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Abstract

Feynman-Kac models arise in a large variety of scientific disciplines including physics,
chemistry and signal processing. Their mean field particle interpretations, termed
commonly Sequential Monte Carlo or Particle Filters, have found numerous applica-
tions as they allow to sample approximately from sequences of complex probability
distributions and estimate their associated normalizing constants. It is well-known
that, under regularity assumptions, the relative variance of these normalizing con-
stant estimates increases linearly with the time horizon n so that practitioners usu-
ally scale the number of particles N linearly w.r.t n to obtain estimates whose relative
variance remains uniformly bounded w.r.t n. We establish here that, under this stan-
dard linear scaling strategy, the fluctuations of the normalizing constant estimates
are lognormal as n, hence N , goes to infinity. For particle absorption models in a
time-homogeneous environment and hidden Markov models in an ergodic random
environment, we also provide more explicit descriptions of the limiting bias and vari-
ance.
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1 Introduction

1.1 Feynman–Kac models

Consider a Markov chain (Xn)n≥0 on a measurable state space (E, E) whose tran-
sitions are defined by a sequence of Markov kernels (Mn)n≥1. We also introduce a
collection of positive bounded and measurable functions (Gn)n≥0 on E and associate to
(Mn)n≥1 and (Gn)n≥0 the sequence of unnormalized Feynman–Kac measures (γn)n≥0 on
(E, E), defined through their action on bounded real-valued measurable functions f by

γn(f) := E

f(Xn)
∏

0≤p<n

Gp(Xp)

 . (1.1)
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Lognormal CLT for particle approximations

The corresponding sequence of normalized Feynman–Kac probability measures (ηn)n≥0

is thus defined by
ηn(f) := γn(f)/γn(1). (1.2)

It is easily checked that the sequence of measures (γn)n≥0 satisfies the evolution equa-
tion

γn(f) = γn−1(Qn(f)) (1.3)

where Qn is a bounded positive integral operator given by

Qn(f)(x) =

∫
Gn−1(x) Mn(x, dy) f(y). (1.4)

Additionally, the normalizing constant γn(1) satisfies the product formula

γn(1) = E

 ∏
0≤p<n

Gp(Xp)

 =
∏

0≤p<n

ηp(Gp). (1.5)

The detailed proofs of (1.3) and (1.5) can be found for instance in [4], section 2.1.1.
Throughout the paper, for any finite signed measure µ and bounded function f de-

fined on the same space, we denote by µ(f) the Lebesgue integral of f with respect to
µ, i.e. µ(f) :=

∫
f(x)dµ(x). Given a bounded integral operator K(x, dx′) from E into

itself, we also denote by µK the measure resulting from the action of K on µ, i.e.

µK(dx′) :=

∫
µ(dx)K(x, dx′),

while for a bounded measurable function f on E, we denote by K(f) the bounded
measurable function

K(f)(x) :=

∫
K(x, dx′)f(x′).

We recall that the Dobrushin contraction or ergodic coefficient β(K) of the Markov
kernel K from E into itself is the quantity defined by

β(K) = sup {‖K(x, .)−K(y, .)‖tv ; (x, y) ∈ E2} ∈ [0, 1], (1.6)

where the total variation norm is given for any probability measures µ1, µ2 on (E, E) by

‖µ1 − µ2‖tv = sup {|µ1(f)− µ2(f)| ; f ∈ Osc(E)}.

Here Osc(E) stands for the set of E-measurable functions f with oscillations osc(f) :=

Supx,y|f(x)− f(y)| ≤ 1.
Feynman–Kac models appear in numerous scientific fields including, among others,

signal processing, statistics, chemistry and statistical physics; see [5], [6] and [13].
Their interpretation is dependent on the application domain. We describe here briefly a
few examples, two applications are discussed in more details in Sections 1.4.1 and 1.4.2.

Non-linear filtering. In a non-linear filtering framework, the measure ηn corresponds
to the posterior distribution of the latent state Xn of a dynamic model at time n given
the observations Yn collected from time 0 to time n − 1, and γn(1) corresponds to the
likelihood of these observations; that is

ηn+1 = Law (Xn | (Y0, . . . , Yn)) and γn+1(1) = pn(Y0, . . . , Yn)

where pn stands for the density of the observation sequence (Yp)0≤p≤n w.r.t some refer-
ence measure.
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Lognormal CLT for particle approximations

Physics and Chemistry. In these contexts, Feynman–Kac models are widely used to
describe molecular systems. The evolution equation (1.3) is interpreted as a discrete-
time approximation of an imaginary time Schrödinger equation. The Markov kernel
Mn ' Id+L ∆t corresponds to the discretization of continuous-time stochastic process
Xt with infinitesimal generator L, Gn = e−V ∆t where V is a potential energy and
∆t � 1 a discretization time-step. With this notation, we observe that the integral
operator (1.4) is such that Qn ' Id + LV ∆t, where the Schrödinger operator LV is
defined by

LV (f)(x) := L(f)(x)− V (x)f(x).

Using (1.3), this implies that

γn(f)− γn−1(f) ' γn−1

(
LV (f)

)
∆t.

The resulting continuous-time model is given by the sequence of Feynman–Kac mea-
sures (γt)t≥0 defined, in a weak sense, by the evolution equation

d

dt
γt(f) = γt(L

V (f))

and its associated path space representation

γt(f) = E

(
f(Xt) exp

{
−
∫ t

0

V (Xs)ds

})
.

Here the normalizing constant γt(1) corresponds to the free energy of the system, and
its exponential decay is related to the top of the spectrum (whenever it exists) of the
Schrödinger operator LV . For a more thorough discussion on these continuous-time
models and their applications in chemistry and physics, we refer the reader to [2], as
well as to [17, 18, 20], the recent monograph [6] and the references therein.

1.2 Mean field particle models

A key issue with Feynman–Kac measures is that they are analytically intractable in
most situations of interest. Over the past twenty years, particle methods, termed Diffu-
sion or Quantum Monte Carlo methods in physics or Sequential Monte Carlo in statis-
tics and applied probability, have emerged as the tools of choice to provide numerical
approximations of these measures and of their associated normalizing constants. We
give a brief overview of these methods here and refer the reader to [5, 6] for a more
thorough and detailed treatment.

We first observe that the sequence (ηn)n≥0 satisfies the following recursion for all
n ≥ 1

ηn = Φn(ηn−1), (1.7)

where Φn is a non-linear transformation on probability measures defined by

Φn(µ) := ΨGn−1
(µ)Mn.

Here, given a bounded positive function G and a probability measure µ on E, ΨG de-
notes the Boltzmann-Gibbs transformation

ΨG(µ)(dx) :=
1

µ(G)
G(x)µ(dx). (1.8)

It is possible to express Φn as

Φn(µ) = µKn,µ, (1.9)
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Lognormal CLT for particle approximations

where (Kn,µ)n≥1 is a collection of Markov kernels for any probability measure µ on
E. There is not a unique Kn,µ satisfying (1.9). One can obviously use Kn,µ(x, dx′) :=

Φn(µ)(dx′) but there are alternatives. For example, if Gn−1 takes its values in the inter-
val (0, 1], ΨGn−1

(µ) can be expressed through a non-linear Markov transport equation

ΨGn−1
(µ) = µSGn−1,µ, (1.10)

with the non-linear Markov transition kernel

SGn−1,µ(x, dx′) := Gn−1(x) δx(dx′) + (1−Gn−1(x)) ΨGn−1
(µ)(dx′),

so we can use

Kn,µ := SGn−1,µMn. (1.11)

The non-linear Markov representation (1.9) directly suggests a mean-field type parti-
cle approximation scheme for (ηn)n≥0. For every n ≥ 0, consider a N−tuple of elements

of E denoted by ξ(N)
n =

(
ξ

(N,i)
n

)
1≤i≤N

, whose empirical measure ηNn := 1
N

∑N
j=1 δξ(N,j)n

provides a particle approximation of ηn. The sequence (ξ
(N)
n )n≥0 evolves as an EN -

valued Markov chain whose initial distribution is given by P
(
ξ

(N)
0 ∈ dx

)
=
∏N
i=1 η0 (dxi),

while the transition mechanism is specified for any n ≥ 1 by

P
(
ξ(N)
n ∈ dx

∣∣ FNn−1

)
=

N∏
i=1

Kn,ηNn−1
(ξ

(N,i)
n−1 , dx

i). (1.12)

Here FNn−1 is the sigma-field generated by the random variables (ξ
(N)
p )0≤p≤n−1, and

dx := dx1×. . .×dxN stands for an infinitesimal neighborhood of a point x = (x1, . . . , xN ) ∈
EN .

Using the identity (1.5), we can easily obtain a particle approximation γNn (1) of the
normalizing constant γn (1) by replacing the measures (ηp)

n−1
p=0 by their particle approx-

imations
(
ηNp
)n−1

p=0
to get

γNn (1) :=
∏

0≤p<n

ηNp (Gp) . (1.13)

We define the normalized version of this estimate by

γNn (1) = γNn (1)/γn(1) =
∏

0≤p<n

ηNp (Gp) with Gn := Gn/ηn(Gn). (1.14)

The main goal of this article is to establish a central limit theorem for log γNn (1) as
n→∞ when the number of particles N is proportional to n.

1.3 Statement of the main result

To state our result, we need to introduce additional notations. We use the conven-
tions Φ0(µ) := η0 for all µ, K0,µ(x, ·) := η0(·) for all x, FN−1 = {∅,Ω}, η−1 := η0 and
ηN−1 := η0. These conventions make (1.7)-(1.9)-(1.12) valid for n = 0.

We denote by V Nn the centered local error random fields defined for n ≥ 0 by

V Nn :=
√
N
(
ηNn − Φn(ηNn−1)

)
, (1.15)

so that

ηNn = Φn(ηNn−1) +
1√
N
V Nn .
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Lognormal CLT for particle approximations

To describe the corresponding covariance structure, let us introduce for any n ≥ 0,
bounded measurable functions f1, f2 and probability measure µ the notation

Covn,µ(f1, f2) := µ [Kn,µ(f1f2)−Kn,µ(f1)Kn,µ(f2)] .

We have the following explicit expression for conditional covariances

E
(
V Nn (f1)V Nn (f2)

∣∣FNn−1

)
= Covn,ηNn−1

(f1, f2). (1.16)

It is proved in [5, chapter 9] that (V Nn )n≥0 converges in law, as N tends to infinity,
to a sequence of independent, Gaussian and centered random fields (Vn)n≥0 with a
covariance given for any bounded measurable functions f1, f2 on E by

CVn(f1, f2) := E(Vn(f1)Vn(f2)) = Covn,ηn−1(f1, f2). (1.17)

When Kn,µ(x, ·) := Φn(µ), (1.17) reduces to

CVn(f1, f2) = ηn(f1f2)− ηn(f1)ηn(f2). (1.18)

Let us now introduce the family of operators (Qp,n)0≤p≤n acting on the space of
bounded measurable functions defined by

Qp,n(f)(x) := E

f(Xn)
∏

p≤q<n

Gq(Xq)

∣∣∣∣∣∣Xp = x

 . (1.19)

It is easily checked that (Qp,n)0≤p≤n forms a semigroup for which

γn = γpQp,n. (1.20)

We also define

Qp,n(f) :=
Qp,n(f)

ηpQp,n(1)
. (1.21)

Finally, we introduce the Markov kernel Pp,n through its action on bounded measurable
functions

Pp,n(f) := Qp,n(f)/Qp,n(1). (1.22)

It is well-known in the literature, see for example [5, chapter 9], that, for any fixed
n, the following convergence in distribution holds

√
N
(
γNn (1)− 1

) d−−−−−→
N→+∞

∑
0≤p<n

Vp(Qp,n(1)). (1.23)

We are here interested in the fluctuations of γNn (1) in an alternative scenario where both
n,N → ∞ with N proportional to n. It has been recently established in [3] that, under
regularity conditions, the variance of γNn (1) increases linearly with n so that one should
increase N at least linearly w.r.t the time horizon n to obtain estimates whose variance
is uniformly bounded w.r.t n. This linear variance growth had been empirically observed
by practitioners for a long time and it is actually standard practice to set N proportional
to n in applications; e.g. see [1] and [19] for recent work in computational statistics.
However, the fluctuations of γNn (1) under this linear scaling scheme have never been
investigated. We establish in this paper that, in this regime, the observed behaviour
is different from that described by (1.23). Indeed, the magnitude of the fluctuations of
γNn (1) around 1 do not vanish as n,N go to infinity, and they are described in the limit
by a lognormal instead of a normal distribution.
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Lognormal CLT for particle approximations

Whereas no regularity assumption is required for (1.23) to hold, our result requires
assumptions we now detail. First, the potential functions are assumed to satisfy

gn := supGn/inf Gn < +∞ and g := sup
n≥0

gn < +∞. (1.24)

Second, we assume that the Dobrushin coefficient of Pp,n, denoted β(Pp,n) and defined
in (1.6), satisfies

β(Pp,n) ≤ a e−λ(n−p) (1.25)

for some finite constant a < +∞ and some positive λ > 0. Third, we assume that there
exists a finite constant κ such that the kernels Kn,µ satisfy an inequality of the following
form

Supx∈E |[Kn,µ1
−Kn,µ2

] (f) (x)| ≤ κ | [µ1 − µ2] (Tn(f, µ2))|, (1.26)

for any two probability measures µ1, µ2 on E and any measurable function f with os-
cillation osc(f) ≤ 1, where Tn(f, µ2) is a measurable map with oscillations inferior or
equal to 1 that may depend on n, f, µ2. This regularity condition can be extended to
Lipschitz type control estimates (1.26) involving several functions Tn,u(f, µ2) indexed
by some parameter u on some probability space; see for instance [6, 10].

In the rest of the paper, unless otherwise stated, we assume that (1.24)-(1.25)-(1.26)
hold.

Several sufficient conditions on the Markov kernels Mn under which (1.25) holds are
discussed in [5, Section 4.3] and in Section 3.4 in [10]. Conditions under which (1.26)
is satisfied are given in Section 2.

The main result of the paper is the following theorem.

Theorem 1.1. Assume (1.24)-(1.25)-(1.26), and define vn as

vn :=
∑

0≤p<n

E
(
Vp(Qp,n(1))2

)
=

∑
0≤q<n

Covq,ηq−1
(Qq,n(1), Qq,n(1)).

Assume that N depends on n and satisfies

lim
n→+∞

n

N
= α ∈ (0,+∞) ,

and that
lim

n→+∞

vn
n

= σ2 ∈ (0,+∞) . (1.27)

Then the following convergence in distribution holds

log γNn (1)
d−−−−−→

n→+∞
N
(
−1

2
ασ2, ασ2

)
, (1.28)

where N (u, v) denotes the normal distribution of mean u and variance v.

Remark 1.2. It follows from the continuous mapping theorem that γNn (1) follows asymp-
totically a lognormal distribution. The relationship between the asymptotic bias and
variance in (1.28) is unsurprising since E(γNn (1)) = 1 for any n,N ; see [5, Proposition
7.4.1.].

Remark 1.3. Under assumption (1.24), it can be easily checked that one always has
supn

vn
n < +∞. If, in addition to (1.24)-(1.25)-(1.26), we assume that lim infn→+∞

vn
n > 0

instead of the stronger assumption (1.27), the proof of Theorem 1.1 still leads to a
central limit theorem of the form

1√
α
vn
n

(
log γNn (1) +

α

2

vn
n

)
d−−−−−→

n→+∞
N (0, 1).
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The result (1.28) was conjectured by Pitt et al. [19]. We believe that this theorem
could be established under the weaker stability conditions of [11] or [23] at the price of
a significantly more complex proof. Compelling empirical evidence can be found in [19]
and [12].

The fact that γNn (1) exhibits asymptotically lognormal fluctuations has been used in
recent work to provide quantitative guidelines on how to select the number of particles
in a particle filter when the normalizing constant estimate is used within a Metropolis–
Hastings scheme; see [19], [12] and [21]. Another application of (1.28) is to the com-
putation of Bayes factors for long time series data in scenarios where the likelihood of
candidate models is computed using particle methods. Equation (1.28) suggests that
it is possible to perform an approximate bias correction and obtain approximate confi-
dence intervals for the particle estimate of the log-Bayes factor whenever estimates of
the variances of normalizing constant estimates are available.

1.4 Some illustrations

In this section, we discuss two applications of Theorem 1.1 where the variance ex-
pression (1.27) can be made more explicit.

1.4.1 Particle absorption models

Consider a particle in an absorbing random medium, whose successive states (Xn)n≥0

evolve according to a Markov kernel M . At time n, the particle is absorbed with prob-
ability 1 − G (Xn) where G is a [0, 1)-valued potential function. Letting Gn := G for all
n ≥ 0 and Mn := M for all n ≥ 1, the connection with the Feynman–Kac formalism is the
following: denoting by T the absorption time of the particle, we have γn(1) = P (T ≥ n),
and ηn = Law (Xn | T ≥ n). In this situation, the multiplicative formula (1.5) takes the
form

P (T ≥ n) =
∏

0≤m<n

P (T ≥ m+ 1 | T ≥ m) ,

where

P (T ≥ m+ 1 | T ≥ m) =

∫
G(x) P (Xm ∈ dx | T ≥ m) = ηm(G).

In this context, we have Φn = Φ for all n ≥ 1, and conditions (1.24)-(1.25) ensure that Φ

admits a unique fixed point measure η∞ such that

Law (Xn |T ≥ n ) −→n→∞ η∞ = Φ(η∞).

Moreover, we have

Q0,n(1)(x) = P (T ≥ n |X0 = x )/P (T ≥ n) −→
n→∞

h(x).

Setting Q = Q/η∞Q(1), we find that the function h satisfies the spectral equations

Q(h) = h⇔ Q(h) = λh,with λ = η∞(G).

The measure η∞ is the so-called quasi-invariant or Yaglom measure. Under some
additional conditions, the parameter λ coincides with the largest eigenvalue of the in-
tegral operator Q and h is the corresponding eigenfunction. In statistical physics, Q
comes from a discrete-time approximation of a Schrödinger operator and h is called the
ground state function. For a more thorough discussion, we refer the reader to Chapters
2 and 3 in [5] and Chapter 7 in [6].

In this scenario, the limiting variance σ2 appearing in (1.28) is given by

σ2 = Cov1,η∞(h, h). (1.29)
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In particular, if the Markov kernels used in the particle approximation scheme are given
by Kη(x, .) = Φ(η), then we obtain using (1.18) that σ2 = η∞

(
[h− 1]2

)
. The detailed

statement and proof of these results are provided in Section 3.3.

1.4.2 Non-linear filtering

Let (Xn, Yn)n≥0 be a Markov chain on some product state space E1×E2 whose transition
mechanism takes the form

P ((Xn, Yn) ∈ d(x, y) | (Xn−1, Yn−1)) = Mn(Xn−1, dx) gn(y, x) νn(dy),

where (νn)n≥0 is a sequence of positive measures on E2, (Mn)n≥0 is a sequence of
Markov kernels from E1 into itself, and (gn)n≥0 is a sequence of density functions on
E2 × E1. The aim of non-linear filtering is to infer the hidden Markov process (Xn)n≥0

given a realization of the observation sequence Y = y. It is easily checked that

ηn = Law (Xn | Ym = ym, 0 ≤ m < n) ,

using Gn := gn(yn, .) in (1.1). Furthermore, the density denoted pn(y0, . . . , yn) of the
random sequence of observations (Y0, . . . , Yn) w.r.t. to the product measure ⊗0≤p≤nνp
evaluated at the observation sequence, that is the so-called marginal likelihood, is equal
to the normalizing constant γn+1(1). In this context, the multiplicative formula (1.5)
takes the form

pn(y0, . . . , yn) =
∏

0≤m≤n

qm(ym | yl, 0 ≤ l < m)

with

qm(ym | yl, 0 ≤ l < m) =

∫
gm(ym, x) P (Xm ∈ dx | Yl = yl, 0 ≤ l < m) = ηm(Gm).

For time-homogeneous models (gm,Mm) = (g,M) associated to an ergodic process Y
satisfying a random environment version of Assumption (1.25) detailed in Section 3.4,
the ergodic theorem implies that the normalized log-likelihood function converges to
the entropy of the observation sequence

1

n+ 1
log pn(Y0, . . . , Yn) =

1

n+ 1

∑
0≤m≤n

log qm(Ym | Yl, 0 ≤ l < m)

−→n→∞ E (log q(Y0 | Ym, m < 0)) ,

where q(Y0 | Ym, m < 0) is the conditional density of the random variable Y0 w.r.t the
infinite past. In Section 3.4, we shall prove the existence of a limiting measure ηY∞, and
function hY such that

q(Y0 | Ym, m < 0) = ηY∞(g(Y0, .))

and

Q
Y

0,n+1(1)(x) :=
q0,n((Y0, . . . , Yn) | x)∫

ηY∞(dx) q0,n((Y0, . . . , Yn) | x)
−→n→∞ hY (x)

where q0,n((Y0, . . . , Yn)|x) stands for the conditional density of (Y0, . . . , Yn) given X0 = x.
Similar results have been recently established in [24] using slightly more restrictive
assumptions. In this situation, the limiting variance σ2 appearing in (1.28) satisfies

σ2 = E

(
Covθ

−1(Y )

1,η
θ−1(Y )
∞

(hY , hY ))

)
, (1.30)
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where θ denotes the shift operator, and, if the Markov kernels used by the particle
approximation scheme are given by Kn,η(x, .) = Φn(η) associated to the potential Gn :=

gn(Yn, .), then we obtain using (1.18)

σ2 = E
(
ηθ
−1(Y )
∞

([
hY − 1

]2))
.

The detailed statement and proof of these results are provided in Section 3.4.

1.5 Notations and conventions

We denote, respectively, byM(E), P(E) and Bb(E), the set of all finite signed mea-
sures on the measurable space (E, E) equipped with the total variation norm ‖.‖tv, the
subset of all probability measures, and the Banach space of all bounded and measur-
able functions f equipped with the uniform norm ‖f‖ = Supx∈E |f(x)|. We also denote
by ‖X‖m = E(|X|m)1/m, the Lm-norm of the random variable X, where m ≥ 1.

In the sequel, the generic notation c is used to denote a constant that depends only
on the model. To alleviate notations, we do not use distinct indices (e.g. c1, c2, . . .)
each time such a constant appears, and keep using the notation c even though the
corresponding constant may vary from one statement to the other. However, to avoid
confusion, we sometimes make a distinction between such constants by using c, c′, c′′

inside an argument. When the constant also depend on additional parameters p1, . . . , p`,
this is explicitly stated in the notation by writing c(p1, . . . , p`).

1.6 Organization of the paper

The rest of the paper is organized as follows. Section 2 establishes some basic reg-
ularity properties of the covariance operator. Section 3 analyzes the long-time behav-
ior of Feynman–Kac semigroups and provides a precise description of the asymptotic
behavior of the variance term vn appearing in Theorem 1.1 in two special cases: time-
homogeneous models and models in a stationary ergodic random environment.

The key result, Theorem 1.1, is established in Section 4. The main idea is to ex-
pand log γNn (1) in terms of local fluctuation terms of the form V Nk . Broadly speaking,
the contribution of quadratic terms in the expansion amounts to an asymptotically de-
terministic bias term whose fluctuations are controlled with variance bounds, while the
contribution of linear terms is treated by invoking the martingale central limit theorem.

2 Regularity of the covariance function

We first note that, in the special case where Kn,η(x, .) = Φn(η) for all x, Property
(1.26) is in fact a consequence of (1.24). Indeed, we can then write

[Φn(µ1)− Φn(µ2)](f) =
1

µ1(Gn−1)
[µ1 − µ2] (Gn−1Mn(f − Φn(µ2)(f))) ,

and check that for any f ∈ Osc(E)

‖ [Kn,µ1
−Kn,µ2

] (f)‖ ≤ 2g |[µ1 − µ2] (hn,µ2
)| ,

where g is defined in (1.24) and

hn,µ =
1

2‖Gn−1‖
Gn−1Mn(f − Φn(µ)(f)) ∈ Osc(E).

In the alternative case (1.11), we have

[Kn,µ1
−Kn,µ2

] (f) = (1−Gn−1) [Φn(µ1)− Φn(µ2)] (f)
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so that (1.26) is also satisfied.
Observe that (1.26) immediately implies the following Lipschitz-type property

sup
x∈E
‖Kn,µ1

(x, ·)−Kn,µ2
(x, ·)‖tv ≤ κ‖µ1 − µ2‖tv. (2.1)

Proposition 2.1. There exists c <∞ such that for any µ1, µ2 ∈ P(E) and any functions
f1, f2 ∈ Osc(E)

|Covn,µ1(f1, f2)− Covn,µ2(f1, f2)| ≤ c‖µ1 − µ2‖tv. (2.2)

Proof. We have

Covn,µ1
(f1, f2)− Covn,µ2

(f1, f2)

= [Φn(µ1)− Φn(µ2)] (f1f2) + [µ2 − µ1] (Kn,µ2
(f1)Kn,µ2

(f2))

+µ1 (Kn,µ2(f1)Kn,µ2(f2)−Kn,µ1(f1)Kn,µ1(f2))

and
[Φn(µ1)− Φn(µ2)] = µ1[Kn,µ1 −Kn,µ2 ] + [µ1 − µ2]Kn,µ2 .

There is no loss of generality in assuming that µ2(f1) = µ2(f2) = 0 so that ‖fi‖ ≤
osc(fi) ≤ 1. Thus, using

‖Kn,µ2
(f1)Kn,µ2

(f2)−Kn,µ1
(f1)Kn,µ1

(f2)‖

≤ ‖Kn,µ1
(f1)−Kn,µ2

(f1)‖+ ‖Kn,µ1
(f2)−Kn,µ2

(f2)‖ ,

the desired conclusion follows from (2.1).

Finally, we can also easily check that there exists c <∞ such that for any f1, f2, φ1, φ2 ∈
Bb(E)

|Covn,µ(f1, f2)− Covn,µ(φ1, φ2)| ≤ c (‖f1‖ ‖f2 − φ2‖+ ‖φ2‖ ‖f1 − φ1‖) . (2.3)

3 Feynman–Kac semigroups

3.1 Contraction estimates

We denote by (Φp,n)0≤p≤n the semigroup of non-linear operators acting on probabil-
ity measures defined by

Φp,n := Φn ◦ · · · ◦ Φp+1,

so that
ηn (f) = Φp,n(ηp)(f) = ηpQp,n(f)/ηpQp,n(1) = ΨQp,n(1)(ηp)Pp,n(f). (3.1)

We have
sup
µ,ν
‖Φp,n(µ)− Φp,n(ν)‖tv = β(Pp,n), (3.2)

see for example [5, chapter 4]. We also define

gp,n := sup
x,y∈E

[Qp,n(1)(x)/Qp,n(1)(y)] and dp,n(f) = Qp,n(f − ηn(f)).

We observe that Qn,n+1(1) = Gn/ηn(Gn) = Gn and

dp,n(Gn) = Qp,n(Qn,n+1(1)− 1) = Qp,n+1(1)−Qp,n(1). (3.3)

EJP 19 (2014), paper 94.
Page 10/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3428
http://ejp.ejpecp.org/


Lognormal CLT for particle approximations

We will use the fact that the semigroup Qp,n satisfies a decomposition similar to (1.5);
that is for any probability measure µ on E

µQp,n(1) =
∏

p≤q<n

Φp,q(µ)(Gq). (3.4)

Combining (1.21) and (3.4), we can also write

logQp,n(1)(x) =
∑

p≤q<n

[log Φp,q(δx)(Gq)− log Φp,q(ηp)(Gq)] . (3.5)

Lemma 3.1. For any 0 ≤ p ≤ n and any f ∈ Osc(E), we have

gp,n ≤ b := exp
(
a(g − 1)/(1− e−λ)

)
and ‖dp,n(f)‖ ≤ ab e−λ(n−p). (3.6)

Additionally, for any µ, ν ∈ P(E), we have

‖Φp,n(µ)− Φp,n(ν)‖tv ≤ ab e−λ(n−p) ‖µ− ν‖tv. (3.7)

Proof. Using the decomposition (3.4), we have

Qp,n(1)(x)

Qp,n(1)(y)
=
δxQp,n(1)

δyQp,n(1)
= exp

 ∑
p≤q<n

(log Φp,q(δx)(Gq)− log Φp,q(δy)(Gq))

 . (3.8)

Using the inequality |log u− log v| ≤ |u−v|
min(u,v) , valid for any u, v > 0, we deduce the

inequality

Qp,n(1)(x)

Qp,n(1)(y)
≤ exp

 ∑
p≤q<n

g̃q ×
∣∣∣Φp,q(δx)(G̃q)− Φp,q(δy)(G̃q)

∣∣∣
,

with G̃q := Gq/osc(Gq) (and the convention that G̃q := 1 if Gq is constant) and g̃q :=

osc(Gq)/inf Gq ≤ gq − 1 ≤ g − 1.
Using (1.25) and (3.2), we deduce that

gp,n ≤ exp

a(g − 1)
∑

p≤q<n

e−λ(q−p)

 ≤ b.
This ends the proof of the l.h.s. of (3.6). The proof of the r.h.s. of (3.6) comes from the
following expression for dp,n(f)

dp,n(f) = Qp,n(1)× Pp,n
[
f −ΨQp,n(1)(ηp)Pp,n(f)

]
which implies, using the fact that ‖Qp,n(1)‖ ≤ gp,n, that

‖dp,n(f)‖ ≤ gp,n β(Pp,n) osc(f) ≤ ab e−λ(n−p) osc(f). (3.9)

From [5, Section 4.3], see also Proposition 3.1 in [10], we have

‖Φp,n(µ)− Φp,n(ν)‖tv ≤ gp,n β(Pp,n) ‖µ− ν‖tv.

Using (3.6), we conclude that

‖Φp,n(µ)− Φp,n(ν)‖tv ≤ ab e−λ(n−p) ‖µ− ν‖tv.

This ends the proof of the lemma.
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3.2 Limiting semigroup

We now state a general theorem on the convergence of Qp,n(1) as n→ +∞.

Theorem 3.2. There exists c <∞ such that for all 0 ≤ p ≤ n∥∥Qp,n(1)−Qp,∞(1)
∥∥ ≤ c e−λ(n−p), (3.10)

where the limiting function Qp,∞(1) is defined through the following series

logQp,∞(1)(x) :=
∑
q≥p

[log Φp,q(δx)(Gq)− log Φp,q(ηp)(Gq)] . (3.11)

Proof of Theorem 3.2. We first check that the function Qp,∞(1) is well defined, using
the fact that, as in the proof of Lemma 3.1,

|log Φp,q(δx)(Gq)− log Φp,q(ηp)(Gq)| ≤ a(g − 1)e−λ(q−p).

One then obtains∣∣log Qp,n(1)(x)− log Qp,∞(1)(x)
∣∣ ≤∑

q≥n

|log Φp,q(δx)(Gq)− log Φp,q(ηp)(Gq)| ,

whence ∣∣log Qp,n(1)(x)− log Qp,∞(1)(x)
∣∣ ≤∑

q≥n

a(g − 1) e−λ(q−p) ≤ c e−λ(n−p).

Using the inequality |eu − ev| ≤ |u− v| max (eu, ev), we finally check that∥∥Qp,n(1)−Qp,∞(1)
∥∥ ≤ c ∥∥log Qp,n(1)− log Qp,∞(1)

∥∥ ,

as ‖Qp,n(1)‖ ≤ gp,n ≤ g. This ends the proof of (3.10).

3.3 The time-homogeneous case

Here we consider the special case of time-homogeneous models, where there exist
G,M,K such that Gn = G for all n ≥ 0, Mn = M and Kn = K for all n ≥ 1. Our
assumptions imply the existence of a unique fixed point η∞ = Φ(η∞) towards which ηn
converges exponentially fast

‖Φn(η0)− η∞‖tv ≤ ab e−λn for any n ≥ 0. (3.12)

This result and a more thorough discussion on invariant measures of Feynman–Kac
semigroups and their connexions with particle absorption models, Yaglom limits and
quasi-invariant measures can be found in [7, 8, 9], chapter 4 in [5], as well as chapters
12 and 13 in [6].

In this situation, Theorem 3.2 leads to a precise description of the asymptotic be-
havior of the variance term vn appearing in Theorem 1.1. Define indeed the function h
by

log h(x) :=
∑
n≥0

[log Φn(δx)(Gn)− log Φn(η∞)(Gn)] .

In the stationary version of the model where η0 := η∞, h corresponds to the limiting
function Q0,∞(1) whose existence is asserted by Theorem 3.2. In this situation, it turns

out that, by stationarity, Qn,∞(1) = h for all n ≥ 1.

Proposition 3.3. There exists c <∞ such that for any p ≥ 0

||Qp,∞(1)− h|| ≤ ce−λp. (3.13)
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Corollary 3.4. The variance term vn appearing in Theorem 1.1 satisfies

vn
n

=
1

n

∑
0≤q<n

Covq,ηq−1
(Qq,n(1), Qq,n(1)) = Covη∞(h, h) + O(1/n), (3.14)

where we use the notation Covη to denote the common value of Covq,η for q ≥ 1.

An alternative spectral characterization of h is given in the following corollary. In
the homogeneous case, Qp,p+1 does not depend on p, so we use the simpler notation Q.

Corollary 3.5. In the homogeneous case, (η∞Q(1), h) is characterized as the unique
pair (ζ, f) such that Q(f) = ζf and η∞(f) = 1.

Proof of Proposition 3.3. Using the exponential convergence to η∞ stated in (3.12), and
the Lipschitz property (3.7), we have∑

q≥p

[log Φp,q(ηp)(Gq)− log Φp,q(η∞)(Gq)] ≤ c
∑
q≥p

e−λ((q−p)+p) ≤ c′ e−λp.

We conclude as in the proof of Theorem 3.2.

Proof of Corollary 3.4. Using the Lipschitz property (2.2), and the fact that ‖Qq,n(1)‖ ≤
g for all q ≤ n, we see that replacing each ηq−1 in the l.h.s. of (3.14) by η∞ leads to
a O(1/n) error term. Then, using Theorem 3.2 and (2.3), we see that we can replace
each Qq,n(1) term by Qq,∞(1) in the l.h.s. of (3.14), and commit no more than a O(1/n)

overall error. Finally, (3.13) allows us to replace eachQq,∞(1) by h, again with an overall
O(1/n) error term.

Proof of Corollary 3.5. We consider the stationary version of the model where we start
with η0 := η∞.

We first check that one indeed has η∞(h) = 1 and Q(h) = η∞(Q(1))h. By Theorem
3.2, we have

lim
n→+∞

∥∥Q0,n(1)− h
∥∥ = 0. (3.15)

Since by construction, η∞Q0,n(1) = 1, (3.15) yields η∞(h) = 1. Then, due to stationarity,

one has Qp,n = Q
n−p

where Q(f) := Q(f)/η∞Q(1), so that one can also deduce from

(3.15) that Q(h) = h, which yields Q(h) = η∞(Q(1))h.
Now consider a pair (ζ, f) such that Q(f) = ζf and η∞(f) = 1, and let us show that

ζ = η∞Q(1) and f = h.
By stationarity, one has

Q0,n(f) = Qn(f)/η∞Q
n(1),

and we deduce from (3.4) and the stationarity of η∞ that

η∞Q
n(1) = (η∞Q(1))

n
.

Using the fact that Φ(η∞) = η∞, we have the identity

η∞Q(f)/η∞(Q(1)) = η∞(f).

Since Q(f) = ζf and η∞(f) = 1, it immediately follows that ζ = η∞(Q(1)).
Consequently, the equality Q(f) = η∞(Q(1))f implies that, for all n ≥ 1, one has on

the one hand

Q0,n(f) = f,
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whereas on the other hand, we have for any bounded functions f1, f2

Q0,n(f1 − f2)(x) = Φ0,n(δx)(f1 − f2)×Q0,n(1)(x).

Letting n→∞, (3.12) and Theorem 3.2 yields

lim
n→∞

Q0,n(f1 − f2) = η∞(f1 − f2)× h.

Using f1 := f and f2 := h, we deduce that f = h.

3.4 The random environment case

3.4.1 Description of the model

We consider a stationary and ergodic process Y = (Yn)n∈Z taking values in a measur-
able state space (S,S). The process Y provides a random environment governing the
successive transitions between step n − 1 and step n in our model. In the sequel, we
define and study the model for a given realization y ∈ SZ of the environment. It is only
in Corollary 3.7 that we exploit the ergodicity of Y to establish the almost sure limiting
behavior of the variance vn.

Specifically, we consider a family (Ms)s∈S of Markov kernels on E and a family
(Gs)s∈S of positive bounded functions on E. For n ∈ Z and y ∈ SZ, we set My

n := Myn

and Gyn := Gyn . We then denote with a y superscript all the objects associated with the
Feynman–Kac model using the sequence of kernels (My

n)n≥1 and functions (Gyn)n≥0, i.e.
the measures γyn and ηyn, the operators Φyp,n, Gyp,n, Covyp,η, etc. To define the particle ap-
proximation scheme, we also consider a family of Markov kernels (K(s,s′),µ)s,s′∈S, µ∈P(E)

such that, for all s, s′, µ, one has

ΨGs(µ)Ms′ = µK(s,s′),µ.

We then use Ky
n,µ := K(yn−1,yn),µ for all n ≥ 1.

We define the shift operator on SZ by setting θ(y) := (yn+1)n∈Z for any y = (yn)n∈Z ∈
SZ. With our definitions, one has for all 0 ≤ p ≤ n

Qyp,n = Q
θp(y)
0,n−p, Φyp,n = Φ

θp(y)
0,n−p,

and, in particular,
Φy0,n = Φ

θp(y)
0,n−p ◦ Φy0,p. (3.16)

Our assumptions on the model are that E has a Polish space structure, and that
the bounds listed in (1.24), (1.25) and (1.26) hold for My

n , Gyn and Ky
n,µ uniformly over

y ∈ SZ.

3.4.2 Contraction properties

Rewriting (1.25), (3.2) and (3.7) in the present context, we have for any y ∈ SZ

β
(
P y0,n

)
= sup

µ,ν
‖Φy0,n(µ)− Φy0,n(ν)‖tv ≤ a e−λn (3.17)

and
‖Φy0,n(µ)− Φy0,n(ν)‖tv ≤ ab e−λn ‖µ− ν‖tv, (3.18)

with the constant b defined in (3.6). Using (3.16), we have

Φ
θ−(n+m)(y)
0,n+m = Φ

θ−n(y)
0,n ◦ Φ

θ−(n+m)(y)
0,m ,
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so that, using (3.17), one obtains

sup
µ,ν
‖Φθ

−n(y)
0,n (µ)− Φ

θ−(n+m)(y)
0,n+m (ν)‖tv ≤ a e−λn.

Arguing as in [15, 24], we conclude that, for any f ∈ Bb(E) and any µ ∈ P(E),

Φ
θ−n(y)
0,n (µ)(f) is a Cauchy sequence so that Φ

θ−n(y)
0,n (µ) weakly converges to a measure

ηy∞, as n→∞. In addition, for any n ≥ 0, we have

Φy0,n(ηy∞) = ηθ
n(y)
∞ (3.19)

and exponential convergence to equilibrium

sup
µ
‖Φθ

−n(y)
0,n (µ)− ηy∞‖tv ≤ a e−λn. (3.20)

We now restate the conclusion of Theorem 3.2 in the present context : there exists
c <∞ such that for all 0 ≤ p ≤ n∥∥∥Qyp,n(1)−Qyp,∞(1)

∥∥∥ ≤ c e−λ(n−p), (3.21)

where the limiting function Q
y

p,∞(1) is defined through the series

logQ
y

p,∞(1)(x) :=
∑
q≥p

[
log Φyp,q(δx)(Gyq)− log Φyp,q(η

y
p)(Gyq)

]
. (3.22)

We now define the map hy by

log hy(x) :=
∑
q≥0

[
log Φy0,q(δx)(Gyq)− log Φy0,q(η

y
∞)(Gyq)

]
.

Proposition 3.6. There exists c <∞ such that for any y ∈ SZ and any p ≥ 0

||Qyp,∞(1)− hθ
p(y)|| ≤ ce−λp. (3.23)

Proof of Proposition 3.6. Setting q := q − p in (3.22), we find that

logQ
y

p,∞(1)(x) =
∑
q≥0

[
log Φ

θp(y)
0,q (δx)(Gθ

p(y)
q )− log Φ

θp(y)
0,q (ηyp)(Gθ

p(y)
q )

]
for any p ≥ 0, while

log hθ
p(y)(x) =

∑
q≥0

[
log Φ

θp(y)
0,q (δx)(Gθ

p(y)
q )− log Φ

θp(y)
0,q (ηθ

p(y)
∞ )(Gθ

p(y)
q )

]
.

Using (3.20), we obtain
‖ηyp − ηθ

p(y)
∞ ‖tv ≤ a e−λp.

Combining this bound with (3.18), we deduce that∣∣∣Φθp(y)
0,q (ηyp)(Gθ

p(y)
q )− Φ

θp(y)
0,q (ηθ

p(y)
∞ )(Gθ

p(y)
q )

∣∣∣ ≤ ce−λ(p+q).

We can now conclude as in the proof of Theorem 3.2.

Introduce the map C defined on SZ by

C(y) := Covθ
−1(y)

1,η
θ−1(y)
∞

(hy, hy).

We add to (1.24)-(1.25)-(1.26) the assumption that C is measurable with respect to the
product σ−algebra on SZ.

Arguing as in the proof of (3.14), then applying Birkhoff’s ergodic theorem (on
canonical space), we deduce the following asymptotic behavior for the variance vn.
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Corollary 3.7. We have

vn
n

=
1

n

∑
0≤p<n

Covy
p,ηyp−1

(Q
y

p,n(1), Q
y

p,n(1)) =
1

n

∑
1≤p<n

C(θp(y)) +O(1/n)

so the ergodic theorem yields

lim
n→∞

vn
n

= E

(
Covθ

−1(Y )

1,η
θ−1(Y )
∞

(hY , hY )

)
a.s.

4 Fluctuation analysis

4.1 Moment bounds

In addition to the local error fields V Nn defined in (1.15), we consider the global error
fields WN

n defined by

WN
n =

√
N
(
ηNn − ηn

)
⇔ ηNn = ηn +

1√
N

WN
n . (4.1)

We now recall some key moment estimates on V Nn and WN
n , see [5, chapter 4] or [6,

chapter 9]. Under our assumptions, one has for any n ≥ 0, N ≥ 1, f ∈ Osc(E) and
m ≥ 1 ∥∥V Nn (f)

∥∥
m
≤ c(m), (4.2)

and ∥∥WN
n (f)

∥∥
m
≤ c(m). (4.3)

4.2 Expansion of the particle estimate of log-normalizing constants

Starting from the product-form expression (1.14), we apply a second-order expan-
sion to the logarithm of each factor. Using (4.3), we have that for any n ≥ 0 and N ≥ 1

log γNn (1) =
1√
N

∑
0≤p<n

WN
p (Gp)−

1

2N

∑
0≤p<n

(
WN
p (Gp)

)2
+

1√
N

( n
N

)
C(n,N), (4.4)

where the remainder term satisfies ||C(n,N)||m ≤ c(m) for all m ≥ 1.

4.3 Second order perturbation formulae

We derive an expansion of WN
n (f) in terms of the local error terms V Np introduced

in (1.15), up to an error term of order 1/N . The key result we prove is the following.

Theorem 4.1. For all n ≥ 0, N ≥ 1 and any function f ∈ Osc(E),

WN
n (f) =WN

n (f) +
1

N
RNn (f) (4.5)

with

WN
n (f) =

n∑
p=0

V Np [dp,n(f)]− 1√
N

∑
0≤p<n

[
p∑
q=0

V Nq
[
dq,p(Gp)

]] [ p∑
q=0

V Nq [dq,n(f)]

]
,

where the remainder measure RNn is such that ||RNn (f)||m ≤ c(m) for all m ≥ 1.

To prove Theorem 4.1, we start with the following exact decomposition of WN
n (f)

into a first term of order 1 involving the V Np for p = 0, ..., n plus a remainder term of

order 1/
√
N .
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Theorem 4.2 ([6, chapter 14, p. 432]). For all n ≥ 0, N ≥ 1 and any function f ∈
Osc(E), we have the decomposition

WN
n (f) =

n∑
p=0

V Np [dp,n(f)] +
1√
N

SNn (f), (4.6)

with the second order remainder

SNn (f) := −
∑

0≤p<n

1

ηNp (Gp)
WN
p (Gp) W

N
p [dp,n(f)] .

Under our assumptions, the remainder term satisfies for all m ≥ 1

||SNn (f)||m ≤ c(m). (4.7)

Decomposing 1/ηNp (Gp) into a term of order 1 plus a term of order 1/
√
N as follows

1

ηNp (Gp)
= 1− 1

ηNp (Gp)

1√
N

WN
p (Gp), (4.8)

we refine Theorem 4.2 into the following decomposition, which now has an error term
of order 1/N .

Corollary 4.3. For all n ≥ 0, N ≥ 1 and any function f ∈ Osc(E), the following decom-
position holds

WN
n (f) =

n∑
p=0

V Np [dp,n(f)]− 1√
N

∑
0≤p<n

WN
p (Gp) W

N
p [dp,n(f)] +

1

N
RNn (f), (4.9)

where the remainder term is such that ||RNn (f)||m ≤ c(m) for all m ≥ 1.

Proof. Using (4.8), we obtain (4.9) with the remainder term

RNn (f) :=
∑

0≤p<n

1

ηNp (Gp)
WN
p (Gp)

2 WN
p [dp,n(f)] ,

and, for any m ≥ 1, we have

E
(∣∣RNn (f)

∣∣m) 1
m ≤ g

∑
0≤p<n

E
(∣∣WN

p (Gp)
∣∣4m) 1

2m

E
(∣∣WN

p [dp,n(f)]
∣∣2m) 1

2m

.

Combining (4.3) and (3.6), we obtain

E
(∣∣RNn (f)

∣∣m) 1
m ≤ c(m)

∑
0≤p<n

eλ(n−p),

for some finite constant c(m) <∞. This ends the proof of the corollary.

We are now ready to derive Theorem 4.1, by replacing the WN
p terms appearing in

the previous corollary by their expansions in terms of the V Np provided by Theorem 4.2.
Here is the proof of Theorem 4.1.

Proof. Using (4.9), we have

WN
n (f) = V(N,1)

n (f) +
1√
N
V(N,2)
n (f) +

1

N
RNn (f),
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with

V(N,1)
n (f) :=

n∑
p=0

V Np [dp,n(f)] ,

V(N,2)
n (f) :=−

∑
0≤p<n

WN
p (Gp) W

N
p [dp,n(f)] .

This implies that∑
0≤p<n

WN
p (Gp) W

N
p [dp,n(f)] = I(0)

n +
1√
N
I(1)
n (f) +

1

N
I(2)
n (f) +

1

N2
I(3)
n (f),

with

I(0)
n (f) =

∑
0≤p<n

V(N,1)
p (Gp) V(N,1)

p (dp,n(f)),

I(1)
n (f) =

∑
0≤p<n

[
V(N,1)
p (Gp) V(N,2)

p (dp,n(f)) + V(N,2)
p (Gp) V(N,1)

p (dp,n(f))
]
,

I(2)
n (f) =

∑
0≤p<n

{
RNp (Gp)

[
V(N,1)
p (dp,n(f)) +

1√
N
V(N,2)
p (dp,n(f))

]

+RNp (dp,n(f))

[
V(N,1)
p (Gp) +

1√
N
V(N,2)
p (Gp)

]}
,

I(3)
n (f) =

∑
0≤p<n

RNp (Gp) RNp (dp,n(f)).

Arguing as in the previous proof, we see that sup1≤i≤3E
(∣∣∣I(i)

n (f)
∣∣∣m) 1

m

≤ c(m), which

yields the conclusion.

4.4 Fluctuations of local random fields

As mentioned in Section 1.3, when N goes to infinity, the fields (V Nn )n≥0 converge
in distribution to a sequence of independent centered Gaussian random fields (Vn)n≥0

whose covariances are characterized by

CVn(f, φ) := E(Vn(f)Vn(φ)) = Covn,ηn−1(f, φ),

for any f, φ ∈ Bb(E).
We recall that for any n ≥ 1, q ≥ 1 and any q−tensor product function

f = ⊗1≤i≤qfi ∈ Osc(E)⊗q,

the q-moments of a centered Gaussian random field V are given by the Isserlis-Wick
formula [16, 26]

E
(
V ⊗q(f)

)
=
∑

i∈π(q)

∏
1≤`≤q/2

E(V (fi2`−1
)V (fi2`)), (4.10)

where π(q) denotes the set of pairings of {1, . . . , q}, i.e. the set of partitions i of {1, . . . , q}
into pairs i1 = {i1, i2}, . . . , iq/2 = {iq−1, iq}. Note that when q is odd, E (V ⊗q(f)) = 0.

In the following proposition, we give quantitative bounds on the convergence speed
of product-form functionals of the fields (V Nn )n≥0.

Proposition 4.4. For any p ≥ 1, there exists c(p) <∞ such that for any f = (fi)1≤i≤p ∈
Osc(E)p, any integers a = (ai)1≤i≤p, n ≥ 0 and any N ≥ 1∣∣∣E(V Na1 (f1) · · ·V Nap (fp))− E(Va1(f1) · · ·Vap(fp))

∣∣∣ ≤ c(p)√
N
.
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To prove the proposition, we use the following lemma.

Lemma 4.5. Consider a sequence of N independent random variables (Zi)1≤i≤N with
distributions (µi)1≤i≤N on E, and define the empirical random fields V N for f ∈ Osc(E)

by

V N (f) := N−1/2
N∑
j=1

(f(Zj)− µj(f)).

Let V
N

denote a centered Gaussian random field with covariance function defined for
any f, φ ∈ Osc(E) by

C
V
N (f, φ) = E

(
V
N

(f)V
N

(φ)
)

=
1

N

N∑
i=1

covµi(f, φ),

where
covµi(f, φ) := µi ([f − µi(f)] [φ− µi(φ)]) .

For any 1 ≤ q ≤ N , there exists c(q) <∞ such that for any q−tensor product function

f = ⊗1≤i≤qfi ∈ Osc(E)⊗q,

the following inequality holds∣∣∣∣E([V N ]⊗q (f)
)
− E

([
V
N
]⊗q

(f)

)∣∣∣∣ ≤ c(q) N−ρ(q), (4.11)

where ρ(q) := 1 for even q, and ρ(q) := 1/2 for odd q.

Proof. We write

V N (fi) =
1√
N

∑
1≤j≤N

f
(j)
i (Zj) with f

(j)
i = fi − µj(fi).

Expanding the product, we get

Nq/2 E
([
V N
]⊗q

(f)
)

=
∑

1≤j1,...,jq≤N

E(f
(j1)
1 (Zj1) · · · f (jq)

q (Zjq )).

Each term in the above r.h.s. such that an index ji appears exactly once in the list
(j1, . . . , jq) must be zero, so the only terms that may contribute to the sum are those for
which every index appears at least twice. When q is odd, the number of such combi-
nations of indices is bounded above by c(q)N (q−1)/2, for some finite constant c(q) < ∞
depending only on q. Since each expectation is bounded in absolute value by 1, we can
conclude.

Now assume that q is even. Consider a pairing i of {1, . . . , q} given by i1 = {i1, i2}, . . . , iq/2 =

{iq−1, iq}, and a combination of indices j1, . . . , jq such that ja = jb whenever a, b belong
to the same pair, while ja 6= jb otherwise. Denoting by kr the value of ja when a ∈ ir,
and using independence, we see that the contribution of this combination to the sum is

E(f
(j1)
1 (Zj1) · · · f (jq)

q (Zjq )) = covµk1 (fi1 , fi2) · · · covµkq/2 (fiq−1 , fiq ).

Every combination of indices in which every index appears exactly twice is of the form
just described. Then, the number of combinations in which every index appears at least
twice, but which are not of the previous form, is O(Nq/2−1). Consequently, we have

Nq/2 E(
(
V N
)⊗q

(f))

=
∑

i∈π(q)

∑
k∈〈q/2,N〉

covµk1 (fi1 , fi2) · · · covµkq/2 (fiq−1
, fiq ) + O

(
Nq/2−1

)
,
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where 〈p,N〉 stands for the set of all (N)p = N !/(N − p)! one-to-one mappings from

[p] := {1, . . . , p} into [N ]. Moreover, for any function ϕ ∈ R[N ][p] such that |ϕ| ≤ 1, we
have ∣∣∣∣∣∣ 1

(N)p

∑
k∈〈p,N〉

ϕ(k)− 1

Np

∑
k∈[N ][p]

ϕ(k)

∣∣∣∣∣∣ ≤ (p− 1)2

N
.

A detailed proof of the above inequality is provided in Proposition 8.6.1 in [5] (cf. for
instance the derivation of formula (8.14) p. 269). Now note that∑

i∈π(q)
1

Nq/2

∑
k∈[N ][q/2] covµk1 (fi1 , fi2) · · · covµkq/2 (fiq−1 , fiq )

=
∑

i∈π(q)

∏
1≤`≤q/2

1
N

∑
1≤j≤N covµj (fi2`−1

, fi2`)

=
∑

i∈π(q)

∏
1≤`≤q/2 CV N (fi2`−1

, fi2`) = E

((
V
N
)⊗q

(f)

)
,

where the last identity uses Wick’s formula (4.10).
This yields

Nq/2 E(
(
V N
)⊗q

(f)) = (N)q/2E

((
V
N
)⊗q

(f)

)
+ O

(
Nq/2−1

)
.

We end the proof of (4.11) using the fact that 0 ≤ (1− (N)p/N
p) ≤ (p − 1)2/N for any

p ≤ N .

Lemma 4.6. Let q > 0 be an even number and m ≥ 1 an integer. There exists c(q,m) <

∞ such that for any functions (fi)1≤i≤q ∈ Osc(E)q, any n ≥ 0 and any N ≥ 1, we have∥∥∥∥∥∥
∏

1≤`≤q/2

Covn,ηNn−1
(f2`−1, f2`)−

∏
1≤`≤q/2

Covn,ηn−1(f2`−1, f2`)

∥∥∥∥∥∥
m

≤ c(q,m)/
√
N. (4.12)

Proof. Arguing as in the proof of Proposition 2.1, combining (4.2) and (1.26), we obtain
that for any f1, f2 ∈ Osc(E)

√
N
∥∥∥Covn,ηNn−1

(f1, f2)− Covn,ηn−1
(f1, f2)

∥∥∥
m
≤ c

′
(m). (4.13)

We end the proof of (4.12) using the bound∣∣∣∣∣∣
∏

1≤i≤m

ui −
∏

1≤i≤m

vi

∣∣∣∣∣∣ ≤ sup(|ui|, |vi|; 1 ≤ i ≤ m)m−1
∑

1≤i≤m

|ui − vi|,

valid for any u = (ui)1≤i≤m ∈ Rm and v = (vi)1≤i≤m ∈ Rm.

We now come to the proof of Proposition 4.4.

Proof of Proposition 4.4. Assume that the ai are ordered so that a1 ≤ . . . ≤ a` < a`+1 =

· · · = a`+q, where `+ q = p. Set

AN := V Na1 (f1) · · ·V Na` (f`) and BN := V Na (f`+1) · · ·V Na (f`+q)

where a := ap. Given FNa−1, we let V
N

a be a sequence of Gaussian random fields with
covariance function defined for any f, φ ∈ Osc(E) by

C
V
N
a

(f, φ) = Cova,ηNa−1
(f, φ)
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and we set

B
N

:= V
N

a (f`+1) · · ·V Na (f`+q) and B := Va(f`+1) · · ·Va(f`+q)

Now E(ANBN ) = E(AN × E(BN |FNa−1)), and, by Lemma 4.5 applied to conditionally
independent samples, one has the deterministic bound∣∣∣E(BN |FNa−1)− E

(
B
N ∣∣FNa−1

)∣∣∣ ≤ c(q)/√N.
Moreover, combining (4.12) with Wick’s formula (4.10), we obtain

E
(
B
N ∣∣FNa−1

)
=
∑

i∈π(q)

∏
1≤r≤q/2

Cova,ηNa−1
(f (`+2r−1), f (`+2r)),

hence it follows that

√
N
∥∥∥E(BN ∣∣FNa−1

)
− E (B)

∥∥∥
m
≤ c(m).

Using the decomposition

E(ANBN )− E(ANE(B)) = E
(
AN

[
E(BN |FNa−1)− E(B)

])
,

we conclude that ∣∣E(ANBN )− E(AN ) E(B)
∣∣ ≤ c′(q)/√N.

One then concludes by iterating the argument.

4.5 Expansion of the particle estimates continued

By inserting the expansions obtained in Section 4.3 in the development obtained in
(4.4), we obtain, after some rearrangement, the following proposition.

Proposition 4.7. For any n ≥ 0, N ≥ 1, we have the second order decomposition

1√
N

∑
0≤q<n

WN
q (Gq)−

1

2N

∑
0≤q<n

WN
q (Gq)

2

=
1√
N

∑
0≤q<n

V Nq (Qq,n(1))

− 1

2N

∑
0≤k≤p<n

[
V Nk (Qk,p+1(1)−Qk,p(1)) V Nk (Qk,p+1(1) +Qk,p(1))

]
− 1

N
UNn −

1

2N
Y Nn +

1√
N

( n
N

)
C2(n,N),

(4.14)

where UNn and Y Nn are centered random variables given by

UNn :=
∑

0≤k 6=l≤q<p<n

V Nk
(
dk,q(Gq)

)
V Nl

(
dl,p(Gp)

)
, (4.15)

Y Nn :=
∑

0≤k<l≤q<n

V Nk
[
dk,q(Gq)

]
V Nl

[
dl,q(Gq)

]
,

and the remainder term satisfies ||C2(n,N)||m ≤ c(m) for all m ≥ 1.
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Proof. By Theorem 4.1, we may replace WN
q by the random fields WN

q given in (4.5)
in the linear terms of the expression we want to expand, i.e. the l.h.s. of (4.14), while
committing at most an error of the form

1√
N

( n
N

)
C3(n,N),

where for all m ≥ 1

||C3(n,N)||m ≤ c(m).

On the other hand, using the cruder expansion provided by Theorem 4.2, we may
replace WN

q by just
∑q
p=0 V

N
p

[
dp,q(Gq)

]
in the quadratic terms appearing in the l.h.s. of

(4.14), and commit an overall error of the form

1√
N

( n
N

)
C4(n,N),

where for all m ≥ 1

||C4(n,N)||m ≤ c′(m).

By the definition ofWN
q given in (4.5), we have

WN
q (Gq) =

q∑
p=0

V Np
[
dp,q(Gq)

]
− 1√

N

∑
0≤p<q

[
p∑
k=0

V Nk
[
dk,p(Gp)

]] [ p∑
k=0

V Nk
[
dk,q(Gq)

]]

so that

1√
N

∑
0≤q<n

WN
q (Gq)

=
1√
N

∑
0≤p<n

V Np

 ∑
p≤q<n

dp,q(Gq)



− 1

N

∑
0≤q<n

∑
0≤p<q

[
p∑
k=0

V Nk
[
dk,p(Gp)

]] [ p∑
k=0

V Nk
[
dk,q(Gq)

]]
.

By (3.3), we recall that∑
p≤q<n

dp,q(Gq) =
∑

p≤q<n

[
Qp,q+1(1)−Qp,q(1)

]
= Qp,n(1)− 1,

so on the one hand we have

∑
0≤p<n

V Np

 ∑
p≤q<n

dp,q(Gq)

 =
∑

0≤p<n

V Np
[
Qp,n(1)

]
,
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whereas, on the other hand, we have∑
0≤p<q<n

[
p∑
k=0

V Nk
[
dk,p(Gp)

]] [ p∑
k=0

V Nk
[
dk,q(Gq)

]]

=
∑

0≤k≤p<q<n

V Nk
[
dk,p(Gp)

]
V Nk

[
dk,q(Gq)

]
+ UNn

=
∑

0≤k<q<n

V Nk

 ∑
k≤p<q

dk,p(Gp)

V Nk [
dk,q(Gq)

]
+ UNn

=
∑

0≤k<q<n

V Nk
[
Qk,q(1)

]
V Nk

[
dk,q(Gq)

]
+ UNn .

This implies that

1√
N

∑
0≤q<n

WN
q (Gq)

=
1√
N

∑
0≤p<n

V Np
[
Qp,n(1)

]

− 1

N

∑
0≤q<n

∑
0≤p<q

V Np
[
Qp,q(1)

]
V Np

[
dp,q(Gq)

]
− 1

N
UNn .

It remains to analyze the quadratic part, which we write as

∑
0≤q<n

 ∑
0≤p≤q

V Np
[
dp,q(Gq)

]2

=
∑

0≤q<n

∑
0≤p≤q

V Np
[
dp,q(Gq)

]2
+ Y Nn .

Now notice that

−
∑

0≤p<q

V Np
[
Qp,q(1)

]
V Np

[
dp,q(Gq)

]
− 1

2

∑
0≤p≤q

V Np
[
dp,q(Gq)

]2

= −1

2
V Nq

[
dq,q(Gq)

]2 − ∑
0≤p<q

V Np
[
dp,q(Gq)

]
V Np

[
1

2
dp,q(Gq) +Qp,q(1)

]

= −1

2
V Nq

[
dq,q(Gq)

]2
−
∑

0≤p<q V
N
p

[
dp,q(Gq)

]
V Np

[
1
2

[
Qp,q+1(1)−Qp,q(1)

]
+Qp,q(1)

]
= −1

2
V Nq

[
Qq,q+1(1)−Qq,q(1)

]2
− 1

2

∑
0≤p<q V

N
p

[
Qp,q+1(1)−Qp,q(1)

]
V Np

[
Qp,q+1(1) +Qp,q(1)

]
.

Recalling that Qq,q(1) = 1, we conclude that

−
∑

0≤p<q

V Np
[
Qp,q(1)

]
V Np

[
dp,q(Gq)

]
− 1

2

∑
0≤p≤q

V Np
[
dp,q(Gq)

]2
= − 1

2

∑
0≤k≤q V

N
k

[
Qk,q+1(1)−Qk,q(1)

]
V Nk

[
Qk,q+1(1) +Qk,q(1)

]
.
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The next step is to show that both centered terms UNn and Y Nn yield negligible con-
tributions in (4.14).

Proposition 4.8. There exists c <∞ such that for any n ≥ 0, N ≥ 1

E((UNn )2) ≤ c
(
n+

n2

√
N

)
.

Proof. From (4.15), we obtain

E((UNn )2) =
∑

E
(
V Nk

(
dk,q(Gq)

)
V Nl

(
dl,p(Gp)

)
V Nk′

(
dk′,q′(Gq′)

)
V Nl′

(
dl′,p′(Gp′)

))
with ∑

=
∑

0≤k 6=l≤q<p<n

∑
0≤k′ 6=l′≤q′<p′<n

.

First consider replacing each V Nk by the corresponding Vk in the above expectations.
By Proposition 4.4 together with the exponential estimates (3.6), the overall error due
to this replacement is bounded by

c√
N

∑
exp(−λ(q − k + p− l + q′ − k′ + p′ − l′)) ≤ c′ n

2

√
N
.

Now consider the corresponding sum associated with the Gaussian fields Vk which is
given by ∑

E
(
Vk
(
dk,q(Gq)

)
Vl
(
dl,p(Gp)

)
Vk′
(
dk′,q′(Gq′)

)
Vl′
(
dl′,p′(Gp′)

))
.

We only have a non-zero term when either k = k′ and l = l′ or k = l′ and k′ = l.
Restricting summation to this subset of indices, we claim that∑

exp(−λ(q − k + p− l + q′ − k′ + p′ − l′)) ≤ c′′ × n. (4.16)

To see this, consider first the subset of indices such that 0 ≤ k < l < n, k′ = k and l′ = l

and write (q − k + p− l+ q′ − k′ + p′ − l′) = 2(l− k) + (q − l+ p− l+ q′ − l+ p′ − l). The
corresponding sum is thus bounded above by∑

0≤k<l<n

exp(−2λ(l − k))×
∑

p,p′,q,q′≥l

exp(−λ(q − l + p− l + q′ − l + p′ − l)). (4.17)

Clearly, the r.h.s. of the product in (4.17) is bounded above by a constant since λ > 0,
and, for the same reason, the expression

∑+∞
l=k+1 exp(−2λ(l − k)) is bounded above by

a constant which does not depend on k. Since (4.17) is a sum over at most n values of
k, we deduce that the sum in (4.17) is bounded above by a constant times n. The other
three subsets of indices contributing to (4.16) (namely {0 ≤ l < k < n, k′ = k, l′ = l};
{0 ≤ k < l < n, k′ = l, l′ = k}; {0 ≤ l < k < n, k′ = l, l′ = k}) can be dealt with in exactly
the same way, leading to the bound in (4.16).

Using a similar argument, we obtain the following result.

Proposition 4.9. There exists c <∞ such that for any n ≥ 0, N ≥ 1

E((Y Nn )2) ≤ c
(
n+

n2

√
N

)
.
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Now we consider the remaining term in (4.14), i.e.

HN
n :=

∑
0≤k≤p<n

(
V Nk

[
Qk,p+1(1)−Qk,p(1)

]
V Nk

[
Qk,p+1(1) +Qk,p(1)

] )
,

and show that it can be replaced by its expectation up to a negligible random term.

Proposition 4.10. There exists c < ∞ such that for any n ≥ 0, N ≥ 1 the following
variance bound holds

V(HN
n ) ≤ c n.

Proof. If we set

Jk,p := Qk,p+1(1)−Qk,p(1) and Kk,p := Qk,p+1(1) +Qk,p(1),

then we find that
E
(
HN
n

)
=

∑
0≤k≤p<n

E
(
V Nk [Jk,p] V

N
k [Kk,p]

)
,

whence

(E
(
HN
n

)
)2

=
∑

0≤k≤p<n

∑
0≤k′≤p′<n

E
(
V Nk [Jk,p] V

N
k [Kk,p]

)
E
(
V Nk′ [Jk′,p′ ] V

N
k′ [Kk′,p′ ]

)
,

while

E
((
HN
n

)2)
=

∑
0≤k≤p<n

∑
0≤k′≤p′<n

E
(
V Nk [Jk,p] V

N
k [Kk,p]V

N
k′ [Jk′,p′ ] V

N
k′ [Kk′,p′ ]

)
.

Observe that the terms in the above two sums coincide whenever k 6= k′. Therefore,
it remains to bound the contribution of the terms such that k = k′ in both sums. In both
expressions, the corresponding sum is bounded above in absolute value by∑

0≤k≤p,p′<n

c′ e−λ(p′−k+p−k) ≤ c′′ n.

This ends the proof of the proposition.

Proposition 4.11. There exists c <∞ such that for any n ≥ 0, N ≥ 1

E(HN
n ) = vn + εNn with |εNn | ≤ c n/

√
N.

Proof. Recalling that Qp,n(1)− 1 =
∑
p≤k<n

(
Qp,k+1 −Qp,k

)
, we prove that

Vp(Qp,n(1))2

=
(∑

p≤k<n Vp
(
Qp,k+1 −Qp,k

))2

=
∑
p≤k<n Vp

(
Qp,k+1 −Qp,k

)2
+2
∑
p≤l<n Vp

(∑
p≤k<l

[
Qp,k+1 −Qp,k

])
Vp
(
Qp,l+1 −Qp,l

)
=
∑
p≤l<n Vp

(
Qp,l+1 −Qp,l

)2
+2
∑
p≤l<n Vp

(
Qp,l

)
Vp
(
Qp,l+1 −Qp,l

)
.
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This yields the formula

Vp(Qp,n(1))2 =
∑
p≤l<n

Vp
(
Qp,l+1 −Qp,l

)
Vp
(
Qp,l+1 +Qp,l

)
.

Replacing each V Nk by Vk in the expectation of HN
n , we obtain∑

0≤p≤l<nE
(
Vp
[
Qp,l+1(1)−Qp,l(1)

]
Vp
[
Qp,l+1(1) +Qp,l(1)

])
=
∑

0≤p<nE
(
Vp(Qp,n(1))2

)
= vn.

To control the error introduced by the replacement, we use Proposition 4.4, (3.3)
and (3.6). It follows that the overall error can be bounded above by

c
∑

0≤k≤p<n

e−λ(p−k)

√
N

≤ c′ n√
N
.

This ends the proof of the proposition.

4.6 Central limit theorem

This section establishes the proof of Theorem 1.1.

Proof. Using the decomposition (4.4) and Propositions 4.8 to 4.11, we obtain

log γNn (1) =
1√
N

∑
0≤q<n

V Nq (Qq,n(1))− 1

2N
vn + εNn ,

with εNn going to zero in probability as n goes to infinity. Thus, to prove the theorem, it
remains to show that

1
√
vn

∑
0≤q<n

V Nq (Qq,n(1))

converges in distribution to a standard normal. We do so using the central limit theorem
for martingale difference arrays (see e.g. [14, 22]). The martingale property just comes
from the fact that we have for any q ≥ 0 and any bounded function fq

E
(
V Nq (fq)|FNq−1

)
= 0 a.s.

We now have to show that

1

vn

∑
0≤q<n

E
([
V Nq (Qq,n(1))

]2 |FNq−1

)
converges to 1 in probability. One easily checks from the definition that

E
([
V Nq (Qq,n(1))

]2 |FNq−1

)
= Covq,ηNq−1

(Qq,n(1), Qq,n(1)).

We observe that
vn =

∑
0≤q<n

Covq,ηq−1(Qq,n(1), Qq,n(1))

and

dNn :=
∣∣∣ 1
vn

∑
0≤q<nE

([
V Nq (Qq,n(1))

]2 |FNq−1

)
− 1
∣∣∣

≤ 1
vn

∑
0≤q<n

∣∣∣Covq,ηNq−1
(Qq,n(1), Qq,n(1))− Covq,ηq−1

(Qq,n(1), Qq,n(1))
∣∣∣ .
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Using (4.13), we see that

E(dNn ) ≤ c
(
n

vn

)
1√
N
,

so we can conclude using (1.27).
The last point to be checked is the asymptotic negligibility condition, that is, for all

ε > 0, we have to prove that

1

vn

∑
0≤q<n

E
([
V Nq (Qq,n(1))

]2
1l
([
V Nq (Qq,n(1))

]2 ≥ ε vn) |FNq−1

)
goes to zero in probability. By Schwarz’s inequality and (4.2), the expectation of this
expression is bounded above by

c′
(
n

vn

)
1

(εvn)1/2
,

This ends the proof of the theorem.
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