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Abstract

Let X be a (two-sided) fractional Brownian motion of Hurst parameter H ∈ (0, 1)
and let Y be a standard Brownian motion independent of X. Fractional Brownian
motion in Brownian motion time (of index H), recently studied in [17], is by definition
the process Z = X ◦ Y . It is a continuous, non-Gaussian process with stationary
increments, which is selfsimilar of index H/2. The main result of the present paper
is an Itô’s type formula for f(Zt), when f : R→ R is smooth and H ∈ [1/6, 1). When
H > 1/6, the change-of-variable formula we obtain is similar to that of the classical
calculus. In the critical case H = 1/6, our change-of-variable formula is in law and
involves the third derivative of f as well as an extra Brownian motion independent of
the pair (X,Y ). We also discuss briefly the case H < 1/6.
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1 Introduction

If f : R+ → R is C1 then f(t) = f(0) +
∫ t
0
f ′(s)ds for all t > 0 whereas, if W is a

standard Brownian motion and if f : R→ R is C2 then, by the Itô’s formula,

f(Wt) = f(0) +

∫ t

0

f ′(Ws)d
−Ws +

1

2

∫ t

0

f ′′(Ws)ds, t > 0. (1.1)

In (1.1) the Itô integral, namely

∫ t

0

Xsd
−Ys := lim

n→∞

b2ntc−1∑
k=0

Xk2−n(Y(k+1)2−n − Yk2−n), (1.2)

is of forward type. It is well-known that the additional bracket term 1
2

∫ t
0
f ′′(Ws)ds

appearing in (1.1) comes from the non-negligibility of the quadratic variation of W in
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the large limit; more precisely,

b2ntc−1∑
k=0

(W(k+1)2−n −Wk2−n)2
a.s.−→ t as n→∞. (1.3)

Introducing a family {BH}H∈(0,1) of fractional Brownian motions parametrized by
the Hurst parameter H may help to reinterpret (1.1) in a more dynamical way. Let us
elaborate this point of view further. Recall thatB

1
2 is nothing but the standard Brownian

motion, whereas B1 is the process B1
t = tG, t > 0, G ∼ N(0, 1). The extension of (1.3)

to any H ∈ (0, 1) is well-known: one has

2n(2H−1)
b2ntc−1∑
k=0

(BH(k+1)2−n −BHk2−n)2
a.s.−→ t as n→∞. (1.4)

Based on (1.4), it is then not difficult to prove the following two facts:

1. If H > 1
2 and f : R→ R is C2 (actually, C1 is enough), then

∫ t
0
f ′(BHs )d−BHs exists

as a limit in probability and we have

f(BHt ) = f(0) +

∫ t

0

f ′(BHs )d−BHs , t > 0.

2. If H < 1
2 , then ∫ t

0

BHs d
−BHs = −∞ a.s.,

meaning that there is no possible change-of-variable formula for f(x) = x2.

Thus, H = 1
2 appears to be a critical value for the change-of-variable formula involving

the forward integral (1.2). This is because it is precisely the value from which the sign
of 2H − 1 changes in (1.4). The chain rule being (1.1) in the critical case H = 1

2 , one
has a complete picture for the forward integral (1.2).

To go one step further, one may wonder what kind of change-of-variable formula one
would obtain after replacing the definition (1.2) by its symmetric counterpart, namely

∫ t

0

Xsd
◦Ys := lim

n→∞

b2ntc−1∑
k=0

1

2

(
Xk2−n +X(k+1)2−n

)
(Y(k+1)2−n − Yk2−n) (1.5)

(provided the limit exists in some sense). As it turns out, it is arguably a much more dif-
ficult problem, which has been solved only recently. In this context, the crucial quantity
is now the cubic variation. And this latter is known to satisfy, for any H < 1

2 ,

2n(3H−
1
2 )

b2ntc−1∑
k=0

(BH(k+1)2−n −BHk2−n)3
law→ N(0, σ2

H) as n→∞. (1.6)

With a lot of efforts, one can prove (see [5, 6] when H 6= 1
6 and [16] when H = 1

6 ) the
following three facts, which hold for any smooth enough real function f : R→ R:

1. If H > 1
6 then

∫ t
0
f ′(BHs )d◦BHs exists as a limit in probability and one has

f(BHt ) = f(0) +

∫ t

0

f ′(BHs )d◦BHs , t > 0. (1.7)
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2. If H = 1
6 then

∫ t
0
f ′(B

1
6
s )d◦B

1
6
s exists as a stable limit in law and one has, with W

a standard Brownian motion independent of B
1
6 and κ3 ' 2.322 (see (3.4) for the

precise definition of κ3),

f(B
1
6
t ) = f(0) +

∫ t

0

f ′(B
1
6
s )d◦B

1
6
s −

κ3
12

∫ t

0

f ′′′(B
1
6 )dWs, t > 0. (1.8)

3. If H < 1
6 then ∫ t

0

(BHs )2d◦BHs does not exist in law. (1.9)

Thus, as we see, the critical value for the symmetric integral is now H = 1
6 ; it is exactly

the value of H from which the sign of 3H − 1
2 changes in (1.6).

In [1, 2] (see also [3]), Burdzy has introduced the so-called iterated Brownian mo-
tion. This process, which can be regarded as the realization of a Brownian motion on a
random fractal, is defined as

Zt = X(Yt), t > 0,

where X is a two-sided Brownian motion and Y is a standard (one-sided) Brownian
motion independent of X. Note that Z is self-similar of order 1

4 and has stationary

increments; hence, in some sense, Z is close to the fractional Brownian motion B
1
4 of

indexH = 1
4 . As is the case forB

1
4 , Z is neither a Dirichlet process nor a semimartingale

or a Markov process in its own filtration. A crucial question is therefore how to define a
stochastic calculus with respect to it. This issue has been tackled by Khoshnevisan and
Lewis in [10, 11], where the authors develop a Stratonovich-type stochastic calculus
with respect to Z, by extensively using techniques based on the properties of some
special arrays of Brownian stopping times, as well as on excursion-theoretic arguments.
See also the paper [14] which may be seen as a follow-up of [10]. The formula obtained
in [10, 11] reads, unsurprisingly (due to (1.7) and the similarities between Z and B

1
4 )

and losely speaking, as follows:

f(Zt) = f(0) +

∫ t

0

f ′(Zs)d
◦Zs, t > 0. (1.10)

The change-of-variable formula (1.10) is of the same kind as (1.7). In view of what
has been done so far for the fractional Brownian motion BH , aiming to provide an
answer to the following problem is somehow natural: can we also reinterpret (1.10)
in a dynamical way, in the spirit of (1.7), (1.8) and (1.9)? To this end, we first need
to introduce a family of processes that contains the iterated Brownian motion Z as a
particular element. The family consisting in the so-called fractional Brownian motions
in Brownian time, studied in [17] by the second-named author, does the job. More
specifically, it is the family {ZH}H∈(0,1) defined as follows:

ZHt = XH(Yt), t > 0,

where XH is a two-sided fractional Brownian motion of index H and Y is a standard
(one-sided) Brownian motion independent of X. Roughly speaking, in the present paper
we are going to show the following three assertions (see Theorem 2.1 for a precise
statement): for any smooth real function f : R→ R,

1. If H > 1
6 then

f(ZHt ) = f(0) +

∫ t

0

f ′(ZHs )d◦ZHs , t > 0.
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2. If H = 1
6 then, with W a standard Brownian motion independent of the pair

(X
1
6 , Y ) and κ3 ' 2.322 (see (3.4) for the precise definition of κ3),

f(Z
1
6
t ) = f(0) +

∫ t

0

f ′(Z
1
6
s )d◦Z

1
6
s −

κ3
12

∫ t

0

f ′′′(Zs)d
◦3Zs, t > 0. (1.11)

3. If H < 1
6 , then ∫ t

0

(ZHs )2d◦ZHs does not exist.

The formula (1.11) is related to a recent line of research in which, by means of Malli-
avin calculus, one aims to exhibit change-of-variable formulas in law with a correction
term which is an Itô integral with respect to martingale independent of the underlying
Gaussian processes. Papers dealing with this problem and which are prior to our work
include [4, 7, 8, 9, 12, 15, 16]; however, it is worthwhile noting that all these mentioned
references only deal with Gaussian processes, not with iterated processes (which are
arguably more difficult to handle).

A brief outline of the paper is as follows. In Section 2, we introduce the framework
in which our study takes place and we provide an exact statement of our result, namely
Theorem 2.1. Finally, Section 3 contains the proof of Theorem 2.1, which is divided into
several steps.

2 Framework and exact statement of our results

For simplicity, throughout the paper we remove the superscript H, that is, we write
Z (resp. X) instead of ZH (resp. XH).

Let Z be a fractional Brownian motion in Brownian time of Hurst parameter H ∈
(0, 1), defined as

Zt = X(Yt), t > 0, (2.1)

where X is a two-sided fractional Brownian motion of parameter H and Y is a standard
(one-sided) Brownian motion independent of X.

The paths of Z being very irregular (precisely: Hölder continuous of order α if and
only if α is strictly less than H/2), we will not be able to define a stochastic integral with
respect to it as the limit of Riemann sums with respect to a deterministic partition of the
time axis. However, a winning idea borrowed from Khoshnevisan and Lewis [10, 11] is
to approach deterministic partitions by means of random partitions defined in terms of
hitting times of the underlying Brownian motion Y . As such, one can bypass the random
“time-deformation” forced by (2.1), and perform asymptotic procedures by separating
the roles of X and Y in the overall definition of Z.

Following Khoshnevisan and Lewis [10, 11], we start by introducing the so-called
intrinsic skeletal structure of Z. This structure is defined through a sequence of collec-
tions of stopping times (with respect to the natural filtration of Y ), noted

Tn = {Tk,n : k > 0}, n > 1, (2.2)

which are in turn expressed in terms of the subsequent hitting times of a dyadic grid
cast on the real axis. More precisely, let Dn = {j2−n/2 : j ∈ Z}, n > 1, be the dyadic
partition (of R) of order n/2. For every n > 1, the stopping times Tk,n, appearing in
(2.2), are given by the following recursive definition: T0,n = 0, and

Tk,n = inf
{
s > Tk−1,n : Y (s) ∈ Dn \ {Y (Tk−1,n)}

}
, k > 1.
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Note that the definition of Tk,n, and therefore of Tn, only involves the one-sided Brow-
nian motion Y , and that, for every n > 1, the discrete stochastic process

Yn = {Y (Tk,n) : k > 0}

defines a simple random walk over Dn. As shown in [10, Lemma 2.2], as n tends to
infinity the collection {Tk,n : 1 6 k 6 2nt} approximates the common dyadic partition
{k2−n : 1 6 k 6 2nt} of order n of the time interval [0, t]. More precisely,

sup
06s6t

∣∣Tb2nsc,n − s∣∣→ 0 almost surely and in L2(Ω). (2.3)

Based on this fact, one may introduce the counterpart of (1.5) based on Tn, namely,

Vn(f, t) =

b2ntc−1∑
k=0

1

2

(
f(ZTk,n

) + f(ZTk+1,n
)
)
(ZTk+1,n

− ZTk,n
). (2.4)

Let C∞b denote the class of those functions f : R→ R that are C∞ and bounded together
with their derivatives. We then have the following result.

Theorem 2.1. Let f ∈ C∞b and t > 0.

1. If H > 1
6 then

f(Zt)− f(0) =

∫ t

0

f ′(Zs)d
◦Zs, (2.5)

where
∫ t
0
f ′(Zs)d

◦Zs is the limit in probability of Vn(f ′, t) defined in (2.4) as n→∞.

2. If H = 1
6 then, with κ3 ' 2.322 (see (3.4) for the precise definition of κ3),

f(Zt)− f(0) +
κ3
12

∫ t

0

f ′′′(Zs)d
◦3Zs

(law)
=

∫ t

0

f ′(Zs)d
◦Zs. (2.6)

Here,
∫ t
0
f ′(Zs)d

◦Zs denotes the limit in law of Vn(f ′, t) defined in (2.4) as n → ∞
(its existence is part of the conclusion.) Moreover, we have, for all t > 0,∫ t

0

f ′′′(Zs)d
◦3Zs :=

∫ Yt

0

f ′′′(Xs)dWs,

where W is a two-sided Brownian motion independent of the pair (X,Y ) defining
Z, and where the integral with respect to W is understood in the Wiener-Itô sense.

3. If H < 1
6 then

Vn(g, t) does not converge, even stably in law, (2.7)

where g(x) = x2. This means that there is no way to get a change-of-variable
formula for f(x) = x3.

3 Proof of Theorem 2.1

3.1 Elements of Malliavin calculus

In this section, we gather some elements of Malliavin calculus we shall need though-
out the proof of Theorem 2.1. The reader already familiar with this topic may skip this
section.

We continue to denote by X = (Xt)t∈R a two-sided fractional Brownian motion with
Hurst parameter H ∈ (0, 1). That is, X is a zero mean Gaussian process, defined on a
complete probability space (Ω,A , P ), with covariance function,

CH(t, s) = E(XtXs) =
1

2
(|s|2H + |t|2H − |t− s|2H), s, t ∈ R.
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We suppose that A is the σ-field generated by X. For all n ∈ N∗, we let En be the set
of step functions on [−n, n], and E := ∪nEn. Set ξt = 1[0,t] (resp. 1[t,0]) if t > 0 (resp.
t < 0). Let H be the Hilbert space defined as the closure of E with respect to the inner
product

〈ξt, ξs〉H = CH(t, s), s, t ∈ R.

The mapping ξt 7→ Xt can be extended to an isometry between H and the Gaussian
space H1 associated with X. We will denote this isometry by ϕ 7→ X(ϕ).

Let F be the set of all smooth cylindrical random variables, i.e. of the form

F = φ(Xt1 , ..., Xtl),

where l ∈ N∗, φ : Rl → R is C∞b and t1 < ... < tl are some real numbers. The derivative
of F with respect to X is the element of L2(Ω,H ) defined by

DsF =

l∑
i=1

∂φ

∂xi
(Xt1 , ..., Xtl)ξti(s), s ∈ R.

In particular DsXt = ξt(s). For any integer k > 1, we denote by Dk,2 the closure of the
set of smooth random variables with respect to the norm

‖F‖2k,2 = E(F 2) +

k∑
j=1

E[‖DjF‖2H ⊗j ].

The Malliavin derivative D satisfies the chain rule. If ϕ : Rn → R is C1
b and if F1, . . . , Fn

are in D1,2, then ϕ(F1, ..., Fn) ∈ D1,2 and we have

Dϕ(F1, ..., Fn) =

n∑
i=1

∂ϕ

∂xi
(F1, ..., Fn)DFi.

We have the following Leibniz formula, whose proof is straightforward by induction on q.
Let ϕ,ψ ∈ Cqb (q > 1), and fix 0 6 u < v and 0 6 s < t. Then ϕ(Xt−Xs)ψ(Xv−Xu) ∈ Dq,2
and

Dq
(
ϕ(Xt −Xs)ψ(Xv −Xu)

)
=

q∑
a=0

(
q

a

)
ϕ(a)(Xt −Xs)ψ

(q−a)(Xv −Xu)1⊗a[s,t]⊗̃1
⊗(q−a)
[u,v] ,

(3.1)

where ⊗̃ stands for the symmetric tensor product. A similar statement holds fo u < v 6
0 and s < t 6 0.

If a random element u ∈ L2(Ω,H ) belongs to the domain of the divergence operator,
that is, if it satisfies

|E〈DF, u〉H | 6 cu
√
E(F 2) for any F ∈ F ,

then I(u) is defined by the duality relationship

E
(
FI(u)

)
= E

(
〈DF, u〉H

)
,

for every F ∈ D1,2.

For every n > 1, let Hn be the nth Wiener chaos of X, that is, the closed linear
subspace of L2(Ω,A , P ) generated by the random variables {Hn(B(h)), h ∈H , ‖h‖H =

1}, where Hn is the nth Hermite polynomial. The mapping In(h⊗n) = Hn(B(h)) provides
a linear isometry between the symmetric tensor product H �n and Hn. For H = 1

2 , In
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coincides with the multiple Wiener-Itô integral of order n. The following duality formula
holds

E
(
FIn(h)

)
= E

(
〈DnF, h〉H ⊗n

)
, (3.2)

for any element h ∈H �n and any random variable F ∈ Dn,2.
Let {ek, k > 1} be a complete orthonormal system in H . Given f ∈ H �n and g ∈

H �m, for every r = 0, ..., n ∧m, the contraction of f and g of order r is the element of
H ⊗(n+m−2r) defined by

f ⊗r g =

∞∑
k1,...,kr=1

〈f, ek1 ⊗ ...⊗ ekr 〉H ⊗r ⊗ 〈g, ek1 ⊗ ...⊗ ekr 〉H ⊗r .

Note that f ⊗r g is not necessarily symmetric: we denote its symmetrization by f⊗̃rg ∈
H �(n+m−2r). Finally, we recall the following product formula: if f ∈H �n and g ∈H �m

then

In(f)Im(g) =

n∧m∑
r=0

r!

(
n

r

)(
m

r

)
In+m−2r(f⊗̃rg). (3.3)

3.2 Notation and reduction of the problem

Throughout all the proof, we shall use the following notation. For all k, n ∈ N we
write

ξk2−n/2 = 1[0,k2−n/2], ξ−
k2−n/2 = 1[−k2−n/2,0],

δk2−n/2 = 1[(k−1)2−n/2,k2−n/2], δ−
k2−n/2 = 1[−k2−n/2,(−k+1)2−n/2].

Also, 〈·, ·〉 (‖·‖, respectively) will always stand for inner product (the norm, respectively)
in an appropriate tensor product H ⊗s.

On the other hand, for all j ∈ N let Gj = Xj − Xj−1. The family {Gj} is Gaussian,
stationary, centered, with variance 1; moreover its covariance ρ is given by

ρ(j − j′) = E[GjGj′ ] =
1

2

(
|j − j′ + 1|2H + |j − j′ − 1|2H − 2|j − j′|2H

)
,

so that
∑
|ρ(a)| <∞ if H 6 1

2 . Then, for all r ∈ N∗, we define

κ2r−1 :=

√
(2r − 1)!

∑
a∈Z

ρ(a)2r−1. (3.4)

Note that
∑
a∈Z |ρ(a)|2r−1 <∞ if and only if H < 1− 1/(2(2r− 1)), which is satisfied for

all r > 1 if we suppose that H 6 1/2 (the case H = 1/2 may be treated separately).

In the sequel, we only consider the case H < 1
2 . The proof of (2.5) in the case H > 1

2

is easier and left to the reader, whereas the proof when H = 1
2 was already done in

[10, 11] by Khoshnevisan and Lewis.

That said, we now divide the proof of Theorem 2.1 in several steps.

3.3 Step 1: A key algebraic lemma

For each integer n > 1, k ∈ Z and real number t > 0, let Uj,n(t) (resp. Dj,n(t)) denote
the number of upcrossings (resp. downcrossings) of the interval [j2−n/2, (j + 1)2−n/2]
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within the first b2ntc steps of the random walk {Y (Tk,n)}k>1, that is,

Uj,n(t) = ]
{
k = 0, . . . , b2ntc − 1 :

Y (Tk,n) = j2−n/2 and Y (Tk+1,n) = (j + 1)2−n/2
}

;

Dj,n(t) = ]
{
k = 0, . . . , b2ntc − 1 :

Y (Tk,n) = (j + 1)2−n/2 and Y (Tk+1,n) = j2−n/2
}
.

While easy, the following lemma taken from [10, Lemma 2.4] is going to be the key
when studying the asymptotic behavior of the weighted power variation V (2r−1)

n (f, t) of
odd order 2r − 1, defined as:

V (2r−1)
n (f, t) =

b2ntc−1∑
k=0

1

2

(
f(ZTk,n

) + f(ZTk+1,n
)
)
(ZTk+1,n

− ZTk,n
)2r−1, t > 0.

Its main feature is to separate X from Y , thus providing a representation of V (2r−1)
n (f, t)

which is amenable to analysis.

Lemma 3.1. Fix f ∈ C∞b , t > 0 and r ∈ N∗. Then

V (2r−1)
n (f, t)

=
∑
j∈Z

1

2

(
f(X

j2−
n
2

) + f(X
(j+1)2−

n
2

)
) (
X

(j+1)2−
n
2
−X

j2−
n
2

)2r−1(
Uj,n(t)−Dj,n(t)

)
.

Observe that V (1)
n (f, t) = Vn(f, t), see (2.4).

3.4 Step 2: Transforming the weighted power variations of odd order

By [10, Lemma 2.5], one has

Uj,n(t)−Dj,n(t) =


1{06j<j∗(n,t)} if j∗(n, t) > 0

0 if j∗ = 0

−1{j∗(n,t)6j<0} if j∗(n, t) < 0

,

where j∗(n, t) = 2n/2YTb2ntc,n . As a consequence, V (2r−1)
n (f, t) is equal to

2−nH(r− 1
2 )
∑j∗(n,t)−1
j=0

1
2

(
f(X+

j2−n/2) + f(X+
(j+1)2−n/2)

)(
Xn,+
j+1 −X

n,+
j

)2r−1
if j∗(n, t) > 0

0 if j∗ = 0

2−nH(r− 1
2 )
∑|j∗(n,t)|−1
j=0

1
2

(
f(X−

j2−n/2) + f(X−
(j+1)2−n/2)

)(
Xn,−
j+1 −X

n,−
j

)2r−1
if j∗(n, t) < 0

,

where X+
t := Xt for t > 0, X−−t := Xt for t < 0, Xn,+

t := 2nH/2X+
2−n/2t

for t > 0 and

Xn,−
−t := 2nH/2X−

2−n/2(−t) for t < 0.

Let us now introduce the following sequence of processes W
(2r−1)
±,n , in which Hp

stands for the pth Hermite polynomial:

W
(2r−1)
±,n (f, t) =

b2n/2tc−1∑
j=0

1

2

(
f(X±

j2−
n
2

) + f(X±
(j+1)2−

n
2

)
)
H2r−1(Xn,±

j+1 −X
n,±
j ), t > 0

W (2r−1)
n (f, t) =

{
W

(2r−1)
+,n (f, t) if t > 0

W
(2r−1)
−,n (f,−t) if t < 0

.

We then have, using the decomposition x2r−1 =
∑r
l=1 ar,lH2l−1(x) (with ar,r = 1, which

is the only explicit value of al,r we will need in the sequel),

V (2r−1)
n (f, t) = 2−nH(r− 1

2 )
r∑
l=1

ar,lW
(2l−1)
n (f, YTb2ntc,n). (3.5)
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An Itô-type formula for the fractional Brownian motion in Brownian time

3.5 Step 3: Known results for fractional Brownian motion

We recall the following result taken1 from [13] . If m > 2 and H ∈
(

1
4m−2 ,

1
2

)
then,

for any f ∈ C∞b and as n→∞,(
Xt, 2

−n/4W
(2m−1)
±,n (f, t)

)
t>0

fdd−→
(
Xt, κ2m−1

∫ t

0

f(X±s )dW±s

)
t>0

, (3.6)

where κ2m−1 is defined in (3.4), W+
t = Wt if t > 0 and W−t = W−t if t < 0, with W a two-

sided Brownian motion independent ofX, and where
∫ t
0
f(X±s )dW±s must be understood

in the Wiener-Itô sense.
Note that in the boundary case m = 2 and H = 1

6 , (3.6) continues to hold, as was
shown in [16, Theorem 3.1].

In the case m = 1, it was shown in [13, Theorem 4] (case H > 1
6 ) and [16, Theorem

2.13] (case H = 1
6 ) that, for any fixed t > 0, the sequence W

(1)
±,n(f, t) converges in

probability (when H > 1
6 ) or only in law (when H = 1

6 ) to a non degenerate limit as
n→∞.

3.6 Step 4: Moment bounds for W (2r−1)
n (f, ·)

Fix an integer r > 1 as well as a function f ∈ C∞b . We claim the existence of c > 0

such that, for all real numbers s < t and all n ∈ N,

E
[(
W (2r−1)
n (f, t)−W (2r−1)

n (f, s)
)2]

6 c max(|s|2H , |t|2H)
(
|t− s|2n/2 + 1

)
. (3.7)

In order to prove (3.7), we will need the following lemma.

Lemma 3.2. If s, t, u > 0 or if s, t, u < 0 then

|E
(
Xu(Xt −Xs)

)
| 6 |t− s|2H . (3.8)

Proof. When s, t, u > 0 we have

E
(
Xu(Xt −Xs)

)
=

1

2

(
t2H − s2H

)
+

1

2

(
|s− u|2H − |t− u|2H

)
.

Since |b2H − a2H | 6 |b− a|2H for any a, b ∈ R+, we immediately deduce (3.8). The proof
when s, t, u < 0 is similar.

We are now ready to show (3.7). We distinguish two cases according to the signs of
s, t ∈ R (and reducing the problem by symmetry):

(1) if 0 6 s < t (the case s < t 6 0 being similar), then

E[(W (2r−1)
n (f, t)−W (2r−1)

n (f, s))2] = E[(W
(2r−1)
+,n (f, t)−W (2r−1)

+,n (f, s))2]

=
1

4

b2n/2tc−1∑
j,j′=b2n/2sc

∣∣∣∣E[(f(X+

j2−
n
2

) + f(X+

(j+1)2−
n
2

)
)

×
(
f(X+

j′2−
n
2

) + f(X+

(j′+1)2−
n
2

)
)
H2r−1(Xn,+

j+1 −X
n,+
j )H2r−1(Xn,+

j′+1 −X
n,+
j′ )

]∣∣∣∣
=

1

4
2nH(2r−1)

b2n/2tc−1∑
j,j′=b2n/2sc

∣∣∣∣E[Θn
j f(X+)Θn

j′f(X+)I2r−1(δ
⊗(2r−1)
(j+1)2−n/2)I2r−1(δ

⊗(2r−1)
(j′+1)2−n/2)

]∣∣∣∣,
1More precisely: a careful inspection shows that there is no additional difficulty to prove (3.6) by following

the same route than the one used to show [13, Theorem 1, (1.15)]; the only difference is that the definition of

W
(r)
±,n is of symmetric type, whereas all the quantities of interest studied in [13] are of forward type.
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An Itô-type formula for the fractional Brownian motion in Brownian time

with obvious notation. Thanks to the product formula (3.3), we deduce that this latter
quantity is less than or equal to

1

4
2nH(2r−1)

b2n/2tc−1∑
j,j′=b2n/2sc

2r−1∑
l=0

l!

(
2r − 1

l

)2∣∣〈δ(j+1)2−n/2 ; δ(j′+1)2−n/2〉
∣∣l

×
∣∣∣∣E[Θn

j f(X+)Θn
j′f(X+)I4r−2−2l(δ

⊗(2r−1−l)
(j+1)2−n/2⊗̃δ

⊗(2r−1−l)
(j′+1)2−n/2)

]∣∣∣∣
=:

1

4

2r−1∑
l=0

l!

(
2r − 1

l

)2

Q(+,r,l)
n (s, t). (3.9)

By the duality formula (3.2) and the Leibniz rule (3.1), one has that

d(+,r,l)n (j, j′) := E
[
Θn
j f(X+)Θn

j′f(X+)I4r−2−2l(δ
⊗(2r−1−l)
(j+1)2−n/2⊗̃δ

⊗(2r−1−l)
(j′+1)2−n/2)

]
= E

[〈
D4r−2−2l(Θn

j f(X+)Θn
j′f(X+)) ; δ

⊗(2r−1−l)
(j+1)2−n/2⊗̃δ

⊗(2r−1−l)
(j′+1)2−n/2

〉]
=

4r−2−2l∑
a=0

(
4r − 2− 2l

a

)
E

[〈(
f (a)(X+

j2−n/2)ξ⊗a
j2−n/2 + f (a)(X+

(j+1)2−n/2)ξ⊗a
(j+1)2−n/2

)
⊗̃
(
f (4r−2−2l−a)(X+

j′2−n/2)ξ
⊗(4r−2−2l−a)
j′2−n/2 + f (4r−2−2l−a)(X+

(j′+1)2−n/2)ξ
⊗(4r−2−2l−a)
(j′+1)2−n/2

)
;

δ
⊗(2r−1−l)
(j+1)2−n/2⊗̃δ

⊗(2r−1−l)
(j′+1)2−n/2

〉]
.

Let now c denote a generic constant that may differ from one line to another and recall
that f ∈ C∞b . We then have the following estimates.

• Case l = 2r − 1

Q(+,r,2r−1)
n (s, t)

6 c 2nH(2r−1)
b2n/2tc−1∑
j,j′=b2n/2sc

∣∣〈δ(j+1)2−n/2 ; δ(j′+1)2−n/2〉
∣∣2r−1

= c

b2n/2tc−1∑
j,j′=b2n/2sc

∣∣1
2

(|j − j′ + 1|2H + |j − j′ − 1|2H − 2|j − j′|2H)
∣∣2r−1

= c

b2n/2tc−1∑
j=b2n/2sc

j−b2n/2sc∑
q=j−b2n/2tc+1

∣∣ρ(q)
∣∣2r−1,
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An Itô-type formula for the fractional Brownian motion in Brownian time

with ρ(q) := 1
2 (|q + 1|2H + |q − 1|2H − 2|q|2H). By a Fubini argument, it follows that

Q(+,r,2r−1)
n (s, t)

6 c

b2n/2tc−b2n/2sc−1∑
q=b2n/2sc−b2n/2tc+1

|ρ(q)|2r−1
(

(q + b2n/2tc) ∧ b2n/2tc − (q + b2n/2sc) ∨ b2n/2sc
)

6 c

b2n/2tc−b2n/2sc−1∑
q=b2n/2sc−b2n/2tc+1

|ρ(q)|2r−1
(
b2n/2tc − b2n/2sc

)
6 c

∑
q∈Z
|ρ(q)|2r−1

∣∣b2n/2tc − b2n/2sc∣∣ = c
∣∣b2n/2tc − b2n/2sc∣∣

6 c
(∣∣b2n/2tc − 2n/2t

∣∣+ 2n/2
∣∣t− s∣∣+

∣∣b2n/2sc − 2n/2s
∣∣)

6 c(1 + 2n/2|t− s|). (3.10)

Note that
∑
q∈Z |ρ(q)|2r−1 <∞ since H < 1

2 6 1− 1
4r−2 .

• Preparation to the cases where 0 6 l 6 2r − 2

In order to handle the terms Q(+,r,l)
n (s, t) whenever 0 6 l 6 2r − 2, we will make use

of the following decomposition:

|d(+,r,l)n (j, j′)| 6
1∑

u,v=0

Ω(u,v,r,l)
n (j, j′), (3.11)

where

Ω(u,v,r,l)
n (j, j′) =

4r−2−2l∑
a=0

(
4r − 2− 2l

a

)∣∣E[f (a)(X+
(j+u)2−n/2)f (4r−2−2l−a)(X+

(j′+v)2−n/2)]
∣∣

×
∣∣〈ξ⊗a

(j+u)2−n/2⊗̃ξ
⊗(4r−2−2l−a)
(j′+v)2−n/2 ; δ

⊗(2r−1−l)
(j+1)2−n/2⊗̃δ

⊗(2r−1−l)
(j′+1)2−n/2

〉∣∣.
• Case 1 6 l 6 2r − 2 (only when r > 2)

Since f belongs to C∞b and since, by (3.8), we have |〈ξt; δ(j+1)2−n/2〉| 6 2−nH for all
t > 0 and all j ∈ N, we deduce that

|d(+,r,l)n (j, j′)| 6 c 2−nH(4r−2−2l).

As a consequence, and relying to the same arguments that have been used previously
in the case l = 2r − 1, we get

Q(+,r,l)
n (s, t) 6 c 2−nH(4r−2−2l) 2nH(2r−1)

b2n/2tc−1∑
j,j′=b2n/2sc

∣∣〈δ(j+1)2−n/2 ; δ(j′+1)2−n/2〉
∣∣l

6 c 2−nH(4r−2−2l) 2nH(2r−1)2−nHl
∑
q∈Z
|ρ(q)|l(1 + 2n/2|t− s|)

= c 2−nH(2r−1−l)(1 + 2n/2|t− s|) 6 c (1 + 2n/2|t− s|). (3.12)

• Case l = 0

Relying to the decomposition (3.11), we get

Q(+,r,0)
n (s, t) 6 2nH(2r−1)

b2n/2tc−1∑
j,j′=b2n/2sc

1∑
u,v=0

Ω(u,v,r,0)
n (j, j′). (3.13)
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We will study only the term corresponding to Ω
(0,1,r,0)
n (j, j′) in (3.13), which is repre-

sentative of the difficulty. It is given by

2nH(2r−1)
b2n/2tc−1∑
j,j′=b2n/2sc

4r−2∑
a=0

(
4r − 2

a

)∣∣E[f (a)(X+
j2−n/2)f (4r−2−a)(X+

(j′+1)2−n/2)]
∣∣

×
∣∣〈ξ⊗a

j2−n/2⊗̃ξ
⊗(4r−2−a)
(j′+1)2−n/2 ; δ

⊗(2r−1)
(j+1)2−n/2⊗̃δ

⊗(2r−1)
(j′+1)2−n/2

〉∣∣
6 c 2nH(2r−1)

b2n/2tc−1∑
j,j′=b2n/2sc

4r−2∑
a=0

∣∣〈ξ⊗a
j2−n/2⊗̃ξ

⊗(4r−2−a)
(j′+1)2−n/2 ; δ

⊗(2r−1)
(j+1)2−n/2⊗̃δ

⊗(2r−1)
(j′+1)2−n/2

〉∣∣.
We define E(a,r)

n (j, j′) :=
∣∣〈ξ⊗a

j2−n/2⊗̃ξ
⊗(4r−2−a)
(j′+1)2−n/2 ; δ

⊗(2r−1)
(j+1)2−n/2⊗̃δ

⊗(2r−1)
(j′+1)2−n/2

〉∣∣. By (3.8), recall

that |〈ξt; δ(j+1)2−n/2〉| 6 2−nH for all t > 0 and all j ∈ N. We thus get, with c̃a some
combinatorial constants,

E(a,r)
n (j, j′) 6 c̃a 2−nH(4r−3)(|〈ξj2−n/2 ; δ(j+1)2−n/2〉|+ |〈ξj2−n/2 ; δ(j′+1)2−n/2〉|

+|〈ξ(j′+1)2−n/2 ; δ(j+1)2−n/2〉|+ |〈ξ(j′+1)2−n/2 ; δ(j′+1)2−n/2〉|
)
.

For instance, we can write

b2n/2tc−1∑
j,j′=b2n/2sc

|〈ξ(j′+1)2−n/2 ; δ(j+1)2−n/2〉|

= 2−nH−1
b2n/2tc−1∑
j,j′=b2n/2sc

∣∣(j + 1)2H − j2H + |j′ − j + 1|2H − |j′ − j|2H
∣∣

6 2−nH−1
b2n/2tc−1∑
j,j′=b2n/2sc

(
(j + 1)2H − j2H

)
+2−nH−1

∑
b2n/2sc6j6j′6b2n/2tc−1

(
(j′ − j + 1)2H − (j′ − j)2H

)
+2−nH−1

∑
b2n/2sc6j′<j6b2n/2tc−1

(
(j − j′)2H − (j − j′ − 1)2H

)
6

3

2
2−nH

(
b2n/2tc − b2n/2sc

)
b2n/2tc2H 6

3t2H

2

(
1 + 2n/2|t− s|

)
.

Similarly,

b2n/2tc−1∑
j,j′=b2n/2sc

|〈ξj2−n/2 ; δ(j+1)2−n/2〉| 6
3t2H

2

(
1 + 2n/2|t− s|

)
;

b2n/2tc−1∑
j,j′=b2n/2sc

|〈ξj2−n/2 ; δ(j′+1)2−n/2〉| 6
3t2H

2

(
1 + 2n/2|t− s|

)
;

b2n/2tc−1∑
j,j′=b2n/2sc

|〈ξ(j′+1)2−n/2 ; δ(j′+1)2−n/2〉| 6
3t2H

2

(
1 + 2n/2|t− s|

)
.

As a consequence, we deduce

Q(+,r,0)
n (s, t) 6 c 2−nH(2r−2)t2H

(
2n/2|t− s|+ 1) 6 c t2H

(
2n/2|t− s|+ 1). (3.14)

Combining (3.9), (3.10), (3.12) and (3.14) finally shows our claim (3.7).
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(2) if s < 0 6 t, then

E[(W (2r−1)
n (f, t)−W (2r−1)

n (f, s))2] = E[(W
(2r−1)
+,n (f, t)−W (2r−1)

−,n (f,−s))2]

6 2E[(W
(2r−1)
+,n (f, t))2] + 2E[(W

(2r−1)
−,n (f,−s))2].

By (1) with s = 0, one can write

E[(W
(2r−1)
+,n (f, t))2] 6 c t2H(t2n/2 + 1).

Similarly

E[(W
(2r−1)
−,n (f,−s))2] 6 c(−s)2H

(
(−s)2n/2 + 1

)
We deduce that

E[(W (2r−1)
n (f, t)−W (2r−1)

n (f, s))2] 6 cmax(t2H , (−s)2H)
(
(t− s)2n/2 + 1

)
.

That is, (3.7) also holds true in this case.

3.7 Step 5: Limits of the weighted power variations of odd order

Fix f ∈ C∞b and t > 0. We claim that, if H ∈
[
1
6 ,

1
2

)
and r > 3 then, as n→∞,

V (2r−1)
n (f, t)

prob−→ 0. (3.15)

Moreover, if H ∈
(
1
6 ,

1
2

)
then, as n→∞,

V (3)
n (f, t)

prob−→ 0, (3.16)

whereas, if H = 1
6 then, as n→∞,

(
Xt, Yt, V

(3)
n (f, t)

)
t>0

fdd→

(
Xt, Yt, κ3

∫ Yt

0

f(Xs)dWs

)
t>0

, (3.17)

with W = (Wt)t∈R a two-sided Brownian motion independent of the pair (X,Y ).
Indeed, using the decomposition (3.5), the conclusion of Step 4 (to pass from YTb2ntc,n

to Yt) and since by [10, Lemma 2.3], we have YTb2ntc,n
L2

−→ Yt as n→∞, we deduce that

the limit of V (2r−1)
n (f, t) is the same as that of

2−nH(r− 1
2 )

r∑
l=1

ar,lW
(2l−1)
n (f, Yt).

Thus, the proofs of (3.15), (3.16) and (3.17) then follow directly from the results
recalled in Step 3, as well as the fact that X and Y are independent.

3.8 Step 6: Proving (2.5) and (2.6)

We assume H ∈ [ 16 ,
1
2 ). We will make use of the following Taylor’s type formula. Fix

f ∈ C∞b . For any a, b ∈ R and for some constants cr whose explicit values are immaterial
here,

f(b)− f(a) =
1

2

(
f ′(a) + f ′(b)

)
(b− a)− 1

24

(
f ′′′(a) + f ′′′(b)

)
(b− a)3

+

7∑
r=3

cr
(
f (2r−1)(a) + f (2r−1)(b)

)
(b− a)2r−1 +O(|b− a|14),
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where |O(|b − a|14)| 6 Cf |b − a|14, Cf being a constant depending only on f . One can
thus write

f(ZTb2ntc,n)− f(0) =

b2ntc−1∑
k=0

(
f(ZTk+1,n

)− f(ZTk,n
)
)

=

b2ntc−1∑
k=0

1

2

(
f(ZTk,n

) + f(ZTk+1,n
)
)
(ZTk+1,n

− ZTk,n
) (3.18)

− 1

12
V (3)
n (f, t) +

7∑
r=3

2crV
(2r−1)
n (f, t) +

b2ntc−1∑
k=0

O((ZTk+1,n
− ZTk,n

)14).

As far as the big O in (3.18) is concerned, we have, with G ∼ N(0, 1),

E
[∣∣ b2ntc−1∑

k=0

O((ZTk+1,n
− ZTk,n

)14)
∣∣] 6 Cf

b2ntc−1∑
k=0

E
[
(ZTk+1,n

− ZTk,n
)14
]

= Cf

b2ntc−1∑
k=0

2−7nHE[G14] 6 CfE[G14]t 2n(1−7H) →n→∞ 0 since H > 1
6 . (3.19)

On the other hand, by continuity of f ◦Z and due to (2.3), one has, almost surely and
as n→∞,

f(ZTb2ntc,n)− f(0)→ f(Zt)− f(0). (3.20)

Finally, when H > 1
6 the desired conclusion (2.5) follows from (3.19), (3.20), (3.15)

and (3.16) plugged into (3.18). The proof of (2.6) when H = 1
6 is similar, the only

difference being that one has (3.17) instead of (3.16), thus leading to the bracket term
κ3

12

∫ Yt

0
f ′′′(Xs)dWs =: κ3

12

∫ t
0
f ′′′(Zs)d

◦3Zs in (2.6).

3.9 Step 7: Proving (2.7)

Using b3 − a3 = 3
2 (a2 + b2)(b − a) − 1

2 (b − a)3, one can write, with 1 denoting the
function constantly equal to 1,

Vn(g, t)− 1

3
Z3
t =

1

6
V (3)
n (1, t) +

1

3

b2ntc−1∑
k=0

(Z3
Tk+1,n

− Z3
Tk,n

)− 1

3
Z3
t

=
1

6
V (3)
n (1, t) +

1

3
(Z3

Tb2ntc,n
− Z3

t ).

As a result, and thank to (2.3), one deduces that if Vn(g, t) converges stably in law, then

V
(3)
n (1, t) must converge as well. But it is shown in [17, Corollary 1.2] that 2−n(1−6H)/4V

(3)
n (1, t)

converges in law to a non degenerate limit. This being clearly in contradiction with the
convergence of V (3)

n (1, t), we deduce that (2.7) holds.
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