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Abstract

We consider a degenerate stochastic differential equation that has a sticky point in
the Markov process sense. We prove that weak existence and weak uniqueness hold,
but that pathwise uniqueness does not hold nor does a strong solution exist.
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1 Introduction

The one-dimensional stochastic differential equation

dXt = σ(Xt) dWt (1.1)

has been the subject of intensive study for well over half a century. What can one say
about pathwise uniqueness when σ is allowed to be zero at certain points? Of course, a
large amount is known, but there are many unanswered questions remaining.

Consider the case where σ(x) = |x|α for α ∈ (0, 1). When α ≥ 1/2, it is known there
is pathwise uniqueness by the Yamada-Watanabe criterion (see, e.g., [6, Theorem 24.4])
while if α < 1/2, it is known there are at least two solutions, the zero solution and one
that can be constructed by a non-trivial time change of Brownian motion. However, that
is not the end of the story. In [7], it was shown that there is in fact pathwise uniqueness
when α < 1/2 provided one restricts attention to the class of solutions that spend zero
time at 0.

This can be better understood by using ideas from Markov process theory. The
continuous strong Markov processes on the real line that are on natural scale can be
characterized by their speed measure. For the example in the preceding paragraph, the
speed measure m is given by

m(dy) = 1(y 6=0)|y|−2α dy + γδ0(dy),
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A SDE with a sticky point

where γ ∈ [0,∞] and δ0 is point mass at 0. When γ =∞, we get the 0 solution, or more
precisely, the solution that stays at 0 once it hits 0. If we set γ = 0, we get the situation
considered in [7] where the amount of time spent at 0 has Lebesgue measure zero, and
pathwise uniqueness holds among such processes.

In this paper we study an even simpler equation:

dXt = 1(Xt 6=0) dWt, X0 = 0, (1.2)

where W is a one-dimensional Brownian motion. One solution is Xt = Wt, since Brow-
nian motion spends zero time at 0. Another is the identically 0 solution.

We take γ ∈ (0,∞) and consider the class of solutions to (1.2) which spend a positive
amount of time at 0, with the amount of time parameterized by γ. We give a precise
description of what we mean by this in Section 3.

Representing diffusions on the line as the solutions to stochastic differential equa-
tions has a long history, going back to Itô in the 1940’s, and this paper is a small step
in that program. For this reason we characterize our solutions in terms of occupation
times determined by a speed measure. Other formulations that are purely in terms of
stochastic calculus are possible; see the system (1.5)–(1.6) below.

We start by proving weak existence of solutions to (1.2) for each γ ∈ (0,∞). We
in fact consider a much more general situation. We let m be any measure that gives
finite positive mass to each open interval and define the notion of continuous local
martingales with speed measure m.

We prove weak uniqueness, or equivalently, uniqueness in law, among continuous
local martingales with speed measure m. The fact that we have uniqueness in law not
only within the class of strong Markov processes but also within the class of continuous
local martingales with a given speed measure may be of independent interest.

We then restrict our attention to (1.2) and look at the class of continuous martingales
that solve (1.2) and at the same time have speed measure m, where now

m(dy) = 1(y 6=0) dy + γδ0(dy) (1.3)

with γ ∈ (0,∞).
Even when we fix γ and restrict attention to solutions to (1.2) that have speed mea-

sure m given by (1.3), pathwise uniqueness does not hold. The proof of this fact is the
main result of this paper. The reader familiar with excursions will recognize some ideas
from that theory in the proof.

Finally, we prove that for each γ ∈ (0,∞), no strong solution to (1.2) among the class
of continuous martingales with speed measure m given by (1.3) exists. Thus, given W ,
one cannot find a continuous martingale X with speed measure m satisfying (1.2) such
that X is adapted to the filtration of W . A consequence of this is that certain natural
approximations to the solution of (1.2) do not converge in probability, although they do
converge weakly.

Besides increasing the versatility of (1.1), one can easily imagine a practical applica-
tion of sticky points. Suppose a corporation has a takeover offer at $10. The stock price
is then likely to spend a great deal of time precisely at $10 but is not constrained to stay
at $10. Thus $10 would be a sticky point for the solution of the stochastic differential
equation that describes the stock price.

Regular continuous strong Markov processes on the line which are on natural scale
and have speed measure given by (1.3) are known as sticky Brownian motions. These
were first studied by Feller in the 1950’s and Itô and McKean in the 1960’s.

A posthumously published paper by Chitashvili ([9]) in 1997, based on a technical re-
port produced in 1988, considered processes on the non-negative real line that satisfied
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A SDE with a sticky point

the stochastic differential equation

dXt = 1(Xt 6=0) dWt + θ1(Xt=0) dt, Xt ≥ 0, X0 = x0, (1.4)

with θ ∈ (0,∞). Chitashvii proved weak uniqueness for the pair (X,W ) and showed that
no strong solution exists.

Warren (see [23] and also [24]) further investigated solutions to (1.4). The process
X is not adapted to the filtration generated by W and has some “extra randomness,”
which Warren characterized.

While this paper was under review, we learned of a preprint by Engelbert and Peskir
[11] on the subject of sticky Brownian motions. They considered the system of equations

dXt = 1(Xt 6=0) dWt, (1.5)

1(Xt=0) dt =
1

µ
d`0t (X), (1.6)

where µ ∈ (0,∞) and `0t is the local time in the semimartingale sense at 0 of X. (Local
times in the Markov process sense can be different in general.) Engelbert and Peskir
proved weak uniqueness of the joint law of (X,W ) and proved that no strong solution
exists. They also considered a one-sided version of this equation, where X ≥ 0, and
showed that it is equivalent to (1.4). Their results thus provide a new proof of those of
Chitashvili.

It is interesting to compare the system (1.5)–(1.6) investigated by [11] with the SDE
considered in this paper. Both include the equation (1.5). In this paper, however, in
place of (1.6) we use a side condition whose origins come from Markov process theory,
namely:

Xis a continuous martingale with speed measure (1.7)

m(dx) = dx+ γδ0(dx),

where δ0 is point mass at 0 and “continuous martingale with speed measure m” is
defined in (3.1). One can show that a solution to the system studied by [11] is a solution
to the formulation considered in this paper and vice versa, and we sketch the argument
in Remark 5.3. However, we did not see a way of proving this without first proving the
uniqueness results of this paper and using the uniqueness results of [11].

Other papers that show no strong solution exists for stochastic differential equations
that are closely related include [1], [2], and [15].

After a short section of preliminaries, Section 2, we define speed measures for local
martingales in Section 3 and consider the existence of such local martingales. Section
4 proves weak uniqueness, while in Section 5 we prove that continuous martingales
with speed measure m given by (1.3) satisfy (1.2). Sections 6, 7, and 8 prove that
pathwise uniqueness and strong existence fail. The first of these sections considers
some approximations to a solution to (1.2), the second proves some needed estimates,
and the proof is completed in the third.
Acknowledgment. We would like to thank Prof. H. Farnsworth for suggesting a math-
ematical finance interpretation of a sticky point.

2 Preliminaries

For information on martingales and stochastic calculus, see [6], [14] or [22]. For
background on continuous Markov processes on the line, see the above references and
also [5], [13], or [16].

We start with an easy lemma concerning continuous local martingales.
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A SDE with a sticky point

Lemma 2.1. Suppose X is a continuous local martingale which exits a finite non-empty
interval I a.s. If the endpoints of the interval are a and b, a < x < b, and X0 = x a.s.,
then

E 〈X〉τI = (x− a)(b− x),

where τI is the first exit time of I and 〈X〉t is the quadratic variation process of X.

Proof. Any such local martingale is a time change of a Brownian motion, at least up
until the time of exiting the interval I. The result follows by performing a change of
variables in the corresponding result for Brownian motion; see, e.g., [6, Proposition
3.16].

Let I be a finite non-empty interval with endpoints a < b. Each of the endpoints may
be in I or in Ic. Define gI(x, y) by

gI(x, y) =

{
2(x− a)(b− y)/(b− a), a ≤ x < y ≤ b;

2(y − a)(b− x)/(b− a), a ≤ y ≤ x ≤ b.

Let m be a measure such that m gives finite strictly positive measure to every finite
open interval. Let

GI(x) =

∫
I

gI(x, y)m(dy).

If X is a real-valued process adapted to a filtration {Ft} satisfying the usual condi-
tions, we let

τI = inf{t > 0 : Xt /∈ I}. (2.1)

When we want to have exit times for more than one process at once, we write τI(X),
τI(Y ), etc. Define

Tx = inf{t > 0 : Xt = x}. (2.2)

A continuous strong Markov process (X,Px) on the real line is regular if Px(Ty <

∞) > 0 for each x and y. Thus, starting at x, there is positive probability of hitting y

for each x and y. A regular continuous strong Markov process X is on natural scale if
whenever I is a finite non-empty interval with endpoints a < b, then

Px(XτI = a) =
b− x
b− a

, Px(XτI = b) =
x− a
b− a

provided a < x < b. A continuous regular strong Markov process on the line on natural
scale has speed measure m if for each finite non-empty interval I we have

E xτI = GI(x)

whenever x is in the interior of I.
It is well known that if (X,Px) and (Y,Qx) are continuous regular strong Markov

processes on the line on natural scale with the same speed measure m, then the law of
X under Px is equal to the law of Y under Qx for each x. In addition, X will be a local
martingale under Px for each x.

Let Wt be a one-dimensional Brownian motion and let {Lxt } be the jointly continuous
local times. If we define

αt =

∫
Lyt m(dy), (2.3)

then αt will be continuous and strictly increasing. If we let βt be the inverse of αt and
set

XM
t = x0 +Wβt , (2.4)
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then XM will be a continuous regular strong Markov process on natural scale with
speed measure m starting at x0. See the references listed above for a proof, e.g., [6,
Theorem 41.9]. We denote the law of XM started at x0 by Px0

M .
If (Ω,F ,P) is a probability space and G a σ-field contained in F , a regular conditional

probability Q for P(· | G) is a map from Ω×F to [0, 1] such that
(1) for each A ∈ F , Q(·, A) is measurable with respect to F ;
(2) for each ω ∈ Ω, Q(ω, ·) is a probability measure on F ;
(3) for each A ∈ F , P(A | G)(ω) = Q(ω,A) for almost every ω.

Regular conditional probabilities do not always exist, but will if Ω has sufficient
structure; see [6, Appendix C].

The filtration {Ft} generated by a process Z is the smallest filtration to which Z is
adapted and which satisfies the usual conditions.

We use the letter c with or without subscripts to denote finite positive constants
whose value may change from place to place.

3 Speed measures for local martingales

Let a : R → R and b : R → R be Borel measurable functions with a(x) ≤ b(x) for all
x. If S is a finite stopping time, let

τS[a,b] = inf{t > S : Xt /∈ [a(XS), b(XS)]}.

We say a continuous local martingaleX started at x0 has speed measurem ifX0 = x0
and

E [τS[a,b] − S | FS ] = G[a(XS),b(XS)](XS), a.s. (3.1)

whenever S is a finite stopping time and a and b are as above.

Remark 3.1. We remark that if X were a strong Markov process, then the left hand
side of (3.1) would be equal to EXSτ0[a,b], where τ0[a,b] = inf{t ≥ 0 : Xt /∈ [a, b]}. Thus
the above definition of speed measure for a martingale is a generalization of the one for
one-dimensional diffusions on natural scale.

Theorem 3.2. Let m be a measure that is finite and positive on every finite open inter-
val. There exists a continuous local martingale X with m as its speed measure.

Proof. Set X equal to XM as defined in (2.4). We only need show that (3.1) holds. Since
X is a Markov process and has associated with it probabilities Px and shift operators
θt, then

τS[a,b] − S = σ[a(X0),b(X0)] ◦ θS ,

where σ[a(X0),b(X0)] = inf{t > 0 : Xt /∈ [a(X0), b(X0)]}. By the strong Markov property,

E [τS[a,b] − S | FS ] = EXSσ[a(X0),b(X0)] a.s. (3.2)

For each y, σ[a(X0),b(X0)] = τ[a(y),b(y)] under Py, and therefore

E yσ[a(X0),b(X0)] = G[a(y),b(y)](y).

Replacing y by XS(ω) and substituting in (3.2) yields (3.1).

Theorem 3.3. Let X be any continuous local martingale that has speed measure m and
let f be a non-negative Borel measurable function. Suppose X0 = x0, a.s. Let I = [a, b]

be a finite interval with a < b such that m does not give positive mass to either end
point. Then

E

∫ τI

0

f(Xs) ds =

∫
I

gI(x, y)f(y)m(dy). (3.3)
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Proof. It suffices to suppose that f is continuous and equal to 0 at the boundaries
of I and then to approximate an arbitrary non-negative Borel measurable function by
continuous functions that are 0 on the boundaries of I. The main step is to prove

E

∫ τI(X)

0

f(Xs) ds = E

∫ τI(X
M )

0

f(XM
s ) ds. (3.4)

Let ε > 0. Choose δ such that |f(x)− f(y)| < ε if |x− y| < δ with x, y ∈ I.
Set S0 = 0 and

Si+1 = inf{t > Si : |Xt −XSi | ≥ δ}.

Then

E

∫ τI

0

f(Xs) ds = E

∞∑
i=0

∫ Si+1∧τI

Si∧τI
f(Xs) ds

differs by at most εE τI from

E

∞∑
i=0

f(XSi∧τI )(Si+1 ∧ τI − Si ∧ τI) (3.5)

= E
[ ∞∑
i=0

f(XSi∧τI )E [Si+1 ∧ τI − Si ∧ τI | FSi∧τI ]
]
.

Let a(x) = a ∨ (x − δ) and b(x) = b ∧ (x + δ). Since X is a continuous local martingale
with speed measure m, the last line in (3.5) is equal to

E

∞∑
i=0

f(XSi∧τI )G[a(XSi∧τI ),b(XSi∧τI )]
(XSi∧τI ). (3.6)

Because E τ[−N,N ] < ∞ for all N , then X is a time change of a Brownian motion. It
follows that the distribution of {XSi∧τI(X), i ≥ 0} is that of a simple random walk on the
lattice {x+ kδ} stopped the first time it exits I, and thus is the same as the distribution
of {XM

Si∧τI(XM ), i ≥ 0}. Therefore the expression is (3.6) is equal to the corresponding

expression with X replaced by XM . This in turns differs by at most E ετI(XM ) from

E

∫ τI(X
M )

0

f(XM
s ) ds.

Since ε is arbitrary, we have (3.4). Finally, the right hand side of (3.4) is equal to the
right hand side of (3.3) by [5, Corollary IV.2.4].

4 Uniqueness in law

In this section we show that if X is a continuous local martingale under P with
speed measure m, then X has the same law as XM . Note that we do not suppose a
priori that X is a strong Markov process. We remark that the results of [12] do not
apply, since in that paper a generalization of the system (1.5)–(1.6) is studied rather
than the formulation given by (1.5) together with (1.7).

Theorem 4.1. Suppose P is a probability measure and X is a continuous local martin-
gale with respect to P. Suppose that X has speed measure m and X0 = x0 a.s. Then
the law of X under P is equal to the law of XM under Px0

M .
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Proof. Let R > 0 be such that m({−R}) = m({R}) = 0 and set I = [−R,R]. Let

Xt = Xt∧τI(X) and X
M

t = XM
t∧τI(XM ), the processes X and XM stopped on exiting I. For

f bounded and measurable let

Hλf = E

∫ τI(X)

0

e−λtf(Xt) dt

and

HM
λ f(x) = E x

∫ τI(X
M

)

0

e−λtf(X
M

t ) dt

for λ ≥ 0. Since X and X
M

are stopped at times τI(X) and τI(X
M

), resp., we can

replace τI(X) and τI(X
M

) by ∞ in both of the above integrals without affecting Hλ or
HM
λ as long as f is 0 on the boundary of I.

Suppose f(−R) = f(R) = 0. Then HM
λ f(−R) and HM

λ f(R) are also 0, since we are
working with the stopped process.

We want to show
Hλf = HM

λ f(x0), λ ≥ 0. (4.1)

By Theorem 3.3 we know (4.1) holds for λ = 0. Let K = E τI(X). We have E x0τI(X
M ) =

K as well since both X and XM have speed measure m.
Let λ = 0 and µ ≤ 1/2K. Let t > 0 and let Ys = Xs+t. Let Qt be a regular conditional

probability for P(Y ∈ · | Ft). It is easy to see that for almost every ω, Y is a continuous
local martingale underQt(ω, ·) started atXt and Y has speed measurem. Cf. [5, Section
I.5] or [7]. Therefore by Theorem 3.3

EQt

∫ ∞
0

f(Ys) ds = HM
0 f(Xt).

This can be rewritten as

E
[ ∫ ∞

0

f(Xs+t) ds | Ft
]

= HM
0 f(Xt), a.s. (4.2)

as long as f is 0 on the endpoints of I.
Therefore, recalling that λ = 0,

HµH
M
λ f = E

∫ ∞
0

e−µtHM
λ f(Xt) dt (4.3)

= E

∫ ∞
0

e−µtE
[ ∫ ∞

0

e−λsf(Xs+t) ds | Ft
]
dt

= E

∫ ∞
0

e−µteλt
∫ ∞
t

e−λsf(Xs) ds dt

= E

∫ ∞
0

∫ s

0

e−(µ−λ)t dt e−λsf(Xs) ds

= E

∫ ∞
0

1− e−(µ−λ)s

µ− λ
e−λsf(Xs) ds

=
1

µ− λ
E

∫ ∞
0

e−λsf(Xs) ds−
1

µ− λ
E

∫ ∞
0

e−µsf(Xs) ds.

=
1

µ− λ
HM
λ f(x0)− 1

µ− λ
E

∫ ∞
0

e−µsf(Xs) ds.

We used (4.2) in the second equality. Rearranging,

Hµf = HM
λ f(x0) + (λ− µ)Hµ(HM

λ f). (4.4)
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Since X and X
M

are stopped upon exiting I, then HM
λ f = 0 at the endpoints of I.

We now take (4.4) with f replaced by HM
λ f , use this to evaluate the last term in (4.4),

and obtain

Hµf = HM
λ f(x0) + (λ− µ)HM

λ (HM
λ f)(x0) + (λ− µ)2Hµ(HM

λ (HM
λ f)).

We continue. Since
|Hµg| ≤ ‖g‖E τI(X) = ‖g‖K

and
‖HM

λ g‖ ≤ ‖g‖E τI(XM ) = ‖g‖K

for each bounded g, where ‖g‖ is the supremum norm of g, we can iterate and get
convergence as long as µ ≤ 1/2K and obtain

Hµf = HM
λ f(x0) +

∞∑
i=1

((λ− µ)HM
λ )iHM

λ f(x0).

The above also holds when X is replaced by X
M

, so that

HM
µ f(x0) = HM

λ f(x0) +

∞∑
i=1

((λ− µ)HM
λ )iHM

λ f(x0).

We conclude Hµf = HM
µ f(x0) as long as µ ≤ 1/2K and f is 0 on the endpoints of I.

This holds for every starting point. If Ys = Xs+t and Qt is a regular conditional
probability for the law of Ys under Px given Ft, then we asserted above that Y is a
continuous local martingale started at Xt with speed measure m under Qt(ω, ·) for
almost every ω. We replace x0 by Xt(ω) in the preceding paragraph and derive

E
[ ∫ ∞

0

e−µsf(Xs+t) ds | Ft
]

= HM
µ f(Xt), a.s.

if µ ≤ 1/2K and f is 0 on the endpoints of I.
We now take λ = 1/2K and µ ∈ (1/2K, 2/2K]. The same argument as above shows

that Hµf = HM
µ f(x0) as long as f is 0 on the endpoints of I. This is true for every

starting point. We continue, letting λ = n/2K and using induction, and obtain

Hµf = HM
µ f(x0)

for every µ ≥ 0.
Now suppose f is continuous with compact support and R is large enough so that

(−R,R) contains the support of f . We have that

E

∫ τ[−R,R](X)

0

e−µtf(Xt) dt = E x0

∫ τ[−R,R](X
M

)

0

e−µtf(X
M

t ) dt

for all µ > 0. This can be rewritten as

E

∫ ∞
0

e−µtf(Xt∧τ[−R,R](X)) dt = E x0

∫ ∞
0

e−µtf(XM
t∧τ[R,R](XM )) dt. (4.5)

If we hold µ fixed and let R→∞ in (4.5), we obtain

E

∫ ∞
0

e−µtf(Xt) dt = E x0

∫ ∞
0

e−µtf(XM
t ) dt
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for all µ > 0. By the uniqueness of the Laplace transform and the continuity of f,X, and
XM ,

E f(Xt) = E x0f(XM
t )

for all t. By a limit argument, this holds whenever f is a bounded Borel measurable
function.

The starting point x0 was arbitrary. Using regular conditional probabilities as above,

E [f(Xt+s) | Ft] = E x0 [f(XM
t+s) | Ft].

By the Markov property, the right hand side is equal to

EXMt f(Xs) = Psf(XM
t ),

where Ps is the transition probability kernel for XM .
To prove that the finite dimensional distributions of X and XM agree, we use induc-

tion. We have

E

n+1∏
j=1

fj(Xtj ) = E i

n∏
j=1

fj(Xtj )E i[fn+1(Xtn+1
) | Ftn ]

= E i

n∏
j=1

fj(Xtj )Ptn+1−tnfn+1(Xtn).

We use the induction hypothesis to see that this is equal to

E x0

n∏
j=1

fj(X
M
tj )Ptn+1−tnfn+1(XM

tn ).

We then use the Markov property to see that this in turn is equal to

E x0

n+1∏
j=1

fj(X
M
tj ).

Since X and XM have continuous paths and the same finite dimensional distribu-
tions, they have the same law.

5 The stochastic differential equation

We now discuss the particular stochastic differential equation we want our martin-
gales to solve. We specialize to the following speed measure. Let γ ∈ (0,∞) and let

m(dx) = dx+ γδ0(dx), (5.1)

where δ0 is point mass at 0.
We consider the stochastic differential equation

Xt = x0 +

∫ t

0

1(Xs 6=0) dWs. (5.2)

A triple (X,W,P) is a weak solution to (5.2) with X starting at x0 if P is a probability
measure, there exists a filtration {Ft} satisfying the usual conditions, W is a Brownian
motion under P with respect to {Ft}, and X is a continuous martingale adapted to {Ft}
with X0 = x0 and satisfying (5.2).
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We now show that any martingale with X0 = x0 a.s. that has speed measure m is the
first element of a triple that is a weak solution to (5.2). Although X has the same law
as XM started at x0, here we only have one probability measure and we cannot assert
that X is a strong Markov process. We point out that [12, Theorem 5.18] does not apply
here, since they study a generalization of the system (1.5)–(1.6), and we do not know at
this stage that this formulation is equivalent to the one used here.

Theorem 5.1. Let P be a probability measure on a space that supports a Brownian
motion and let X be a continuous martingale which has speed measure m with X0 = x0
a.s. Then there exists a Brownian motion W such that (X,W,P) is a weak solution to
(5.2) with X starting at x0. Moreover

Xt = x0 +

∫ t

0

1(Xs 6=0) dXs. (5.3)

Proof. Let

W ′t =

∫ t

0

1(Xs 6=0) dXs.

Hence
d〈W ′〉t = 1(Xt 6=0) d〈X〉t.

Let 0 < η < δ. Let S0 = inf{t : |Xt| ≥ δ}, Ti = inf{t > Si : |Xt| ≤ η}, and
Si+1 = inf{t > Ti : |Xt| ≥ δ} for i = 0, 1, . . ..

The speed measure of X is equal to m, which in turn is equal to Lebesgue measure
on R \ {0}, hence X has the same law as XM by Theorem 4.1. Since XM behaves like
a Brownian motion when it is away from zero, we conclude 1[Si,Ti] d〈X〉t = 1[Si,Ti] dt.

Thus for each N , ∫ t

0

1∪Ni=0[Si,Ti]
(s) d〈X〉s =

∫ t

0

1∪Ni=0[Si,Ti]
(s) ds.

Letting N →∞, then η → 0, and finally δ →∞, we obtain∫ t

0

1(Xs 6=0) d〈X〉s =

∫ t

0

1(Xs 6=0) ds.

Let Vt be an independent Brownian motion and let

W ′′t =

∫ t

0

1(Xs=0) dVs.

Let Wt = W ′t +W ′′t . Clearly W ′ and W ′′ are orthogonal martingales, so

d〈W 〉t = d〈W ′〉t + d〈W ′′〉t = 1(Xt 6=0) dt+ 1(Xt=0) dt = dt.

By Lévy’s theorem (see [6, Theorem 12.1]), W is a Brownian motion.
If

Mt =

∫ t

0

1(Xs=0) dXs,

by the occupation times formula ([22, Corollary VI.1.6]),

〈M〉t =

∫ t

0

1(Xs=0) d〈X〉s =

∫
1{0}(x)`xt (X) dx = 0

for all t, where {`xt (X)} are the local times of X in the semimartingale sense. This
implies that Mt is identically zero, and hence Xt = W ′t .

Using the definition of W , we deduce

1(Xt 6=0) dWt = 1(Xt 6=0) dXt = dW ′t = dXt, (5.4)

as required.
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We now show weak uniqueness, that is, if (X,W,P) and (X̃, W̃ , P̃) are two weak
solutions to (5.2) with X and X̃ starting at x0 and in addition X and X̃ have speed
measure m, then the joint law of (X,W ) under P equals the joint law of (X̃, W̃ ) under
P̃. This holds even though W will not in general be adapted to the filtration of X. We
know that the law of X under P equals the law of X̃ under P̃ and also that the law of
W under P equals the law of W̃ under P̃, but the issue here is the joint law. Cf. [8]. See
also [11].

Theorem 5.2. Suppose (X,W,P) and (X̃, W̃ , P̃) are two weak solutions to (5.2) with
X0 = X̃0 = x0 and that X and X̃ are both continuous martingales with speed measure
m. Then the joint law of (X,W ) under P equals the joint law of (X̃, W̃ ) under P̃.

Proof. Recall the construction of XM from Section 2. With Ut a Brownian motion with
jointly continuous local times {Lxt } and m given by (5.1), we define αt by (2.3), let βt be
the right continuous inverse of αt, and let XM

t = x0 + Uβt . Since m is greater than or
equal to Lebesgue measure but is finite on every finite interval, we see that αt is strictly
increasing, continuous, and limt→∞ αt = ∞. It follows that βt is continuous and tends
to infinity almost surely as t→∞.

Given any stochastic process {Nt, t ≥ 0}, let FN∞ be the σ-field generated by the
collection of random variables {Nt, t ≥ 0} together with the null sets.

We have βt = 〈XM 〉t and Ut = XM
αt −x0. Since βt is measurable with respect to FXM∞

for each t, then αt is also, and hence so is Ut. In fact, we can give a recipe to construct a
Borel measurable map F : C[0,∞)→ C[0,∞) such that U = F (XM ). Note also that XM

t

is measurable with respect to FU∞ for each t and there exists a Borel measurable map
G : C[0,∞)→ C[0,∞) such that XM = G(U). In addition observe that 〈XM 〉∞ =∞ a.s.

Since X and XM have the same law, then 〈X〉∞ = ∞ a.s. If Zt is a Brownian
motion with Xt = x0 + Z(ζt) for a continuous increasing process ζ, then ζt = 〈X〉t is
measurable with respect to FX∞, its inverse ρt is also, and therefore Zt = Xρt − x0 is as
well. Moreover the recipe for constructing Z from X is exactly the same as the one for
constructing U from XM , that is, Z = F (X). Since X and XM have the same law, then
the joint law of (X,Z) is equal to the joint law of (XM , U). We can therefore conclude
that X is measurable with respect to FZ∞ and X = G(Z).

Let

Yt =

∫ t

0

1(Xs=0) dWs.

Then Y is a martingale with

〈Y 〉t =

∫ t

0

1(Xs=0) ds = t− 〈X〉t.

Observe that 〈X,Y 〉t =
∫ t
0

1(Xs 6=0)1(Xs=0) ds = 0. By a theorem of Knight (see [17]
or [22]), there exists a two-dimensional process V = (V1, V2) such that V is a two-
dimensional Brownian motion under P and

(Xt, Yt) = (x0 + V1(〈X〉t), V2(〈Y 〉t), a.s.

(It turns out that 〈Y 〉∞ =∞, but that is not needed in Knight’s theorem.)
By the third paragraph of this proof, Xt = x0+V1(〈X〉t) implies thatXt is measurable

with respect to FV1
∞ , and in fact X = G(V1). Since 〈Y 〉t = t − 〈X〉t, then (Xt, Yt) is

measurable with respect to FV∞ for each t and there exists a Borel measurable map H :

C([0,∞),R2) → C([0,∞),R2), where C([0,∞),R2) is the space of continuous functions
from [0,∞) to R2, and (X,Y ) = H(V ). Thus (X,Y ) is the image under H of a two-
dimensional Brownian motion. If (X̃, W̃ , P̃) is another weak solution, then we can define
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Ỹ analogously and find a two-dimensional Brownian motion Ṽ such that (X̃, Ỹ ) = H(Ṽ ).
The key point is that the same H can be used. We conclude that the law of (X,Y ) is
uniquely determined. Since

(X,W ) = (X,X + Y − x0),

this proves that the joint law of (X,W ) is uniquely determined.

Remark 5.3. In Section 2 we constructed the strong Markov process (XM ,PxM ) and
we now know that X started at x0 is equal in law to XM under Px0

M . We pointed out in
Remark 3.1 that in the strong Markov case the notion of speed measure for a martingale
reduces to that of speed measure for a one dimensional diffusion. In [11] it is shown
that the solution to the system (1.5)–(1.6) is unique in law and thus the solution started
at x0 is equal in law to that of a diffusion on R started at x0; let m̃ be the speed measure
for this strong Markov process. Thus to show the equivalence of the system (1.5)–(1.6)
to the one given by (1.5) and (1.7), it suffices to show that m̃ = m if and only if (1.6)
holds, where m is given by (5.1) and γ = 1/µ. Clearly both m̃ and m are equal to
Lebesgue measure on R \ {0}, so it suffices to compare the atoms of m̃ and m at 0.

Suppose (1.6) holds and γ = 1/µ. Let At =
∫ t
0

1{0}(Xs) ds. Thus (1.6) asserts that
At = 1

µ`
0
t . Let I = [a, b] = [−1, 1], x0 = 0, and τI the first time that X leaves the interval

I. Setting t = τI and taking expectations starting from 0, we have

E 0AτI =
1

µ
E 0`0τI .

Since `0t is the increasing part of the submartingale |Xt − x0| − |x0| and XτI is equal to
either 1 or −1, the right hand side is equal to

1

µ
E 0|XτI | =

1

µ
.

On the other hand, by [5, (IV.2.11)],

E 0AτI =

∫ 1

−1
gI(0, y)1{0}(y) m̃(dy) = m̃({0}).

Thus m̃ = m if γ = 1/µ.
Now suppose we have a solution to the pair (1.5) and (1.7) and γ = 1/µ; we will

show (1.6) holds. Let R > 0, I = [−R,R], and τI the first exit time from I. Set Bt = 1
µ`

0
t .

For any x ∈ I, we have by [5, (IV.2.11)] that

E xAτI =

∫ 1

−1
gI(x, y)1{0}(y)m(dy) = γgI(x, 0). (5.5)

Taking expectations,

E xBτI =
1

µ
E x[ |XτI − x| − |x| ]. (5.6)

Since X is a time change of a Brownian motion that exits I a.s., the distribution of XτI

started at x is the same as that of a Brownian motion started at x upon exiting I. A
simple computation shows that the right hand side of (5.6) agrees with the right hand
side of (5.5). By the strong Markov property,

E 0[AτI −AτI∧t | Ft] = EXtAτI = EXtBτI = E 0[BτI −BτI∧t | Ft]

almost surely on the set (t ≤ τI). Observe that if Ut = E 0[AτI −AτI∧t | Ft], then we can
write

Ut = E 0[AτI −AτI∧t | Ft] = E 0[AτI | Ft]−AτI∧t
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and

Ut = E 0[BτI −BτI∧t | Ft] = E 0[BτI | Ft]−BτI∧t

for t ≤ τI . This expresses the supermartingale U as a martingale minus an increasing
process in two different ways. By the uniqueness of the Doob decomposition for super-
martingales, we conclude AτI∧t = BτI∧t for t ≤ τI . Since R is arbitrary, this establishes
(1.6). (The argument that the potential of an increasing process determines the process
is well known.)

Remark 5.4. In the remainder of the paper we prove that there does not exist a strong
solution to the pair (1.5) and (1.7) nor does pathwise uniqueness hold. In [11], the au-
thors prove that there is no strong solution to the pair (1.5) and (1.6) and that pathwise
uniqueness does not hold. Since we now know there is an equivalence between the pair
(1.5) and (1.7) and the pair (1.5) and (1.6), one could at this point use the argument of
[11] in place of the argument of this paper. Alternatively, in the paper [11] one could
use our argument in place of theirs to establish the non-existence of a strong solution
and that pathwise uniqueness does not hold.

6 Approximating processes

Let W̃ be a Brownian motion adapted to a filtration {Ft, t ≥ 0}, let ε ≤ γ, and let Xε
t

be the solution to

dXε
t = σε(X

ε
t ) dW̃t, Xε

0 = x0, (6.1)

where

σε(x) =

{
1, |x| > ε;√
ε/γ, |x| ≤ ε.

For each x0 the solution to the stochastic differential equation is pathwise unique by
[20] or [21]. We also know that if Pxε is the law of Xε starting from x, then (Xε,Pxε ) is a
continuous regular strong Markov process on natural scale. The speed measure of Xε

will be

mε(dy) = dy +
γ

ε
1[−ε,ε](y) dy.

Let Y ε be the solution to

dY εt = σ2ε(Y
ε
t ) dW̃t, Y ε0 = x0. (6.2)

Since σε ≤ 1, then d〈Xε〉t ≤ dt. By the Burkholder-Davis-Gundy inequalities (see,
e.g., [6, Section 12.5]),

E |Xε
t −Xε

s |2p ≤ c|t− s|p (6.3)

for each p ≥ 1, where the constant c depends on p. It follows (for example, by Theorems
8.1 and 32.1 of [6]) that the law of Xε is tight in C[0, t0] for each t0. The same is of
course true for Y ε and W̃ , and so the triple (Xε, Y ε, W̃ ) is tight in (C[0, t0])3 for each
t0 > 0.

Let P εt be the transition probabilities for the Markov process Xε. Let C0 be the set
of continuous functions on R that vanish at infinity and let

L = {f ∈ C0 : |f(x)− f(y)| ≤ |x− y|, x, y ∈ R},

the set of Lipschitz functions with Lipschitz constant 1 that vanish at infinity.
One of the main results of [3] (see Theorem 4.2) is that P εt maps L into L for each t

and each ε < 1.
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Theorem 6.1. If f ∈ C0, then P εt f converges uniformly for each t ≥ 0. If we denote
the limit by Ptf , then {Pt} is a family of transition probabilities for a continuous regular
strong Markov process (X,Px) on natural scale with speed measure given by (5.1). For
each x, Pxε converges weakly to Px with respect to C[0, N ] for each N .

Proof. Step 1. Let {gj} be a countable collection of C2 functions in L with compact
support such that the set of finite linear combinations of elements of {gj} is dense in C0

with respect to the supremum norm.
Let εn be a sequence converging to 0. Suppose gj has support contained in [−K,K]

with K > 1. Since Xε
t is a Brownian motion outside [−1, 1], if |x| > 2K, then

|P εt gj(x)| = |E xgj(X
ε
t )| ≤ ‖gj‖Px(|Xε| hits |x|/2 before time t),

which tends to 0 uniformly over ε < 1 as |x| → ∞. Here ‖gj‖ is the supremum norm of
gj . By the equicontinuity of the P εt gj , using the diagonalization method there exists a
subsequence, which we continue to denote by εn, such that P εnt gj converges uniformly
on R for every rational t ≥ 0 and every j. We denote the limit by Ptgj .

Since gj ∈ C2,

P εt gj(x)− P εs gj(x) = E xgj(X
ε
t )− E xgj(X

ε
s )

= E x

∫ t

s

σε(X
ε
r )g′j(X

ε
r ) dW̃r + 1

2E
x

∫ t

s

σε(X
ε
r )2g′′j (Xε

r ) dr

= 1
2E

x

∫ t

s

σε(X
ε
r )2g′′j (Xε

r ) dr,

where we used Ito’s formula. Since σε is bounded by 1, we obtain

|P εt gj(x)− P εs gj(x)| ≤ cj |t− s|,

where the constant cj depends on gj . With this fact, we can deduce that P εnt gj converges
uniformly in C0 for every t ≥ 0. We again call the limit Ptgj . Since linear combinations
of the gj ’s are dense in C0, we conclude that P εnt g converges uniformly to a limit, which
we call Ptg, whenever g ∈ C0. We note that Pt maps C0 into C0.
Step 2. Each Xε

t is a Markov process, so P εs (P εt g) = P εs+tg. By the uniform convergence
and equicontinuity and the fact that P εs is a contraction, we see that Ps(Ptg) = Ps+tg

whenever g ∈ C0.
Let s1 < s2 < · · · sj and let f1, . . . fj be elements of L. Define inductively gj = fj ,

gj−1 = fj−1(Psj−sj−1gj), gj−2 = fj−2(Psj−1−sj−2gj−1), and so on. Define gεj analogously
where we replace Pt by P εt . By the Markov property applied repeatedly,

E x[f1(Xε
s1) · · · fj(Xε

sj )] = P εs1g
ε
1(x).

Suppose x is fixed for the moment and let f1, · · · , fj ∈ L. Suppose there is a subse-
quence εn′ of εn such that Xεn′ converges weakly, say to X, and let P′ be the limit law
with corresponding expectation E ′. Using the uniform convergence, the equicontinuity,
and the fact that P εt maps L into L, we obtain

E ′[f1(Xs1) · · · fj(Xsj )] = Ps1g1(x). (6.4)

We can conclude several things from this. First, since the limit is the same no
matter what subsequence {εn′} we use, then the full sequence Pxεn converges weakly.
This holds for each starting point x.

Secondly, if we denote the weak limit of the Pxεn by Px, then (6.4) holds with E ′

replaced by E x. From this we deduce that (X,Px) is a Markov process with transition
semigroup given by Pt.
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Thirdly, since Px is the weak limit of probabilities on C[0,∞), we conclude that X
under Px has continuous paths for each x.
Step 3. Since Pt maps C0 into C0 and Ptf(x) = E xf(Xt) → f(x) by the continuity of
paths if f ∈ C0, we conclude by [6, Theorem 20.9] that (X,Px) is in fact a strong Markov
process.

Suppose f1, . . . , fj are in L and s1 < s2 < · · · < sj < t < u. Since Xε
t is a martingale,

E x
ε

[
Xε
u

j∏
i=1

fi(X
ε
si)
]

= E x
[
Xε
t

j∏
i=1

fi(X
ε
si)
]
.

Moreover, Xε
t and Xε

u are uniformly integrable due to (6.3). Passing to the limit along
the sequence εn, we have the equality with Xε replaced by X and E x

ε replaced by E x.
Since the collection of random variables of the form

∏
i fi(Xsi) generate σ(Xr; r ≤ t), it

follows that X is a martingale under Px for each x.
Step 4. Let δ, η > 0. Let I = [q, r] and I∗ = [q − δ, r + δ]. In this step we show that

E τI(X) =

∫
I

gI(0, y)m(dy). (6.5)

First we obtain a uniform bound on τI∗(Xε). If Aεt = t ∧ τI∗(Xε), then

E [Aε∞ −Aεt | Ft] = EXεtAε∞ ≤ sup
x
E xτI∗(X

ε).

The last term is equal to

sup
x

∫
I∗
gI∗(x, y)

(
1 +

γ

ε
1I∗(y)

)
dy.

A simple calculation shows that this is bounded by

c(r − q + 2δ)2 + cγ(r − q + 2δ),

where c does not depend on r, q, δ, or ε. By Theorem I.6.10 of [4], we then deduce that

E τI∗(X
ε)2 = E (Aε∞)2 < c <∞,

where c does not depend on ε. By Chebyshev’s inequality, for each t,

P(τI∗(X
ε) ≥ t) ≤ c/t2.

Next we obtain an upper bound on E τI(X) in terms of gI∗ . We have

P(τI(X) > t) = P(sup
s≤t
|Xs| ≤ r, inf

s≤t
|Xs| ≥ q)

≤ lim sup
εn→0

P(sup
s≤t
|Xεn

s | ≤ r, inf
s≤t
|Xs|ε ≥ q)

≤ lim sup
εn→0

P(τI∗(X
εn) > t) ≤ c/t2.

Choose u0 such that∫ ∞
u0

P(τI(X) > t) dt < η,

∫ ∞
u0

P(τI∗(X
εn) > t) dt < η

for each εn.
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Let f and g be continuous functions taking values in [0, 1] such that f is equal to 1

on (−∞, r] and 0 on [r+ δ,∞) and g is equal to 1 on [q,∞) and 0 on (−∞, q− δ]. We have

P(sup
s≤t
|Xs| ≤ r, inf

s≤t
|Xs ≥ q) ≤ E [f(sup

s≤t
|Xs|)g(inf

s≤t
|Xs|)]

= lim
εn→0

E [f(sup
s≤t
|Xεn

s |)g(inf
s≤t
|Xεn

s |)].

Then ∫ u0

0

P(τI(X) > t) dt =

∫ u0

0

P(sup
s≤t
|Xs| ≤ r, inf

s≤t
|Xs| ≥ q) dt

≤
∫ u0

0

E [f(sup
s≤t
|Xs|)g(inf

s≤t
|Xs|)] dt

=

∫ u0

0

lim
εn→0

E [f(sup
s≤t
|Xεn

s |)g(inf
s≤t
|Xεn

s |)] dt

= lim
εn→0

∫ u0

0

E [f(sup
s≤t
|Xεn

s |)g(inf
s≤t
|Xεn

s |)] dt

≤ lim sup
εn→0

∫ u0

0

P(sup
s≤t
|Xεn

s | ≤ r + δ, inf
s≤t
|Xs| ≥ q − δ) dt

≤ lim sup
εn→0

∫ u0

0

P(τI∗(X
εn) ≥ t) dt

≤ lim sup
εn→0

E τI∗(X
εn).

Hence

E τI(X) ≤
∫ u0

0

P(τI(X) > t) dt+ η ≤ lim sup
εn→0

E τI∗(X
εn) + η.

We now use the fact that η is arbitrary and let η → 0. Then

E τI(X) ≤ lim sup
εn→0

E τI∗(X
εn)

= lim sup
εn→0

∫
I∗
gI∗(0, y)

(
1 +

γ

ε
1[−ε,ε](y)

)
dy

=

∫
I∗
gI∗(0, y)m(dy).

We next use the joint continuity of g[−a,a](x, y) in the variables a, x and y. Letting
δ → 0, we obtain

E τI(X) ≤
∫
I

gI(0, y)m(dy).

The lower bound for E τI(X) is done similarly, and we obtain (6.5).
Step 5. Next we show that X is a regular strong Markov process. This means that
if x 6= y, Px(Xt = y for some t) > 0. To show this, assume without loss of generality
that y < x. Suppose X starting from x does not hit y with positive probability. Let
z = x + 4|x − y|. Since E xτ[y,z] < ∞, then with probability one X hits z and does so
before hitting y. Hence Tz = τ[y,z] <∞ a.s. Choose t large so that Px(τ[y,z] > t) < 1/16.
By the optional stopping theorem,

E xXTz∧t ≥ zPx(Tz ≤ t) + yPx(Tz > t) = z − (z − y)Px(Tz > t).

By our choice of z, this is greater than x, which contradicts that X is a martingale.
Hence X must hit y with positive probability.
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Therefore X is a regular continuous strong Markov process on the real line. Since
it is a martingale, it is on natural scale. Since its speed measure is the same as that of
XM by (6.5), we conclude from [5, Theorem IV.2.5] that X and XM have the same law.
In particular, X is a martingale with speed measure m.
Step 6. Since we obtain the same limit law no matter what sequence εn we started with,
the full sequence P εt converges to Pt and Pxε converges weakly to Px for each x.

All of the above applies equally well to Y and its transition probabilities and laws.

Recall that the sequence (Xε, Y ε, W̃ ) is tight with respect to (C[0, N ])3 for each N .
Take a subsequence (Xεn , Y εn , W̃ ) that converges weakly, say to the triple (X,Y,W ),
with respect to (C[0, N ])3 for each N . The last task of this section is to prove that X
and Y satisfy (5.2).

Theorem 6.2. (X,W ) and (Y,W ) each satisfy (5.2).

Proof. We prove this for X as the proof for Y is exactly the same. Clearly W is a
Brownian motion. Fix N . We will first show∫ t

0

1(Xs 6=0) dXs =

∫ t

0

1(Xs 6=0) dWs (6.6)

if t ≤ N.
Let δ > 0 and let g be a continuous function taking values in [0, 1] such that g(x) = 0

if |x| < δ and g(x) = 1 if |x| ≥ 2δ. Since g is bounded and continuous and (Xεn , W̃ )

converges weakly to (X,W ), then (Xεn , W̃ , g(Xεn)) converges weakly to (X,W, g(X)).
Moreover, since g is 0 on (−δ, δ), then∫ t

0

g(Xεn
s ) dW̃s =

∫ t

0

g(Xεn
s ) dXεn

s (6.7)

for εn small enough.
By Theorem 2.2 of [19], we have(∫ t

0

g(Xεn
s ) dW̃s,

∫ t

0

g(Xεn
s ) dXεn

s

)
converges weakly to (∫ t

0

g(Xs) dWs,

∫ t

0

g(Xs) dXs

)
.

Then

E arctan
(∣∣∣ ∫ t

0

g(Xs) dWs −
∫ t

0

g(Xs) dXs

∣∣∣)
= lim
n→∞

E arctan
(∣∣∣ ∫ t

0

g(Xεn
s ) dW̃s −

∫ t

0

g(Xεn
s ) dXεn

s

∣∣∣) = 0,

or ∫ t

0

g(Xs) dWs =

∫ t

0

g(Xs) dXs, a.s.

Letting δ → 0 proves (6.6).
We know

XM
t =

∫ t

0

1(XMs 6=0) dX
M
s .

SinceXM andX have the same law, the same is true if we replaceXM byX. Combining
with (6.6) proves (5.2).
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7 Some estimates

Let

jε(s) =

{
1, |Xε

s | ∈ [−ε, ε] or |Y εs | ∈ [−2ε, 2ε] or both;

0, otherwise.

Let

Jεt =

∫ t

0

jεs ds.

Set
Zεt = Xε

t − Y εt ,

suppose Zε0 = 0, and define ψε(x, y) = σε(x)− σ2ε(y). Then

dZεt = ψε(X
ε
t , Y

ε
t ) dW̃t.

Let

S1 = inf{t : |Zεt | ≥ 6ε}, (7.1)

Ti = inf{t ≥ Si : |Zεt | /∈ [4ε, b]},
Si+1 = inf{t ≥ Ti : |Zεt | ≥ 6ε}, and

Ub = inf{t : |Zεt | = b}.

Proposition 7.1. For each n,

P(Sn < Ub) ≤
(

1− 2ε

b

)n
.

Proof. Since Xε is a recurrent diffusion,
∫ t
0

1[−ε,ε](X
ε
s ) ds tends to infinity a.s. as t→∞.

When x ∈ [−ε, ε], then |ψε(x, y)| ≥ cε, and we conclude that 〈Zε〉t →∞ as t→∞.

Let {Ft} be the filtration generated by W̃ . Zεt+Sn − Z
ε
Sn

is a martingale started at 0
with respect to the regular conditional probability for the law of (Xε

t+Sn
, Y εt+Sn) given

FSn . The conditional probability that it hits 4ε before b if ZεSn = 6ε is the same as the
conditional probability it hits −4ε before −b if ZεSn = −6ε and is equal to

b− 6ε

b− 4ε
≤ 1− 2ε

b
.

Since this is independent of ω, we have

P
(
|Zεt+Sn − Z

ε
Sn | hits 4ε before hitting b | FSn

)
≤ 1− 2ε

b
.

Let Vn = inf{t > Sn : |Zεt | = b}. Then

P(Sn+1 < Ub) ≤ P(Sn < Ub, Tn+1 < Vn)

= E [P(Tn+1 < Vn | FSn);Sn < Ub]

≤
(

1− 2ε

b

)
P(Sn < Ub).

Our result follows by induction.

Proposition 7.2. There exists a constant c1 such that

E JεTn ≤ c1nε

for each n.
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Proof. For t between times Sn and Tn we know that |Zεt | lies between 4ε and b. Then at
least one of Xε

t /∈ [−ε, ε] and Y εt /∈ [−2ε, 2ε] holds. If exactly one holds, then |ψε(Xε
t , Y

ε
t )|

≥ 1−
√

2ε/γ ≥ 1/2 if ε is small enough. If both hold, we can only say that d〈Zε〉t ≥ 0. In
any case,

d〈Zε〉t ≥
1
4 dJ

ε
t

for Sn ≤ t ≤ Tn.
Zεt is a martingale, and by Lemma 2.1 and an argument using regular conditional

probabilities similar to those we have done earlier,

E [JεTn − J
ε
Sn ] ≤ 4E [〈Zε〉Tn − 〈Z

ε〉Sn ] ≤ 4(b− 6ε)(2ε) = cε. (7.2)

Between times Tn and Sn+1 it is possible that ψε(Xε
t , Y

ε
t ) can be 0 or it can be larger

than c
√
ε/γ. However if either Xε

t ∈ [−ε, ε] or Y εt ∈ [−2ε, 2ε], then ψε(Xε
t , Y

ε
t ) ≥ c

√
ε/γ.

Thus
d〈Zε〉t ≥ cε dJ

ε
t

for Tn ≤ t ≤ Sn+1. By Lemma 2.1

E [JεSn+1
− JεTn ] ≤ cε−1E [〈Zε〉Sn+1

− 〈Zε〉Tn ] ≤ cε−1(2ε)(10ε) = cε. (7.3)

Summing each of (7.2) and (7.3) over j from 1 to n and combining yields the propo-
sition.

Proposition 7.3. Let K > 0 and η > 0. There exists R depending on K and η such that

P(Jετ[−R,R](Xε)
< K) ≤ η, ε ≤ 1/2.

Proof. Fix ε ≤ 1/2. We will see that our estimates are independent of ε. Note

Jεt ≥ Ht =

∫ t

0

1[−ε,ε](X
ε
s ) ds.

Therefore to prove the proposition it is enough to prove that

P0
ε(Hτ[−R,R](Xε) < K) ≤ η

if R is large enough.
Let I = [−1, 1]. We have

E 0
εHτI(Xε) ≥

∫ 1

−1
gI(0, y)

γ

ε
1[−ε,ε](y) dy ≥ c1.

On the other hand, for any x ∈ I,

E x
0HτI(Xε) =

∫
I

gI(x, y)
γ

ε
1[−ε,ε](y) dy ≤ c2.

Combining this with
E 0
ε[HτI(Xε) −Ht | Ft] ≤ EXεt

ε HτI(Xε)

and Theorem I.6.10 of [4] (with B = c2 there), we see that

EH2
τI(Xε)

≤ c3.

Let α0 = 0, βi = inf{t > αi : |Xε
t | = 1} and αi+1 = inf{t > βi : Xε

t = 0}. Since Xε
t is

a recurrent diffusion, each αi is finite a.s. and βi → ∞ as i → ∞. Let Vi = Hβi −Hαi .
By the strong Markov property, under P0

ε the Vi are i.i.d. random variables with mean
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larger than c1 and variance bounded by c4, where c1 and c4 do not depend on ε as long
as ε < 1/2. Then

P0
ε

( k∑
i=1

Vi ≤ c1k/2
)
≤ P0

ε

( k∑
i=1

(Vi − EVi) ≥ c1k/2
)

≤
Var (

∑k
i=1 Vi)

(c1k/2)2

≤ 4c4/c
2
1k.

Taking k large enough, we see that

P0
ε

( k∑
i=1

Vi ≤ K
)
≤ η/2.

Using the fact that Xε
t is a martingale, starting at 1, the probability of hitting R

before hitting 0 is 1/R. Using the strong Markov property, the probability of |X| having
no more than k downcrossings of [0, 1] before exiting [−R,R] is bounded by

1−
(

1− 1

R

)k
.

If we choose R large enough, this last quantity will be less than η/2. Thus, except for an
event of probability at most η, Xε

t will exit [−1, 1] and return to 0 at least k times before
exiting [−R,R] and the total amount of time spent in [−ε, ε] before exiting [−R,R] will
be at least K.

Proposition 7.4. Let η > 0, R > 0, and I = [−R,R]. There exists t0 depending on R

and η such that
P0
ε(τI(X

ε) > t0) ≤ η, ε ≤ 1/2.

Proof. If ε ≤ 1,

E 0
ετR(Xε) =

∫
I

gI(x, y)mε(dy).

A calculation shows this is bounded by cR2 + cR, where c does not depend on ε or R.
Applying Chebyshev’s inequality,

P0
ε(τI(X

ε) > t0) ≤ E
0
ετI(X

ε)

t0
,

which is bounded by η if t0 ≥ c(R2 +R)/η.

8 Pathwise uniqueness fails

We continue the notation of Section 7. The strategy of proving that pathwise unique-
ness does not hold owes a great deal to [2].

Theorem 8.1. There exist three processes X,Y , and W and a probability measure P
such that W is a Brownian motion under P, X and Y are continuous martingales under
P with speed measure m starting at 0, (5.2) holds for X, (5.2) holds when X is replaced
by Y , and P(Xt 6= Yt for some t > 0) > 0.

Proof. Let (Xε, Y ε, W̃ ) be defined as in (6.1) and (6.2) and choose a sequence εn de-
creasing to 0 such that the triple converges weakly on C[0, N ] × C[0, N ] × C[0, N ] for
each N . By Theorems 6.1 and 6.2, the weak limit, (X,Y,W ) is such that X and Y are
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continuous martingales with speed measure m, W is a Brownian motion, and (5.2) holds
for X and also when X is replaced by Y .

Let b = 1 and let Sn, Tn, and Ub be defined by (7.1). Let A1(ε, n) be the event where
Tn < Ub. By Proposition 7.1

P(A1(ε, n)) = P(Sn < Ub) ≤
(

1− 2ε

b

)n
.

Choose n ≥ β/ε, where β is large enough so that the right hand side is less than 1/5 for
all ε sufficiently small.

By Proposition 7.2,
E JεTn ≤ c1nε = c1β.

By Chebyshev’s inequality,

P(JεTn ≥ 5c1β) ≤ P(JεTn ≥ 5E JεTn) ≤ 1/5.

Let A2(ε, n) be the event where JεTn ≥ 5c1β.
Take K = 10c1β. By Proposition 7.3, there exists R such that

P(Jετ[−R,R](Xε)
< K) ≤ 1/5.

Let A3(ε,R,K) be the event where Jετ[R,R](Xε)
< K.

Choose t0 using Proposition 7.4, so that except for an event of probability 1/5 we
have τ[−R,R](X

ε) ≤ t0. Let A4(ε,R, t0) be the event where τ[−R,R](X
ε) ≤ t0.

Let
B(ε) = (A1(ε, n) ∪A2(ε, n) ∪A3(ε,R,K) ∪A4(ε,R, t0))c.

Note P(B(ε)) ≥ 1/5.
Suppose we are on the event B(ε). We have

JεTn ≤ 5c1β < K ≤ Jετ[−R,R](Xε)
.

We conclude that Tn < τ[−R,R](X
ε). Therefore, on the event B(ε), we see that Tn has

occurred before time t0. We also know that Ub has occurred before time t0. Hence, on
B(ε),

P(sup
s≤t0
|Zεs | ≥ b) ≥ 1/5.

Since Zε = Xε − Y ε converges weakly to X − Y , then with probability at least 1/5,
we have that sups≤t0 |Zs| ≥ b/2. This implies that Xt 6= Yt for some t, or pathwise
uniqueness does not hold.

We also can conclude that strong existence does not hold. The argument we use is
similar to ones given in [8], [10], and [18].

Theorem 8.2. Let W be a Brownian motion. There does not exist a continuous mar-
tingale X starting at 0 with speed measure m such that (5.2) holds and such that X is
measurable with respect to the filtration of W .

Proof. Let W be a Brownian motion and suppose there did exist such a process X. Then
there is a measurable map F : C[0,∞)→ C[0,∞) such that X = F (W ).

Suppose Y is any other continuous martingale with speed measure m satisfying
(5.2). Then by Theorem 4.1, the law of Y equals the law of X, and by Theorem 5.2,
the joint law of (Y,W ) is equal to the joint law of (X,W ). Therefore Y also satisfies
Y = F (W ), and we get pathwise uniqueness since X = F (W ) = Y . However, we know
pathwise uniqueness does not hold. We conclude that no such X can exist, that is,
strong existence does not hold.
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