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Excursions of excited random walks on integers
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Abstract

Several phase transitions for excited random walks on the integers are known to be
characterized by a certain drift parameter δ ∈ R. For recurrence/transience the
critical threshold is |δ| = 1, for ballisticity it is |δ| = 2 and for diffusivity |δ| = 4.
In this paper we establish a phase transition at |δ| = 3. We show that the expected
return time of the walker to the starting point, conditioned on return, is finite iff
|δ| > 3. This result follows from an explicit description of the tail behaviour of the
return time as a function of δ, which is achieved by diffusion approximation of related
branching processes by squared Bessel processes.
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1 Introduction

A transient random walk (RW) is called strongly transient if the expectation of its
return time R to the starting point, conditioned on the event {R <∞}, is finite, see e.g.
[Hug95, §3.2.6] and the references therein. The simple symmetric RW on Zd is strongly
transient iff d ≥ 5, see [Hug95, §3.3.4, Table 3.4]. “Under fairly general conditions,
biased walks are strongly transient” [Hug95, p. 127]. In the present paper we study
the tail behavior of the depth and the duration of excursions of excited random walks
(ERWs). In particular, we show that ERWs can be biased, in the sense of satisfying a
strong law of large numbers with non-zero speed, and at the same time be not strongly
transient. Precise statements are given later in this section after we describe our model
of ERW. (For a recent survey on ERW we refer the reader to [KZ13].)

An ERW evolves in a so-called cookie environment. The latter is an element ω =

(ω(z, i))z∈Z,i≥1 of Ω := [0, 1]Z×N. Given ω ∈ Ω, z ∈ Z and i ∈ N we call ω(z, i) the
i-th cookie at site z and ω(z, ·) the stack of cookies at z. The cookie ω(z, i) serves as
transition probability from z to z + 1 of the ERW upon its i-th visit to z. More precisely,
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Excited random walks

given ω ∈ Ω and x ∈ Z an ERW starting at x in the environment ω is a process (Xn)n≥0
on a suitable probability space (Ω′,F ′, Px,ω) which satisfies for all n ≥ 0:

Px,ω[X0 = x] = 1,

Px,ω[Xn+1 = Xn + 1 |(Xi)0≤i≤n] = ω(Xn,#{i ≤ n |Xi = Xn}), (1.1)

Px,ω[Xn+1 = Xn − 1 |(Xi)0≤i≤n] = 1− ω(Xn,#{i ≤ n |Xi = Xn}).

The environment ω is chosen at random according to some probability measure P on
(Ω,F), where F is the canonical product Borel σ-field. Throughout the paper we assume
that P satisfies the following hypotheses (IID), (WEL), and (BDM) for some M ∈ N0 :=

N ∪ {0}.
The family (ω(z, ·))z∈Z of cookie stacks is i.i.d. under P. (IID)

We denote the distribution of ω(0, ·) under P by ν, so that P =
⊗
Z ν. To avoid degener-

ate cases we assume the following (weak) ellipticity hypothesis:

P [∀i ∈ N : ω(z, i) > 0] > 0,P [∀i ∈ N : ω(z, i) < 1] > 0 for all z ∈ Z. (WEL)

If we assumed only (IID) and (WEL) the model would include RWs in random i.i.d.
environments (RWRE), since for them P-a.s. ω(0, i) = ω(0, 1) for all i ≥ 1. However, for
the ERW model considered in this paper we assume that there is a non-random M ≥ 0

such that after M visits to any site the ERW behaves on any subsequent visit to that site
like a simple symmetric RW:

P-a.s. ω(z, i) = 1/2 for all z ∈ Z and i > M . (BDM)

If we average the so-called quenched measure Px,ω defined above over the environment
ω we obtain the averaged (often also called annealed) measure Px[·] := E[Px,ω[·]] on
Ω×Ω′. The expectation operators with respect to Px,ω,P, and Px are denoted by Ex,ω,E,
and Ex, respectively.

Several features of the ERW can be characterized by the parameter

δ := E

∑
i≥1

(2ω(0, i)− 1)

 = E

[
M∑
i=1

(2ω(0, i)− 1)

]
, (1.2)

which represents the expected total average displacement of the ERW after consump-
tion of all the cookies at any given site. Most prominently, the ERW (Xn)n≥0

• is transient, i.e. tends P0-a.s. to ±∞, iff |δ| > 1 (see [KZ13, Th. 3.10] and the
references therein),

• is ballistic, i.e. has P0-a.s. a deterministic non-zero speed limn→∞Xn/n, iff |δ| > 2

(see [KZ13, Th. 5.2] and the references therein),

• converges after diffusive scaling under P0 to a Brownian motion iff |δ| > 4 or δ = 0

(see [KZ13, Theorems 6.1, 6.3, 6.5, 6.7] and the references therein).

In this paper we establish a transition at |δ| = 3. We are concerned with the finite
excursions of ERWs. Let

R := inf{n ≥ 1 : Xn = X0}

be the time at which the ERW returns to its starting point. Denote for k ∈ Z the first
passage time of k by

Tk := inf{n ≥ 0 : Xn = k}.
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Excited random walks

Theorem 1.1 (Averaged excursion depth, duration, and return time). Let δ ∈ R\{1}.
There are constants c1(ν), c2(ν), c3(ν) ∈ (0,∞) such that

lim
n→∞

n|δ−1| P1[Tn < T0 <∞] = c1, (1.3)

lim
n→∞

n|δ−1|/2 P1[n < T0 <∞] = c2, (1.4)

lim
n→∞

n||δ|−1|/2 P0[n < R <∞] = c3. (1.5)

Moreover, for δ = 1 and every ε > 0,

lim
n→∞

nε P1[Tn < T0] = lim
n→∞

nε P1[T0 > n] = lim
n→∞

nε P0[R > n] =∞. (1.6)

An immediate consequence of (1.5) and (1.6) is the following result.

Corollary 1.2 (Averaged strong transience). E0[R,R <∞] <∞ iff |δ| > 3.

Remark 1.3 (Case δ = 1). Relations (1.6) are an easy consequence of (1.3)-(1.5) (see
the proof in Section 6). We believe that for δ = 1 the quantities P1[Tn < T0], P1[T0 > n],
and P0[R > n] have a logarithmic decay. In the special case described in Remark 2.2
below, the existence of a nontrivial limit of (lnn)P1[Tn < T0] as n → ∞ follows from
connections with branching processes with immigration and [Zub72, second part of
(21)], see also [FYK90, Th. 1, part 2], quoted in [KZ08, Th. A (ii)].

Remark 1.4 (Once-excited RWs). In the case of once-excited RWs with identical cook-
ies (i.e. M = 1, P-a.s. ω(z, 1) = ω(0, 1) ∈ (0, 1) for all z ∈ Z), results (1.3) and (1.4) have
been obtained in [AR05, Section 3.3]. Note that the case M = 1 is very special, since at
time Tk all the cookies ω(z, i) 6= 1/2 between the starting point and the current location
k of the ERW have been “eaten”. This allows to use simple symmetric RW calculations
between the starting point and k. For M ≥ 2 such simplification is not available.

Problem 1.5. Find the analog of Theorem 1.1 in the quenched setting.

Problem 1.6. Find necessary and sufficient criteria under which averaged/quenched
RWRE in one dimension is strongly transient.

Our approach is based on the connection between ERWs and a class of critical
branching processes (BPs) with random migration (see Section 2 for details). It is close
in spirit to the (second) Ray-Knight theorem (see, for example, [Tó96], where similar
ideas were used for other types of self-interacting RWs). This approach was proposed
for ERWs in [BS08] and, since then, seemed to dominate the study of one-dimensional
ERWs under the (IID) assumption. The main benefits of this connection are:

(i) BPs associated to ERWs are markovian, while the original processes do not enjoy
this property;

(ii) after rescaling, these BPs are well approximated by squared Bessel processes of
generalized dimension.

From these diffusion approximations one can immediately conjecture such important
properties of BPs as survival versus extinction, the tail asymptotics of the extinction
time and of the total progeny (conditioned on extinction where appropriate). Rigorous
proofs of these conjectures are somewhat technical, but, in a nutshell, they are based
on standard martingale techniques applied to gambler-ruin-like problems.

Diffusion approximations for BPs associated to ERWs and the mentioned above mar-
tingale techniques were used in [KM11] to study the tail behavior of regeneration times
of transient ERWs, which led to theorems about limit laws for these processes. In the
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Excited random walks

current work we extend some of the results and techniques of [KM11] and, in addi-
tion, apply the Doob transform to treat BPs conditioned on extinction. The results for
conditioned BPs are then readily translated into the proof of Theorem 1.1.

While the majority of results in the BPs literature rely on a generating functions ap-
proach, diffusion approximation of BPs is also a well-developed subject. Its history goes
back to [Fel51] (see [EK86, Ch. 9] for precise statements and additional references).
But it seems that diffusion approximations for our kind of BPs are not available in the
literature. Moreover, among a wealth of results (obtained by any approach) about con-
ditioned BPs we could not find those which would cover our needs (but see the related
work [Mel83] and the references therein).

We would like to point out one more aspect of the relationship between ERWs and
BPs. At first (see, for example, [BS08], [KZ08]) there was a tendency to use known
results for BPs to infer results about ERWs. Gradually, as we mentioned above, the
study of ERWs required additional results about BPs, not covered by the literature. In
[KM11] all BP results needed for ERWs were obtained directly. In this work we continue
the trend. Theorem 5.1 gives asymptotics of the tails of extinction time and the total
progeny of a class of critical BPs with random migration and geometric offspring distri-
bution conditioned on extinction. We believe that this result might be of independent
interest and that our methods are sufficiently robust to be applicable to more general
critical BPs with random migration.

Let us now describe how the present article is organized. We close the introduction
with some notation. In the next section we recall how excursions of ERWs are related
to certain BPs. Section 3 deals with diffusion approximations of these BPs. In Section 4
we prove that BPs conditioned on extinction can be approximated by the diffusions from
Section 3 conditioned on hitting zero. In Section 5 we use these results to obtain tail
asymptotics of the extinction time and of the total progeny of BPs conditioned on extinc-
tion. Short Section 6 translates the obtained asymptotics into the proof of Theorem 1.1.
In the Appendix we collect and extend as necessary several auxiliary results from the
literature, which we quote throughout the paper and which do not depend on the results
from Sections 3–6.

Notation. For any I ⊆ [0,∞) and f : I → R we let σfy := inf {t ∈ I : f(t) ≤ y} and
τfy := inf {t ∈ I : f(t) ≥ y} be the entrance time of f into (−∞, y] and [y,∞), respectively.

(Here inf ∅ := ∞.) If Z is a process with P [σZ0 < ∞] > 0 then we shall denote by Z

any process which has the same distribution as Z under P [ · | σZ0 < ∞]. Whenever
we have a Markov process starting at time 0 we may indicate the starting point by a
subscript to the probability measure. Convergence in distribution is indicated by ⇒.
The space of real-valued càdlàg functions on [0,∞) is denoted by D[0,∞) and equipped
with Skorokhod’s J1 topology. Convergence in distribution with respect to this topology

is denoted by
J1=⇒.

2 Excursions of RWs and branching processes

We recall a relationship between nearest neighbor paths from 1 to 0, representing
RW excursions to the right, and BPs. Among the first descriptions of this relation is
[Har52, Section 6]. We refer to [KZ08, Sections 3, 4] and [Pet13, Section 2.1] for
detailed explanations in the context of ERW.

Assume that the nearest neighbor random walk (Xn)n≥0 starts at X0 = 1, set U0 := 1

and let for k ≥ 1,

Uk := #{n ≥ 1 : n < T0, Xn−1 = k, Xn = k + 1} (2.1)

be the number of upcrossings from k to k + 1 by the walk before time T0. If we set
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Excited random walks

∆
(k)
0 := 0 then

∆(k)
m := inf

{
n ≥ 1 : ∆

(k)
m−1 < n ≤ T0, Xn−1 = k,Xn = k − 1

}
, k,m ≥ 1,

is, if finite, the time of the completion of the m-th downcrossing from k to k − 1 prior to
T0. Define

ζ(k)m := #
{
n ≥ 1 : ∆

(k)
m−1 < n < ∆(k)

m , Xn−1 = k, Xn = k + 1
}
, k,m ≥ 1.

If ∆
(k)
m is finite ζ(k)m is the number of upcrossings from k to k + 1 between the (m− 1)-th

and the m-th downcrossing from k to k − 1 before T0. Then Uk+1 can be represented in
BP form as

Uk+1 =

Uk∑
m=1

ζ(k+1)
m .

Here ζ(k+1)
m can be interpreted as the number of children of the m-th individual in the

k-generation. The joint distribution of these numbers depends on the RW model under
consideration. In the case of ERW it may be quite complicated, especially in the case
where T0 = ∞ with positive probability. Therefore, we study instead of U a slightly
different BP V , the so-called forward BP described in the following statement.

Proposition 2.1 (Coupling of ERW and forward BP). Suppose we are given M ∈ N
and an ERW X = (Xn)n≥0 which satisfies (IID), (WEL) and (BDM). Then without loss of
generality we may assume that there are, on the same probability space with averaged
measure P1, N0-valued random variables ξ(k)m , m, k ≥ 1, which define a Markov chain
V = (Vk)k≥0 by V0 := 1 and

Vk+1 :=

Vk∑
m=1

ξ(k+1)
m , k ≥ 0, (2.2)

such that the following holds:

The random quantities (ξ
(k)
1 , . . . , ξ

(k)
M ), ξ

(k)
m (m > M, k ≥ 1) are independent. (2.3)

The random vectors (ξ
(k)
1 , . . . , ξ

(k)
M ) (k ≥ 1) are identically distributed, NM0 -

valued, vanish with positive probability, and have a finite fourth moment.
(2.4)

M∑
m=1

(ξ(1)m − 1) has expected value δ (see (1.2)). (2.5)

The random variables ξ(k)m (m > M,k ≥ 1) are geometrically distributed
with parameter 1/2 and expected value 1.

(2.6)

Uk ≤ Vk for all k ≥ 0 and (2.7)

U = V on the event {σU0 <∞} ∪ {σV0 <∞}, (2.8)

where U is defined by (2.1).

Proposition 2.1 follows from the so-called coin-toss construction of ERW described in
[KZ08, Section 4], see also [Pet13, Section 2]. Note that the above conditions (2.2)–(2.6)
do not completely characterize the distribution of V . For this statement (2.4) would
have to be made stronger. However, we refrain from doing so, since the conditions
(2.2)–(2.6) are the only ones we need for our proofs to work. (The moment condition in
(2.4) is inherited from the proof of [KM11, Lemma 5.2] and could be relaxed.) Indeed,
we only make the following assumptions on V .

Assumptions on the BP V . For the remainder of the paper we assume that the Markov
chain V is defined by (2.2), where the offspring variables ξ(k)m , m, k ≥ 1, satisfy (2.3)–
(2.6).
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Excited random walks

Remark 2.2 (Cookies of strength 1 and BPs with immigration). In [KZ08, p. 1960] we
describe how the above process V can be viewed as a BP with migration, i.e. emigra-
tion and immigration. If (IID) and (WEL) hold, but not necessarily (BDM), and if there is
P-a.s. some random K ∈ N∪{∞} such that ω(0, i) = 1 for all 1 ≤ i < K and ω(0, i) = 1/2

for all i ≥ K then one can couple the ERW in a way similar to the one described in
Proposition 2.1 to a BP with immigration without emigration, see e.g. [Bau13, Section
3]. This kind of BP seems to be more tractable than BPs with immigration and emigra-
tion and several results are available in the BP literature which have direct implications
for such ERWs. For example, the recurrence/transience phase transition in δ can be
obtained from [Pak71, Th. 1] or [Zub72, Th. 3]. For other examples see Remarks 4.4
and 5.2.

Remark 2.3 (Other uses of the forward BP). The above mentioned relationship be-
tween excursions of RWs and BPs has been mainly used so far to translate results about
BPs into results about RWs. The RW is then called the contour process associated to
the BP. We list a few examples.
(a) Solomon’s recurrence/transience theorem [Sol75, second part of Th. (1.7)] for RW in
i.i.d. environment follows from results by Smith and Wilkinson [SW69] about the extinc-
tion of Galton-Watson processes in i.i.d. environment. (b) Similarly, the generalization
of Solomon’s result to RWs in stationary and ergodic environments by Alili [Ali99, Th.
2.1] can be deduced from the generalization of the above mentioned result of Smith and
Wilkinson to Galton-Watson processes in stationary and ergodic environments obtained
by Athreya and Karlin [AK71], see also [AN72, Ch. VI.5]. (c) In [Afa9, p. 268] this re-
lationship is shown to imply that for recurrent RWRE P1[T0 > n] ∼ c/ log n as n → ∞
for some constant 0 < c < ∞. (d) In [KZ08, Th. 1] we used this correspondence and
results from [FYK90] for a proof of the recurrence/transience result about ERW men-
tioned above, see also Corollary 7.10 below. (e) In [Bau13] and [Bau14] this connection
allowed to determine how many cookies (of maximal value ω(x, i) = 1) are needed to
change the recurrence/transience behavior of RWRE. (f) And in [Pet13, Th. 1.7] strict
monotonicity with respect to the environment of the return probability of a transient
ERW is shown to be inherited from monotonicity properties of the forward BP.

Remark 2.4 (Backward BP). There is yet another family of branching processes asso-
ciated to random walk paths, sometimes called the backward BPs, see [BS08], [KZ08,
Section 6], [KM11], [KZ13, Th. 5.2], and [Pet13, Section 2.2].

We notice that all results of [KM11] about backward BPs have the corresponding
analogs for forward BPs, which are obtained by replacing δ (which is assumed to be
positive in [KM11]) with 1 − δ < 1 throughout. The proofs carry over essentially word
for word without any additional changes. In what follows we simply quote such results.
All additional results about forward BPs, in particular, for δ > 1, are supplied with
detailed proofs or comments as appropriate.

3 Diffusion approximation of unconditioned branching processes

The main result of this section is Theorem 3.4 about diffusion approximation of the
process V . It extends [KM11, Lemma 3.1], which only considered the process V stopped
at σVεn with ε > 0.

The limiting processes are defined in terms of solutions of the stochastic differential
equation (SDE)

dY (t) = δ dt+
√

2Y +(t) dB(t), (3.1)

where (B(t))t≥0 is a one-dimensional Brownian motion. For discussions of this particu-
lar SDE see e.g. [RW00, Ch. V.48] and [IW89, Example IV-8.2]. By [EK86, Th. 3.10, p.
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299] the SDE (3.1) has a weak solution Y = (Y (t))t≥0 for any initial distribution µ on R
and any δ ∈ R. Due to the Yamada-Watanabe uniqueness theorem [YW71, Th. 1] (see
also [RW00, Th. 40.1, p. 265]) pathwise uniqueness holds for (3.1). By [YW71, Prop. 1]
(see also [EK86, Th. 3.6, p. 296]) distributional uniqueness holds as well. For δ ≥ 0, 2Y

is a squared Bessel processes of dimension 2δ, see e.g. [RY99, Ch. XI, §1]. For δ < 0,
2Y coincides with squared Bessel processes of negative dimension (see [GY03, Section
3]) up to time σY0 and continues degenerately after time σY0 since by the strong Markov
property a.s. Y (σY0 + t) = δt for t ≥ 0, δ < 0.

In order to obtain the diffusion approximation we first introduce a modification Ṽ of
the original process V and state in Proposition 3.2 a functional limit theorem for this
process. The advantage of the process Ṽ is that it admits some nice martingales. Note
that (2.2) can be rewritten as

Vk+1 = Vk +

Vk∑
m=1

(ξ(k+1)
m − 1).

This recursion is modified below in (3.2).

Lemma 3.1. Let x ∈ Z, Ṽ0 := x and let ξ satisfy (2.3)–(2.6) under some probability

measure P . Set v := Var
[∑M

m=1 ξ
(1)
m

]
. For k ∈ N0 define

Ṽk+1 := Ṽk +

Ṽk∨M∑
m=1

(ξ(k+1)
m − 1), (3.2)

Mk := Ṽk − kδ, and (3.3)

Ak := vk + 2

k−1∑
m=0

(Ṽm −M)+. (3.4)

Then (Mk)k≥0 and (M2
k − Ak)k≥0 are martingales with respect to the filtration (Fk)k≥,

where Fk is generated by ξ(i)m ,m ≥ 1, 1 ≤ i ≤ k.

Proof. By (2.4)–(2.6),

E

[
i∑

m=1

(ξ(k+1)
m − 1)

]
= δ for all i ≥M and k ≥ 0. (3.5)

This implies the first statement. To find the Doob decomposition of the submartingale
(M2

k )k≥0 we compute

E[M2
k+1 −M2

k | Fk] = E[(Mk+1 −Mk +Mk)2 −M2
k | Fk]

= E[(Mk+1 −Mk)2 | Fk] + 2MkE[Mk+1 −Mk | Fk]

(3.3)
= E[(Ṽk+1 − Ṽk − δ)2 | Fk]

(3.2)
= E


Ṽk∨M∑

m=1

(
ξ(k+1)
m − 1

)− δ
2 ∣∣∣∣∣ Fk

 (3.5)
= Var

Ṽk∨M∑
m=1

(
ξ(k+1)
m − 1

) ∣∣∣∣∣ Fk


(2.3)
= Var

[
M∑
m=1

(
ξ(k+1)
m − 1

)]
+

Ṽk∨M∑
m=M+1

Var
[
ξ(k+1)
m − 1

]
(2.6)
= v + 2

(
Ṽk −M

)+
.

Recalling (3.4) we obtain the second claim.
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Proposition 3.2. Let (xn)n≥1 be a sequence of positive numbers which converges to
x > 0, δ ∈ R, and ξ satisfy (2.3)–(2.6) under some probability measure P . For each
n ∈ N define Ṽn = (Ṽn,k)k≥0 and Ỹn = (Ỹn(t))t≥0 by setting Ṽn,0 := bnxnc and

Ṽn,k+1 := Ṽn,k +

Ṽn,k∨M∑
m=1

(ξ(k+1)
m − 1) for k ≥ 0 and

Ỹn(t) :=
Ṽn,bntc

n
for t ∈ [0,∞).

Let Y = (Y (t))t≥0 solve (3.1) with Y (0) = x. Then Ỹn
J1=⇒ Y as n→∞.

Proof. We are going to apply [EK86, Th. 4.1, p. 354]. To check the assumptions of
this theorem we first let µ be a distribution on R and consider the CR[0,∞) martingale
problem for (A,µ) with A = {(f,Gf) : f ∈ C∞c (R)}, where Gf := (a/2)f ′′ + δf ′ and
a(x) := 2x+. This martingale problem is well posed due to [EK86, Cor. 3.4, p. 295]
and our discussion after (3.1) concerning the existence and distributional uniqueness
of solutions of (3.1).

Now define for each n ∈ N, (Mn,k)k≥0 and (An,k)k≥0 in terms of Ṽn,k as in (3.3) and
(3.4), respectively. For t ∈ [0,∞) set

Mn(t) :=
Mn,btnc

n
, An(t) :=

An,btnc

n2
, Bn(t) :=

btncδ
n

.

We are now going to check conditions (4.1)-(4.7) of [EK86, Th. 4.1, p. 354]. By Lemma
3.1, Mn and M2

n − An are martingales for all n ∈ N, i.e. conditions (4.1) and (4.2) are
satisfied. To verify the remaining conditions (4.3)–(4.7) we fix r, T ∈ (0,∞) and set
τn,r := inf{t > 0 : |Ỹn(t)| ∨ |Ỹn(t−)| ≥ r}. To check condition (4.3), we have to show that

lim
n→∞

E

[
sup

t≤T∧τn,r
|Ỹn(t)− Ỹn(t−)|2

]
= 0. (3.6)

This is a consequence of (2.6) and the fact that the geometric distribution has exponen-
tial tails. More precisely,

E

[
sup

t≤T∧τn,r
|Ỹn(t)− Ỹn(t−)|2

]
=

1

n2
E

[
max

1≤k≤(Tn)∧τ Ṽnbrnc

∣∣∣ Ṽn,k−1∨M∑
m=1

(ξ(k)m − 1)
∣∣∣2]

≤ 2

n2
E

[
max

1≤k≤Tn

∣∣∣ M∑
m=1

(ξ(k)m − 1)
∣∣∣2 + max

1≤k≤(Tn)∧τ Ṽnbrnc

∣∣∣ Ṽn,k−1∑
m=M+1

(ξ(k)m − 1)
∣∣∣2]

≤ 2T

n
E

[∣∣∣ M∑
m=1

(ξ(0)m − 1)
∣∣∣2]+

2

n2
E

[
max

1≤k≤Tn
max

M+1≤j≤rn

∣∣∣ j∑
m=M+1

(ξ(k)m − 1)
∣∣∣2].

The first term in the last line goes to 0 as n→∞ and the second term is equal to

2

n2

∑
y≥0

P

[
max

1≤k≤Tn
max

M+1≤j≤rn

∣∣∣ j∑
m=M+1

(ξ(k)m − 1)
∣∣∣2 > y

]

≤ 2r3/2

n1/2
+

2

n2

∑
y>(rn)3/2

P

[
max

1≤k≤Tn
max

M+1≤j≤rn

∣∣∣ j∑
m=M+1

(ξ(k)m − 1)
∣∣∣2 > y

]
.
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The first term in the last line vanishes as n → ∞. Applying the union bound and
Lemma 7.4 to the last probability we find that the second term does not exceed

4rT
∑

y>(rn)3/2

e−y/(6(rn∨
√
y)) ≤ 4rT

∑
y>(rn)3/2

e−y
1/3/6 → 0 as n→∞.

This finishes the proof of (3.6). Conditions (4.4) and (4.6) of [EK86, Th. 4.1, p. 354]
(with b ≡ δ) hold obviously. Condition (4.5) is fulfilled, since

sup
t≤T∧τn,r

|An(t)−An(t−)| ≤ v + 2(nr +M)

n2
.

For (4.7) we consider for all t ≤ T ∧ τn,r,∣∣∣∣An(t)− 2

∫ t

0

Ỹ +
n (s) ds

∣∣∣∣
=

∣∣∣∣∣∣vbtncn2
+

2

n2

btnc−1∑
m=0

(Ṽn,m −M)+ − 2

n

∫ btnc
n

0

Ṽ +
n,bsnc ds− 2

∫ t

btnc
n

Y +
n (s) ds

∣∣∣∣∣∣
≤ vt

n
+

2

n2

btnc−1∑
m=0

∣∣∣(Ṽn,m −M)+ − Ṽ +
n,m

∣∣∣+
2

n
sup
s<t

Y +
n (s) ≤ (v + 2M)T + 2r

n
,

which does not depend on t and converges to 0 as n → ∞. Thus, (4.7) holds as well.
The proposition follows now from [EK86, Th. 4.1, p. 354].

To be able to apply the continuous mapping theorem to Proposition 3.2 we need the
following statement. For every f ∈ D[0,∞) and y ∈ R let

ϕy(f) := f(· ∧ σfy ) (3.7)

be the function f stopped upon entering (−∞, y].

Lemma 3.3. Let δ ∈ R, 0 < ε < x <∞, and let ψ be any of the following three mappings
defined on D[0,∞):

f 7→ σfε ∈ [0,∞], f 7→ ϕε(f) ∈ D[0,∞), f 7→
∫ σfε

0

f+(s) ds ∈ [0,∞].

Denote by Cont(ψ) := {f ∈ D[0,∞) : ψ is continuous at f} the set of continuity points of
ψ. Then the solution Y of (3.1) satisfies Px[Y ∈ Cont(ψ)] = 1.

Proof. For 0 < ε < x <∞ let

F :=
{
f ∈ C[0,∞)

∣∣∣ f(0) = x, σfε <∞⇒ f has no local minimum at σfε

}
.

Then under the conditions of the lemma Px [Y ∈ F ] = 1. Indeed, it follows from the
strong Markov property and [RW00, Lemma (46.1) (i), p. 273] that Y a.s. does not have
a local minimum at σYε .

Consequently, it suffices to show that F ⊆ Cont(ψ). For ψ = σ·ε and ψ = ϕε this
follows from [JS87, Ch. VI, Prop. 2.11] and [JS87, Ch. VI, Prop. 2.12], respectively. (In
the notation of [JS87, Ch. VI, 2.9], σfε = Sa(α) with α := e−f and a := e−ε. Note that
f 7→ e−f is continuous w.r.t. the J1-topology.)

For ψ(f) =
∫ σfε
0

f+(s) ds, we assume that D[0,∞) 3 fn
J1−→ f ∈ F . We need to show

that ψ(fn) → ψ(f). Since σ·ε is continuous, as shown above, σfnε → σfε . If σfε < ∞ then
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σfnε < σfε +1 =: T for n large, and hence |ψ(fn)− ψ(f)| ≤ T supt∈[0,T ] |fn(t)−f(t)|, which

converges to 0 as n → ∞, see e.g. [JS87, Ch. VI, Prop. 1.17b]. If σfε = ∞, then for any
T <∞, σfnε ≥ T for n large and thus

ψ(fn) ≥
∫ T

0

f+n (s) ds −→
n→∞

∫ T

0

f+(s) ds −→
T→∞

∫ ∞
0

f+(s) ds =∞

since f(s) > ε for all s ≥ 0.

Theorem 3.4 (Convergence of unconditioned processes). Let (xn)n≥1 be a sequence of
positive numbers which converges to x > 0, let δ ∈ R\{1}, and assume (2.3)–(2.6) under
some probability measure P . For each n ∈ N define Vn = (Vn,k)k≥0 and Yn = (Yn(t))t≥0
by setting Vn,0 := bnxnc and

Vn,k+1 :=

Vn,k∑
m=1

ξ(k+1)
m for k ≥ 0 and

Yn(t) :=
Vn,bntc

n
for t ∈ [0,∞).

Let Y be a solution of (3.1) with Y (0) = x. Then Yn
J1=⇒ Y

(
· ∧ σY0

)
as n→∞.

Proof. Let Ṽn and Ỹn be defined as in Proposition 3.2, where Ṽn,0 = Vn,0 for all n. We
denote by d◦∞ the J1-metric on D[0,∞) as defined in [Bil99, (16.4)].

We first consider the case δ > 1. In this case Px[σY0 = ∞] = 1 and, hence, Y =

Y
(
· ∧ σY0

)
a.s., see e.g. [RW00, (48.5) (i), p. 286]. Moreover, on the event {σVnM =

∞} we have Ṽn = Vn and thus Ỹn = Yn. Consequently, we have for every ε > 0,

P
[
d◦∞

(
Ỹn, Yn

)
> ε
]
≤ P

[
σVnM <∞

]
→ 0 as n → ∞ due to Corollary 7.9. Consequently,

d◦∞

(
Ỹn, Yn

)
converges in distribution to 0 as n → ∞. Therefore, by Proposition 3.2

and [Bil99, Th. 3.1] (a “convergence together” theorem), Yn
J1=⇒ Y as n → ∞. This

completes the proof in case δ > 1.
Now we consider the case δ < 1. Recall (3.7). Our first goal is to show that

ϕ0

(
Ỹn

)
J1=⇒ ϕ0(Y ) as n→∞. (3.8)

We aim to use [Bil99, Th. 3.2], quoted as Lemma 7.1 in the Appendix, for this purpose.

First observe that for all m ∈ N, ϕ1/m(Ỹn)
J1=⇒ ϕ1/m(Y ) as n → ∞ due to Proposition

3.2, Lemma 3.3 and the continuous mapping theorem. Moreover, ϕ1/m(Y ) =⇒ ϕ0(Y ) as
m→∞ since Y has a.s. continuous paths. For the proof of (3.8) it therefore suffices to
show, due to Lemma 7.1, that

lim
m→∞

lim sup
n→∞

P
[
d◦∞

(
ϕ1/m

(
Ỹn

)
, ϕ0

(
Ỹn

))
> 2ε

]
= 0 for every ε > 0. (3.9)

For the proof of (3.9) we use [Bil99, (12.16)] and see that for all ε > 0, n ∈ N, and
y ∈ (0, x ∧ ε),

P
[
d◦∞

(
ϕy

(
Ỹn

)
, ϕ0

(
Ỹn

))
> 2ε

]
≤ P

[∥∥∥ϕy (Ỹn)− ϕ0

(
Ỹn

)∥∥∥
∞
> 2ε

]
≤ P

[
σṼn0 <∞, Ṽ

n,σṼn0

< −nε
]

+ P
[
sup

{
Ỹn(s) : σỸny ≤ s ≤ σ

Ỹn
0

}
> ε
]
.(3.10)

The first term in (3.10) is 0 for large enough n since Ṽ
n,σṼ0

≥ −M . The second term is

≤ Pbync

[
τ Ṽεn < σṼ0

]
. Lemma 7.8 now yields (3.8) if we choose y = 1/m. If we choose
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y = M/n then the above estimate and Lemma 7.8 give that

d◦∞

(
ϕM/n

(
Ỹn

)
, ϕ0

(
Ỹn

))
→ 0 in distribution as n→∞. (3.11)

Consequently, by (3.8) and [Bil99, Th. 3.1], ϕM/n

(
Ỹn

)
J1=⇒ ϕ0(Y ) as n → ∞. However,

recall that Ṽn,k = Vn,k for all 0 ≤ k ≤ σVnM and therefore ϕM/n

(
Ỹn

)
= ϕM/n (Yn).

Hence, ϕM/n (Yn)
J1=⇒ ϕ0(Y ) as n → ∞. As in (3.11), d◦∞(ϕM/n(Yn), ϕ0(Yn)) tends to 0

in distribution as n → ∞. The claim for δ < 1 now follows from another application of
[Bil99, Th. 3.1]. (Note that ϕ0 (Yn) = Yn since 0 is absorbing for V .)

4 Diffusion approximation of conditioned branching processes

The main result of this section is the following. Recall that V is obtained from V by
conditioning on {σV0 <∞}. In particular, by Corollary 7.9, V = V if δ < 1.

Theorem 4.1 (Convergence of conditioned processes). Assume the conditions of The-
orem 3.4 and let Y = (Y (t))t≥0 be a solution of

dY (t) = (1− |δ − 1|) dt+

√
2Y

+
(t) dBt, Y (0) = x. (4.1)

Then as n→∞,

Y n
J1=⇒ Y

(
· ∧ σY0

)
, (4.2)

σY n0 =⇒ σY0 , and (4.3)∫ σY n0

0

Y n(s) ds =⇒
∫ σY0

0

Y (s) ds. (4.4)

The (harmonic) function h defined by

h(n) := Pn[σV0 <∞], n ∈ N0, (4.5)

will play an important role in the proof of Theorem 4.1. Recall that according to our
notation V (0) = n under Pn. Then it follows from (2.2) that h(n) is non-increasing in n.

Remark 4.2 (Doob transform). Recall that V is Doob’s h-transform of V with h as
defined in (4.5), see e.g. [LPW09, Ch. 17.6.1]. By this we mean that V is a Markov chain
with transition probabilities Px[V n = y] = Px[Vn = y]h(y)h(x) . More generally, it follows

from the strong Markov property, that for any stopping time σ ≤ σV0 and all x, y ∈ N0,

Px[V σ = y] =
Px[Vσ = y, σV0 <∞]

Px[σV0 <∞]
= Px[Vσ = y]

h(y)

h(x)
. (4.6)

In many cases a Doob transform of a process belongs to the same class of processes as
the process itself. For example, the asymmetric simple RW on N0 with probability p ∈
(1/2, 1) of stepping to the right, start at 1 and absorption at 0 is, conditioned on hitting 0,
an asymmetric simple RW onN0 with probability p of stepping to the left and absorption
at 0. (In this case h(x) = ((1 − p)/p)x for x ≥ 0.) Similarly, a supercritical Galton-
Watson process conditioned on extinction is a subcritical Galton-Watson process, see
e.g. [AN72, Ch. I.12, Th. 3]. Moreover, with an appropriate definition, squared Bessel
processes of dimension d > 2 conditioned on hitting 0 are squared Bessel processes of
dimension 4− d.
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Similarly, if X, i.e. X conditioned on hitting 0, were under P1 an ERW satisfying
(IID), (WEL) and (BDM ) for some M , or if V were of the form described in Proposition
2.1, then Theorem 4.1 would follow from Theorem 3.4. However, we do not expect that
the conditioned processes X and V are of this form on the microscopic level. Theorem
4.1 shows that, nevertheless, on a macroscopic scale V does behave as V with drift
parameter δ = 1− |δ − 1|.

First we investigate the tail behavior of h.

Proposition 4.3 (Asymptotics of h). Let δ > 1. Then there is c4 ∈ (0,∞) such that

lim
n→∞

nδ−1h(n) = c4. (4.7)

Remark 4.4. In the special case described in Remark 2.2, formula (4.7) also follows
from [Pak72, Th. 4], see also the discussion in [Höp85, pp. 921–922].

Proof of Proposition 4.3. The proof is similar to that of [KM11, Lemma 8.1]. Let δ > 1.
First we show that it suffices to prove that

g(a) := lim
m→∞

am(δ−1)h(bamc) ∈ (0,∞) for all a ∈ (1, 2]. (4.8)

Let a ∈ (1, 2] and denote mn := bloga nc for n ∈ N. Then, by monotonicity of h,

amn(δ−1)h
(
bamn+1c

)
≤ nδ−1h(n) ≤ a(mn+1)(δ−1)h (bamnc)

for all n ∈ N and, hence, by (4.8),

a1−δg(a) ≤ lim inf
n→∞

nδ−1h(n) ≤ lim sup
n→∞

nδ−1h(n) ≤ aδ−1g(a).

Since 0 < g(a) <∞ this implies

1 ≤ lim supn→∞ nδ−1h(n)

lim infn→∞ nδ−1h(n)
≤ a2(δ−1).

Letting a↘ 1 proves the claim of the proposition.
It remains to show (4.8). Fix a ∈ (1, 2], λ ∈ (0, 1/8), and choose `0 according to

Lemma 7.7. Then for all m > ` ≥ `0,

am(δ−1)h(bamc) = am(δ−1)Pbamc[σ
V
a` ≤ σ

V
0 <∞]

≥ am(δ−1)Pbamc[σ
V
a` <∞]Pba`c[σ

V
0 <∞]

(7.9)

≥ a(m−`)(δ−1) h−` (m) a`(δ−1) h
(
ba`c

) (7.8)

≥ K1(`) a`(δ−1)h
(
ba`c

)
> 0.

Hence, since K1(`)→ 1,

lim inf
m→∞

am(δ−1)h(bamc) ≥ lim sup
`→∞

a`(δ−1)h(ba`c) > 0,

which establishes the existence of g(a) > 0. To rule out g(a) =∞ observe that

am(δ−1)h(bamc) ≤ am(δ−1)Pbamc
[
σVa`0 <∞

] (7.9)

≤ a(m−`0)(δ−1) h+`0(m) a`0(δ−1)

(7.8)

≤ K2(`0) a`0(δ−1) <∞

for all m > `0.

EJP 19 (2014), paper 25.
Page 12/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2940
http://ejp.ejpecp.org/


Excited random walks

Lemma 4.5. Let δ ∈ R\{1}. Then there is c5 ∈ (0, 1) such that for all k, x ∈ N and n ≥ 0,

Pn

[
#
{
i ∈
{

1, . . . , σV0

}
: V i ∈ [x, 2x)

}
> 2xk

]
≤ Pn

[
ρ0 < σV0

]
ck5 , (4.9)

where ρ0 := inf{i ≥ 0 : V i ∈ [x, 2x)}.

Proof. For δ < 1, where V = V , this is the statement of [KM11, Prop. 6.1].
For the case δ > 1 we slightly modify the proof of [KM11, Prop. 6.1] as follows. First

we show that there is c6 > 0 such that for all x ∈ N,

min
x≤z<2x

Pz

[
σVx/2 ≤ x

]
> c6. (4.10)

By the strong Markov property and monotonicity with respect to the starting point we
have for all 2M ≤ x ≤ z < 2x,

Pz

[
σVx/2 ≤ x

]
=

Pz[σ
V
x/2 ≤ x, σ

V
0 <∞]

h(z)
≥ h(dx/2e)

h(z)
Pz[σ

V
x/2 ≤ x]

≥ Pz[σ
V
x/2 ≤ x] ≥ P2x[σVx/2 ≤ x] = P2x[σṼx/2 ≤ x].

The last expression is strictly positive for all x > 0 and converges due to Proposition
3.2 and Lemma 3.3 as x → ∞ to P2[σY1/2 < 1] > 0, where Y solves the SDE (3.1). This
proves (4.10).

Next we show that there is c7 > 0 such that for all x ∈ N,

min
0≤z≤x/2

Pz

[
σV0 < τVx

]
> c7. (4.11)

For the proof of (4.11) note that by the strong Markov property and monotonicity of h
for all 0 ≤ z ≤ x/2, z ∈ N0,

Pz

[
τVx < σV0

]
=

Pz[τ
V
x < σV0 <∞]

h(z)
≤ h(x)

h(z)
Pz[τ

V
x < σV0 ]

≤ h(x)

h(z)
≤ h(x)

h(bx/2c)
≤ 21−δ

xδ−1h(x)

bx/2cδ−1h(bx/2c)
,

which converges due to Proposition 4.3 to 21−δ < 1 as x → ∞. Since the left hand side
of (4.11) is strictly positive for all x this implies (4.11).

Now define ρk := inf{n ≥ ρk−1 + 2x : V n ∈ [x, 2x)} for all k ∈ N. Then the left hand
side of (4.9) is less than or equal to

Pn

[
ρk < σV0

]
= Pn

[
ρk < σV0

∣∣ ρk−1 < σV0

]
Pn

[
ρk−1 < σV0

]
. (4.12)

By the strong Markov property for V ,

Pn

[
ρk < σV0

∣∣ ρk−1 < σV0

]
≤ max
x≤z<2x

Pz

[
ρ1 < σV0

]
= max

x≤z<2x

(
Pz

[
ρ1 < σV0 , σ

V
x/2 ≤ x

]
+ Pz

[
ρ1 < σV0 , σ

V
x/2 > x

])
≤ max

x≤z<2x

(
Pz

[
ρ1 < σV0

∣∣ σVx/2 ≤ x]Pz [σVx/2 ≤ x]+ 1− Pz
[
σVx/2 ≤ x

])
= max

x≤z<2x

(
1− Pz

[
σVx/2 ≤ x

] (
1− Pz

[
ρ1 < σV0

∣∣ σVx/2 ≤ x]))
= 1− min

x≤z≤2x

(
Pz

[
σVx/2 ≤ x

]
Pz

[
ρ1 > σV0

∣∣ σVx/2 ≤ x])
≤ 1−

(
min

x≤z<2x
Pz

[
σVx/2 ≤ x

])(
min

0≤y≤x/2
Py

[
ρ0 > σV0

])
≤ 1− c6c7
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by (4.10) and (4.11). Substituting this into (4.12) and iterating gives the claim with
c5 := 1− c6c7.

The next lemma states that Lemma 7.8 also holds for V .

Lemma 4.6. Let δ > 1. For every γ > 0 there is c8(γ) ∈ (0,∞) such that Pn
[
τVc8n < σV0

]
<

γ for all n ∈ N.

Proof. By the strong Markov property and monotonicity of h, for all t > 1,

lim sup
n→∞

Pn

[
τVtn < σV0

]
= lim sup

n→∞

Pn
[
τVtn < σV0 <∞

]
h(n)

≤ lim sup
n→∞

h(dtne)
h(n)

= t1−δ

due to Proposition 4.3. Since t1−δ → 0 as t → ∞ and Pn[σV0 < ∞] = 1 for all n ∈ N by
definition of V this finishes the proof.

Lemma 4.7. Let δ ∈ R\{1}. For each ε > 0 there is c9(ε) ∈ (0,∞) such that Pn[σV0 >

c9(ε)n] < ε for all n ∈ N.

Proof. The proof is the same as the one of [KM11, Prop. 7.1]. It uses Lemmas 4.5 and
4.6 instead of (6.1) and (5.5) of [KM11], respectively.

Proof of Theorem 4.1. We first prove (4.2). For δ < 1, (4.2) follows from Theorem 3.4
since V = V .

Now assume δ > 1. By [EK86, Ch. 4, Th. 2.12] it suffices to show that the one-
dimensional marginal distributions converge, i.e. that for all t > 0,

Y n (t) =⇒ Y
(
t ∧ σY0

)
as n→∞. (4.13)

(This theorem is applicable since the semigroup corresponding to Y (· ∧ σY0 ) is Feller on
the space of continuous functions on [0,∞) vanishing at infinity, see [EK86, Ch. 8, Th.
1.1, Cor. 1.2].)

For the proof of (4.13) let us assume for the moment that we have already shown
that for all t > 0 and ε ∈ (0, x),

Y n

(
t ∧ σY nε

)
=⇒ Y

(
t ∧ σYε

)
as n→∞. (4.14)

Since Y has continuous trajectories we have for all t > 0, Y
(
t ∧ σYε

)
⇒ Y

(
t ∧ σY0

)
as

ε↘ 0. Moreover, for all η > 0,

lim
ε↘0

lim sup
n→∞

P
[∣∣∣Y n (t ∧ σY nε )

− Y n(t)
∣∣∣ > η

]
≤ lim
ε↘0

lim sup
n→∞

Pbnεc

[
τVnη < σV0

]
= 0

due to Lemma 4.6. Therefore, we can apply Lemma 7.1 and obtain (4.13).
It remains to verify (4.14). Fix t > 0 and ε ∈ (0, x). We need to show that for any

bounded and continuous function f : R→ R,

lim
n→∞

E
[
f
(
Y n

(
t ∧ σY nε

))]
= E

[
f
(
Y
(
t ∧ σYε

))]
. (4.15)

By (4.6),

E
[
f
(
Y n

(
t ∧ σY nε

))]
= E

[
f
(
Yn
(
t ∧ σYnε

)) h (nYn (t ∧ σYnε ))
h(bxnnc)

]
= An +Bn,
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Excited random walks

where

An := E

f (Yn (t ∧ σYnε ))
h (nYn (t ∧ σYnε ))

h(bxnnc)
−

 xn

Yn

(
t ∧ σYnε

)
∨ (ε/2)

δ−1

 ,

Bn := xδ−1n E
[
f
(
Yn
(
t ∧ σYnε

)) (
Yn
(
t ∧ σYnε

)
∨ (ε/2)

)1−δ]
.

Note that by Theorem 3.4, Lemma 3.3, and the continuous mapping theorem, Yn(t∧σYnε )

converges in distribution as n → ∞ to ϕε(t), where ϕε := Y (· ∧ σYε ) and Y solves (3.1)
with initial condition Y (0) = x. Hence, since the function g(x) := f(x)(x ∨ (ε/2))1−δ is
bounded and continuous,

lim
n→∞

Bn = xδ−1E
[
f (ϕε(t)) (ϕε(t) ∨ (ε/2))

1−δ
]

= xδ−1E
[
f (ϕε(t)) (ϕε(t))

1−δ
]

= E
[
f
(
Y
(
t ∧ σYε

))]
, (4.16)

where the last identity follows from a change of measure as follows. Since Y solves
(3.1) with Y (0) = x, ϕε solves

dϕε(s) = δ1ϕε(s)>ε ds+
√

2ϕε(s)1ϕε(s)>ε dB(s), ϕε(0) = x, (4.17)

see e.g. [IW89, Prop. II-1.1 (iv)]. By Itô’s formula,
using that ϕε ≥ ε,

d lnϕε(s) =
1

ϕε(s)
dϕε(s)−

1

2

1

ϕ2
ε(s)

(dϕε(s))
2

(4.17)
=

1ϕε(s)>ε

ϕε(s)

(
δ ds+

√
2ϕε(s)) dB(s)

)
−
1ϕε(s)>ε

ϕε(s)
ds

=
δ − 1

ϕε(s)
1ϕε(s)>ε ds+

√
2

ϕε(s)
1ϕε(s)>ε dB(s).

Therefore,

Zε(t) := exp

(
(1− δ)

(∫ t

0

δ − 1

ϕε(s)
1ϕε(s)>ε ds+

∫ t

0

√
2

ϕε(s)
1ϕε(s)>ε dB(s)

))
= exp ((1− δ) (lnϕε(t)− lnx)) = xδ−1 (ϕε(t))

1−δ
.

Now consider the measure P̃ε with dP̃ε/dP = Zε(t). By Girsanov’s transformation, see
e.g. [IW89, Th. IV-4.2] with α(t, x) :=

√
2x1x>ε, β(t, x) := δ1x>ε and γ(t, x) := (1 −

δ)
√

2/x1x>ε, the process (ϕε(s))0≤s≤t satisfies

dϕε(s) = (2− δ)1ϕε(s)>ε ds+
√

2ϕε(s)1ϕε(s)>ε dB̃(s), ϕε(0) = x,

where B̃ is a standard Brownian motion w.r.t. P̃ε. Hence ϕε(t) has under P̃ the same

distribution as Y (t ∧ σYε ) under P . This implies (4.16).
For the proof of (4.15) it remains to show that An → 0 as n→∞. Let κ := ‖f‖∞ and

abbreviate ϕn,ε := Yn
(
t ∧ σYnε

)
. Then

|An| ≤ κE

[∣∣∣∣∣h (nϕn,ε)

h(bxnnc)
−
(

xn
ϕn,ε ∨ (ε/2)

)δ−1∣∣∣∣∣
]

= κxδ−1n E

[∣∣∣∣∣h (nϕn,ε) ((ϕn,ε ∨ (ε/2))n)
δ−1 − (xnn)δ−1h(bxnnc)

(xnn)δ−1h(bxnnc) (ϕn,ε ∨ (ε/2))
δ−1

∣∣∣∣∣
]

≤ κ
(

2xn
ε

)δ−1
E

[∣∣∣∣∣h (nϕn,ε) ((ϕn,ε ∨ (ε/2))n)
δ−1 − (xnn)δ−1h(bxnnc)

(xnn)δ−1h(bxnnc)

∣∣∣∣∣
]
. (4.18)
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Now let γ ∈ (0, c4/2), where c4 is the constant from Proposition 4.3. By Proposition 4.3
there is n0 ∈ N such that

|sδ−1h(bsc)− c4| < γ for all s ∈ [n0,∞).

Thus for large enough n the right-hand side of (4.18) is less than or equal to

κ

c4 − γ

(
2xn
ε

)δ−1
E
[∣∣∣h (nϕn,ε) ((ϕn,ε ∨ (ε/2))n)

δ−1 − (xnn)δ−1h(bxnnc)
∣∣∣]

≤ 2κ

c4

(
2xn
ε

)δ−1 (
E
[∣∣∣h (nϕn,ε) ((ϕn,ε ∨ (ε/2))n)

δ−1 − c4
∣∣∣]+ γ

)
=

2κ

c4

(
2xn
ε

)δ−1(
E
[∣∣∣h (nϕn,ε) (ϕn,εn)

δ−1 − c4
∣∣∣ , ϕn,ε ≥ ε/2]

+ E
[∣∣∣h (nϕn,ε) (εn/2)

δ−1 − c4
∣∣∣ , ϕn,ε < ε/2

]
+ γ

)
≤ 2κ

c4

(
2xn
ε

)δ−1 (
γ +

(
(εn/2)

δ−1
+ c4

)
P [ϕn,ε < ε/2] + γ

)
≤ 6γκ

c4

(
2xn
ε

)δ−1
.

Here we used in the last step that P [ϕn,ε < ε/2] decays exponentially fast as n → ∞
due to (7.6). Letting n→∞ and then γ ↘ 0 yields limnAn = 0. This proves (4.2).

For the next statement, (4.3), we shall use Lemma 7.1. It follows from (4.2), Lemma
3.3, the continuous mapping theorem, and the a.s. continuity of Y that

σY n1/m =⇒
n

σY1/m =⇒
m

σY0 .

To verify the condition corresponding to (7.1) fix ε > 0 and let c9(·) be the function of
Lemma 4.7. Choose m0 ∈ N and g : N→ (0,∞) such that c9(g(m)) ≤ εm for all m ≥ m0

and g(m)→ 0 as m→∞. Then for all n ≥ m ≥ m0,

P
[
σY n0 − σY n1/m > ε

]
≤ Pb nm c

[
σV0 > εn

]
(4.19)

≤ Pb nm c

[
σV0 > c9(g(m))

⌊ n
m

⌋]
≤ g(m)

due to Lemma 4.7. We conclude that the condition corresponding to (7.1) is satisfied
and (4.3) follows.

The final statement, (4.4), is obtained similarly. As above, it follows from (4.2),
Lemma 3.3, the continuous mapping theorem, and the a.s. continuity of Y that∫ σY n

1/m

0

Y n(s) ds =⇒
n→∞

∫ σY1/m

0

Y (s) ds =⇒
m→∞

∫ σY0

0

Y (s) ds.

Moreover, for all ε ∈ (0, 1) and n ≥ m ≥ m0,

P

∣∣∣∣∣∣
∫ σY n0

0

Y n(s) ds−
∫ σY n

1/m

0

Y n(s) ds

∣∣∣∣∣∣ > ε

 = P

∫ σY n0

σY n
1/m

Y n(s) ds > ε


≤ P

[
sup

{
Y n(s) : σY n1/m ≤ s ≤ σ

Y n
0

}(
σY n0 − σY n1/m

)
> ε
]

≤ P
[
sup

{
Y n(s) : σY n1/m ≤ s ≤ σ

Y n
0

}
> ε
]

+ P
[
σY n0 − σY n1/m > ε

]
≤ Pb nm c

[
τVεn < σV0

]
+ g(m)

due to (4.19). Letting first n→∞ and then m→∞ we see that this converges to 0 due
to Lemma 4.6 and the choice of g. Having verified the assumptions of Lemma 7.1 we
obtain statement (4.4).
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5 Asymptotics of diffusions and branching processes

In this section we derive certain asymptotics of the conditioned BP V from those
of the approximating squared Bessel process as stated in Lemma 7.3. Our goal is the
following result:

Theorem 5.1. Let V = (Vn)n≥0 be defined as in (2.2) such that (2.3)–(2.6) hold with
V0 = 1 and let δ ∈ R\{1}. Then there are c10, c11 ∈ (0,∞) such that

lim
n→∞

n|δ−1| P1[σV0 > n] = c10 and (5.1)

lim
n→∞

n|δ−1|/2 P1

 σV0∑
i=0

V i > n

 = c11. (5.2)

Remark 5.2. In the special case described in Remark 2.2, formula (5.1) follows for
0 < δ < 1 from the tail behavior of the extinction time of recurrent critical BPs with
immigration described in [Zub72, Th. 2, first part of (21)]. For δ > 1 it is reminiscent
of the unproven claims made in [IS85, middle of page 225] about the extinction time
of transient critical BPs with immigration. More general results concerning BPs with
migration for the case δ ∈ (−∞, 1)\{0,−1} are given in [FYK90, Theorems 1,3,4], see
also [KZ08, Th. A (iv)].

Lemma 5.3. Let δ ∈ R\{1}. Then there is c12 ∈ (0,∞) such that

limn→∞ n|δ−1|P1

[
τVn < σV0

]
= c12.

Proof. For δ < 1 the statement follows from [KM11, (C), Lemma 8.1].

Now let δ > 1. Then by the strong Markov property and monotonicity of h,

lim sup
n→∞

nδ−1P1

[
τVn < σV0

]
≤ lim sup

n→∞
nδ−1

P1

[
τVn <∞

]
h(n)

h(1)
=

1− h(1)

h(1)
c4 =: c12

due to Proposition 4.3. On the other hand, for all γ > 1 by the strong Markov property
and monotonicity of h,

lim inf
n→∞

nδ−1P1

[
τVn < σV0

]
≥ lim inf

n→∞
nδ−1

P1

[
τVn < σV0 <∞, VτVn ≤ γn

]
h(1)

≥ lim inf
n→∞

nδ−1
P1

[
τVn <∞, VτVn ≤ γn

]
h(bγnc)

h(1)
=

1− h(1)

h(1)
c4γ

1−δ −→
γ↘1

c12,

where in the last identity we used (7.5) and Proposition 4.3.

Lemma 5.4. Let δ ∈ R\{1}. Then for every ε > 0,

lim
x↘0

lim sup
n→∞

n|δ−1| P1

[
#
{
i ∈ {1, . . . , σV0 } : V i < xn

}
> εn

]
= 0.

Proof. The proof is the same as the one of [KM11, Prop. 6.2]. It uses Lemmas 4.5 and
5.3 instead of (6.1) and (5.4) of [KM11], respectively.

Proof of Theorem 5.1. We first prove (5.1) with c10 := c12b1(1 − |δ − 1|), where c12 is as
in Lemma 5.3 and the function b1 is as in Lemma 7.3. The proof generalizes the one of
[KM11, Th. 2.1], which covers the case δ < 1. Let An := {σV0 > n} for n ≥ 0.
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Lower bound in (5.1). Fix x > 0. Then by the strong Markov property for V we have
for all n ≥ 0,

n|δ−1|P1 [An] ≥ n|δ−1|P1

[
σV0 > n+ τVxn, V τVxn

≤ 2xn
]

= n|δ−1|E1

[
PV

τVxn

[An], σV0 > τVxn, V τVxn
≤ 2xn

]
(5.3)

≥ n|δ−1|P1

[
σV0 > τVxn, V τVxn

≤ 2xn
]

inf
y∈[x,2x]

Pbync [An] . (5.4)

Now we choose suitable yn ∈ [x, 2x] where the infimum in (5.4) is attained. Then the
expression in (5.4) can be estimated from below by(

(xn)|δ−1|P1

[
σV0 > τVxn

] )
x−|δ−1|Pbynnc [An] − n|δ−1|P1

[
τVxn <∞, V τVxn > 2xn

]
.

The second term above vanishes as n → ∞ due to (7.7). Therefore, by Lemma 5.3, for
all x > 0,

lim inf
n→∞

n|δ−1|P1 [An] ≥ c12x
−|δ−1| lim inf

n→∞
Pbynnc [An]

= c12x
−|δ−1| lim

k→∞
Pbynknkc [Ank ] (5.5)

for some increasing sequence (nk)k≥0. Choose a subsequence (mk)k≥0 of (nk)k≥0 along
which (ymk)k≥0 converges to some y ∈ [x, 2x]. Then by (4.3), the limit in (5.5) is equal

to Py[σY0 > 1] where Y solves the SDE (4.1). By scaling (Lemma 7.2),

Py[σY0 > 1] = P1[σY0 > 1/y] ≥ P1[σY0 > 1/x] ∼ x|δ−1|b1(1− |δ − 1|)

as x↘ 0 by (7.2). This proves the lower bound in (5.1).
Upper bound in (5.1). Fix ε ∈ (0, 1) and estimate for all x > 0 and n ≥ 0,

n|δ−1|P1 [An] ≤ n|δ−1|P1

[
An, τ

V
xn ≤ εn

]
+ n|δ−1|P1

[
τVxn ∧ σV0 > εn

]
(5.6)

≤ n|δ−1|P1

[
An, τ

V
xn ≤ εn, V τVxn ≤ (1 + ε)xn

]
(5.7)

+ n|δ−1|P1

[
τVxn <∞, V τVxn > (1 + ε)xn

]
(5.8)

+ n|δ−1|P1

[
#
{
i ∈ {1, . . . , σV0 } : V i < xn

}
> εn

]
. (5.9)

The expression in (5.8) vanishes as n → ∞ due to (7.7). The term in (5.9) vanishes as
well due to Lemma 5.4 if we let first n→∞ and then x↘ 0. For the treatment of (5.7)

let Bn :=
{
σV0 > (1− ε)n

}
for n ≥ 0. Then by the strong Markov property the quantity

in (5.7) is less than or equal to

n|δ−1|E1

[
PτVxn

[Bn], τVxn < σV0 , V τVxn
≤ (1 + ε)xn

]
(5.10)

≤ n|δ−1|P1

[
τVxn < σV0

]
sup

y∈[x,(1+ε)x]
Pbync [Bn]

=
(

(xn)|δ−1|P1

[
τVxn < σV0

] )
x−|δ−1|Pbyn(x)nc [Bn]

for suitable yn(x) ∈ [x, (1 + ε)x]. The first factor in the last expression converges to c12
as n→∞ by Lemma 5.3. Summarizing we get that for all ε ∈ (0, 1),

lim sup
n→∞

n|δ−1|P1 [An] ≤ c12 lim sup
x↘0

x−|δ−1| lim sup
n→∞

Pbyn(x)nc [Bn]

= c12 lim sup
x↘0

x−|δ−1| lim
k→∞

Pbynk,x (x)nk,xc
[
Bnk,x

]
(5.11)
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for suitable increasing sequences (nk,x)k≥0, x > 0. Choose for all x > 0 a subsequence
(mk,x)k≥0 of (nk,x)k≥0 along which (ymk,x(x))k≥0 converges to some y(x) ∈ [x, (1 + ε)x]

and let Y solve the SDE (4.1). Then by (4.3), the expression in (5.11) is equal to

c12 lim sup
x↘0

x−|δ−1|Py(x)

[
σY0 > 1− ε

]
L. 7.2

= c12 lim sup
x↘0

x−|δ−1|P1

[
σY0 >

1− ε
y(x)

]
≤ c12 lim sup

x↘0
x−|δ−1|P1

[
σY0 >

1− ε
(1 + ε)x

]
(7.2)
= c10

(
1 + ε

1− ε

)|δ−1|
−→
ε↘0

c10.

This completes the proof of (5.1).

Now we turn to the proof of (5.2) with c11 := c12b2(1 − |δ − 1|), where c12 is as in
Lemma 5.3 and the function b2 is as in Lemma 7.3. The proof is similar to the one
of [KM11, Lemma 4.1]. It is enough to consider convergence along the subsequence
(n2)n≥0. Moreover, it suffices to show

lim
x↘0

lim
n→∞

n|δ−1| P1

[
An, τ

V
xn < σV0

]
= c11, where An :=

{ σV0∑
i=0

V i > n2

}
. (5.12)

Indeed, for all x > 0 due to (5.1)

n|δ−1| P1

[
An, σ

V
0 < τVxn

]
≤ n|δ−1| P1

[
xnσV0 > n2

]
−→
n→∞

c10x
|δ−1| −→

x↘0
0.

Lower bound in (5.12). Fix x > 0. Then

n|δ−1| P1

[
An, τ

V
xn < σV0

]
≥ n|δ−1| P1

 σV0∑
i=τVxn

V i > n2, τVxn < σV0 , V τVxn
≤ 2xn

 . (5.13)

This can be estimated from below by the expression in (5.3). By the same argument as
after (5.3), using (4.4) instead of (4.3), we obtain for a suitable y ∈ [x, 2x] and a solution
Y of (4.1),

lim inf
n→∞

n|δ−1| P1

[
An, τ

V
xn < σV0

]
≥ c12x−|δ−1|Py

[∫ σY0

0

Y (s) ds > 1

]

L. 7.2
= c12x

−|δ−1|P1

[∫ σY0

0

Y (s) ds >
1

y2

]
≥ c12x

−|δ−1|P1

[∫ σY0

0

Y (s) ds >
1

x2

]
L. 7.3
−→
x↘0

c12b2(1− |δ − 1|) = c11.

Upper bound in (5.12). We estimate the first term in (5.13) from above for all n ≥ 0

and x, ε ∈ (0, 1) by

n|δ−1|

P1

 σV0∑
i=τVxn

V i > (1− εx)n2, τVxn < σV0

+ P1

τVxn−1∑
i=0

V i > εxn2, τVxn < σV0


≤ n|δ−1|P1

 σV0∑
i=τVxn

V i > (1− ε)n2, τVxn < σV0 , VτVxn
≤ (1 + ε)xn

 (5.14)

+ n|δ−1|P1

[
τVxn <∞, V τVxn > (1 + ε)xn

]
+ n|δ−1|P1

[
εn ≤ τVxn < σV0

]
. (5.15)
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As above, see (5.8) and the second term on the right-hand side of (5.6), the sum in
(5.15) is negligible. The expression in (5.14) can be estimated from above by the strong

Markov property by the expression in (5.10), where Bn :=

{∑σV0
i=0 V i > (1− ε)n2

}
. By

the same argument as after (5.10), using (4.4) instead of (4.3), we obtain for suitable
y(x) ∈ [x, (1 + ε)x] and Y a solution of (4.1),

lim sup
x↘0

lim sup
n→∞

n|δ−1| P1

[
An, τ

V
xn < σV0

]
≤ c12 lim sup

x↘0
x−|δ−1|Py(x)

[∫ σY0

0

Y (s) ds > 1− ε

]
L. 7.2
≤ c12 lim sup

x↘0
x−|δ−1|P1

[∫ σY0

0

Y (s) ds >
1− ε

(1 + ε)2x2

]
L. 7.3

= c12b2(1− |δ − 1|)
(

1 + ε√
1− ε

)|δ−1|
,

which converges to c11 as ε↘ 0.

6 Proof of the main result

Proof of Theorem 1.1. Observe that in the setting of Proposition 2.1, σU0 = σV0 due to
(2.8) and therefore, by definition (2.1),

sup{Xn : n < T0} = σV0 and T01T0<∞ =

−1 + 2

σV0∑
i=0

Vi

1σV0 <∞. (6.1)

(The second identity has already been observed in [Har52, Th. 5].) Claims (1.3) and
(1.4) now follow from Theorem 5.1.

Now let δ = 1, 0 < ε < 1, and consider the first two limits in (1.6). The divergence of
these limits would be obvious if we had P1[T0 = ∞] > 0. Therefore, we assume P1[T0 <

∞] = 1. Let P̂ be another probability measure which satisfies (IID), (WEL), and (BDM)
and P̂[ω(0, i) ≤ t] ≥ P[ω(0, i) ≤ t] for all i ≥ 1 and t ∈ [0, 1] and whose corresponding
parameter δ̂, defined as in (1.2), satisfies 1− ε < δ̂ < 1. Then by monotonicity as stated
in [Zer05, Lemma 15] we obtain Ê[P1,ω[Tn < T0]] ≤ P1[Tn < T0] and Ê[P1,ω[T0 > n]] ≤
P1[T0 > n]. (Note that the additional condition of a.s. positivity of 2ω(x, i)− 1 which was
assumed in [Zer05] is not needed for the proof of [Zer05, Lemma 15].) Applying (1.3)
and (1.4) to P̂ then yields the first two statements in (1.6).

As for the remaining claims about the tail of R consider the first step of the walk and
use the fact that Px,ω[n ≤ T0 <∞] does not depend on ω(0, ·) to obtain that

P0[n < R <∞] = E [P0,ω[n < R <∞]]

= E [ω(0, 1)P1,ω[n ≤ T0 <∞]] + E [(1− ω(0, 1))P−1,ω[n ≤ T0 <∞]] (6.2)

= E[ω(0, 1)]P1[n ≤ T0 <∞] + E[1− ω(0, 1)]P−1[n ≤ T0 <∞]

due to (IID). Because of (WEL) both E[ω(0, 1)] > 0 and E[1 − ω(0, 1)] > 0. Moreover,
P−1[n ≤ T0 < ∞] = P̃1[n ≤ T0 < ∞], where P̃1[·] = Ẽ[P1,ω[·]] and ω is distributed

under P̃ as 1−ω under P. The parameter δ̃ for P̃ is equal to −δ. Therefore, (1.4) implies
n(|δ−1|∧|−δ−1|)/2 P0[n < R <∞]→ c3 as n→∞, i.e. (1.5), since |δ−1|∧|−δ−1| = ||δ|−1|.
Moreover, (6.2) and the second statement of (1.6) imply the third one.
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7 Appendix: Further results from the literature

The results in this section do not depend on those of Sections 3–6.

Lemma 7.1. ([Bil99, Th. 3.2]) Let (S, d) be a metric space. Suppose that Xm,n, Xn,

Zm (n,m ∈ N) and X are S-valued random variables such that Xn,m and Xn are de-
fined on the same probability space with probability measure Pn for all n,m ∈ N. If
Xm,n =⇒

n→∞ Zm =⇒
m→∞ X and

lim
m→∞

lim sup
n→∞

Pn [d(Xm,n, Xn) > ε] = 0 (7.1)

for each ε > 0 then Xn =⇒
n→∞ X.

Lemma 7.2 (Scaling of squared Bessel processes). For i = 1, 2 let xi > 0 and let
Yi = (Yi(t))t≥0 solve the SDE (3.1) with initial condition Yi(0) = xi. Then

Y1

(
· ∧ σY1

0

)
and

x1
x2
Y2

(
x2
x1
· ∧σY2

0

)
have the same distribution.

Proof. For δ ≥ 0 see [RY99, Ch. XI, (1.6) Prop.]. For general δ see [GY03, A.3] and
[KM11, Lemma 3.2 (i)].

Lemma 7.3. Let δ < 1 and let Y = (Y (t))t≥0 solve the SDE (3.1) with Y (0) = 1. Then
there are constants b1(δ), b2(δ) ∈ (0,∞) such that

lim
t→∞

t1−δP1[σY0 > t] = b1(δ) and (7.2)

lim
t→∞

t(1−δ)/2P1

[∫ σY0

0

Y (s) ds > t

]
= b2(δ). (7.3)

Proof. Statements (7.2) and (7.3) follow from Lemma 7.2 and are the contents of [KM11,
Lemma 3.3] and [KM11, Lemma 3.5], respectively.

In fact, with respect to (7.2) much more is known. In [GY03, (15)] a formula for the
density of the first passage time to 0 of a Bessel process with dimension in [0, 2) is given.
This formula implies (7.2) in the case 0 ≤ δ < 1. It has been noticed in the remark after
[Ale11, (4.24)] that the same formula also holds for negative dimensions.

Lemma 7.4. (cf. [KM11, Lemma A.1]) Let ξi, i ∈ N, be independent random variables
which are geometrically distributed with parameter 1/2 and E[ξi] = 1. Then for all
x, y ∈ N,

P

[∣∣∣∣∣
x∑
i=1

(ξi − 1)

∣∣∣∣∣ ≥ y
]
≤ 2 exp

(
−y2

6(x ∨ y)

)
.

Proof. We are going to use a special case of Azuma’s inequality, which states that for
the simple symmetric RW (Sn)n≥0 on Z starting at 0 and any a, n ≥ 0, P [Sn ≥ a] ≤
exp(−a2/(2n)), see e.g. [AS00, Th. A.1.1]. Let (Yi)i≥1 be an independent sequence of
Bernoulli(1/2)-distributed random variables. By interpreting ξi + 1 as the time of the
first appearance of “heads” in a sequence of independent fair coin flips we obtain

P

[
x∑
i=1

(ξi − 1) ≥ y

]
= P

[
x∑
i=1

(ξi + 1) ≥ 2x+ y

]
= P

[
2x+y−1∑
i=1

Yi < x

]

= P

[
2x+y−1∑
i=1

(2Yi − 1) < −(y − 1)

]
= P [S2x+y−1 ≥ y]

≤ e−y
2/(2(2x+y−1)) ≤ e−y

2/(6(x∨y))
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by Azuma’s inequality. Similarly, for x ≥ y,

P

[
x∑
i=1

(ξi − 1) ≤ −y

]
= P

[
x∑
i=1

(ξi + 1) ≤ 2x− y

]
= P

[
2x−y∑
i=1

Yi ≥ x

]
(7.4)

= P [S2x−y ≥ y] ≤ e−y
2/(2(2x−y)) ≤ e−y

2/(6(x∨y))

again by Azuma’s inequality. For x < y the quantities in (7.4) are 0. A union bound now
yields the claim.

The following lemmas about the BPs V, V , and Ṽ are slight modifications of results
from [KM11]. The first one controls how much the BPs V and V “overshoot” x at the
times τx and σx.

Lemma 7.5 (Overshoot). There are constants c13, c14 > 0 and N ∈ N such that for
every x ≥ N , y ≥ 0, and ε > 0,

max
0<z<x

Pz
[
VτVx > x+ y | τVx < σV0

]
≤ c13(e−c14y

2/x + e−c14y), (7.5)

max
x<z<4x

Pz[VσVx ∧τV4x < x− y] ≤ c13e−c14y
2/x, and (7.6)

max
0<z<x

Pz

[
τVx <∞, V τVx > (1 + ε)x

]
≤ c13(e−c14ε

2x + e−c14εx). (7.7)

Proof. The proofs of the first two statements repeat those of [KM11, Lemma 5.1]. For
the third statement note that by definition of V ,

Pz

[
τVx <∞, V τVx > (1 + ε)x

]
= Pz

[
τVx <∞, VτVx > (1 + ε)x |σV0 <∞

]
=

Pz
[
σV0 <∞| τVx <∞, VτVx > (1 + ε)x

]
Pz
[
σV0 <∞

] Pz
[
τVx <∞, VτVx > (1 + ε)x

]
≤ Pz

[
τVx <∞, VτVx > (1 + ε)x

]
since by the strong Markov property and monotonicity with respect to the starting point,
the fraction above does not exceed 1 for all 0 < z < x. An application of (7.5) with y = εx

completes the proof.

Lemma 7.6. Let δ > 1, a ∈ (1, 2], and γn := inf{k ≥ 0 : Vk 6∈ (an−1, an+1)} for n ∈ N.
Then for all sufficiently large n and all x ∈ N such that |x− an| ≤ a2n/3,

Px

[
dist(Vγn , (a

n−1, an+1)) ≥ a2(n−1)/3
]
≤ exp(−an/4) and∣∣∣∣Px[Vγn ≤ an−1]− 1

aδ−1 + 1

∣∣∣∣ ≤ a−n/4.

Proof. The proof is identical to that of [KM11, Lemma 5.2] if one replaces δ with 1 − δ
throughout.

Lemma 7.7. Let δ > 1, a ∈ (1, 2], λ ∈ (0, 1/8), and

h±` (m) :=

m∏
r=`+1

(
aδ−1 ∓ a−λr

)−1
for all `,m ∈ N, ` < m.

Then there are K1,K2 : N→ (0,∞) such that K1(`),K2(`)→ 1 as `→∞ and

K1(`) ≤ h±` (m) a(m−`)(δ−1) ≤ K2(`) (7.8)

for all m > ` ≥ 0. Moreover, there is `0 ∈ N such that if `,m, x ∈ N satisfy `0 ≤ ` < m

and |x− am| ≤ a2m/3 then

h−` (m) ≤ Px[σVa` <∞] ≤ h+` (m). (7.9)
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Proof. To see (7.8) we notice that h−` (m) ≤ h+` (m) for all m > ` and

h+` (m)a(m−`)(δ−1) =

m∏
r=`+1

(1− a−λr−δ+1)−1 ≤
∞∏

r=`+1

(1− a−λr)−1 =: K1(`) <∞;

h−` (m)a(m−`)(δ−1) =

m∏
r=`+1

(1 + a−λr−δ+1)−1 ≥
∞∏

r=`+1

(1 + a−λr)−1 =: K2(`) > 0.

Clearly, K1(`),K2(`)→ 1 as `→∞.
Inequalities (7.9) will follow if we show that for all u > m,

h−` (m)− h−` (u)

1− h−` (u)
≤ Px[σVa` < τVau ] ≤

h+` (m)− h+` (u)

1− h+` (u)

and then let u→∞. (Note that (7.8) implies that h±` (u)→ 0 as u→∞.) The inequalities
in the previous line are equivalent to

1− h+` (m)

1− h+` (u)
≤ Px[σVa` > τVau ] ≤

1− h−` (m)

1− h−` (u)
.

The proof of the last inequalities follows essentially word for word the one of [KM11,
Lemma 5.3] and uses Lemma 7.5 ((7.5) and (7.6)) and Lemma 7.6 in place of Lemma 5.1
and Lemma 5.2 of [KM11], respectively.

Lemma 7.8. Let δ < 1. For every γ > 0 there is c15(γ) ∈ (0,∞) such that Pn[τVc15n <

σV0 ] < γ for all n ∈ N. Moreover, Pn[σV0 <∞] = 1 = Pn[σṼ0 <∞] for all n ∈ N. Similarly,

for every γ > 0 there is c16(γ) ∈ (0,∞) such that Pn[τ Ṽc16n < σṼ0 ] < γ for all n ∈ N.

Proof. For the proof of the first claim about V see the proof of [KM11, (5.5)] using
Lemmas 7.5 and 7.7 instead of Lemma 5.1 and Lemma 5.3 of [KM11], respectively, and
replacing δ with 1− δ throughout.

For the second statement observe that Pn-a.s. σV0 ∧ τVc15n <∞ due to (2.3) and (2.6).
This together with the first statement implies Pn-a.s. σV0 <∞.

For the third assertion observe that due to (2.3), (2.4), and (2.6), Pn[σṼ0 = 1] > 0 for

all n ≥ 1. Therefore, Pn[σṼ0 =∞] ≤ Pn[Ṽm →∞], which is equal to 0 since Ṽ = V up to

time σṼM and therefore for all i ≥ 1, Pi[σṼM <∞] = Pi[σ
V
M <∞] ≥ Pi[σ

V
0 <∞] = 1 as we

have already shown.
For the final statement let t = c15(γ/2). Then

lim sup
n→∞

Pn

[
τ Ṽtn < σṼ0

]
≤ lim sup

n→∞
Pn

[
τ Ṽtn < σṼM

]
+ lim sup

n→∞
Pn

[
σṼM < τ Ṽtn < σṼ0

]
≤ lim sup

n→∞
Pn
[
τVtn < σVM

]
+ max
i=1,...,M

lim sup
n→∞

Pi

[
τ Ṽtn < σṼ0

]
≤ γ/2 + max

i
Pi[σ

Ṽ
0 =∞].

Since Pi[σṼ0 =∞] = 0 for all i this implies the claim.

Corollary 7.9 (Extinction and survival of V ). If δ < 1 then P1[σV0 <∞] = 1. If δ > 1 then
for all N ≥ 0 it holds that Pn[σVN <∞]→ 0 as n→∞ and, moreover, P1[σV0 =∞] > 0.

Proof. The first claim is contained in Lemma 7.8. Since Pn[σVN < ∞] is non-decreasing
in N for all n > N , Lemma 7.7 implies the second claim. Finally, choose n ∈ N such
that Pn[σV0 <∞] < 1. Then P1[σV0 =∞] ≥ Pn[σV0 =∞] > 0.
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As a result we recover, except for the critical case |δ| = 1, the recurrence-transience
criterion [KZ08, Th. 1] in a more self-contained way without using [FYK90].

Corollary 7.10 (Recurrence and transience of ERW). If |δ| < 1 then the ERW X returns
a.s. infinitely often to its starting point. If δ > 1 then Xn → ∞ a.s., whereas Xn → −∞
a.s. if δ < −1.

Proof. The proof goes along the lines of proof of [KZ08, Th. 1] except that [KZ08, Prop.
9] (for |δ| 6= 1) now follows from Corollary 7.9 and P1[T0 < ∞] = P1[σV0 < ∞], see (2.1)
and (2.8).
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