 0, we have (2.3) =

∑
k≥1

1
k TrQk. It suffices

to prove Equation (2.2) for a matrix Q with a spectral radius strictly less than 1. For
general cases, we consider the loop measure µε associated with L− ε · Id, where Id is
the identity matrix. Then, Equation (2.2) holds for µε and L− ε · Id. By taking ε ↓ 0, we
get Equation (2.2) in the limit. Henceforth, we assume that the eigenvalues (λj)j of Q
(counted by algebraic multiplicity) are strictly less than 1. Then, we calculate

∑
k≥1

1
k TrQk

by using the eigenvalues:∑
k≥1

1

k
(λj)

k =
∑
j

− log(1− λj) = − log det(I −Q) = − log det(−L) +
∑
x∈S

log(−Lxx).

One can deduce the following result from the definition of pointed loop measure. A
more general form is hinted in [14, Exercise 10, Section 2.3].

Lemma 2.4. Given a subset F ⊂ S × S and a Markovian generator on S, we define a
modified Markovian generator L̃F as follows: for two states x, y ∈ S,

(L̃F )xy =

{
0 if (x, y) ∈ F,
Lxy otherwise.

(2.4)

Let µ̃ be the non-trivial pointed loop measure associated with L̃ by Equation (2.1). Then,

µ(` ∩ F = ∅,d`) = µ̃(d`). (2.5)

As we have seen in Lemma 2.3 and Lemma 2.4, several interesting quantities are
related to the determinants of some matrices. For that reason, we state a classical result
on the determinants. Please refer to Proposition 2.2 and Example 2.8 in [3].

Lemma 2.5 ([3]). Let T3,n be the n× n tri-diagonal Toeplitz matrix and Sn the circulant
n× n matrix such that

T3,n =



a b 0 · · · 0

c a b
. . .

...

0
. . .

. . .
. . . 0

...
. . . c a b

0 · · · 0 c a


n×n

and Sn =



a b 0 c

c a b
. . .

0
. . .

. . .
. . . 0

. . . c a b

b 0 c a


n×n

.

Let x1, x2 be the roots of x2 − ax+ bc = 0. Then,

• det(T3,n) =
xn+1

1 − xn+1
2

x1 − x2
for n ≥ 1,

• det(Sn) = xn1 + xn2 + (−1)n+1(bn + cn) for n ≥ 3.

Next, we state another useful property of the loop measure: it is “invariant” under
Doob’s harmonic transform. Lemaire and Le Jan have already observed and stated this
in the first half part of [16, Remark 1.1]. We state it here without the assumption of
reversibility of the Markovian generator for the convenience of readers. The proof is
immediate from the definition of the loop measure.

Lemma 2.6. [16, Remark 1.1] Suppose that h : S →]0,∞[ is a function on a finite state
space S such that −Lh ≥ 0. Then, Lh, the Doob’s harmonic transformation of L, induces
the same loop measure, where

(Lh)xy
def
=

Lxyh(y)

h(x)
for x, y ∈ S. (2.6)
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Finally, we would like to mention that the marginal distributions of the clusters can
be expressed by corresponding quantities of the weighted random walk on the graph. As
we shall not use the formula, we do not provide the full statement. Please refer to [16,
Lemma 2.7, Lemma 2.8] for more details.

3 Loop clusters when no loop passes through 1

We study the discrete loop model on G(n) conditioned on the absence of loops through
1, and prove Proposition 1.8 in Subsection 3.1 by identify our model with Model(Z, α, κ(n))

conditioned on the closedness of {1, 2} and {n, n+ 1}

3.1 Proof of Proposition 1.8

Definition 3.1. For N = 1, 2, . . . ,+∞ and α, p, c ≥ 0, denote by Model([2, N ], α, p, c) the
loop model defined by the loop-soup with intensity measure αµ, where µ is the loop
measure associated with the following Markov generator L by Equation (2.1):

Lmm = −(1 + cn), Lmm+1 = pn, L
m
m−1 = 1− pn for all m = 2, 3, . . . , N,

and L is null elsewhere.

Remark 3.2. Note that we can identify Model([2, N ], α, p, c) and Model([1, N − 1], α, p, c)

in a natural way by translation invariance.

By applying Lemma 2.6 with the function h defined by

h(m) =

(
1− pn
pn

)m
2

for m = 2, 3, . . . ,

we see that

Model([1, N ], α, p, c) = Model([1, N ], α, κ) for κ =
1 + c− 2

√
p(1− p)√

p(1− p)
. (3.1)

Among the loop-soup on the discrete circle G(n), the ensemble DL(n)
α,1 through the

vertex 1 is independent of its complement DL(n)
α \ DL(n)

α,1 in the loop-soup. Therefore,

P[DL(n)
α,1 ∈ ·|DL

(n)
α \ DL(n)

α,1 = ∅] law
= DL(n)

α,1, which also equals in law to the loop-soup in

Model([2, n], α, p(n), c(n)). By Equation (3.1), its law is equal to that of the loop-soup in

Model([2, n], α, κ(n)) where κ(n) =
1+cn−2

√
pn(1−pn)√

pn(1−pn)
. Again, by the independence between

disjoint loop ensembles, the loop clusters on G(n) has the same distribution as the
loop clusters inside [2, n] on Model(Z, α, κ(n)) by conditioning on the closedness of the
edges {1, 2} and {n, n+ 1}. Then, the first part of [16, Proposition 3.1] implies Part a) of
Proposition 1.8. And Part b) of Proposition 1.8 is contained in the proof of [16, Proposition
3.1]. For the convenience of the readers, we give a sketch: the jump distribution ν(κ(n))

of the renewal process is the distribution of the left end point of the left-most closed edge
on {1, 2, 3, . . . , } in Model(Z, α, κ(n)), conditionally on the closedness of {0, 1}. Therefore,

P[{n, n+ 1} is closed|{0, 1} is closed] =

∞∑
k=1

P[W
(κ(n))
1 + · · ·+W

(κ(n))
k = n],

where (W
(κ(n))
i )i≥1 is an independent sequence of variables with the common distribution

ν(κ(n)). From the expression of P[{n, n+ 1} is closed|{0, 1} is closed] in [16, Proposition

3.1], we get the generating function of the jump distribution ν(κ(n)).
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3.2 Proof of Proposition 1.9

As in the statement of Proposition 1.9, we assume that α ∈]0, 1[.
For a càdlàg process X and a subset A of the state space, denote by TA the entrance

time of A, i.e. TA
def
= inf{t ≥ 0 : Xt ∈ A}. We denote by Xt− the left limit lim

s↑t
Xs.

Let (X
(κ)
t )t≥0 be a subordinator with the following potential density:

U(x, y) = 1{y>x}

(
2
√
κ

1− e−2
√
κ(y−x)

)α
.

We first define the law of the process (X
(κ)
t , t < T]1,+∞[) conditionally on the event

{X(κ)
T]1,+∞[−

= 1} in the following lemma and postpone its proof in the appendix.

Lemma 3.3.

1. For all positive functions f , we have

E0[f(X(κ)
s , s ∈ [0, t])1{t<T]1,+∞[}, X

(κ)
T]1,+∞[−

∈ db]

= E0[X
(κ)
T]1,+∞[−

∈ db]E0

[
f(X(κ)

s , s ∈ [0, t])1{t<T]1,+∞[}
u(b−X(κ)

t )

u(b)

]
.

2. The conditioned process8 Y (κ) is a h-transform of the original subordinator with
respect to the excessive function x→ u(1− x). To be more precise, for y ∈ [x, 1[,
its semi-group is given by

Q
(κ)
t (x, dy) =

u(1− y)

u(1− x)
P

(κ)
t (x, dy)

where P (κ)
t (x, dy) is the semi-group of the subordinator X(κ). Denote by Qx the law

of the Markov process with semi-group Q(κ)
t (x, dy) = u(1−y)

u(1−x)P
(κ)
t (x,dy) and initial

state x. (We choose the càdlàg version of Y (κ).)

3. Denote by ζ the lifetime of the conditioned process Y (κ). Then, Y (κ)
ζ− = 1.

4. The semi-group (Q
(κ)
t )t≥0 is a Feller semi-group.

5. The time reversal from the lifetime of the process Y (κ) is the left-continuous
modification of 1− Y (κ) under Q0.

6. For a fixed x ∈]0, 1[, with probability 1 under Q0, it is outside the closure of the
range R̄(Y (κ)) of Y (κ).

We also need a convergence result of ( 1
nS

(κ(n))
bnα−1tc, t ≥ 0) as n → ∞, in the sense of

Skorokhod convergence, for a reason that will become clear later. If we put ε = 1
n

in [16, Proposition 3.1], then their result affirms the convergence of ( 1
nS

(κ(n))
bnα−1tc, t ≥ 0)

towards the subordinator X(κ) in the sense of finite marginals convergence, where
κ(n) = κ/n2. Same results hold under the assumption that lim

n→∞
n2κ(n) = κ, and the proof

is the same. Indeed, the proof of [16, Proposition 3.1] is based on asymptotic behaviors
of the Laplace transforms of the jump distributions of the renewal processes. To get this,
it suffices to assume that lim

n→∞
n2κ(n) = κ. Also, by a coupling argument, this has been

pointed out in Subsection 1.4: “the convergence result remains the same if we perturb
the killing parameter κ(n) (by changing pn, cn) up to order o(n−2)”. To strengthen the
convergence to a Skorokhod convergence, we show the tightness in the following lemma.
The argument is standard and we postpone it in the appendix.

8More precisely, the process defined by the probability E0

[
f(X

(κ)
s , s ∈ [0, t])1{t<T]1,+∞[}

u(1−X(κ)
t )

u(1)

]
.
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Lemma 3.4. The distribution ( 1
nS

(κ(n))
bnα−1tc, t ≥ 0) is tight in the Skorokhod space. There-

fore, as n → ∞, the renewal process ( 1
nS

(κ(n))
bnα−1tc, t ≥ 0) converges to the subordinator

(X
(κ)
t , t ≥ 0) in Skorokhod space.

As a consequence of Lemma 3.4, by the coupling theorem of Skorokhod and Dudley,

we shall assume that ( 1
nS

(κ(n))
bn1−αtc, t ≥ 0)n converges to (X

(κ)
t , t ≥ 0) almost surely, as

n→∞.

We are ready for the proof of Proposition 1.9. Note that Lemma 3.3 gives the Radon-
Nikodym derivative between the subordinator X(κ) and the conditioned process Y (κ) on
a sub-σ-field. The main idea of the proof of Proposition 1.9 is to show the convergence of
the Radon-Nikodym derivatives from the discrete cases to the continuous case.

Let’s compute the Radon-Nikodym derivatives between the renewal processes and

the conditioned renewal processes. For m ≥ 1, let C(κ(n))(m) = P[∃i ≥ 1 : S
(κ(n))
i = m].

For m ≥ 1, define Tm = inf{i ≥ 0 : S
(κ(n))
i ≥ m}. For all m ≥ 0 and all positive measurable

functions F : Rm+1 → R+, we have that

E
[
F (S

(κ(n))
0 , . . . , S(κ(n))

m )1{Tn>m}

∣∣∣{∃i ≥ 1 : S
(κ(n))
i = n}

]
= E

[
F (S

(κ(n))
0 , . . . , S(κ(n))

m )1{Tn>m}
C(κ(n))(n− S(κ(n))

m )

C(κ(n))(n)

]
. (3.2)

We denote by (G̃(n)
m )m the filtration generated by the renewal process (S

(κ(n))
i )i and by

(G(n)
t )t≥0 the filtration (G̃(n)

bn1−αtc)t≥0. Then, for a stopping time τ and an event A ∈ G(n)
τ ,

from Equation (3.2), we deduce that

P
[
A ∩ {S(κ(n))

bn1−ατc/n < 1}
∣∣∣{∃i ≥ 1 : S

(κ(n))
i = n}

]
= E

1A1{
S

(κ(n))

bn1−ατc
/n<1

}C(κ(n))
(
n− S(κ(n))

bn1−ατc

)
C(κ(n))(n)

 . (3.3)

Secondly, we will show that for fixed time t,

lim
n→∞

1{
S

(κ(n))

bn1−αtc
/n<1

}C(κ(n))
(
n− S(κ(n))

bn1−αtc

)
C(κ(n))(n)

= 1{Xt<1}
u(1−X(κ)

t )

u(1)
. (3.4)

By Theorem 1.4 [16, Proposition 3.1], we have that

C(κ(n))(m) =

(
1− e−2r(n)

1− e−2(m+1)r(n)

)α
.

Note that as n tends to∞,

C(κ(n))(bbnc) ∼

{ (
2
√
κ

1−e−2b
√
κ

)α
n−α κ > 0,

(bn)−α κ = 0.
(3.5)

Moreover, (C(κ(n))(bbnc)nα, b ∈ K) converges uniformly on any compact subsetK ⊂]0,∞[.
As a Feller process, X(κ) is continuous at t with probability 1. Thus, for fixed time t, we

get that lim
n→∞

1
nS

(κ(n))
bn1−αtc = X

(κ)
t , which implies Equation 3.4.
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Finally, we deduce the finite marginals convergence from (3.4).
For δ > 0, m ≥ 1 and a bounded continuous function f : Rm :→ R, the following

quantity is uniformly bounded by some finite constant C = C(δ, ||f ||∞) for all n:∣∣∣∣∣∣f
(

1

n
S

(κ(n))
bn1−αsc, s ∈ [0, t]

)
1{

S
(κ(n))

bn1−αtc
/n<1−δ

}C(κ(n))
(
n− S(κ(n))

bn1−αtc

)
C(κ(n))(n)

∣∣∣∣∣∣ < C.

For 0 ≤ t1 ≤ · · · ≤ tm, the subordinator X(κ), as a Feller process, is almost surely
continuous at time t1, . . . , tm. Thus, almost surely,

∀i = 1, . . . ,m, lim
n→∞

1

n
S

(κ(n))
bn1−αtic = X

(κ)
ti .

Thus, by Equation (3.4) and dominated convergence, we get that

lim
n→∞

P

f ( 1

n
S

(κ(n))
bn1−αt1c, . . . ,

1

n
S

(κ(n))
bn1−αtmc

)
1{

S
(κ(n))

bn1−αtmc
/n<1−δ

}C(κ(n))
(
n− S(κ(n))

bn1−αtmc

)
C(κ(n))(n)


= P

[
f(X

(κ)
t1 , . . . , X

(κ)
tm )

u(1−X(κ)
tm )

u(1)
, X

(κ)
tm < 1− δ

]
.

Equivalently, by Equation (3.2) and Lemma 3.3, ∀δ > 0,m ≥ 1, 0 ≤ t1 ≤ · · · ≤ tm and
bounded continuous f : Rm → R, we have that

lim
n→∞

P

[
f

(
1

n
S

(κ(n))
bn1−αt1c, . . . ,

1

n
S

(κ(n))
bn1−αtmc

)
1{

S
(κ(n))

bn1−αtmc
/n<1−δ

} ∣∣∣{∃i ≥ 1 : S
(κ(n))
i = n}

]
= P

[
f(Y

(κ)
t1 , . . . , Y

(κ)
tm ), Y

(κ)
tm < 1− δ

]
.

Therefore, we have the uniqueness of all possible sub-sequential limits of the distributions
of the finite marginals of the conditioned renewal processes. The scaled conditioned
renewal processes are uniformly bounded by 1, which implies the tightness of all finite
marginal distributions. Consequently, we see that Proposition 1.9 holds in the sense of
finite marginals convergence. To get a Skorokhod convergence, we need the tightness
of the family of conditioned renewal processes. Note that for n ≥ 1, a renewal process
conditioned to hit n is exchangeable. By the exchangeability, as an application of Aldous’
criteria of tightness [12, Theorem 16.11], the finite marginals convergence implies the
tightness, see the proof of [12, Theorem 16.23].

4 Loop clusters when all loops pass through 1

In this section, we will prove Proposition 1.13, a description of the loop clusters
conditionally on the absence of the loops DL(n)

α,1 avoiding the vertex 1. As we have

mentioned in the introduction, we will divide the loop-soup DL(n)
α \ DL(n)

α,1 passing

through 1 into three disjoint loop-soups: DL(n)
α,2, DL(n)

α,3 and DL(n)
α,4. As a loop-soup is a

Poisson point process, DL(n)
α,2, DL(n)

α,3 and DL(n)
α,4 are independent Poisson point process.

We will study them separately and then put the results together to prove Proposition
1.13. To precise the definition of DL(n)

α,2, DL(n)
α,3 and DL(n)

α,4, we need to introduce several
notation.

We know that Z is a covering space of G(n) under the following mapping π(n):

π(n)(i+ kn) = i+ 1 for k ∈ Z and i = 0, . . . , n− 1.
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Definition 4.1. When γ = (γ(1), . . . , γ(m)) is a path in G(n) and z is a point “lying
over” γ(1) (i.e. π(n)(z) = γ(1)), then there exists a unique path Γ in Z lying over γ (i.e.
π(n) ◦ Γ = γ) such that Γ(1) = z. The path Γ is called the lift of γ at z.

By definition, a pointed loop ˙̀ = (x1, x2, . . . , xm) on G(n) is a path

γ = (x1, x2 . . . , xm, x1)

on the graph G(n). For z ∈ Z such that π(n)(z) = x1, let Γ = (Γ(1), . . . ,Γ(m+ 1)) be the
lift of γ at z. Then, (Γ(m + 1) − Γ(1))/n is an integer independent of the choice of z,
which is defined to be the rotation number Rot( ˙̀) of the pointed loop ˙̀. If we choose z
within {0, 1, . . . , n− 1}, then Γ is uniquely determined. When Rot( ˙̀) = 0, we have that
Γ(m+ 1) = Γ(1) and Γ is a bridge. Then, we denote by Lift( ˙̀) the unique pointed loop
(Γ(1), . . . ,Γ(m)), by choosing Γ(1) ∈ {0, 1, . . . , n− 1}. Since two equivalent pointed loops
have the same rotation number, the rotation number Rot(`) of a loop ` is well-defined.

Definition 4.2. Define a 0-1 valued function Ψ(n) on non-trivial loops on G(n): Ψ(n)(`) = 1

iff the following three conditions are all fulfilled.

a) Rot(`) = 0,

b) ` passes through the vertex 1 in the discrete circle G(n),

c) suppose that ˙̀ and ˙̀′ are both in the equivalence class ` and start from the vertex
1 in G(n). According to Definition 4.1, we have a unique pointed loop Lift( ˙̀) on
Z starting from 0 as the lift of ˙̀. Similarly, we get Lift( ˙̀′). Then, our condition c)
requires that Lift( ˙̀) and Lift( ˙̀′) are equivalent pointed loops.

For a loop ` such that Ψ(n)(`) = 1, we choose some representative pointed loop ˙̀ in
the equivalence class `. Denote by Lift( ˙̀) the unique pointed loop on Z starting from 0

that lies over ˙̀. Then, we define the lift of the loop ` to be the loop Lift(`) which is the
equivalence class of Lift( ˙̀).

Remark 4.3. Condition c) is equivalent to the following statement: let ˙̀ = (x1, . . . , xm)

be a pointed loop in the class `, starting from the vertex x1 = 1, with zero rotation
number. Then, there exists no consecutive subsequence 1, 2, . . . , n, 1 or 1, n, n− 1, . . . , 1

inside x1, . . . , xn.

We introduce Definition 4.2 for the following purpose:

Lemma 4.4. Let µn,Z be the non-trivial loop measure on Z associated with the following
Markov generator L:

Lij =


1
2 for |i− j| = 1,

−1− κ(n)/2 for i = j,

0 otherwise,

where κ(n) =
1+cn−2

√
pn(1−pn)√

pn(1−pn)
. Then, the push-forward Lift ◦µn(Ψ(n)(`) = 1,d`) of the

measure µn(Ψ(n)(`) = 1,d`) equals µn,Z(0 ∈ ` and ` ⊂ [1− n, n− 1],d`).

Proof. Lemma 4.4 can be proven by comparing the weights of each particular loop under
these two measures.

Next, we define a partition (O(n)
i , i = 1, 2, 3, 4) of possible non-trivial loops on n-th

discrete circle G(n).

Definition 4.5. Let O(n)
1 be the ensemble of non-trivial loops avoiding 1, O(n)

2 the en-

semble of non-trivial loops passing through 1 with non-zero rotation numbers, O(n)
3 the

ensemble {` is non-trivial : Φ(n)(`) = 1}, and O(n)
4 the remainder. Let O(n)

cov be the ensem-
ble of non-trivial loops which cover all the vertices in the discrete circle G(n). Define
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DL(n)
α,i = DL(n)

α ∩ O(n)
i for i = 1, 2, 3, 4, where DL(n)

α is the Poissonian loop ensemble of
intensity αµn.

By the definition of the Poisson random measure, (DL(n)
α,i , i = 1, 2, 3, 4) are indepen-

dent. Also, note that DL(n)
α,1 ∩ O

(n)
cov = ∅ and that

DL(n)
α,2 ∪ DL

(n)
α,4 ⊂ O

(n)
cov ⊂ DL(n)

α,2 ∪ DL
(n)
α,3 ∪ DL

(n)
α,4.

From the definition of the non-trivial loop measure µn, the law of DL(n)
α,1, DL(n)

α,3 and DL(n)
α,4

do not change if we replace (pn, 1− pn, 1 + cn) by (
√
pn(1− pn),

√
pn(1− pn), 1 + cn) (or

( 1
2 ,

1
2 , 1 + κ(n)

2 ) equivalently). The non-symmetry only affects the distribution of DL(n)
α,2.

(This will become clear in the following subsections.)

We will study DL(n)
α,3 and DL(n)

α,2 ∪ DL
(n)
α,4 in different subsections. Then, we will prove

Proposition 1.13 in the last subsection of the present section.

4.1 Loop-soup DL(n)
α,2 ∪ DL

(n)
α,4

Note that the loops in DL(n)
α,2 ∪ DL

(n)
α,4 are loops covering all the vertices in G(n). To

study the loop clusters, it suffices to calculate the probability P[DL(n)
α,2 ∪ DL

(n)
α,4 = ∅],

which is given by the following lemma.

Lemma 4.6. Suppose that r(n) is the same as in Definition 1.6. We have that

P[DL(n)
α,2 ∪ DL

(n)
α,4 = ∅] =

(
cosh(nr(n))

cosh(nr(n))− cosh(n log( pn
1−pn )/2)

)−α
.

If lim
n→∞

n2κ(n) = κ and lim
n→∞

n2cn = ε ∈ [0, κ/2], then

lim
n→∞

P[DL(n)
α,2 ∪ DL

(n)
α,4 = ∅] =

(
cosh(

√
κ)− cosh(

√
κ− 2ε)

cosh(
√
κ)

)α
. (4.1)

Proof. Since DL(n)
α,2 ∪ DL

(n)
α,4 is a Poisson point process,

P[DL(n)
α,2 ∪ DL

(n)
α,4 = ∅] = exp{−αµn(O(n)

2 ∪ O(n)
4 )}, (4.2)

where µn is the push-forward measure of µ̇n defined in Equation (1.1), and

µn(O(n)
2 ∪ O(n)

4 ) = µn(1 ∈ `)− µn(O(n)
3 ). (4.3)

Let’s calculate µn(1 ∈ `): By Lemma 2.3, we have that

µn(1) =− log det(−L(n)) +

n∑
i=1

log(−L(n))ii

µn(` ⊂ {2, . . . , n}) =− log det(−L(n)|{2,...,n}2) +

n∑
i=2

log(−L(n))ii.

Thus, by taking the difference, we see that

µn(1 ∈ `) =µn(1)− µn(` ⊂ {2, . . . , n})

= log(−L(n))1
1 + log(det(−L(n)|{2,...,n}2))− log(det(−L(n))).

By Lemma 2.5 for the determinants, the above quantity equals

log(1 + cn) + log(xn1 − xn2 )− log(x1 − x2)− log(xn1 + xn2 − pnn − (1− pn)n),
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where x1 = er
(n)√

pn(1− pn) and x2 = e−r
(n)√

pn(1− pn). Or equivalently,

µn(1 ∈ `) = log

(
1 + cn√

(1 + cn)2 − 4pn(1− pn)

)
+ log(sinh(nr(n)))

− log
(

cosh(nr(n))− cosh(n log(pn/(1− pn))/2)
)
. (4.4)

Next, we calculate µn(O(n)
3 ): By Lemma 4.4,

µn(O(n)
3 ) =µn,Z(0 ∈ `, ` ⊂ [1− n, n− 1])

=µn,Z(` ⊂ [1− n, n− 1])− µn,Z(` ⊂ [1− n,−1])− µn,Z(` ⊂ [1, n− 1]),

where µn,Z is defined in Lemma 4.4. By Lemma 2.3 and Lemma 2.5,

µn(O(n)
3 ) = log

(
1 + cn√

(1 + cn)2 − 4pn(1− pn)

)
+ log(tanh(nr(n))). (4.5)

By combining Equations (4.2), (4.3), (4.4) and (4.5) together,

P[DL(n)
α,2 ∪ DL

(n)
α,4 = ∅] =

(
cosh(nr(n))

cosh(nr(n))− cosh(n log( pn
1−pn )/2)

)−α
.

Under the assumptions lim
n→∞

n2κ(n) = κ and lim
n→∞

n2cn = ε ∈ [0, κ/2], we have

pn
1− pn

= 1− 2
√
κ− 2ε

n
+ o(1/n) and r(n) =

√
κ

n
+ o(1/n).

Consequently,

lim
n→∞

P[DL(n)
α,2 ∪ DL

(n)
α,4 = ∅] =

(
cosh(

√
κ)− cosh(

√
κ− 2ε)

cosh(
√
κ)

)α
.

4.2 Loop-soup DL(n)
α,3

For a loop ` in DL(n)
α,3, Lift(`) is a loop on Z passing through 0 but never reaching

−n nor n. By Lemma 4.4, Lift(DL(n)
α,3)

def
= {Lift(`) : ` ∈ DL(n)

α,3} is the Poisson ensemble
of loops on Z with intensity measure αµn,Z. They cover a discrete random sub-interval
[−An, Bn] of [−n+ 1, . . . , n− 1] which contains 0. When An +Bn ≥ n− 1, all the vertices

belong to the same loop cluster formed by DL(n)
α,3; when An + Bn ≤ n − 2, there is a

correspondence between [−An, Bn] and the random discrete arc covered by DL(n)
α,3 such

that An = Jn and Bn = Kn. We give the distribution of [−An, Bn] in the following lemma.

Lemma 4.7. For a fixed sub-interval [−mn,Mn] in [1− n, n− 1], we have that

P([−An, Bn] ⊂ [−mn,Mn]) =

(
2 coshnr(n)

sinhnr(n)

)α(
sinh

(
(m+ 1)r(n)

)
sinh

(
(M + 1)r(n)

)
sinh(m+M + 2)r(n)

)α
,

where r(n) is given in Definition 1.6. As n tends to infinity, under the assumption that
lim
n→∞

n2κ(n) = κ, the sequence of variables (Ann ,
Bn
n )n converges in distribution towards

(A,B) ∈ [0, 1]2 where

P[A ≤ a,B ≤ b] =

(
2 cosh(

√
κ)

sinh(
√
κ)

)α(
sinh(

√
κa) sinh(

√
κb)

sinh(
√
κ(a+ b))

)α
.
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Proof. We fix a sub-interval [−mn,Mn] of [1− n, n− 1]. Then,

P([−An, Bn] ⊂ [−mn,Mn]) = exp{−αµn,Z(0 ∈ `, ` ⊂ [1−n, n−1], ` 6⊂ [−mn,Mn])}, (4.6)

where µn,Z is defined in Lemma 4.4. By inclusion-exclusion principle, for positive integers
mn and Mn, we have that

µn,Z(0 ∈ `, ` ⊂ [−mn,Mn])

= µn,Z(` ⊂ [−mn,Mn])− µn,Z(` ⊂ [−mn,−1])− µn,Z(` ⊂ [1,Mn]).

By Lemma 2.3, we see that

µn,Z(` ⊂ [−mn,Mn]) = − log det(−L|[−mn,Mn]) +

Mn∑
x=−mn

log(−Lxx),

where L is the Markov generator defined in Lemma 4.4. Similar expressions hold for the
terms µn,Z(` ⊂ [−mn,−1]) and µn,Z(` ⊂ [1,Mn]). Thus,

µn,Z(0 ∈ `, ` ⊂ [−mn,Mn])

= log(−L0
0)− log det(−L|[−mn,Mn]) + log det(−L|[−mn,−1]) + log det(−L|[1,Mn]).

We calculate the above determinants by using Lemma 2.5:

(−L0
0) =

x2
1 − x2

2

x1 − x2
,

det(−L|[−mn,Mn]) =
xMn+mn+2

1 − xMn+mn+2
2

x1 − x2
,

det(−L|[−mn,−1]) =
xmn+1

1 − xmn+1
2

x1 − x2
,

det(−L|[1,Mn]) =
xMn+1

1 − xMn+1
2

x1 − x2
,

where x1 and x2 are the roots of x2 − (1 + cn)x+
√
pn(1− pn) = 0:

x1 = er
(n)√

pn(1− pn) and x2 = e−r
(n)√

pn(1− pn). (4.7)

Therefore,

µn,Z(0 ∈ `, ` ⊂ [−mn,Mn]) = log

(
(x1 + x2)

(xMn+1
1 − xMn+1

2 )(xmn+1
1 − xmn+1

2 )

(x1 − x2)(xmn+Mn+2
1 − xmn+Mn+2

2 )

)
.

In particular,

µn,Z(0 ∈ `, ` ⊂ [−n+ 1, n− 1]) = log

(
(x1 + x2)

(xn1 − xn2 )(xn1 − xn2 )

(x1 − x2)(x2n
1 − x2n

2 )

)
.

By taking the difference, we see that

µn,Z(0 ∈ `, ` ⊂ [−n+ 1, n− 1], ` 6⊂ [−mn,Mn])

= log

(
(xn1 − xn2 )(xn1 − xn2 )(xmn+Mn+2

1 − xmn+Mn+2
2 )

(xMn+1
1 − xMn+1

2 )(xmn+1
1 − xmn+1

2 )(x2n
1 − x2n

2 )

)
. (4.8)

By combining Equations (4.6), (4.7) and (4.8), we get that

P([−An, Bn] ⊂ [−mn,Mn]) =

(
2 coshnr(n)

sinhnr(n)
·

sinh
(
(m+ 1)r(n)

)
sinh

(
(M + 1)r(n)

)
sinh(m+M + 2)r(n)

)α
.

Finally, by an explicit calculation, we get the convergence result for (Ann ,
Bn
n ), as n→∞,

under the assumption that lim
n→∞

n2κ(n) = κ.
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4.3 Proof of Proposition 1.13

In this subsection, we combine the previous results and give a proof of Proposition
1.13. Note that for non-negative integers m and M such that m+M ≤ n− 2,

{∃ ≥ 2 loop clusters, Jn ≤ m,Kn ≤M,DL(n)
α,1 = ∅}

= {DLα,1 ∪ DLα,2 ∪ DLα,4 = ∅, An ≤ m,Bn ≤M},

where An, Bn are defined in Subsection 4.2. Hence, by Lemmas 4.6, 4.7 and the
independence of (DL(n)

α,i )i=1,2,3,4, we get that

P[∃ ≥ 2 loop clusters, Jn ≤ m,Kn ≤M |DL(n)
α,1 = ∅]

=P[DL(n)
α,2 ∪ DL

(n)
α,4 = ∅]P[An ≤ m,Bn ≤M ]

=2α

cosh(nr(n))− cosh
(

1
2n log

(
pn

1−pn

))
sinh(nr(n))

α(
sinh((m+ 1)r(n)) sinh((M + 1)r(n))

sinh((m+M + 2)r(n))

)α
,

which implies the expression of P[∃ ≥ 2 loop clusters|DL(n)
α,1 = ∅]. The limit result in

Proposition 1.13 is a consequence of the limit result in Lemma 4.7. Indeed, as the limit
distribution (A,B) has a probability density, we have that

lim
n→∞

P[∃ ≥ 2 loop clusters|DL(n)
α,1 = ∅] = P[A+B ≤ 1],

and for positive real numbers a and b such that a+ b ≤ 1,

lim
n→∞

P[∃ ≥ 2 loop clusters, Jn ≤ an,Kn ≤ bn|DL(n)
α,1 = ∅] = P[A ≤ a,B ≤ b].

5 Proof of Theorem 1.14

For Theorem 1.14, it suffices to prove the following lemma. We will explain this in
details after the statement of the lemma.

Lemma 5.1. For 0 < α < 1,

lim
n→∞

P[∃ ≥ 2 loop clusters|DL(n)
α,2 ∪ DL

(n)
α,4 = ∅] =

(2 cosh
√
κ)α sinh(

√
κ(1− α))

sinh
√
κ

. (5.1)

Conditionally on the existence of closed edges, (Gn/n,Dn/n) converges in distribution
towards G,D where the density q(x, y) of (G,D) is given by

P[G ∈ dx,D ∈ dy]/dxdy

=
sin(απ)

π

2α−2(1− α)κ sinh
√
κ

sinh(
√
κ(1− α)) [sinh(

√
κ(1− x− y))]

α
[sinh(

√
κ(x+ y))]

2−α .

Proof of Theorem 1.14 by using Lemma 5.1.
By independence of (DL(n)

α,i )i=1,2,3,4, Equations (4.1) and (5.1) imply Part a) of Theorem

1.14 for α ∈]0, 1[. For α ≥ 1, since P[#C(n)
α = 1] increases as α increases, the result is

obtained by taking α ↑ 1. Since P[(Gn/n,Dn/n) ∈ ·|∃ closed edges] converges towards
(G,D) and the distribution of G+D has no atom, we must have

lim
n→∞

P[Gn +Dn = n− 1|∃ closed edges] = 0.

As a result,

P[∃ a unique closed edge in G(n)] ≤ P[Gn +Dn = n− 1|∃ closed edges]
n→∞→ 0.
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Therefore, by Lemma 5.1, we also have the convergence of (Gn/n,Dn/n) by conditioning

on the event {#C(n)
α ≥ 2} :

lim
n→∞

P[(Gn/n,Dn/n) ∈ ·|#C(n)
α ≥ 2] = P[(G,D) ∈ ·].

By the coupling theorem of Skorokhod and Dudley, we shall assume that (Gn, Dn)n
converges almost surely to (G,D) as n → ∞. As in the statement of Theorem 1.14,

the processes (S
(n)
i − S(n)

0 )i=0,...,k(n) are the left end points of closed edges, shifted by

S
(n)
0 = Dn + 1. Conditionally on (Gn, Dn), the sequence (S

(n)
i − S(n)

0 )i=0,...,k(n) has the
same law as the conditioned renewal processes formed by the left end points of the
closed edges in Model([1, . . . , n− 1−Gn −Dn], α, κ(n)). Note that

lim
n→∞

(n− 1−Gn −Dn)2κ(n) = (1−G−D)2κ.

Therefore, by Proposition 1.9,

lim
n→∞

P[S̃(n) ∈ ·|Gn, Dn]
Skorokhod

= P[Y (κ(1−G−D)2) ∈ ·|G,D],

where the scaled process S̃(n)
t = 1

n−1−Gn−Dn (S
(n)
b(n−1−Gn−Dn)1−αtc − S

(n)
0 ).

To prove Lemma 5.1, we need the following lemmas.

Lemma 5.2. The Lévy measure Π of the subordinator of the renewal density u(x) =

( 2
√
κ

1−e−2
√
κx )α is given by the following expression:

Π(dt) = dt · 1

π
(1− α) sin(απ)e2

√
κ(α−1)t

(
2
√
κ

1− e−2
√
κt

)2−α

.

Lemma 5.3. Let X(κ) be the subordinator of the potential density u(x) =
(

2
√
κ

1−e−2
√
κx

)α
.

For a > 0, we have that P0[X
(κ)
T]a,∞[

= a] = 0 and that

P0[X
(κ)
T]a,∞[

∈ dx]/dx =

∫
z∈]x−a,x[

u(x− z)Π(dz)

=

√
κ

π
sin(απ)

eα
√
κx(sinh(

√
κa))1−α

sinh(
√
κx)(sinh(

√
κ(x− a)))1−α .

Proof. The subordinator X(κ) has zero drift as lim
x↓0

U(0, x) = ∞ by [1, Theorem 5 in

Chapter 3]. Consequently, for any fixed a > 0, by a result of H. Kesten [13] (see [2,
Proposition 1.9 (i)]), for a > 0,

P0[a belongs to the closure of the range of X(κ)] = 0.

Hence, P0[X
(κ)
T]a,∞[

= a] = 0 for a > 0. According to Lemma 1.10 in [2], for x > a,

P0[X
(κ)
T]a,∞[

∈ dx]/dx =

∫
z∈]x−a,x[

u(x− z)Π(dz).

By Lemma 5.2, Π(dz) = dz · 1
π (1− α) sin(απ)e2

√
κ(α−1)z

(
2
√
κ

1−e−2
√
κz

)2−α
. Thus,

P0[X
(κ)
T]a,∞[

∈ dx]/dx =

∫
z∈]x−a,x[

(2
√
κ)α

(1− e−2
√
κ(x−z))α

× 1− α
π

sin(απ)e2
√
κz(α−1) (2

√
κ)2−α

(1− e−2
√
κz)2−α dz.
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By performing the change of variable t = 1−e−2
√
κz

1−e−2
√
κx , we see that

P0[X
(κ)
T]a,∞[

∈ dx]/dx =
2
√
κ

π
(1− α) sin(απ)(1− e−2

√
κx)−1

1∫
1−e−2

√
κ(x−a)

1−e−2
√
κx

(t−1 − 1)−αt−2 dt

=

√
κ

π
sin(απ)

eα
√
κx(sinh(

√
κa))1−α

sinh(
√
κx)(sinh(

√
κ(x− a)))1−α .

Lemma 5.4. Let Y (κ) and Q0 be the same as in Lemma 3.3. Fix a positive measurable
function f : [0, 1]2 → R+ and 0 < a, b < 1 such that a+ b < 1. Then,

Q0

[
f(Y

(κ)
T]a,∞[

, 1− Y (κ)
T]1−b,∞[−)1{Y (κ)

T]a,∞[
<1−b}

]
=

∫
a<x<1−y<1−b<1

f(x, y)
κ

π2

sin2(απ)(sinh(
√
κ))α

(sinh(
√
κ(1− x− y)))α sinh(

√
κx) sinh(

√
κy)

×
(

sinh(
√
κa) sinh(

√
κb)

sinh(
√
κ(x− a)) sinh(

√
κ(y − b))

)1−α

dxdy.

Proof. Let X(κ) be the subordinator with the potential density

U(x, y) = 1{y>x}

(
2
√
κ

1− e2
√
κ(y−x)

)α
and P0 its law starting from 0. By Lemma 5.3, P0[X

(κ)
T]a,∞[

= a] = 0 for a > 0. Next,
according to Lemma 1.10 in [2], for 0 ≤ x < a < x+ y,

P0[X
(κ)
T]a,∞[− ∈ dx,X

(κ)
T]a,∞[

−X(κ)
T]a,∞[− ∈ dy] = u(x)dxΠ(dy).

By applying the strong Markov property at time T]a,∞[ for X(κ), we see that

P0

[
φ(X

(κ)
T]a,∞[−, X

(κ)
T]a,∞[

, X
(κ)
T]1−b,∞[−, X

(κ)
T]1−b,∞[

)1{X(κ)
T]a,∞[

<1−b}

]
=

∫
0<z1<a<z1+z2

0<z3<1−b−z1−z2<z3+z4

φ(z1, z1 + z2, z1 + z2 + z3, z1 + z2 + z3 + z4)u(z1)dz1Π(dz2)u(z3)dz3Π(dz4),

where φ is a positive measurable function. Therefore, for a positive measurable f , we
have that

Q0

[
f(Y

(κ)
T]a,∞[

, 1− Y (κ)
T]1−b,∞[−)1{Y (κ)

T]a,∞[
<1−b}

]

= P0

f(X
(κ)
T]a,∞[

, 1−X(κ)
T]1−b,∞[−)

u(1−X(κ)
T]1−b,∞[

)

u(1)
1{X(κ)

T]1−b,∞[
<1,X

(κ)
T]a,∞[

<1−b}


=

∫
0<z1<a<z1+z2<z1+z2+z3<1−b<z1+z2+z3+z4<1

f(z1 + z2, 1− z1 − z2 − z3)

× u(1− z1 − z2 − z3 − z4)

u(1)
u(z1)dz1Π(dz2)u(z3)dz3Π(dz4).
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By performing the change of variables

{
x = z1 + z2

y = 1− z1 − z2 − z3
, we have that

Q0

[
f(Y

(κ)
T]a,∞[

, 1− Y (κ)
T]1−b,∞[−)1{Y (κ)

T]a,∞[
<1−b}

]
=

∫
0<x−z2<a<x<1−y<1−b<1−y+z4<1

f(x, y)
u(1− x− y)

u(1)
dxdy · u(y − z4)u(x− z2)Π(dz2)Π(dz4)

=

∫
a<x<1−y<1−b<1

f(x, y)
u(1− x− y)

u(1)
dxdy

∫
z2∈]x−a,x[,z4∈]y−b,y[

u(y − z4)u(x− z2)Π(dz2)Π(dz4).

Finally, the result follows from Lemma 5.3.

Proof of Lemma 5.1. We deduce from Lemma 4.7 the density ρ(a, b) of A,B:

ρ(a, b) = κα(α+ 1)

(
2 cosh(

√
κ)

sinh(
√
κ)

)α
(sinh(

√
κa) sinh(

√
κb))α

(sinh(
√
κ(a+ b)))α+2

.

Take an independent subordinator bridge Y (κ) defined in Lemma 3.3. Set

(g, d) = (Y
(κ)
T]B,∞[

, 1− Y (κ)
T]1−A,∞[−).

By Lemma 4.7 of the loop clusters formed by DL(n)
α,3, a combination of Proposition 1.8

and Proposition 1.9 about the loop clusters formed by DL(n)
α,1, the independence between

DL(n)
α,1 and DL(n)

α,3 and the last statement in Lemma 3.3,

lim
n→∞

P[All the edges are not covered by the loops in DL(n)
α,1 ∪ DL

(n)
α,3] = P[g + d < 1].

Moreover, conditionally on the existence of closed edges, (Gn/n,Dn/n) converges in
distribution towards (G,D), whose density equals to

1{x>0,y>0,x+y<1}
P[g ∈ dx, d ∈ dy]/dxdy

P[g + d < 1]
.

By Lemma 5.4, for x > 0, y > 0, x+ y < 1,

P[g ∈ dx, d ∈ dy|A = a,B = b]

= dxdy · 1{a<x<1−y<1−b}
κ

π2

sin2(απ)(sinh(
√
κ))α

(sinh(
√
κ(1− x− y)))α sinh(

√
κx) sinh(

√
κy)

×
(

sinh(
√
κa) sinh(

√
κb)

sinh(
√
κ(x− a)) sinh(

√
κ(y − b))

)1−α

.

Therefore,

P[g ∈ dx, d ∈ dy] =

∫
0<a<x,0<b<y

ρ(a, b)P[g ∈ dx, d ∈ dy|A = a,B = b] dadb

=dxdy ·
∫

0<a<x,0<b<y

κ2

π2

α(α+ 1) sin2(απ)(2 cosh
√
κ)α

(sinh(
√
κ(1− x− y)))α sinh(

√
κx) sinh(

√
κy)

× sinh(
√
κa) sinh(

√
κb) da db

(sinh(
√
κ(a+ b)))α+2(sinh(

√
κ(x− a)) sinh(

√
κ(y − b)))1−α .
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We make a change of variable as follows:

p =
(1− e−2

√
κa)(1− e−2

√
κx)

e−2
√
κa − e−2

√
κx

and q =
(1− e−2

√
κb)(1− e−2

√
κy)

e−2
√
κb − e−2

√
κy

.

Accordingly,

P[g ∈ dx, d ∈ dy] =dxdy · 1

π2

22α−2κα(α+ 1) sin2(απ)(cosh
√
κ)α

(sinh(
√
κ(1− x− y)))α(sinh(

√
κx) sinh(

√
κy))2−α

×
∫

p,q>0

pq · dpdq(
1−e−2

√
κ(x+y)

(1−e−2
√
κx)(1−e−2

√
κy)
pq + p+ q

)α+2 .

For the simplicity of notation, set δ = 1−e−2
√
κ(x+y)

(1−e−2
√
κx)(1−e−2

√
κy)

. By performing the change of

variable z = p
δpq+p+q ,∫

p,q>0

pq · dpdq(
1−e−2

√
κ(x+y)

(1−e−2
√
κx)(1−e−2

√
κy)
pq + p+ q

)α+2 =

∫
p,q>0

pq dp dq

(p+ q + δpq)α+2

=

∫
p>0,z∈[0,1]

p1−α

(1 + δp)2
zα−1(1− z) dp dz

=
1

α(α+ 1)

∞∫
0

p1−α

(1 + δp)2
dp.

We take w = 1
1+δp :

1

α(α+ 1)

∞∫
0

p1−α

(1 + δp)2
dp =

1

α(α+ 1)δ2−α

1∫
0

wα−1(1− w)1−α dw

=
1

α(α+ 1)δ2−αBeta(2− α, α)

=
1− α

α(α+ 1)δ2−αBeta(1− α, α).

By Euler’s reflection formula, Beta(1− α, α) = π
sin(πα) . Thus, for x > 0, y > 0, x+ y < 1,

P[g ∈ dx, d ∈ dy] = dxdy · sin(απ)

π

2α(1− α)κ(cosh
√
κ)α

[sinh(
√
κ(1− x− y))]

α
[sinh(

√
κ(x+ y))]

2−α .

Denote by Pr the quantity
∫

x>0,y>0,x+y<1

P[g ∈ dx, d ∈ dy]. Then,

Pr =

∫
x>0,y>0,x+y<1

sin(απ)

π

κ(1− α)(2 cosh
√
κ)α dxdy

[sinh(
√
κ(1− x− y))]α[sinh(

√
κ(x+ y))]2−α

=

∫
0<x<z<1

sin(απ)

π

κ(1− α)(2 cosh
√
κ)α dxdz

[sinh(
√
κ(1− z))]α[sinh(

√
κz)]2−α

=

1∫
0

sin(απ)

π

κ(1− α)(2 cosh
√
κ)αz dz

[sinh(
√
κ(1− z))]α[sinh(

√
κz)]2−α

.
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Take s = 1−e−2
√
κz

1−e−2
√
κ :

Pr =
sin(απ)

π
(1− α)(2 cosh

√
κ)α

e−α
√
κ

1− e−2
√
κ

1∫
0

sα−2(1− s)−α(− log(1− (1− e−2
√
κ)s)) ds.

By Taylor’s expansion, − log(1− (1− e−2
√
κ)s) =

∞∑
n=1

1
n (1− e−2

√
κ)nsn. Hence,

Pr =
sin(απ)

π
(1− α)(2 cosh

√
κ)α

e−α
√
κ

1− e−2
√
κ

∑
n≥1

1∫
0

(1− e−2
√
κ)n

n
sα−2+n(1− s)−α ds

=
sin(απ)

π
(1− α)(2 cosh

√
κ)α

e−α
√
κ

1− e−2
√
κ

∑
n≥1

(1− e−2
√
κ)n

n
Beta(α+ n− 1, 1− α)

=
sin(απ)

π
(1− α)Γ(1− α)(2 cosh

√
κ)α

e−α
√
κ

1− e−2
√
κ

∑
n≥1

(1− e−2
√
κ)n

n!
Γ(α+ n− 1).

Next,

∑
n≥1

(1− e−2
√
κ)n

n!
Γ(α+ n− 1) =

∑
n≥1

(1− e−2
√
κ)n

n!

∞∫
0

e−ttα−2+n dt

=

∞∫
0

e−ttα−2(
∑
n≥1

(1− e−2
√
κ)ntn

n!
) dt

=

∞∫
0

(e−e
−2
√
κt − e−t)tα−2 dt. (5.2)

By integration by parts,

(5.2) = (e−e
−2
√
κt − e−t) t

α−1

α− 1

∣∣∣∣∞
0

− 1

α− 1

∞∫
0

(e−t − e−2
√
κe−e

−2
√
κt)tα−1 dt

=
Γ(α)(1− e−2

√
κ(1−α))

1− α
.

Hence,

P[g + d < 1] =
(2 cosh

√
κ)α sinh(

√
κ(1− α))

sinh
√
κ

.

Finally, one can deduce the distribution of (G,D).

6 Informal relation with convergence of loop-soups

In this section, we would like to give informal remarks of the previous results from the
point of view of the scaling limit of the loop-soup. Please refer to [17] for the Markovian
loop-soup of one dimensional diffusions.

Firstly, let us give an informal explanation of the convergence result for the closed
edges in the loop cluster model on N which is proved in [16].

It is known that the Brownian loop-soup is the scaling limit of simple random walk
loop-soup. Intuitively, the scaling limit of the closed edges probably9 has some relation

9There is not an immediate consequence of the convergence of loop-soup. That’s why our explanation stays
informal.
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with the zero set of the occupation field of the Brownian loop. As an application of [17,
Proposition 4.5], the occupation field of Brownian loop-soup with killing rate κ

2 within
]0,∞[ is a homogeneous branching process with immigration. It is the solution of the
following SDE:

dXt = 2
√
XtdBt − 2

√
κXt dt+ 2α dt, t ∈ [0,∞[,

where B is a Brownian motion and X0 = 0. (It belongs to the Cox-Ingersoll-Ross (CIR)
family of diffusions which could be viewed as a generalization of squared Bessel process.
More precisely, it is a radial Ornstein-Uhlenbeck process of dimension 2α with parameter
−
√
κ, see [8].) To be more precise, when we apply Proposition 4.5 in [17], we take the non-

increasing positive harmonic function to be u↓(x) = e−
√
κx and take the non-decreasing

positive harmonic function to be u↑(x) = 2√
κ

sinh(
√
κx) such that the Green function

density with respect to the Lebesgue measure G(x, y) is given by G(x, y) = u↑(x)u↓(y)

for x ≤ y. (This normalization is required when applying Proposition 4.5 in [17]). We see
that w(x) = Wronskian(u↓, u↑) = 2. One can check that the zero set is given by the range

of the subordinator with potential density U(x, y) = 1{y>x}

(
2
√
κ

1−e−2
√
κ(y−x)

)α
, see e.g. [2,

Proposition 2.2].
Next, we consider the loop cluster over a discrete interval which is considered in this

article. If the approximation by Brownian loop-soup within ]0, 1[ works, then we expect
that the limit distribution of the closed edges is the zero set of the occupation field of
this Brownian loop-soup. By Proposition 4.5 of [17], we know that the occupation field
over the interval ]0, 1[ indexed by the position t ∈]0, 1[ is the solution of the following
SDE:

dYt = 2
√
YtdBt +

(
2α− cosh(

√
κ(1− t))

sinh(
√
κ(1− t))

Yt

)
dt, t ∈ [0, 1].

In fact, it is the bridge of a squared radial OU process of dimension 2α of parameter
−
√
κ from 0 to 0 of fixed time duration 1. Please refer to [7] for Markovian bridge and

refer to [8] for the transition density of squared radial OU process and its relationship
with squared Bessel process. Let Dt be the first time of hitting 0 after time t. Then, the
Radon-Nikodym derivative of the bridge process over the squared radial OU process is

1{Dt<1}

(
1− e−

√
κ

1− e−2
√
κ(1−Dt)

)α
,

restricted on the sub-σ-field up to time Dt. This is exactly the same as U(Dt,1)
U(0,1) , which

is used to construct our subordinator bridge. Then, one can check that the zero set of
the bridge of the squared radial OU process agrees with the range of the conditioned
subordinator defined in Lemma 3.3.

Finally, we would like to point out the way to get the limit distribution of (A,B) in
Lemma 4.7 from the point of view of Brownian loops. By the structure of Poisson random
measure, it is enough to check this for α = 1. In this case, there is a connection between
the loops passing through a fixed point and the Poisson point process of excursions at
the same point, see e.g. [14], [17]. For α = 1, they agree with each other. Accordingly,
the distribution of [−A,B] is exactly the random interval covered by these excursions
under the condition that they don’t cover −1 nor 1. The condition of avoiding −1 and
1 only affects the joint density of (A,B) up to a normalization constant. Therefore, we
could remove this restriction for the moment. The total local time at 0 is an exponential
variable with expectation G(x, x) = 1/

√
κ since the excursions at 0 form a Poisson point

process. The occupation time (total local time) indexed by the position x ∈] −∞,∞[

forms a two-sided process, the part on the left hand side of 0 is denoted by (U−x, x ≥ 0)

under time reversal and the right part is denoted by (Vx, x ≥ 0). By Ray-Knight theorem

EJP 20 (2015), paper 2.
Page 26/32

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3176
http://ejp.ejpecp.org/


Loop clusters on discrete circles

for diffusions, conditioned on the total local time at 0, U and V are two independent
copies of squared radial OU processes of dimension zero and parameter −

√
κ, see e.g.

Proposition 4.1 [17]. Thus, it is enough to compute the first hitting time of 0, and then
integrate them with respect to the total local time. The density of the first hitting time of
0 for our squared radial OU process is given by

t→ x2

2

( √
κ

sinh(
√
κt)

)2

exp{
√
κ

2
x2(1− coth(

√
κt))},

see e.g. [6] (Corollary 3.19). Finally, we get the joint density of the first hitting times
of 0 for U and V . We see that it is exactly the same density as the limit distribution of
(An/n,Bn/n) as n→∞ up to a normalization constant, see Lemma 4.7.

7 Appendix

7.1 Proof of Lemma 3.3

1. The subordinator (X
(κ)
t , t ≥ 0) has the potential density U(x, y) =

(
2
√
κ

1−e−2
√
κ(y−x)

)α
for y > x. When y tends to x, U(x, y) tends to ∞. As a consequence, the drift
coefficient d = 0, see Proposition 1.7 in [2]. It is proved by Kesten [13] that for a
fixed x > 0, x does not belong to the closure of the range of the subordinator with
probability 1, see Proposition 1.9 in [2]. By applying the strong Markov property at
a stopping time S,

E0[f(Xκ
s , s ∈ [0, S])1{S<T]1,+∞[}, X

(κ)
T]1,+∞[−

∈ db]

= E0
[
f(Xκ

s , s ∈ [0, S])1{S<T]1,+∞[}E
X

(κ)
S [X

(κ)
T]1,+∞[−

∈ db]
]
.

By [2, Lemma 1.10], we get that

• EX
(κ)
S [X

(κ)
T]1,+∞[−

∈ db] = Π̄(1− b)u(b−X(κ)
S ) db,10

• E0[X
(κ)
T]1,+∞[−

∈ db] = Π̄(1− b)u(b) db = u(b)

u(b−X(κ)
s )
PX

(κ)
s [X

(κ)
T]1,+∞[− ∈ db].

Hence,

E0
[
f(Xκ

s , s ∈ [0, S])1{S<T]1,+∞[}E
X

(κ)
S [X

(κ)
T]1,+∞[−

∈ db]
]

= E0[X
(κ)
T]1,+∞[

∈ db]E0

[
f(Xκ

s , s ∈ [0, S])1{S<T]1,+∞[}
u(b−X(κ)

S )

u(b)

]
.

In particular, for a fixed time t, we have that

E0[f(Xκ
s , s ∈ [0, t])1{t<T]1,+∞[}|X

(κ)
T]1,+∞[−

= 1]

= E0

[
f(Xκ

s , s ∈ [0, t])1{t<T]1,+∞[}
u(1−X(κ)

t )

u(1)

]
. (∗)

2. It is enough for us to show that x → u(1 − x) = U(x, 1) is excessive. The rest
will follow from the classical results on the Doob’s h-transform, see Chapter 11 of

[5]. Take a positive function g, we have P (κ)
t Ug =

∞∫
t

P
(κ)
s g ds and Ug =

∞∫
0

P
(κ)
s g ds.

Hence, P (κ)
t Ug ≤ Ug and P

(κ)
t Ug increases to Ug as t decreases to 0. As a con-

sequence, except for a set N of z of zero Lebesgue measure, y → u(y, z) is an
excessive function, i.e.

10Here, Π̄ represents the tail of the Lévy measure of the subordinator.
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•
∫
P

(κ)
t (x, dy)u(y, z) ≤ u(x, z),

• lim
t→0

P
(κ)
t (x, dy)u(y, z) = u(x, z).

Take a decreasing sequence (zn)n with limit 1 which is outside of the negligible
set N . As the increasing limit of a sequence of excessive functions y → u(y, zn),
y → u(y, 1) is excessive.

3. Before the proof, we would like to give a short explanation. From the symmetry
of the loop model on the discrete segment, the graphs of the conditional renewal
processes are centrosymmetric. Therefore, as the scaling limit, the conditional
subordinator has a centrosymmetric graph. Thus, Y (κ)

ζ− = 1 is equivalent to Y (κ)
0+ = 0

which is obviously true.

In the following, we will not use the discrete approximation described above.
Instead, we will prove that Qx[XT[1−δ,∞[

∈]0, 1[] = Qx[XT[x+δ,∞[
∈]0, 1[] which is

motivated by the idea of time reversal.

Let’s begin to prove Y (κ)
ζ− = 1. To prove this, it is enough to show that

Qx[T[1−δ,∞[ < ζ] = 1 for all δ > 0.

By applying Theorem 11.9 of [5] to the stopping time T[1−δ,∞[, we get that

Qx[T[1−δ,∞[ < ζ] = Px
[
T[1−δ,∞[ < T]1,+∞[,

u(1−XT[1−δ,∞[
)

u(1− x)

]
.

If X follows the law P0, then X + x has the law Px. Therefore, the above quantity
equals to

P0

[
T[1−x−δ,∞[ < T]1−x,∞[,

u(1− x−XT[1−x−δ,∞[
)

u(1− x)

]
.

By Lemma 1.10 in [2], for 0 ≤ a < 1− x− δ ≤ a+ b, we have that

P0[XT[1−x−δ,∞[− ∈ da,XT[1−x−δ,∞[
−XT[1−x−δ,∞[− ∈ db] = u(a) daΠ(db).

Consequently,

Qx[T[1−δ,∞[ < ζ] =

∫
0<a<1−x−δ<a+b<1−x

u(1− x− a− b)
u(1− x)

u(a) daΠ(db).

By performing the change of variable c = 1− x− a− b, we see that

Qx[T[1−δ,∞[ < ζ] =

∫
0<c<δ<c+b<1−x

u(c)

u(1− x)
u(1− x− c− b) dcΠ(db)

=P0

[
T[δ,∞[ < T]1−x,∞[,

u(1− x−XT[δ,∞[
)

u(1− x)

]
=Px

[
T[x+δ,∞[ < T]1,+∞[,

u(1−XT[x+δ,∞[
)

u(1− x)

]
=Qx[T[x+δ,∞[ < ζ].

By the right-continuity of the path, lim
δ→0

Qx[T[x+δ,∞[ < ζ] = 1. Hence,

lim
δ→0

Qx[T[1−δ,∞[ < ζ] = lim
δ→0

Qx[T[x+δ,∞[ < ζ] = 1.

Since a→ Qx[T[x+a,∞[ < ζ] is non-increasing, we must have

Qx[T[y,∞[ < ζ] = 1 for y ∈ [x, 1[.
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4. We know that P (κ)
t is a Feller semi-group. For f ∈ CK([0, 1[), x→ Q

(κ)
t f(x) belongs

to CK([0, 1[). (CK([0, 1[) denotes the collection of compact supported continuous
functions over [0, 1[ and

C0([0, 1[) = {f : [0, 1[→ R : f is continuous and lim
x→1

f(y) = 0}.)

By the Markov property of the semi-group (Q
(κ)
t )t≥0, ||Q(κ)

t f ||∞ ≤ ||f ||∞ for every

f ∈ C0([0, 1]). Thus, we have Q
(κ)
t f = lim

n→∞
Q

(κ)
t (f |[0,1−1/n[) ∈ C0([0, 1[). For x ∈

[0, 1[ and f ∈ C0([0, 1[),

lim
t→0

Q
(κ)
t f(x) = lim

t→0
Px

[
1{t<T]1,+∞[}f(X

(κ)
t )

u(1−X(κ)
t )

u(1− x)

]
dominated

=
convergence

f(x).

In other words, the semi-group (Q
(κ)
t )t≥0 is Feller.

5. By classical results on time reversal (see [5, Theorem 10.1]), the reversed process
is a moderate Markov process. Moreover, its semi-group Q̂

(κ)
t (x, dy) is given by

〈g,Q(κ)
t f〉G = 〈Q̂(κ)

t g, f〉G, where Q(κ)
t (x, dy) = U(y,1)

U(x,1)P
(κ)
t (x, dy) and

G(dx) =

∞∫
0

Q
(κ)
t (0,dx) dt =

U(0, x)U(x, 1)

U(0, 1)
dx.

Denote by (P̂
(κ)
t )t≥0 the dual semi-group of (P

(κ)
t )t≥0 (or the semi-group of −X(κ)

equivalently). Denote by u(x) the function U(0, x) and by h(x) the function U(x, 1).

Then, 〈g,Q(κ)
t f〉G =

1∫
0

P
(κ)
t (hf)(x)
h(x) g(x)u(x)h(x)

u(1) dx. By the duality between (P
(κ)
t )t≥0

and (P̂
(κ)
t )t≥0, we have that

〈g,Q(κ)
t f〉G =

1∫
0

f(x)
P̂

(κ)
t (ug)

u(x)

u(x)h(x)

u(1)
dx =

〈
f,
P̂

(κ)
t (ug)

u

〉
G

.

This implies that the semi-group (Q̂
(κ)
t )t≥0 associated with the reversed process of

Y is given by

Q̂
(κ)
t (x, dy) = P̂

(κ)
t (x, dy)

U(0, y)

U(0, x)
= P̂

(κ)
t (x, dy)

U(1− y, 1)

U(1− x, 1)
.

By a change of variable, we find that it equals to the semi-group of 1 − Y (κ). By
result 3 in this lemma, the reversed process starts from 1. Then, it is exactly the
left-continuous modification of 1− Y (κ) for Y (κ) starting from 0.

6. As we have explained in Part 1, for x > 0, P[x ∈ R̄(X(κ))] = 0 where R̄(X(κ)) is the
closure of the range of the subordinator X(κ). Denote by R̄(Y (κ)) the closure of the
range of the conditioned subordinator Y (κ). By Part 2 and 3 of this lemma, for any
δ > 0, the distributions of R̄(X(κ)) ∩ [0, 1− δ] and R̄(Y (κ)) ∩ [0, 1− δ] are absolute
continuous to each other. Hence, for 0 < x < 1, Q0[x ∈ R̄(Y (κ))] = 0.

7.2 Proof of Lemma 3.4

Set G̃(n)
m = σ(S

(κ(n))
1 , . . . , S

(κ(n))
m ) for m ≥ 0 and G(n)

t = G̃bn1−αtc for t ≥ 0. By definition,

(G(n)
t )t≥0 is a right-continuous filtration. As usual, by adding the negligible sets, we get a

complete filtration which is denoted by the same notation. When T is a (G(n)
t )t≥0-stopping
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time, bn1−αT c is a (G̃(n)
m )n≥0 stopping time. For the tightness, it is enough to verify the

following Aldous’ criteria (see [10]): for each strictly positive M and δ,

lim
K→∞

lim
n→∞

P

[
1

n
S

(κ(n))
bn1−αMc > K

]
= 0, (7.1)

lim
θ↓0

lim
n→∞

sup
T1,T2∈T (n)

M ,
T1≤T2≤T1+θ

P

[∣∣∣∣ 1nS(κ(n))
bn1−αT2c −

1

n
S

(κ(n))
bn1−αT1c

∣∣∣∣ > δ

]
= 0,

where T (n)
M is the collection of (G(n)

t )t≥0-stopping times bounded by M . Condition (7.1) is

implied by finite marginals convergence and P[X
(κ)
M =∞] = 0. Since S(κ(n)) is a renewal

process, for T1, T2 ∈ T (n)
M such that T1 ≤ T2 ≤ T1 + θ, we have that∣∣∣∣ 1nS(κ(n))

bn1−αT2c −
1

n
S

(κ(n))
bn1−αT1c

∣∣∣∣ ≤ ∣∣∣∣ 1nS(κ(n))
bn1−αT1c+dn1−αθe −

1

n
S

(κ(n))
bn1−αT1c

∣∣∣∣ law
=

∣∣∣∣ 1nS(κ(n))
dn1−αθe

∣∣∣∣ .
By finite marginals convergence, we get that

lim
θ↓0

lim
n→∞

sup
T1,T2∈T (n)

M ,T1≤T2≤T1+θ

P

[∣∣∣∣ 1nS(κ(n))
bn1−αT2c −

1

n
S

(κ(n))
bn1−αT1c

∣∣∣∣ > δ

]

≤ lim
θ↓0

lim
n→∞

P

[∣∣∣∣ 1nS(κ(n))
dn1−αθe

∣∣∣∣ > δ

]
≤ lim

θ↓0
P[|X(κ)

2θ | > δ] = 0

and the proof is complete.

7.3 Proof of Lemma 5.2

The Lévy measure Π and the renewal density u(·) = U(0, ·) are related through the
Laplace exponent of the subordinator as follows:

1

Φ(λ)
=

∞∫
0

e−λxu(x) dx, Φ(λ) =

∞∫
0

(1− e−λx) Π(dx) = λ

∞∫
0

e−λtΠ̄(t),

where Π̄ is the tail mass of Π. We compute Φ(λ) from u(x) =
(

2
√
κ

1−e−2
√
κx

)α
:

1

Φ(λ)
=

∞∫
0

e−λxu(x) dx =

∞∫
0

(
2
√
κ

1− e−2
√
κx

)α
e−λx dx.

We change the variable x by log(1−s)
−2
√
κ

:

1

Φ(λ)
=

1∫
0

(
2
√
κ

s

)α
e
−λ log(1−s)

−2
√
κ

1

2
√
κ(1− s)

ds

=(2
√
κ)α−1

1∫
0

s−α(1− s)
λ

2
√
κ
−1

ds

=(2
√
κ)α−1Beta

(
λ

2
√
κ
, 1− α

)
.
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By applying the following equality11 Beta(x, y) ·Beta(x+ y, 1− y) = π
x sin(πy) with x = λ

2
√
κ

and y = 1− α, we get that

Φ(λ) =(2
√
κ)1−α λ

2
√
κ

sin(απ)

π
Beta

(
λ

2
√
κ

+ 1− α, α
)

=
1

π
λ(2
√
κ)−α sin(απ)

1∫
0

y
λ

2
√
κ
−α

(1− y)α−1 dy.

Next, we change the variable y by e−2
√
κu:

Φ(λ) =λ · 1

π
(2
√
κ)−α sin(απ)

∞∫
0

e−λue2α
√
κu(1− e−2

√
κu)α−1 · 2

√
κe−2

√
κu du

=λ · 1

π
sin(απ)(2

√
κ)1−α

∞∫
0

e−λu(e2
√
κu − 1)α−1 du.

Hence, Π̄(t) = 1
π sin(απ)(2

√
κ)1−α(e2

√
κt − 1)α−1. Finally, we find Π(dt) by calculating the

derivative of Π̄.
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