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optimal stopping rules of threshold form
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Abstract

In the literature, the problem of maximizing the expected discounted reward over all
stopping rules has been explicitly solved for a number of reward functions (including
(max{x, 0})ν , ν > 0, in particular) when the underlying process is either a random
walk in discrete time or a Lévy process in continuous time. All of such reward functions
are increasing and logconcave while the corresponding optimal stopping rules have
the threshold form. In this paper, we explore the close connection between increasing
and logconcave reward functions and optimal stopping rules of threshold form. In
the discrete case, we show that if a reward function defined on Z is nonnegative,
increasing and logconcave, then the optimal stopping rule is of threshold form provided
the underlying random walk is skip-free to the right. In the continuous case, it is shown
that for a reward function defined on R which is nonnegative, increasing, logconcave
and right-continuous, the optimal stopping rule is of threshold form provided the
underlying process is a spectrally negative Lévy process. Furthermore, we also
establish the necessity of logconcavity and monotonicity of a reward function in order
for the optimal stopping rule to be of threshold form in the discrete (continuous, resp.)
case when the underlying process belongs to the class of Bernoulli random walks
(Brownian motions, resp.) with a downward drift. These results together provide a
partial characterization of the threshold structure of optimal stopping rules.
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process.
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1 Introduction

Let X = {Xt}t≥0 be a process with stationary independent increments defined
on a probability space (Ω,F , P ) where the time parameter t is either discrete (i.e.
t ∈ Z+ = {0, 1, . . . }) or continuous (i.e. t ∈ R+ = [0,∞)). We consider the filtration
{Ft}t≥0 where Ft is the P -completed σ-field generated by {Xs : 0 ≤ s ≤ t}. For a given
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Optimal stopping rules for logconcave reward functions

nonnegative measurable reward function g and a discount rate γ ≥ 0, we are concerned
with the problem of finding a stopping rule τ∗ ∈M such that

E
(
e−γτ

∗
g(Xτ∗)1{τ∗<∞}

)
= sup
τ∈M

E
(
e−γτg(Xτ )1{τ<∞}

)
,

where M is the class of all stopping rules τ with values in [0,∞] (with respect to the
filtration {Ft}) and 1A denotes the indicator function of A. A stopping rule τ is of
threshold form if τ = inf{t ≥ 0 : Xt ≥ a} for some a ∈ R ∪ {−∞}. An optimal stopping
rule of threshold form exists if τ∗ = τa for some a ∈ R ∪ {−∞}.

In the literature, Dubins and Teicher [9] solved the problem with g(x) = x+ :=

max{x, 0} and γ > 0 under the discrete-time setting. Darling, Liggett and Taylor [7]
also considered g(x) = x+ (with γ = 0) and g(x) = (ex − 1)+ both in discrete time, while
Mordecki [12] considered g(x) = (ex − 1)+ and g(x) = (1 − e−x)+ in continuous time.
Novikov and Shiryaev [13] and Kyprianou and Surya [11] further considered the more
general case g(x) = (x+)

n
, n = 1, 2, . . . with γ = 0 in discrete time and with γ ≥ 0 in

continuous time, respectively, while [13] also considered g(x) = 1− e−x+

= (1− e−x)+

with γ = 0 in discrete time. More recently, by generalizing Appell polynomials to Appell
functions, Novikov and Shiryaev [14] were able to extend the results of [11, 13] to the
case g(x) = (x+)

ν
for all real-valued ν > 0 with γ ≥ 0 in both discrete and continuous

time. Note that all of the above reward functions are increasing and logconcave, and
the corresponding optimal stopping rules obtained in [7, 9, 11, 12, 13, 14] have the
threshold form.

To solve the optimal stopping problem for a more general class of reward functions
under Lévy processes, Surya [16] introduced an (associated) averaging problem from
which a fluctuation identity for overshoots of a Lévy process was obtained. Then the value
function and the optimal stopping time can be expressed in terms of the solution to the
averaging problem provided this solution exists and has certain monotonicity properties.
See also Deligiannidis, Le and Utev [8] for related results on Lévy processes as well
as on random walks. More recently, Christensen, Salminen and Ta [6] characterized
the solution to the optimal stopping problem similarly as in [8, 16] but under very
general strong Markov processes including diffusions, Lévy processes and continuous-
time Markov chains. Moreover, the optimal stopping time can be either one-sided or
two-sided depending on the form of the representing function for the given reward
function. For additional results concerning the threshold structure of optimal stopping
rules, see Baurdoux [1] on (generalized) Ornstein-Uhlenbeck processes driven by Lévy
processes, and Christensen, Irle and Novikov [5] on AR(1) sequences.

In the present paper, we focus our attention on exploring the close connection
between increasing logconcave reward functions and optimal stopping rules of threshold
form. Specifically, in Section 2, we consider the case of discrete time and discrete
state and show that if a reward function defined on Z is nonnegative, increasing and
logconcave, then the optimal stopping rule is of threshold form provided that the
underlying (integer-valued) random walk is skip-free to the right. In Section 3, we
treat the continuous case and show that for a reward function defined on R which is
nonnegative, increasing, logconcave and right-continuous, the optimal stopping rule is of
threshold form provided that {Xt}t≥0 is a spectrally negative Lévy process. In Sections 4
and 5, we deal with the necessity of logconcavity and monotonicity of a reward function
in order for the optimal stopping rule to be of threshold form. Specifically, we consider
γ = 0 (no future discount) and show in Section 4 (Section 5, resp.) that a nonnegative
reward function defined on Z (R, resp.) is necessarily increasing and logconcave if
the corresponding optimal stopping rule is of threshold form for all Bernoulli random
walks (Brownian motions, resp.) with a downward drift. Section 6 contains concluding
remarks.
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Optimal stopping rules for logconcave reward functions

2 Optimal stopping rules for logconcave reward functions: the
discrete case

In this section, we use n ∈ Z+ (instead of t) to denote the discrete time parameter.
Let ξ, ξ1, ξ2, . . . be a sequence of independent and identically distributed integer-valued
random variables such that P (ξ > 1) = 0 and P (ξ = 1) > 0. Let

T = inf {n > 0 : ξ1 + ξ2 + · · ·+ ξn ≥ 1}

where inf ∅ :=∞. For γ ≥ 0, define

α = α(γ) = E
(
e−γT1{T<∞}

)
. (2.1)

Here α is defined for all γ ≥ 0, but we need to assume E(ξ) < 0 if γ = 0, so that 0 < α < 1.
By the first-step analysis, α satisfies

α = e−γ
∑
`≤1

P (ξ = `)α1−`. (2.2)

Remark 2.1. The function

f(x) = e−γ
∑
`≤1

P (ξ = `)x1−` − x, 0 ≤ x ≤ 1, (2.3)

is convex with f(α) = 0, f(0) = e−γP (ξ = 1) > 0, f(1) = e−γ − 1 ≤ 0, and f ′(1−) =

e−γ(1 − E(ξ)) − 1 (which is positive if γ = 0, since E(ξ) < 0), where f ′(x−) denotes
the left-hand derivative of f at x. Clearly α is the unique root of f(x) = 0 in (0, 1) and
f(x) ≤ 0 for all x ∈ [α, 1].

Let X0 = k ∈ Z, Xn+1 = Xn + ξn+1 for n = 0, 1, 2, . . . , so that {Xn}n≥0 is a random
walk with initial state k which is skip-free to the right, i.e. {Xn}n≥0 can only move up
one level at a time but can skip down several levels. (See [3] for a discussion of skip-free
random walks.) For ` ∈ Z, define τ` = inf {n ≥ 0 : Xn ≥ `} (a stopping rule of threshold
form). Then by the skip-free property, we have for X0 = k < ` that

Xτ` = ` a.s. on {τ` <∞} and Ek(e−γτ`1{τ`<∞}) = α`−k, (2.4)

where the subscript k in Ek refers to the initial state X0 = k. For a (nonnegative) reward
function g : Z → [0,∞) which is nonconstant, increasing (i.e. g(k) ≤ g(k + 1) for all k)
and logconcave (i.e. (g(k + 1))2 ≥ g(k)g(k + 2) for all k), define

u = u(γ) = inf

{
k ∈ Z :

g(k)

g(k + 1)
≥ α

} (
0

0
:= 0, inf Z := −∞

)
, (2.5)

U = U(γ) = sup
{
α`g(`) : ` ∈ Z

}
, (2.6)

V (k) = Vγ(k) = sup
τ∈M

Ek
(
e−γτg(Xτ )1{τ<∞}

)
(k ∈ Z), (2.7)

whereM is the class of all stopping rules τ with values in [0,∞]. (Note that g(k)/g(k+ 1)

is increasing in k since g is logconcave.) We are now ready to state the main result in
this section.

Theorem 2.2. Let γ ≥ 0, and assume E(ξ) < 0 if γ = 0. Let g : Z → [0,∞) be
nonconstant, increasing and logconcave, and define α = α(γ), u = u(γ), U = U(γ) and
V (k) = Vγ(k) as in (2.1) and (2.5)− (2.7). Then the following statements hold.

(i) If −∞ < u < ∞, then the threshold-form stopping rule τu is optimal, and V (k) =

g(k) for k ≥ u; and V (k) = αu−kg(u) for k < u.
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(ii) If u = ∞, then V (k) = α−kU for all k. If, in addition, U = ∞, then there exist
(randomized) stopping rules that have an infinite expected (discounted) reward; if
U <∞, then there is no optimal stopping rule.

(iii) If u = −∞, then V (k) = g(k) for all k and the optimal stopping rule is to stop
immediately.

To prove Theorem 2.2, we need the following standard result (cf. [14, Lemma 5]).

Lemma 2.3. Let g(k) and h(k) be nonnegative functions defined on Z and γ ≥ 0. If
h(k) ≥ g(k) and h(k) ≥ E[e−γh(k + ξ)] for all k, then

h(k) ≥ sup
τ∈M

Ek
(
e−γτg(Xτ )1{τ<∞}

)
, k ∈ Z.

Proof of Theorem 2.2. (i) Let V̂ (k) = Ek
(
e−γτug(Xτu)1{τu<∞}

)
, k ∈ Z. Then by (2.4),

V̂ (k) = g(k) for k ≥ u and V̂ (k) = αu−kg(u) for k < u. We need to show V (k) = V̂ (k)

for all k. Since clearly V (k) ≥ V̂ (k), it remains to prove V̂ (k) ≥ V (k). By Lemma 2.3, it
suffices to show

V̂ (k) > g(k) for k < u, (2.8)

and

V̂ (k) ≥ E[e−γ V̂ (k + ξ)] for all k. (2.9)

By the definition of u, we have g(k)/g(k + 1) < α for k < u and g(u)/g(u+ 1) ≥ α, im-
plying that g(u) > 0 and V̂ (k) > 0 for all k. For k < u, g(k) = g(k)

g(k+1)
g(k+1)
g(k+2) · · ·

g(u−1)
g(u) g(u) <

αu−kg(u) = V̂ (k). This proves (2.8).
To prove (2.9), let h(k) = αu−kg(u) for all k. Then for k > u,

V̂ (k) = g(k) =
g(k)

g(k − 1)

g(k − 1)

g(k − 2)
· · · g(u+ 1)

g(u)
g(u)

≤
(
α−1

)k−u
g(u) = h(k).

So V̂ (k) ≤ h(k) for all k. For k ≤ u,

E[e−γ V̂ (k + ξ)] ≤ E[e−γh(k + ξ)]

= e−γ
∑
`≤1

P (ξ = `)αu−k−`g(u)

= αu−kg(u) = V̂ (k),

where the second equality follows from (2.2).
It remains to prove (2.9) for k > u. Noting that g(k − 1) ≥ g(u) > 0 and that

g(j−1)
g(j) ≤

g(j)
g(j+1) for all j, we have

g(k + `)

g(k)
=

g(k + `)

g(k + `+ 1)

g(k + `+ 1)

g(k + `+ 2)
· · · g(k − 1)

g(k)
≤
(
g(k − 1)

g(k)

)−`
for ` < 0.

A similar argument shows that the above inequality also holds for ` > 0; thus,

g(k + `)

g(k)
≤
(
g(k − 1)

g(k)

)−`
for all `. (2.10)

(Note that (2.10), in fact, holds for any k with g(k − 1) > 0 regardless of whether k > u.
This inequality is also needed later in the proof of part (iii).) For k > u and ` ≤ u− k (i.e.
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k + ` ≤ u), we have

V̂ (k + `)

V̂ (k)
= αu−k−`

g(u)

g(k)
≤ αu−k−`

(
g(k − 1)

g(k)

)k−u
≤
(
g(k − 1)

g(k)

)u−k−`(
g(k − 1)

g(k)

)k−u
=

(
g(k − 1)

g(k)

)−`
, (2.11)

where the first inequality is by (2.10) and the second inequality follows from α ≤
g(u)/g(u+ 1) ≤ g(k − 1)/g(k). For k > u and ` > u− k (i.e. k + ` > u), we have by (2.10)

V̂ (k + `)

V̂ (k)
=
g(k + `)

g(k)
≤
(
g(k − 1)

g(k)

)−`
,

which together with (2.11) implies that V̂ (k + `)/V̂ (k) ≤ (g(k − 1)/g(k))
−` for k > u and

for all `. So, for k > u

E[e−γ V̂ (k + ξ)]

V̂ (k)
= e−γ

∑
`≤1

P (ξ = `)
V̂ (k + `)

V̂ (k)

≤ e−γ
∑
`≤1

P (ξ = `)

(
g(k − 1)

g(k)

)−`
=
f(c)

c
+ 1 ≤ 1,

where the second equality follows from (2.3) with c := g(k−1)/g(k) and the last inequality
is due to f(c) ≤ 0 since α ≤ g(u)/g(u+ 1) ≤ g(k − 1)/g(k) = c ≤ 1 (cf. Remark 2.1). This
proves (2.9) and completes the proof of part (i).

(ii) Let V̂ (k) = α−kU for all k. We need to show V (k) = V̂ (k). Note that since
u = ∞, αg(k+1)

g(k) > 1 for all k with g(k + 1) > 0, so αkg(k) is strictly increasing in

k ≥ k0 := inf {` : g(`) > 0}. Since g is nonconstant, we have k0 <∞ and U > αkg(k) for
all k, implying that V̂ (k) > g(k) for all k. For X0 = k < `, we have by (2.4)

V (k) ≥ Ek
(
e−γτ`g(Xτ`)1{τ`<∞}

)
= g(`)Ek(e−γτ`1{τ`<∞})

= α`−kg(`)→ α−kU = V̂ (k) as `→∞,

implying that V (k) ≥ V̂ (k) for all k.
Suppose U = ∞. Obviously V (k) = V̂ (k) = ∞. Choose an increasing sequence of

k1 < k2 < · · · such that αkng(kn) > 2n for all n. Then consider a randomized stopping
rule of threshold form which chooses threshold kn with probability 1

2n . Clearly this
stopping rule has an infinite expected (discounted) reward.

Suppose U <∞. We claim V̂ (k) = E[e−γ V̂ (k + ξ)], i.e. {e−γnV̂ (Xn)}n≥0 is a martin-
gale. To establish this claim, note that

E[e−γ V̂ (k + ξ)] =
∑
`≤1

P (ξ = `)e−γ V̂ (k + `)

= e−γ
∑
`≤1

P (ξ = `)α−k−`U

=

e−γ∑
`≤1

P (ξ = `)α1−`

α−k−1U

= (α)α−k−1U (by (2.2))

= α−kU = V̂ (k).

EJP 19 (2014), paper 120.
Page 5/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3745
http://ejp.ejpecp.org/


Optimal stopping rules for logconcave reward functions

It follows from Lemma 2.3 that V̂ (k) ≥ V (k), so V (k) = V̂ (k) > g(k). Since e−γnV (Xn) =

e−γnV̂ (Xn) is a positive martingale, we have for all k and for any stopping rule τ ,

V (k) = V (X0) ≥ Ek
(
e−γτV (Xτ )1{τ<∞}

)
≥ Ek

(
e−γτg(Xτ )1{τ<∞}

)
,

where the second inequality is strict if P (τ < ∞) > 0. Hence, there exists no optimal
stopping rule.

(iii) Since u = −∞, we have g(k − 1)/g(k) ≥ α for all k, implying that g(k) > 0 for all
k. By Lemma 2.3, it suffices to show that g(k) ≥ E[e−γg(k + ξ)]. Note that

E[e−γg(k + ξ)]

g(k)
= e−γ

∑
`≤1

P (ξ = `)
g(k + `)

g(k)

≤ e−γ
∑
`≤1

P (ξ = `)

(
g(k − 1)

g(k)

)−`
=
f(c′)

c′
+ 1 ≤ 1,

where the first inequality follows from (2.10), the second equality is by (2.3) with c′ :=

g(k−1)/g(k) and the last inequality is due to f(c′) ≤ 0, since 1 ≥ c′ = g(k−1)/g(k) ≥ α (cf.
Remark 2.1). This proves that E[e−γg(k + ξ)] ≤ g(k) for all k. The proof is complete.

Remark 2.4. By setting g(−∞) = 0, Theorem 2.2 can be readily extended to “defective”
skip-free random walks with P (ξ = −∞) > 0.

Remark 2.5. As pointed out by a referee, if the threshold u in (2.5) is not +∞, the optimal
stopping rule τu in Theorem 2.2 is a one-step-look-ahead rule for the associated problem
for the ladder height process. Since g is assumed to be increasing and logconcave, the
latter problem is a monotone stopping problem (cf. Chow, Robbins and Siegmund [4]).
Theorem 2.2 shows that the original problem for the process {Xn} and the associated
problem for the ladder height process are equivalent.

3 Optimal stopping rules for logconcave reward functions: the
continuous case

Let Y = {Yt}t≥0 with Y0 = 0 be a spectrally negative Lévy process defined on
a probability space (Ω,F , P ). We consider the filtration {Ft}t≥0 where Ft is the P -
completed σ-field generated by {Ys : 0 ≤ s ≤ t}, which satisfies the usual conditions.
Assume that P (Y1 > 0) > 0. (The reader is referred to [10] for a review of fluctuation
theory of spectrally negative Lévy processes; see also [2, 15] for a complete discussion
of Lévy processes.) In the absence of positive jumps, the Laplace exponent ψ(λ) is well
defined for all λ ≥ 0, i.e.

E[eλYt ] = etψ(λ) for λ ≥ 0 and t ≥ 0. (3.1)

Clearly ψ(0) = 0 and ψ is convex and tends to infinity as λ → ∞. For γ ≥ 0, let
Φ(γ) = sup {λ ≥ 0 : ψ(λ) = γ}, the largest (nonnegative) root of the equation ψ(λ) = γ,
which is positive for γ > 0. For γ = 0, note that since ψ(0) = 0, ψ′(0+) = E(Y1) and ψ is
convex, we have Φ(0) > 0 if and only if E(Y1) < 0.

With x ∈ R, let Xt = x+ Yt for t ≥ 0, which is a Lévy process with initial state X0 = x.
For a ∈ R, define τa = inf {t ≥ 0 : Xt ≥ a} (a stopping rule of threshold form). Then in
the absence of positive jumps, for X0 = x ≤ a, we have Xτa = a a.s. on {τa <∞}, and
(cf. [10, Equation (3)])

Ex
(
e−γτa1{τa<∞}

)
= e−Φ(γ)(a−x), (3.2)

where the subscript x in Ex refers to the initial state X0 = x. It follows from (3.1) and
the definition of Φ that

Ex[eλ(Xt−x)] = etψ(λ) for all λ ≥ 0, and ψ(Φ(γ)) = γ. (3.3)
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Consider a nonnegative reward function g : R→ [0,∞) which is nonconstant, increas-
ing (i.e. g(x) ≤ g(y) for x ≤ y) and logconcave (i.e. g(θx + (1 − θ)y) ≥ (g(x))

θ
(g(y))

1−θ

for all x, y and 0 < θ < 1). Letting log 0 := −∞, the function h(x) := log g(x) is increasing
and concave, so that the left-hand derivative h′(x−) is well defined (possibly +∞) at
every x with h(x) > −∞. Letting h′(x−) := +∞ if h(x) = −∞, we have that h′(x−) is
decreasing (and nonnegative) in x ∈ R. Define

w = w(γ) = inf {x ∈ R : h′(x−) ≤ Φ(γ)} , (3.4)

W = W (γ) = sup
{
e−Φ(γ)xg(x) : x ∈ R

}
, (3.5)

V ∗(x) = V ∗γ (x) = sup
τ∈M

Ex
(
e−γτg(Xτ )1{τ<∞}

)
(x ∈ R), (3.6)

where M is the class of all stopping rules τ with values in [0,∞] (with respect to the
filtration {Ft}t≥0). The following result is the continuous-time counterpart of Theorem
2.2.

Theorem 3.1. Let γ ≥ 0, and assume E(Y1) < 0 if γ = 0, so that Φ(γ) > 0. Let
g : R→ [0,∞) be nonconstant, increasing, logconcave and right-continuous, and define
w = w(γ),W = W (γ) and V ∗(x) = V ∗γ (x) as in (3.4)−(3.6). Then the following statements
hold.

(i) If −∞ < w <∞, then the threshold-form stopping rule τw is optimal, and V ∗(x) =

g(x) for x ≥ w; and V ∗(x) = e−Φ(γ)(w−x)g(w) for x < w.
(ii) If w =∞, then V ∗(x) = eΦ(γ)xW for all x. If, in addition, W =∞, then there exist

(randomized) stopping rules that have an infinite expected (discounted) reward; if
W <∞, then there is no optimal stopping rule.

(iii) If w = −∞, then V ∗(x) = g(x) for all x and the optimal stopping rule is to stop
immediately.

To prove Theorem 3.1, we need the following standard result which is the continuous-
time analogue of Lemma 2.3 and can be established easily by observing that {e−γtf(Xt)}t≥0

is a supermartingale.

Lemma 3.2. Let f(x) and g(x) be nonnegative measurable functions defined on R and
γ ≥ 0. If f(x) ≥ g(x) and f(x) ≥ Ex[e−γtf(Xt)] for all x ∈ R and t > 0, then

f(x) ≥ sup
τ∈M

Ex
(
e−γτg(Xτ )1{τ<∞}

)
, x ∈ R.

Proof of Theorem 3.1. (i) Let V̂ (x) = Ex
(
e−γτwg(Xτw)1{τw<∞}

)
, x ∈ R. Then by (3.2),

V̂ (x) = g(x) for x ≥ w and V̂ (x) = e−Φ(γ)(w−x)g(w) for x < w. We need to prove
V ∗(x) = V̂ (x) for all x. Since clearly V ∗(x) ≥ V̂ (x), it remains to prove V̂ (x) ≥ V ∗(x). By
Lemma 3.2, it suffices to show

V̂ (x) > g(x) for x < w, (3.7)

and
V̂ (x) ≥ Ex[e−γtV̂ (Xt)] for x ∈ R and t > 0. (3.8)

By the definition of w, we have 0 ≤ h′(y−) ≤ Φ(γ) for all y > w, which implies that
0 ≤ h(y) − h(x) ≤ Φ(γ)(y − x) for all y > x > w. Pick an arbitrary y with y > w and
g(y) > 0. Then we have by the right-continuity of g that

h(y)− h(w) = lim
x→w+

(h(y)− h(x)) ≤ lim
x→w+

Φ(γ)(y − x) = Φ(γ)(y − w) < +∞,

implying that h(w) > −∞. So we have g(w) > 0 and V̂ (x) > 0 for all x.
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To prove (3.7), let b(x) = g(x)

V̂ (x)
for all x ∈ R. For x < w, log b(x) = h(x) + Φ(γ)(w−x)−

h(w), whose left-hand derivative equals h′(x−)−Φ(γ) > 0, implying that b(x) is increasing
in −∞ < x < w and strictly increasing in x0 < x < w where x0 := inf{y : g(y) > 0} ≤ w.
Since b(w−) = g(w−)/V̂ (w) ≤ g(w)/V̂ (w) = 1, we have b(x) < 1, i.e. V̂ (x) > g(x) for
x < w. This proves (3.7).

To prove (3.8), let a(y) = e−Φ(γ)(w−y)g(w) and q(y) = log
(
V̂ (y)
a(y)

)
for all y ∈ R. Since

q(y) = h(y)+Φ(γ)(w−y)−h(w) for y > w, we have q′(y−) = h′(y−)−Φ(γ) ≤ 0 for y > w,
implying that q(y) is decreasing in y > w. Since q(w) = 0 and g(y) (and hence q(y)) is
right-continuous at y = w, we have q(y) ≤ 0 for y > w, i.e. V̂ (y) ≤ a(y) for y > w. Since
V̂ (y) = a(y) for y ≤ w, we have V̂ (y) ≤ a(y) for all y ∈ R. Now for X0 = x ≤ w,

Ex[e−γtV̂ (Xt)] ≤ Ex[e−γta(Xt)]

= g(w)e−γtEx[e−Φ(γ)(w−Xt)]

= g(w)e−Φ(γ)(w−x)−γtEx[eΦ(γ)(Xt−x)]

= g(w)e−Φ(γ)(w−x)−γt+ψ(Φ(γ))t

= g(w)e−Φ(γ)(w−x) = V̂ (x),

where the third and fourth equalities are by (3.3).
It remains to show that V̂ (x) ≥ Ex[e−γtV̂ (Xt)] for X0 = x > w. Letting ĥ(y) = log V̂ (y)

for all y ∈ R, note that ĥ(y) = h(y) for y ≥ w and ĥ(y) = h(w) − Φ(γ)(w − y) for
y < w. Since ĥ′(y) = Φ(γ) for y < w and h(y) (and hence ĥ(y)) is concave in y > w and
ĥ′(y−) = h′(y−) ≤ Φ(γ) for y > w, we have that ĥ(y) is increasing and concave on R. It
follows that

ĥ(y) ≤ h(x) + ĉ(y − x) for all y ∈ R,

where 0 ≤ ĉ := ĥ′(x−) = h′(x−) ≤ Φ(γ) (since x > w). So

Ex[e−γtV̂ (Xt)] = e−γtEx[eĥ(Xt)]

≤ e−γtEx[eh(x)+ĉ(Xt−x)]

= eh(x)−γtEx[eĉ(Xt−x)]

= eh(x)−γt+ψ(ĉ)t (by (3.3))

≤ eh(x)−γt+ψ(Φ(γ))t

= eh(x) = g(x) = V̂ (x),

where the second inequality follows since 0 ≤ ĉ ≤ Φ(γ) and ψ(z) ≤ max{ψ(0), ψ(Φ(γ))}
= ψ(Φ(γ)) for all 0 ≤ z ≤ Φ(γ) (by convexity of ψ). The proof of part (i) is complete.

(ii) Let V̂ (x) = eΦ(γ)xW for all x. We need to show V ∗(x) = V̂ (x). Since w =∞, the
left-hand derivative of h(x)− Φ(γ)x is h′(x−)− Φ(γ) > 0 for all x, so that e−Φ(γ)xg(x) =

eh(x)−Φ(γ)x is strictly increasing in x ≥ x0 := inf {y : g(y) > 0}. Since g is nonconstant,
we have x0 < ∞ and W = sup{e−Φ(γ)yg(y) : y ∈ R} = limy→∞ e−Φ(γ)yg(y) > e−Φ(γ)xg(x)

for all x ∈ R, implying that V̂ (x) > g(x) for all x ∈ R. For X0 = x < y, we have

V ∗(x) ≥ Ex
(
e−γτyg(Xτy )1{τy<∞}

)
= g(y)Ex(e−γτy1{τy<∞}) = e−Φ(γ)(y−x)g(y)→ eΦ(γ)xW = V̂ (x) as y →∞.

So V ∗(x) ≥ V̂ (x) for all x. The remaining claims for part (ii) can be established by
treating the cases W =∞ and W <∞ separately along the lines of the proof of Theorem
2.2(ii). The details are omitted.
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(iii) By Lemma 3.2, it suffices to show that for x ∈ R and t > 0,

g(x) ≥ Ex[e−γtg(Xt)], (3.9)

which can be established along the lines of the proof of (3.8) for X0 = x > w (cf. the last
part of the proof of (i)). Briefly, since w = −∞, we can argue that g(x) > 0 for all x ∈ R.
Since h(x) = log g(x) is increasing and concave on R,

h(y) ≤ h(x) + c(y − x) for all x and y, (3.10)

where 0 ≤ c := h′(x−) ≤ Φ(γ). Then (3.9) follows from (3.10).

Remark 3.3. If a nonnegative function g : R → [0,∞) is increasing and logconcave,
it is easily shown that g(x) is continuous everywhere except possibly at x0 := inf{x ∈
R : g(x) > 0}. If x0 > −∞, then Theorem 3.1 requires that g(x) be right-continuous at
x = x0, i.e. g(x0) = g(x0+). This right-continuity condition cannot be removed as the
following example shows. For 0 ≤ c ≤ 1, consider gc : R→ [0,∞) defined by

gc(x) =


0, if x < 0;

c, if x = 0;

1, if x > 0;

which is increasing and logconcave. It is readily seen that the value function V ∗(x) =

V ∗γ (x) = min{eΦ(γ)x, 1} for x ∈ R, which is independent of c ∈ [0, 1]. For c = 1, gc is
right-continuous and the optimal stopping rule is τ0. But for 0 ≤ c < 1, gc is not right-
continuous and no optimal stopping rule exists. On the other hand, for a nonnegative,
increasing and logconcave reward function g which is not right-continuous at x = x0 (i.e.
g(x0−) = 0 ≤ g(x0) < g(x0+)), let g̃(x) := g(x) for x 6= x0; and g̃(x0) := g(x0+), which
is increasing, logconcave and right-continuous. For the reward function g̃, suppose
the optimal threshold value w defined in (3.4) (with h′(x−) replaced by the left-hand
derivative of log g̃(x)) is such that x0 < w < ∞. Then the stopping rule τw is optimal
for the reward function g since τw is optimal for g̃ and since g(x) = g̃(x) for x 6= x0,
g(x0) < g̃(x0) and x0 < w. Moreover, the two reward functions g and g̃ yield the same
value function. As an example, consider a Brownian motion with drift parameter −a
(a > 0) and γ = 0 (without discounting). Then we have ψ(λ) = λ2/2− aλ and Φ(0) = 2a.
For 0 ≤ c ≤ 1, let g∗c : R→ [0,∞) be defined by

g∗c (x) =


0, if x < 0;

c, if x = 0;

e
√
x, if x > 0;

(3.11)

which is increasing and logconcave for all 0 ≤ c ≤ 1 and is right-continuous at x0 = 0 if
and only if c = 1. For the reward function g∗1 , the optimal threshold value defined in (3.4)

is w = 1/(16a2) > 0 = x0. It follows that τw is optimal for the reward function g∗c for all
0 ≤ c ≤ 1.

Remark 3.4. Theorem 2.2 is concerned with the discrete-time discrete-state case while
Theorem 3.1 deals with the continuous-time continuous-state case. We now consider the
continuous-time discrete-state case involving a compound Poisson process

Xt = k +

Nt∑
i=1

ξi (t ≥ 0), X0 = k ∈ Z,

EJP 19 (2014), paper 120.
Page 9/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3745
http://ejp.ejpecp.org/


Optimal stopping rules for logconcave reward functions

where ξ, ξ1, ξ2, . . . is a sequence of independent and identically distributed integer-valued
random variables with P (ξ > 1) = 0 and P (ξ = 1) > 0, and {Nt}t≥0 is a Poisson process
with constant rate µ > 0 which is independent of the ξ′is.

Let φ(λ) = E[eλξ], λ ≥ 0. Clearly, φ(0) = 1 and φ is convex and tends to infinity as

λ → ∞. For γ ≥ 0 and µ > 0, let β = β(γ, µ) = sup
{
λ ≥ 0 : φ(λ) = 1 + γ

µ

}
, which is

positive for γ > 0. For γ = 0, note that since φ(0) = 1, φ′(0+) = E(ξ) and φ is convex, we
have β > 0 if and only if E(ξ) < 0.

For a (nonnegative) reward function g : Z→ [0,∞) which is nonconstant, increasing
and logconcave, define

z = z(γ, µ) = inf

{
k ∈ Z :

g(k)

g(k + 1)
≥ e−β

}
, (3.12)

Z = Z(γ, µ) = sup
{
e−β`g(`) : ` ∈ Z

}
, (3.13)

V ∗∗(k) = V ∗∗γ,µ(k) = sup
τ∈M

Ek
(
e−γτg(Xτ )1{τ<∞}

)
, (3.14)

where M is the class of all stopping rules τ with values in [0,∞]. Then we have the
following result which can be established along the lines of the proof of Theorem 2.2.

Theorem 3.5. Let γ ≥ 0, and assume E(ξ) < 0 if γ = 0, so that β > 0. Let g : Z→ [0,∞)

be nonconstant, increasing and logconcave, and define z = z(γ, µ), Z = Z(γ, µ) and
V ∗∗(k) = V ∗∗γ,µ(k) as in (3.12)− (3.14). Then the following statements hold.

(i) If −∞ < z <∞, then the threshold-form stopping rule τz is optimal, and V ∗∗(k) =

g(k) for k ≥ z; and V ∗∗(k) = e−β(z−k)g(z) for k < z.
(ii) If z = ∞, then V ∗∗(k) = eβkZ for all k. If, in addition, Z = ∞, then there exist

(randomized) stopping rules that have an infinite expected (discounted) reward; if
Z <∞, then there is no optimal stopping rule.

(iii) If z = −∞, then V ∗∗(k) = g(k) for all k and the optimal stopping rule is to stop
immediately.

4 Necessity of logconcavity and monotonicity: the discrete case

Theorem 2.2 shows that for a nonnegative, increasing and logconcave reward function
g, the optimal stopping rule is of threshold form under a general skip-free random walk
model. In this section, we prove a converse of Theorem 2.2 by restricting attention to
Bernoulli random walks without discounting (i.e. γ = 0). Specifically, let {Xn}n≥0 be a
Bernoulli random walk with parameter p (denoted BRW(p))

Xn+1 = Xn + ξn+1, n = 0, 1, . . . ; X0 = k ∈ Z,

where ξ, ξ1, ξ2, . . . are independent and identically distributed with P (ξ = 1) = p, P (ξ =

−1) = q = 1− p (0 < p < 1
2 ). For u ∈ Z ∪ {−∞}, let τu = inf {n ≥ 0 : Xn ≥ u}. (Note that

τ−∞ = 0.) For u ∈ Z ∪ {−∞} and g : Z→ [0,∞), it is well known that

Ek,p
[
g(Xτu)1{τu<∞}

]
=

{
g(u)(p/q)u−k, if k < u;

g(k), if k ≥ u,
(4.1)

where the subscripts k and p in Ek,p refer to the initial state X0 = k and the parameter p
of Bernoulli random walk BRW(p).

Definition 4.1. Let g : Z→ [0,∞) be a reward function and

V (k, p) = sup
τ∈M

Ek,p[g(Xτ )1{τ<∞}],
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where M is the class of all stopping rules τ with values in [0,∞]. We say that g is of
threshold type with respect to Bernoulli random walks if for each p ∈ (0, 1

2 ) there is an
m(p) ∈ Z ∪ {−∞} such that the stopping rule τm(p) is optimal under the BRW(p) model,
i.e. for all p ∈ (0, 1

2 ) and k ∈ Z,

V (k, p) = Ek,p[g(Xτm(p)
)1{τm(p)<∞}]. (4.2)

We now present the main result in this section.

Theorem 4.2. If g : Z → [0,∞) is of threshold type with respect to Bernoulli random
walks, then g is increasing and logconcave.

The key to the proof of Theorem 4.2 is the following lemma.

Lemma 4.3. Suppose g : Z → [0,∞) is not identically 0 and is of threshold type with
respect to Bernoulli random walks (i.e. g satisfies (4.2)). Then the following properties
hold.

(i) For all k ∈ Z and p ∈ (0, 1
2 ), V (k, p) > 0 and

g(k) ≤ V (k, p) =

{
g(m(p))(p/q)m(p)−k, if k < m(p);

g(k), if k ≥ m(p),

(ii) m(p) is increasing in p ∈ (0, 1
2 ), i.e. m(p1) ≤ m(p2) for 0 < p1 < p2 <

1
2 ,

(iii) g(k) = 0 for all k < m0 := inf
{
m(p) : 0 < p < 1

2

}
.

Proof. (i) It is clear that V (k, p) ≥ Ek,p[g(Xτ )1{τ<∞}] for any stopping rule τ . Since g is
of threshold type with respect to Bernouli random walks, we have by (4.1) and (4.2) that

g(k) ≤ V (k, p) =

{
g(m(p))(p/q)m(p)−k, if k < m(p);

g(k), if k ≥ m(p).

Since g is not identically 0, g(i0) > 0 for some i0 ∈ Z. Consider the stopping rule
τ = inf {n ≥ 0 : Xn = i0} (which is different from τi0 if X0 = k > i0). Then

V (k, p) ≥ Ek,p
[
g(Xτ )1{τ<∞}

]
= g(i0)Ek,p

[
1{τ<∞}

]
= g(i0) min

{
(p/q)

i0−k , 1
}
> 0

for all k ∈ Z and p ∈ (0, 1
2 ). This proves (i).

(ii) Suppose m(p1) > m(p2) for some 0 < p1 < p2 < 1
2 . Letting m1 := m(p1),

q1 := 1− p1, q2 := 1− p2, we have by (4.1) and part (i)

g(m1)

(
p2

q2

)
= Em1−1,p2

[
g(Xτm1

)1{τm1
<∞}

]
≤ V (m1 − 1, p2) = g(m1 − 1) (since m1 − 1 = m(p1)− 1 ≥ m(p2))

≤ V (m1 − 1, p1) = g(m1)

(
p1

q1

)
,

which together with p1
q1
< p2

q2
implies that g(m1) = 0 and V (m1 − 1, p1) = 0, contradicting

(i). This proves (ii).
(iii) It suffices to consider m0 > −∞. Then, by the definition of m0 and (ii), there

exists p0 ∈ (0, 1
2 ) such that m(p) = m0 for all 0 < p ≤ p0. For 0 < p ≤ p0 and any

k < m0(= m(p)), we have by (i)

g(k) ≤ V (k, p) = g(m0)

(
p

q

)m0−k

→ 0 as p→ 0,

proving (iii).
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Proof of Theorem 4.2. If g is identically zero, then we are done. Suppose now that g
is not identically 0. We shall first show that g is increasing. Suppose to the contrary
that g(`) > g(` + 1) (implying g(`) > 0) for some ` ∈ Z. By Lemma 4.3(iii), we have
` ≥ m0 since g(`) > 0. Thus in either of the two cases m0 = −∞ and m0 > −∞, there
exists p ∈ (0, 1

2 ) such that m(p) ≤ `. Letting τ = inf {n ≥ 0 : Xn = `} and noting that
E`+1,p[1{τ<∞}] = 1, we have by Lemma 4.3(i)

g(`+ 1) = V (`+ 1, p) ≥ E`+1,p[g(Xτ )1{τ<∞}] = g(`),

a contradiction. This proves that g is increasing.
It remains to show that g is logconcave. Suppose to the contrary that (g(`+ 1))2 <

g(`)g(` + 2) for some ` ∈ Z. Then g(`) > 0 and hence g(k) > 0 for all k ≥ ` since g is
increasing. Choose p ∈ (0, 1

2 ) such that

g(`+ 1)

g(`+ 2)
<
p

q
<

g(`)

g(`+ 1)
. (4.3)

For k ≥ m(p), we have by Lemma 4.3(i) that g(k + 1) = V (k + 1, p) > 0 and

g(k) = V (k, p) ≥ Ek,p
[
g(Xτk+1

)1{τk+1<∞}
]

= g(k + 1)

(
p

q

)
.

So
g(k)

g(k + 1)
≥ p

q
for all k ≥ m(p),

implying by (4.3) that `+ 1 < m(p). Let `1, `2 ∈ {`+ 1, `+ 2, . . . ,m(p)} be such that(
g(`)

g(`1)

) 1
`1−`

= min

{(
g(`)

g(k)

) 1
k−`

: k = `+ 1, `+ 2, . . . ,m(p)

}
, (4.4)

g(`2)

g(`2 + 1)
= min

{
g(k)

g(k + 1)
: k = `+ 1, `+ 2, . . . ,m(p)

}
. (4.5)

By (4.3)–(4.5),
p

q
>
g(`+ 1)

g(`+ 2)
≥ g(`2)

g(`2 + 1)
,

(
g(`)

g(`1)

) 1
`1−`

=

(
g(`)

g(`+ 1)

g(`+ 1)

g(`+ 2)
· · · g(`1 − 1)

g(`1)

) 1
`1−`

>

(
g(`+ 1)

g(`+ 2)

(
g(`2)

g(`2 + 1)

)`1−`−1
) 1

`1−`

≥

((
g(`2)

g(`2 + 1)

)`1−`) 1
`1−`

=
g(`2)

g(`2 + 1)
,

from which follows

min

{
p

q
,

(
g(`)

g(`1)

) 1
`1−`

}
>

g(`2)

g(`2 + 1)
.

Choose p′ ∈ (0, p) such that

min

{
p

q
,

(
g(`)

g(`1)

) 1
`1−`

}
>
p′

q′
>

g(`2)

g(`2 + 1)
, (4.6)
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where q′ = 1− p′. For k ∈ {`+ 1, `+ 2, . . . ,m(p)}, we have by (4.4) and (4.6)(
g(`)

g(k)

) 1
k−`

≥
(
g(`)

g(`1)

) 1
`1−`

>
p′

q′
,

so

V (`, p′) ≥ g(`) > g(k)

(
p′

q′

)k−`
,

implying by Lemma 4.3(i) that m(p′) 6= k for all k ∈ {`+ 1, `+ 2, . . . ,m(p)}. Since
m(p′) ≤ m(p) by Lemma 4.3(ii), we have m(p′) ≤ ` < `2, which together with (4.1),
Lemma 4.3(i) and (4.6) implies that

E`2,p′ [g(Xτ`2+1
)1{τ`2+1<∞}] = g(`2 + 1)

(
p′

q′

)
> g(`2) = V (`2, p

′),

a contradiction. This proves that g is logconcave and completes the proof.

5 Necessity of logconcavity and monotonicity: the continuous
case

We have shown in Theorem 3.1 that for a nonnegative, increasing, logconcave and
right-continuous reward function g, the optimal stopping rule is of threshold form with
respect to a general spectrally negative Lévy process. In this section, we present a con-
verse of Theorem 3.1 by restricting attention to Brownian motions without discounting.
Specifically, let {Xt}t≥0 be a Brownian motion with drift parameter −a (denoted BM(a)),
where 0 < a <∞, i.e.

Xt = x− at+Bt for t ≥ 0; X0 = x ∈ R,

where x is the initial state and Bt is a standard Brownian motion. For a measurable
function g : R→ [0,∞) and u ∈ R ∪ {−∞}, letting τu = inf{t ≥ 0 : Xt ≥ u}, we have the
following standard result

Ex,a[g(Xτu)1{τu<∞}] =

{
g(u)e−2a(u−x), if x < u;

g(x), if x ≥ u;
(5.1)

where the subscripts x and a in Ex,a refer to the initial state X0 = x and the drift
parameter −a of Brownian motion BM(a).

Definition 5.1. Let g : R→ [0,∞) be a measurable reward function and

V (x, a) = sup
τ∈M

Ex,a
[
g(Xτ )1{τ<∞}

]
,

where M is the class of all stopping rules τ with values in [0,∞]. We say that g is
of threshold type with respect to Brownian motions if for each a ∈ (0,∞) there is a
u(a) ∈ R ∪ {−∞} such that the stopping rule τu(a) is optimal under BM(a), i.e. for all
a ∈ (0,∞) and x ∈ R,

V (x, a) = Ex,a

[
g(Xτu(a)

)1{τu(a)<∞}
]
. (5.2)

The following result is the counterpart of Theorem 4.2 in the continuous case.

Theorem 5.2. If a measurable reward function g : R→ [0,∞) is of threshold type with
respect to Brownian motions, then g is increasing and logconcave.

We first establish the following lemma which is the key to the proof of Theorem 5.2.
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Lemma 5.3. Suppose a measurable reward function g : R→ [0,∞) is not identically 0

and is of threshold type with respect to Brownian motions (i.e. g satisfies (5.2)). Then
the following properties hold.

(i) For all x ∈ R and a ∈ (0,∞), V (x, a) > 0 and

g(x) ≤ V (x, a) =

{
g(u(a))e−2a(u(a)−x), if x < u(a);

g(x), if x ≥ u(a),

(ii) u(a) is decreasing in a ∈ (0,∞), i.e. u(a1) ≥ u(a2) for 0 < a1 < a2 <∞,

(iii) g(x) = 0 for x < u∞ := inf {u(a) : 0 < a <∞}.

Proof. (i) It is clear that V (x, a) ≥ Ex,a[g(Xτ )1{τ<∞}] for all stopping rules τ ∈M. Since
g is of threshold type with respect to Brownian motions, we have by (5.1) and (5.2) that

g(x) ≤ V (x, a) =

{
g(u(a))e−2a(u(a)−x), if x < u(a);

g(x), if x ≥ u(a).

Since g is not identically 0, g(x′) > 0 for some x′ ∈ R. Consider the stopping rule
τ = inf {t ≥ 0 : Xt = x′}. Then

V (x, a) ≥ Ex,a[g(Xτ )1{τ<∞}]

= g(x′)Ex,a[1{τ<∞}]

= g(x′) min{e−2a(x′−x), 1} > 0

for all x ∈ R and a ∈ (0,∞). This proves (i).
(ii) Suppose u(a1) < u(a2) for some 0 < a1 < a2 < ∞. Letting u2 := u(a2) and

δ ∈ (0, u(a2)− u(a1)) (so that u(a1) < u(a2)− δ = u2 − δ < u2), we have by (5.1) and part
(i)

e−2a1δg(u2) = Eu2−δ,a1

[
g(Xτu2

)1{τu2<∞}

]
≤ V (u2 − δ, a1) = g(u2 − δ)
≤ V (u2 − δ, a2) = e−2a2δg(u2),

which together with 0 < a1 < a2 implies that g(u2) = 0 and V (u2−δ, a2) = 0, contradicting
(i). This proves (ii)

(iii) It suffices to consider u∞ > −∞. Pick an (arbitrary) a3 ∈ (0,∞) and let u3 :=

u(a3) ≥ u∞. We have by (i)

g(y) ≤ V (y, a3) = e−2a3(u3−y)g(u3) for all y ≤ u3. (5.3)

For any x < u∞, we have by (i), (ii) and (5.3) that for all a > a3

0 ≤ g(x) ≤ V (x, a) = e−2a(u(a)−x)g(u(a)) ≤ e−2a(u(a)−x)−2a3(u3−u(a))g(u3),

which converges to 0 as a→∞. This proves (iii).

Proof of Theorem 5.2. If g is identically zero, then we are done. Suppose now that g is
not identically 0. We shall first show that g is increasing. Suppose to the contrary that
g(r) > g(s) (implying g(r) > 0) for some r < s. By Lemma 5.3(iii), we have u∞ ≤ r < s,
so that there exists a ∈ (0,∞) such that u(a) < s. Letting τ = inf {t ≥ 0 : Xt = r} and
noting that Es,a

[
1{τ<∞}

]
= 1, we have by Lemma 5.3(i)

g(s) = V (s, a) ≥ Es,a
[
g(Xτ )1{τ<∞}

]
= g(r),
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a contradiction. This proves that g is increasing.

It remains to show that g is logconcave. Suppose to the contrary that there exist
r < c < s such that

g(c) < g(r)
s−c
s−r g(s)

c−r
s−r . (5.4)

Then g(r) > 0 and hence g(x) > 0 for all x ≥ r since g is increasing. By (5.4),

0 <

(
g(c)

g(s)

) 1
s−c

<

(
g(r)

g(s)

) 1
s−r

<

(
g(r)

g(c)

) 1
c−r

≤ 1. (5.5)

We claim that g is continuous on (r,∞). Since g is increasing, it suffices to show that
g(x−) ≥ g(x+) for all x > r. Since Lemma 5.3(iii) together with g(r) > 0 implies that
u∞ ≤ r < x, there exists a ∈ (0,∞) such that u(a) < x. By Lemma 5.3(i), we have for
0 < ε < x− u(a) (implying x− ε > u(a)),

g(x− ε) = V (x− ε, a) ≥ Ex−ε,a
[
g(Xτx+ε)1{τx+ε<∞}

]
= e−2a(2ε)g(x+ ε),

which by letting ε→ 0 yields g(x−) ≥ g(x+). Thus, g is continuous on (r,∞).

In view of (5.5), let a′ ∈ (0,∞) be such that

(
g(c)

g(s)

) 1
s−c

< e−2a′ <

(
g(r)

g(s)

) 1
s−r

<

(
g(r)

g(c)

) 1
c−r

. (5.6)

For y > x ≥ u(a′), we have by Lemma 5.3(i) that g(y) = V (y, a′) > 0 and

g(x) = V (x, a′) ≥ Ex,a′
[
g(Xτy )1{τy<∞}

]
= e−2a′(y−x)g(y) > 0.

So, (
g(x)

g(y)

) 1
y−x

≥ e−2a′ for all y > x ≥ u(a′),

implying by (5.6) that c < u(a′). Let

L = inf

{(
g(c)

g(x)

) 1
x−c

: c < x ≤ max{s, u(a′)}

}
. (5.7)

Since
(
g(r)
g(x)

) 1
x−r

is continuous in x ∈ [c,max{s, u(a′)}], there is an x1 ∈ [c,max{s, u(a′)}]
such that (

g(r)

g(x1)

) 1
x1−r

= min

{(
g(r)

g(x)

) 1
x−r

: c ≤ x ≤ max{s, u(a′)}

}
. (5.8)

By (5.6) and (5.7),

e−2a′ >

(
g(c)

g(s)

) 1
s−c

≥ L. (5.9)

Note that c ≤ x1 ≤ max{s, u(a′)}. By (5.6)–(5.8), if x1 = c,

(
g(r)

g(x1)

) 1
x1−r

=

(
g(r)

g(c)

) 1
c−r

>

(
g(c)

g(s)

) 1
s−c

≥ L; (5.10)
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if x1 > c,

(
g(r)

g(x1)

) 1
x1−r

=

[(
g(c)

g(x1)

) 1
x1−c

] x1−c
x1−r

[(
g(r)

g(c)

) 1
c−r

] c−r
x1−r

> L
x1−c
x1−r

[(
g(c)

g(s)

) 1
s−c

] c−r
x1−r

≥ L
x1−c
x1−rL

c−r
x1−r = L. (5.11)

In view of (5.9)–(5.11), let a′′ ∈ (a′,∞) be such that

min

{
e−2a′ ,

(
g(r)

g(x1)

) 1
x1−r

}
> e−2a′′ > L. (5.12)

For y ∈ [c, u(a′)], we have by (5.8) and (5.12)(
g(r)

g(y)

) 1
y−r

≥
(
g(r)

g(x1)

) 1
x1−r

> e−2a′′ ,

so V (r, a′′) ≥ g(r) > e−2a′′(y−r)g(y), implying by Lemma 5.3(i) that u(a′′) 6= y for all
y ∈ [c, u(a′)]. Since u(a′′) ≤ u(a′) by Lemma 5.3(ii), we have u(a′′) < c. It follows from

(5.7) and (5.12) that e−2a′′ >
(
g(c)
g(y0)

) 1
y0−c

for some y0 ∈ (c,max{s, u(a′)}], which together

with u(a′′) < c implies that

V (c, a′′) = g(c) < e−2a′′(y0−c)g(y0) = Ec,a′′
[
g(Xτy0

)1{τy0<∞}
]
,

a contradiction. This proves that g is logconcave and completes the proof.

Remark 5.4. Under the assumptions on g in Theorem 5.2, g has been shown to be
increasing and logconcave, so that it is continuous everywhere except possibly at
x0 := inf{x : g(x) > 0} (cf. Remark 3.3). However, g need not be right-continuous under
the assumptions of Theorem 5.2, as the function g∗c given in (3.11) (with 0 ≤ c < 1) shows.

6 Concluding remarks

We have explored the close connection between increasing logconcave reward func-
tions and optimal stopping rules of threshold form, which yields a partial characterization
of the threshold structure of optimal stopping rules. In the discrete (continuous, resp.)
case, we established that if a nonnegative measurable reward function defined on Z
(R, resp.) is increasing and logconcave (and right-continuous for the continuous case),
then the optimal stopping rule is of threshold form provided the underlying process is a
skip-free random walk (a spectrally negative Lévy process, resp.). As these results only
cover optimal stopping problems without overshoot, it would be of great interest to find,
for problems with overshoot, (general) conditions on the reward function (in addition to
logconcavity and monotonicity) under which the optimal stopping rule is of threshold
form, so as to provide a more complete characterization of the threshold structure of
optimal stopping rules.

In the case without discounting (γ = 0), we also established the necessity of logcon-
cavity and monotonicity of a reward function in order for the optimal stopping rule to be
of threshold form in the discrete (continuous, resp.) case when the underlying process be-
longs to the class of Bernoulli random walks (Brownian motions, resp.) with a downward
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drift. For the remainder of this section, we briefly address the issue of necessity of log-
concavity and monotonicity when the discount rate γ is positive. With γ > 0 fixed, in the
discrete case, we consider the class of Bernoulli random walks BRW(p) for all 0 < p < 1.
Let g be a positive reward function defined on Z with g(k) ≥ e−γ max{g(k − 1), g(k + 1)}
for all k ∈ Z. (Such a function g can be neither increasing nor logconcave.) Since
g(k) ≥ E[e−γg(k + ξ)] where P (ξ = 1) = p = 1− q = 1− P (ξ = −1), we have by Lemma
2.3

g(k) ≥ Ek,p(e−γτg(Xτ )1{τ<∞}) , for all k ∈ Z and τ ∈M,

implying that the stopping rule τ−∞ (i.e. to stop immediately) is optimal under BRW(p)
for all 0 < p < 1. In particular, for a positive increasing reward function g with
g(k) ≥ e−γg(k + 1) for all k (which need not be logconcave), the stopping rule τ−∞ is
optimal under BRW(p) for all 0 < p < 1. More generally, let g be a positive increasing
reward function such that for some k0 ∈ Z, g is logconcave in k ≤ k0 (i.e. g(k − 2)/g(k −
1) ≤ g(k − 1)/g(k) for all k ≤ k0) and g(k) ≥ e−γg(k + 1) for all k ≥ k0. Then the optimal
stopping rule is of threshold form under BRW(p) for all 0 < p < 1. More precisely, for
0 < p < 1, define

α(p) = (eγ −
√
e2γ − 4pq)/(2q),

which satisfies (2.2). Let

m(p) = inf{k ∈ Z : g(k)/g(k + 1) ≥ α(p)}.

Note that m(p) ≤ k0 since α(p) ≤ e−γ . Then it can be shown (along the lines of the proof
of Theorem 2.2) that τm(p) is optimal under BRW(p) for all 0 < p < 1. (This can also be
argued by considering the associated problem for the ladder height process, which as a
consequence of the conditions on g, is a monotone stopping problem; cf. Remark 2.5.)

In the continuous case, we consider the class of Brownian motions BM(a) for all a ∈ R
where −a is the drift parameter, i.e. Xt = x−at+Bt for t ≥ 0. For a measurable function
g : R→ [0,∞) and u ∈ R ∪ {−∞}, we have the following standard result

Ex,a[e−γτug(Xτu)1{τu<∞}] =

{
g(u)e−θ(a)(u−x), if x < u;

g(x), if x ≥ u;
(6.1)

where θ(a) =
√
a2 + 2γ + a. (Note that θ(a) equals Φ(γ) in (3.2) when {Xt} is BM(a) and

that (6.1) reduces to (5.1) since θ(a) = 2a for γ = 0 and a > 0.) Clearly with γ > 0 fixed,
θ(a) is continuous and strictly increasing with lima→−∞ θ(a) = 0 and lima→∞ θ(a) =∞.
The following result can be established along the lines of the proof of Theorem 5.2 with
2a replaced by θ(a) and some minor modifications.

Theorem 6.1. Fix γ > 0. Let g : R→ [0,∞) be a measurable reward function. Suppose
that for each −∞ < a < ∞, there is a threshold u(a) ∈ R ∪ {−∞} such that τu(a) is
optimal under BM(a). Then g is increasing and logconcave.

References

[1] Baurdoux, E.J.: Examples of optimal stopping via measure transformation for processes with
one-sided jumps. Stochastics 79, (2007), 303–307. MR-2308078

[2] Bertoin, J.: Lévy Processes. Cambridge University Press, 1996. MR-1406564

[3] Brown, M., Peköz, E.A. and Ross, S.M.: Some results for skip-free random walk. Probability
in the Engineering and Informational Sciences 24, (2010), 491–507. MR-2725345

[4] Chow, Y.S., Robbins, H. and Siegmund, D.: Great Expectations: The Theory of Optimal
Stopping. Houghton Mifflin, Boston, 1971. MR-0331675

[5] Christensen, S., Irle, A. and Novikov, A.: An elementary approach to optimal stopping
problems for AR(1) sequences. Sequential Analysis 30, (2011), 79–93. MR-2770707

EJP 19 (2014), paper 120.
Page 17/18

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2308078
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=2725345
http://www.ams.org/mathscinet-getitem?mr=0331675
http://www.ams.org/mathscinet-getitem?mr=2770707
http://dx.doi.org/10.1214/EJP.v19-3745
http://ejp.ejpecp.org/


Optimal stopping rules for logconcave reward functions

[6] Christensen, S., Salminen, P. and Ta, B.Q.: Optimal stopping of strong Markov processes.
Stochastic Processes and their Applications 123, (2013), 1138–1159. MR-3005017

[7] Darling, D.A., Liggett, T. and Taylor, H.M.: Optimal stopping for partial sums. Ann. Math.
Statist. 43, (1972), 1363–1368. MR-0312564

[8] Deligiannidis, G., Le, H. and Utev, S.: Optimal stopping for processes with independent
increments, and applications. J. Appl. Probab. 46, (2009), 1130–1145. MR-2582711

[9] Dubins, L.E. and Teicher, H.: Optimal stopping when the future is discounted. Ann. Math.
Statist. 38, (1967), 601–605. MR-0217945

[10] Kyprianou, A.E. and Palmowski, Z.: A martingale review of some fluctuation theory for
spectrally negative Lévy processes. Séminaire de Probabilités XXXVIII. Lecture Notes in
Math. 1857, (2005), 16–29. Springer, Berlin. MR-2126964

[11] Kyprianou, A.E. and Surya, B.A.: On the Novikov-Shiryaev optimal stopping problems in
continuous time. Elect. Comm. in Probab. 10, (2005), 146–154. MR-2162814

[12] Mordecki, E.: Optimal stopping and perpetual options for Lévy processes. Finance and
Stochastics 6, (2002), 473–493. MR-1932381

[13] Novikov, A.A. and Shiryaev, A.N.: On an effective solution to the optimal stopping problem
for random walks. Theory. Probab. Appl. 48, (2005), 288–303. MR-2144307

[14] Novikov, A.A. and Shiryaev, A.N.: On a solution of the optimal stopping problem for processes
with independent increments. Stochastics. 79, (2007), 393–406. MR-2308083

[15] Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press,
1999. MR-1739520

[16] Surya, B.A.: An approach for solving perpetual optimal stopping problems driven by Lévy
processes. Stochastics. 79, (2007), 337–361. MR-2308080

Acknowledgments. The authors wish to dedicate this work to Professor Herman Cher-
noff on the occasion of his ninety-first birthday. The authors are grateful to the referee for
a careful reading and useful comments. The authors also gratefully acknowledge support
from the National Science Council of Taiwan under grants NSC 101-2118-M-018-004
and NSC 102-2118-M-001-006.

EJP 19 (2014), paper 120.
Page 18/18

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=3005017
http://www.ams.org/mathscinet-getitem?mr=0312564
http://www.ams.org/mathscinet-getitem?mr=2582711
http://www.ams.org/mathscinet-getitem?mr=0217945
http://www.ams.org/mathscinet-getitem?mr=2126964
http://www.ams.org/mathscinet-getitem?mr=2162814
http://www.ams.org/mathscinet-getitem?mr=1932381
http://www.ams.org/mathscinet-getitem?mr=2144307
http://www.ams.org/mathscinet-getitem?mr=2308083
http://www.ams.org/mathscinet-getitem?mr=1739520
http://www.ams.org/mathscinet-getitem?mr=2308080
http://dx.doi.org/10.1214/EJP.v19-3745
http://ejp.ejpecp.org/

	 Introduction
	 Optimal stopping rules for logconcave reward functions: the discrete case
	Optimal stopping rules for logconcave reward functions: the continuous case
	 Necessity of logconcavity and monotonicity: the discrete case
	 Necessity of logconcavity and monotonicity: the continuous case
	Concluding remarks
	References

