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Abstract
We study coupled random walks in the plane such that, at each step, the walks change
direction by a uniform random angle plus an extra deterministic angle θ. We compute
the Hausdorff dimension of the θ for which the walk has an unusual behavior. This
model is related to a study of the spectral measure of some random matrices. The
same techniques allow to study the boundary behavior of some Gaussian analytic
functions.
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1 Introduction

1.1 Model

The goal of this paper is to study random walks in the complex plane. The simplest
one is constructed by turning at each step by a uniform angle, and taking a step of
length 1. Now, we want to have a whole family of coupled random walks indexed by
θ ∈ [0, π), and to this end, we just perform the following simple operation: if, at step n,
the initial walk turns an angle φn, then the one indexed by θ turns an angle φn + θ, see
Figure 1. This does not require any additional randomness but, as we shall see, these
walks can have quite different behavior.

Intuitively, for two close θ, the corresponding walks will remain close for a long time,
then spread apart and have quite independent behaviors. A natural guess and, as we
shall see, a true one in some sense, is that this happens at a time of order roughly 1/θ.

All the walks have the same law, and thus, after a time n, they are at a distance of
order

√
n from the origin. Now, informally, amongst the n roughly independent walks

with θ = 0, 2π/n, . . . , 2π(n−1)/n, a small amount may have an exceptional behavior, e.g.
be much farther away from the origin. We are interested in the set of these θ for which
the walk is exceptionally far. It turns out that the correct threshold is of order

√
n log n,

and we shall compute the Hausdorff dimension of the set of angles for which the walk
is beyond this threshold infinitely many times.
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Figure 1: Three first steps of two coupled random walks

1.2 Notation and result

Before giving the motivation for this model, let us introduce some notation and our
main result. If (θj)j≥1 is a family of i.i.d. uniform variables in [0, 2π), then the model can
be written as

S0(θ) = 0

S1(θ) = ei(θ1+θ) = eiθeiθ1

S2(θ) = ei(θ1+θ) + ei(θ1+θ)ei(θ2+θ) = eiθeiθ1 + e2iθei(θ1+θ2)

S3(θ) = eiθeiθ1 + e2iθei(θ1+θ2) + e2iθei(θ1+θ2)ei(θ3+θ)

= eiθeiθ1 + e2iθei(θ1+θ2) + e3iθei(θ1+θ2+θ3)

and so on. Clearly, the variables ei(θ1+···+θj) for j ≥ 1 are all uniform rotations and are
independent, so we might actually replace θ1 + · · · + θj by θj . More generally, we can
choose the length of each step to be random, independent from the direction, while still
keeping the latter uniform. The only assumption that we will need on the modulus of
these variables is that it has an exponential moment. Hence, let us forget about (θj),
and fix once and for all the following notation.

• Let (Uj)j≥1 be an i.i.d. sequence of non trivial complex random variables with a
rotationally symmetric distribution, and with an exponential moment, i.e. such
that

E(expκ|U1|) < +∞

for some κ > 0. Write σ2 := E(<(U1)
2) > 0.

• Denote NC(0, ρ2) the distribution of a complex Gaussian variable with covariance
matrix ρI2.

• Let (Gj)j≥1 an i.i.d. sequence of standard complex Gaussian variables, i.e. with
distribution NC(0, 1).

• For θ ∈ [0, 1), define

Sn(θ) = U1e
iπθ + · · ·+ Une

inπθ, Sn = Sn(0), S̃n(θ) =
Sn

σ
√
2n

EJP 18 (2013), paper 89.
Page 2/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2523
http://ejp.ejpecp.org/


Random walks veering left

and

Bn(θ) = G1e
iπθ + · · ·+Gne

inπθ, Bn = Bn(0), B̃n(θ) =
Bn√
2n
.

Note that the walks turn by an extra angle in [0, π), not [0, 2π), to avoid periodicity.

• Fix a constant α > 0, and a threshold φ(n) =
√
2αn log n.

We are interested in the Hausdorff dimension of the set of exceptional angles

Dα = {θ ∈ [0, 1), |Sn(θ)| > σφ(n) i.o.}.

We call this angles “exceptional” because, by the Central Limit Theorem, |Sn| should be
of order

√
n, so that, for every θ ∈ [0, 1), almost surely θ /∈ Dα. However we expect that

a.s., Dα is not empty, and even more, that its Hausdorff dimension is nontrivial. This
relies on the following computation: loosely, Sn(θ)/(σ

√
n) should be close to a standard

complex Gaussian variable, and thus

P (|Sn(θ)| > σφ(n)) ≈ P
(
|G1| >

√
2α log n

)
=

1

nα
.

The last equality stems from the fact that |G1|2 has a χ2 distribution with two degrees
of freedom, whose c.d.f. is x 7→ 1 − e−x/2. This decrease as a power of n is precisely
what one would expect to obtain a nontrivial Hausdorff dimension, and explains why
we choose such φ(n). We will prove the following.

Theorem 1.1. Almost surely,

dimDα = (1− α) ∨ 0.

The incentive for distinguishing the Gaussian case is that we shall first prove the
result for a Gaussian random walk, since, as usual, computations are easier in this
case. Define its set of exceptional angles by

D′α = {θ ∈ [0, 1), |Bn(θ)| > φ(n) i.o.}.

The corresponding result is that, almost surely,

dimD′α = (1− α) ∨ 0. (1.1)

This question is related to other results about dynamical random walks, where the
steps are refreshed independently after an exponential time. For instance, [1] studies
properties of random walks which are invariant or not under this change, as well as
Hausdorff dimensions of exceptional times. The somehow surprising difference here is
that we can obtain nontrivial dimensions without needing extra randomness.

Let us add a couple words concerning the notation used. In the whole text, for q > 1,
we will write qn where we mean bqnc; the reader could readily fill in the occasional gaps
and convince themselves of the innocuousness of such treatment. We shall also always
keep in the subtext that the big O notation is uniform, in that the constant hidden inside
is the same for every n and all θ in the considered interval (see in particular Lemma 3.1).
Finally, it shall be more convenient to write un � vn for un = o(vn).

1.3 Boundary behavior of i.i.d. Gaussian power series

As a by-product of our method, we can study the boundary behavior of the most
simple Gaussian analytic function, namely the i.i.d Gaussian power series

F (z) =
∑
k≥1

Gkz
k.
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It is well-known and easy to check that a.s., the radius of convergence of this series
is 1, and there is no limit as z approaches the boundary of the unit disk ∂D, see e.g.
[5], Chapter 13. A much deeper result [8] is that these series have infinitely many
zeros near ∂D. It is thus interesting to study the exceptional behavior of F (z) when
z → z0 ∈ ∂D, and to this end, we shall consider the following set

DGAFα =

{
θ ∈ [0, 1), lim sup

r→1−

√
1− r

− log(1− r)
∣∣F (reiπθ)∣∣ ≥ α} .

The reason for such a rescaling is essentially the same as for choosing a threshold φ(n)
in the previous result, see Section 5. It turns out that the method of the paper can be
exactly adapted to this case, to yield the following result.

Theorem 1.2. Almost surely,

dimDGAFα = (1− α2) ∨ 0.

A sketch of proof is given in Section 5.

1.4 Motivation from Random Matrix Theory

Let us explain the incentive for this model. Our goal is to study the spectral measure
µ of the Circular Unitary Ensemble (CUE) of order n. For z ∈ S1, the monic orthogonal
polynomials φ0, . . . , φn−1 for this measure obey the recurrence relation

φk+1(z) = zφk(z)− βkzkφk(z), (1.2)

see [10] or [11]. In [6], Killip and Nenciu gave a matrix model for the CUE, and they
showed that the coefficients (βk)k=0,...,n−2 are independent and circularly symmetric.

Writing Xk(z) = z−kφk(z), Equation (1.2) readily implies that

Xk+1(z)−Xk(z)

Xk(z)
= −βkz−k−1

Xk(z)

Xk(z)
.

The last termXk(z)/Xk(z) gives rise to the greatest difficulties in studying this problem,
so our first step is to merely ignore it. Secondly, we may consider i.i.d. circularly
symmetric coefficients (βk)k≥0. We are thus led to the recurrence

Xk+1(z)−Xk(z)

Xk(z)
= −βkz−k−1.

This essentially means
logXk+1(z)− logXk(z) = −βkzk

what is precisely the problem of coupled random walks that we study.
Now, our goal is to study fine properties of the spectral measure. According to

some seminal results of Jitormiskaya and Last (see [4], and [12] in our context), the
asymptotic behavior of (φn) is related to the local Hausdorff dimension of the spectral
measure. More precisely, define, for z ∈ S1,

Dδ
µ(z) = lim sup

ε→0

µ
{
zeiθ, θ ∈ (−ε,+ε)

}
εδ

.

Clearly, there is a threshold δ before which Dδ
µ(z) is finite, and after which it is infinite.

This δ is called the local dimension of µ around z. Now, the result of Jitomirskaya and
Last is that, for γ = δ/(2− δ),

Dδ
µ(z) = +∞⇔ lim inf

x→+∞

‖φ(z)‖x
‖ψ(z)‖γx

= 0
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where
‖φ‖2x = |φ1|2 + · · ·+ |φx|2

for x ∈ N, and linearly interpolated for positive real x, and the ψn obey the same type
of recurrence as the φn. Hence, an unusual behavior of the local dimension around z is
reflected as an unusual behavior of ‖φ(z)‖x as x→ +∞, and thus of |φn(z)|. Even though
our toy model and the result we prove do not give any information in this direction, they
still provide insight about the evolution of these quantities, and techniques which may
be used in a more complicated setting. Moreover, despite these strong reductions, the
problem does not turn out to be trivial, as we shall see.

2 Techniques

2.1 Outline of the article

We shall first prove the result for a Gaussian random walk, then for the general
rotationally symmetric one. In both cases, the proof consists mainly of three steps.

The first one is to give precise first- and second-order estimates for moderate devi-
ations, namely for the probabilities

P(|Sn(θ)| > φ(n)), P(|Sn(θ)| > φ(n), |Sn(θ′)| > φ(n)).

We then construct the infinite complete binary tree, and circle some vertices as
follows. Fix q > 1, and consider the i-th vertex at level n. Compute Sqn(i2−n), remem-
bering that we shall always write qn instead of bqnc. Then we circle the vertex if

|Sqn(i2−n)| > φ(qn).

The estimates from above allow to compute the Hausdorff dimension of the set of rays
(i.e. paths from the root to infinity) containing infinitely many circled vertices.

This is close to what we wish to compute, but the tree construction only shows a
partial image of the process, since it is sampled at specific times and angles. The last
step is thus to fill in the gaps. This is the reason for sampling at time qn: taking q close
to 2 allows to obtain a precise lower bound and control the angular variations, whereas
taking q close to 1 allows to obtain a precise upper bound and control both the time and
angular variations, see Section 3.4.

2.2 Chatterjee’s invariance principle

The main simplification for Gaussian random walks obviously relies on the fact that
for each n, Bn(θ) is a Gaussian random variable, and even more, that (Bn(θ), Bn(θ

′))

is a complex Gaussian vector, what allows to compute its density function and thus the
moderate deviations probabilities easily. This is the main difficulty for general variables,
as should be clear from the quite tedious computations in Section 4.2. To perform
this computation, we compare the variables to Gaussian variables, the main tool being
Chatterjee’s invariance principle, as introduced in [3].

A multivariate version of this result is given in [9], and we will now give another
version taking into account complex variables, and, more importantly, sharper, since
it goes one order further in the Taylor expansion. In the following statement, we take
X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) two vectors of independent complex random
variables, each with four moments. We assume that for each i ∈ {1, . . . , n},

E(<(Xi)
k=(Xi)

l) = E(<(Yi)k=(Yi)l)

for every 1 ≤ k + l ≤ 3. As expected, we wish Y to be Gaussian, so we may tune X so
that the two first moments match, but matching the third ones can clearly be done only

EJP 18 (2013), paper 89.
Page 5/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2523
http://ejp.ejpecp.org/


Random walks veering left

in some specific cases. In particular, if, as in our case, Xi has a rotationally invariant
distribution, then the third moments are zero and this result can be applied.

We shall call a function from Cn to X, with X = Rm or Cm, m ≥ 1, k times con-
tinuously differentiable if it is k times continuously differentiable as a mapping from
R2n to X. This is an important and necessary weakening of the natural assumption
of holomorphy, since the functions we want to consider are typically plateau functions,
which are zero for |z| ≤ 1 and 1 for |z| ≥ 1 + ε, which can clearly be made C∞ but not
holomorphic.

If H : Cn → R is an r times differentiable mapping, we may write H(z1, . . . , zn) =

H(x1, y1, . . . , xn, yn) and define the partial derivatives ∂k+lH/∂xki ∂y
l
j for k + l ≤ r. For

u ∈ Cn and z = x+ iy ∈ C, we let

Dr
j (H)(u).z =

r∑
k=0

(
r

k

)
xkyr−k

∂rH

∂xkj y
r−k
j

(u).

Let us now fix f : Cn → Cm, m ≥ 1, four times continuously differentiable, and
U = f(X), V = f(Y).

Lemma 2.1. For any g : Cm → R four times continuously differentiable,

|E(g(U))− E(g(V ))| ≤
n∑
j=1

E(Rj) +

n∑
j=1

E(Tj)

where

Rj =
1

24
sup

z∈[0,Xj ]

∣∣D4
j (g ◦ f)(X1, . . . , Xj−1, z, Yj+1, . . . , Yn).Xj

∣∣
and

Tj =
1

24
sup

z∈[0,Yj ]

∣∣D4
j (g ◦ f)(X1, . . . , Xj−1, z, Yj+1, . . . , Yn).Yj

∣∣ .
The proof is just a perusal of the arguments of [3] or [9], using the multidimensional

Taylor formula, and noting that the assumptions on the moments of the Xi’s and the
Yi’s are precisely what is needed to cancel out the first, second and third order terms
in the Taylor expansion.

2.3 Tree dimension

2.3.1 Setting

Let us explain more precisely how we will define our tree and compute Hausdorff
dimensions. To begin with, construct a complete infinite binary tree T , calling vni ,
i ∈ {0, . . . , 2n − 1} its vertices at level n. We shall write |v| for the level of v (where the
root has level 0), and u ≺ v is u is an ancestor of v.

Each angle θ ∈ [0, 1) corresponds to a ray (i.e. a path from the root to infinity) R(θ)
in this tree, by saying that if θ has a proper binary expansion θ = 0.b1b2 . . . , then R(θ) is
the path in the tree starting from the origin and going left (resp. right) at level i ≥ 0 if
bi+1 = 0 (resp. 1). Clearly, R is not onto all rays.

Let us reformulate this. Define

Ani = [i2−n, (i+ 1)2−n), i ∈ {0, . . . , 2n − 1}

and let in(θ) be the i such that θ ∈ Ani . Then

R(θ) = {vnin(θ), n ≥ 0}.
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Let us suppose that we are given a collection of random variables (Zv, v ∈ T ), in-
dexed by the tree, with values in [0, 1]. One may think that we circle v when Zv > 0.
Our interest is the limsup fractal associated to (Zv), in the terminology of [7], defined
as the set of angles with infinitely many circled vertices on their path, to wit

D = {θ ∈ [0, 1), #{v ∈ R(θ), Zv > 0} = +∞}
= {θ ∈ [0, 1), Zvn

in(θ)
> 0 i.o.}

=
⋂
N∈N

⋃
n≥N

2n−1⋃
i=0

Ani 1
{
Zvn
i
>0

},
where, for a set X, X.1 = X and X.0 = ∅. We will finally assume that the law of Zv is
the same for the vertices at the same level, and let

pn = P(Zv > 0), mn = E(Zv), |v| = n.

Note that pn ≥ mn ≥ P(Zv = 1). We shall now give two results concerning upper and
lower bounds on the Hausdorff dimension of D.

2.3.2 Upper bound

Lemma 2.2. Assume that pn = O(2−nδ). Then

dimD ≤ 1− δ

almost surely.

Proof. This is a well-known result in various guises, see e.g. [7]. It suffices to notice
that for each N ∈ N,

D ⊂
⋃
n≥N

2n−1⋃
i=0

Ani 1
{
Zvn
i
>0

}.
Hence, the γ-Hausdorff content Hγ(D) of D verifies

Hγ(D) ≤
∑
n≥N

2n−1∑
i=0

|Ani |γ1{Zvn
i
>0

} =
∑
n≥N

2n−1∑
i=0

2−nγ1{
Zvn
i
>0

},
and thus

E(Hγ(D)) ≤
∑
n≥N

2n−1∑
i=0

2−nγP(Zvni > 0) =
∑
n≥N

2n2−nγpn.

By assumption on pn, this sum is finite whenever γ > 1 − δ, and in this case, having N

tend to +∞ shows that E(Hγ(D)) = 0, so that Hγ(D) = 0 a.s. Thus

dimD ≤ γ

almost surely. Since this holds for every γ > 1− δ, the result follows.

2.3.3 Lower bound

For the lower bound, we shall use a version of Theorem 10.6 in [7], reformulated in our
context. For n ≥ 0 and |u| ≤ n, define

Mn(u) =
∑

v�u, |v|=n

Zv.
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Lemma 2.3. Assume that there exist ζ(n) ≥ 1 and 0 < γ < 1 such that

• for every m ≤ n and |u| = m, Var(Mn(u)) ≤ ζ(n)E(Mn(u)) = ζ(n)mn2
n−m,

• 2n(γ−1)ζ(n)m−1n → 0 as n→ +∞.

Then dimD ≥ γ almost surely.

This is not exactly Theorem 10.6 in [7], since in this reference, vertices are either
black or white (i.e. Zv ∈ {0, 1}), whereas we allow all shades of gray (i.e. Zv ∈ [0, 1]).
However, with our definitions, the result still holds. Checking this requires a careful
perusal of the arguments of [7]. We give below some more details which can be skipped
in a first reading.

Proof. The idea of the proof of Lemma 2.3 is to construct a probability measure sup-
ported by D (in the sense that µ(Dc) = 0), which has finite γ-energy. To this end, one
can find an increasing sequence (`n) such that M`k(u) > 0 for every |u| = `k−1. One
may then define a probability measure consistently on every dyadic interval by

• assigning mass 2−`0 to each interval [u, u+ 2−`0), |u| = l0;

• defining recursively, for |u| = m, `k−1 < m ≤ `k and v the ancestor of u at level
`k−1,

µ([u, u+ 2−m)) =
M`k(u)µ([v, v + 2−`k−1))

M`k(v)
.

The remaining of the proof in [7] shows that there is a relevant choice of (`n) such that
this measure has finite γ-energy, and one can check that this requires no modification
but writing (Zv)

2 ≤ Zv instead of (Zv)2 = Zv.
The proof is then over once we check that this measure is supported by D. To see

this, note that if θ ∈ Dc, then for some v ∈ R(θ) and every u ∈ R(θ) with u � v, Zu = 0.
Then, for k large enough `k−1 ≥ |v|, and the very construction of the measure then
implies that, for u ∈ R(θ) at level `k,

µ([u, u+ 2−`k)) =
M`k(u)µ([v, v + 2−`k−1))

M`k(v)
=
Zuµ([v, v + 2−`k−1))

M`k(v)
= 0.

Since θ ∈ [u, u+2−`k), this tells that there exists ε > 0 such that µ([θ, θ+ ε)) = 0, so that
indeed µ(Dc) = 0.

2.4 Bernstein’s inequality

A last tool that we are going to use is the classical Bernstein inequality [2], which
we recall here for the reader’s convenience.

Lemma 2.4. Let X1, . . . , Xn be independent centered random variables. Assume that
there is a M such that |Xi| ≤M for all i. Then, for all t > 0,

P

(
n∑
i=1

Xi > t

)
≤ exp

(
− t2/2∑n

i=1E(X
2
i ) +Mt/3

)
.

3 Random walk with Gaussian increments

3.1 Moderate deviations

Computing the Hausdorff dimension relies on first and second moment estimates
which we now give.
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Lemma 3.1. The following estimates hold.

1. For every θ ∈ [0, 1),

P (|Bn(θ)| > φ(n)) =
1

nα
.

2. Fix a sequence log n/n� εn � 1. Then,

P (|Bn| > φ(n), |Bn(θ)| > φ(n)) =
1

n2α

(
1 +O

(
log n

nθ

))
uniformly for θ ∈ [εn, 1), and in particular

|P (|Bn| > φ(n), |Bn(θ)| > φ(n))− P (|Bn| > φ(n))P (|Bn(θ)| > φ(n))| = 1

n2α
O

(
log n

nθ

)
still uniformly in θ ∈ [εn, 1).

3. Fix a sequence log n/n � εn � 1 and a bounded measurable function g : R+ →
R+, which is zero in a neighborhood of 0. Then,∣∣∣E(g(|B̃n|)g(|B̃n(θ)|))− E(g(|B̃n|))E(g(|B̃n(θ)|))∣∣∣ = 1

n2α
O

(
log n

nθ

)
uniformly in θ ∈ [εn, 1).

These results essentially mean that the events {|Bn| > φ(n)} and {|Bn(θ)| > φ(n)}
are independent if θ � log n/n. Lemma 3.2 will show that, on the other hand, these
events are essentially identical when θ � n−(1+β), for β > 0. There is thus a small
window of uncertainty, but too small to be of any harm.

Proof. • We already mentioned that the first equality stems from the fact that |Bn|2/n
has a χ2 distribution with two degrees of freedom. Now, note that

1√
2n

(Bn, Bn(θ))

is a complex Gaussian vector with mean (0, 0), zero relation matrix, and covariance
matrix (

1 Dn(θ)

Dn(θ) 1

)
where

Dn(θ) =
1

n

n∑
j=1

eiπjθ =
1

n
eiπ(n+1)θ/2 sinπnθ/2

sinπθ/2

is a modification of the Dirichlet kernel. Hence, (Bn, Bn(θ)) has density in C2 given by

f(z1, z2) =
1

π2(1− |Dn(θ)|2)
exp− 1

(1− |Dn(θ)|2)
(
|z1|2 + |z2|2 − 2<(Dn(θ)z1z2)

)
.

Note that
|2<(Dn(θ)z1z2)| ≤ |Dn(θ)|(|z1|2 + |z2|2)

so that, writing Rn = φ(n)/
√
2n =

√
α log n,

P(|Bn| > φ(n), |Bn(θ)| > φ(n))

=

∫
|z1|>Rn

∫
|z2|>Rn

f(z1, z2) dz1 dz2

≤ 1

π2(1− |Dn(θ)|2)

∫
|z1|>Rn

∫
|z2|>Rn

exp− 1

1 + |Dn(θ)|
(|z1|2 + |z2|2) dz1 dz2

=
1 + |Dn(θ)|
1− |Dn(θ)|

exp− 1

1 + |Dn(θ)|
2α log n.
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Now, uniformly for θ ∈ [εn, 1] (as in all the following computations),

|Dn(θ)| = O

(
1

nθ

)
so |Dn(θ)| log n tends to 0 as n→ +∞, by assumption on (εn). Then, by straightforward
computations

1 + |Dn(θ)|
1− |Dn(θ)|

exp− 1

1 + |Dn(θ)|
2α log n =

1

n2α
(1 +O (|Dn(θ)| log n))

=
1

n2α

(
1 +O

(
log n

nθ

))
.

The lower bound is obtained similarly and provides the result.

• For the last part, take η > 0 such that g is zero on [0, η], and write in the same way

E
(
g(|B̃n|)g(|B̃n(θ)|)

)
=

∫
|z1|>ηRn

∫
|z2|>ηRn

g(|z1|)g(|z2|)f(z1, z2) dz1 dz2

≤ 1

π2(1− |Dn(θ)|2)

∫
|z1|>ηRn

∫
|z2|>ηRn

g(|z1|)g(|z2|) exp−
|z1|2 + |z2|2

1 + |Dn(θ)|
dz1 dz2

=

(
2√

1− |Dn(θ)|2

∫
r>ηRn

rg(r) exp− 1

1 + |Dn(θ)|
r2 dr

)2

.

Using the boundedness of g and the fact that |Dn(θ)| log n→ 0, it is easy to check that

1√
1− |Dn(θ)|2

∫
r>ηRn

rg(r) exp− 1

1 + |Dn(θ)|
r2dr =

∫
r>ηRn

rg(r) exp−r2dr+O
(
log n

nθ

)
.

On the other hand

E
(
g(|B̃n(θ)|)

)
=

1

π

∫
|z|>ηRn

g(|z|) exp−|z|2 dz = 2

∫
r>ηRn

rg(r) exp−r2 dr

so

E
(
g(|B̃n|)g(|B̃n(θ)|)

)
− E

(
g(|B̃n|)

)
E
(
g(|B̃n(θ)|)

)
≤ O

(
log n

nθ

)
.

Similar computations provide the lower bound, and the result follows thereof.

3.2 Angular deviations

Lemma 3.2. Fix β > 0, a sequence εn � n−(1+β) and η > 0. Then there exists a
sequence Kn diverging to +∞, depending only on εn, such that

P

(
sup

|θ−θ′|<εn
|Bn(θ)−Bn(θ′)| > ηφ(n)

)
= O

(
n−Kn

)
.

Proof. Clearly, by rotational invariance, it is enough to prove it for θ′ = 0. Fix k ∈ N
with k > 1/β, and write, with Taylor’s formula, that for θ ∈ [0, εn]

Bn(θ)−Bn =

k−1∑
j=1

B
(j)
n (0)

j!
θj +Rk(θ)
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where

|Rk(θ)| ≤ θk
1

k!
sup

θ∈[0,εn]
|B(k)
n (θ)|.

Now,

B(j)
n (θ) =

n∑
r=1

Gr(iπr)
jeiπrθ

so

B(j)
n (0) =

n∑
r=1

Gr(iπr)
j (d)
= NC(0,

n∑
r=1

(πr)2j)
(d)
=

√√√√ n∑
r=1

(πr)2j NC(0, 1)

and

|Rk(θ)| ≤ θk
1

k!
(πn)k

n∑
r=1

|Gr|.

Gathering the pieces and writing
√∑n

r=1(πr)
2j ≤ πj

√
nnj , we may compute, for C

some large enough constant depending only on k,

P

(
sup

θ∈[0,εn]
|Bn(θ)−Bn| > ηφ(n)

)

≤
k−1∑
j=1

P

(
B

(j)
n (0)

j!
sup

θ∈[0,εn]
θj ≥ 1

k
ηφ(n)

)
+ P

(
sup

θ∈[0,εn]
|Rk(θ)| ≥

1

k
ηφ(n)

)

≤
k−1∑
j=1

P

(
C
√
nnjεjn|NC(0, 1)| ≥

1

k
ηφ(n)

)
+

n∑
r=1

P

(
Cnkεkn|Gr| ≥

1

kn
ηφ(n)

)

≤
k−1∑
j=1

exp

(
− αη

(kC)2
log n

(
1

nεn

)2j
)

+ n exp

(
− αη

(kC)2
log n

(
1

nk+1εkn

)2
)
.

But the assumption on εn ensures that nεn → 0, and the choice of k implies that
nk+1εkn → 0, whence the result follows immediately.

3.3 Tree-dimension

We shall now use these results in a case which is relevant to the study of D′α. Fix
q > 1. For v = vni ∈ T , define Zv(ω) = 1 if

ω ∈ Eni := {|Bqn(i2−n)| > φ(qn)},

and Zv = 0 otherwise. Define the corresponding limsup fractal

D′α = {θ ∈ [0, 1), |Bqn(in(θ)2−n)| > φ(qn) i.o.}.

We shall prove the following.

Proposition 3.3. Almost surely

(1− α) log2 q ≤ dimD′α ≤ (1− α) ∨ 0

for q ∈ (1, 2), and
dimD′α = (1− α log2 q) ∨ 0

for q > 2.

Remark 3.4. Even though the result for q > 2 is exact, we will only use the case
q ∈ (1, 2).
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Proof. 1. By Lemma 3.1, P(Zv > 0) = q−nα, so the upper bound for q > 2 is a direct
corollary of Lemma 2.2.

2. To obtain the (better) upper bound for 1 < q < 2, let us mimic the proof of Lemma
2.2, by providing a better cover of D′α in this particular case. Lemma 3.2 ensures that
if Bqn(θ) is large, then it should also hold for any angle θ′ with |θ′− θ| ≤ q−n(1+β), which
allows us to get a better cover of D′α.

Let us formalize this idea. Take β > 0, η ∈ (0, 1), εn = q−n(1+β) and

Bni = [iεn, (i+ 1)εn), i ∈ {0, . . . , bε−1n c}.

Write

Xn
i =

{
Bni if |Bqn(i2−n)| > (1− η)φ(qn),
∅ otherwise.

By Lemma 3.2

P
(
∃i ∈ {0, . . . , bε−1n c} sup

θ∈Bni
|Bqn(θ)−Bqn(iq−n)| > ηφ(qn)

)
= O

(
(bε−1n c+ 1)q−nKn

)
= O

(
qn(1+β)q−nKn

)
for some sequence Kn diverging to +∞, and thus Borel-Cantelli’s lemma ensures that
almost surely, for large enough n,

sup
i∈{0,...,bε−1

n c}
sup
θ∈Bni

|Bqn(θ)−Bqn(iq−n)| < ηφ(qn).

It is then easy to check that, for every N ∈ N,

D′α ⊂
⋃
n≥N

bε−1
n c⋃
i=0

Xn
i .

Now, by Lemma 3.1,

P (Xn
i 6= ∅) = q−nα(1−η)

2

so concluding as in Lemma 2.2, one readily obtains that, almost surely,

dimD′α ≤ 1− α (1− η)
2

1 + β
.

Since this is true for any η > 0 and β > 0, the result follows.

3. To obtain the lower bound for 1 < q < 2, define as in Lemma 2.3, for n ≥ 0 and
|u| ≤ n,

Mn(u) =
∑

u≺v, |v|=n

Zv.

EJP 18 (2013), paper 89.
Page 12/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2523
http://ejp.ejpecp.org/


Random walks veering left

Then, with obvious notation,

Var(Mn(u)) =
∑
v

E(Z2
v )−

∑
v

E(Zv)
2 +

∑
v 6=v′

E(ZvZv′)−
∑
v 6=v′

E(Zv)E(Zv′)

≤
∑
v

E(Zv) +
∑
v 6=v′
|E(ZvZv′)− E(Zv)E(Zv′)|

=

j2n−m∑
k=(j−1)2n−m+1

P(Enk ) +

j2n−m∑
k, l=(j−1)2n−m+1

k 6=l

|P(Enk ∩ Enl )− P(Enk )P(Enl )|

=

2n−m∑
k=1

P(Enk ) +

2n−m∑
k, l=1
k 6=l

|P(Enk ∩ Enl )− P(Enk )P(Enl )|

= 2n−mP(En1 ) + 2n−m
2n−m∑
l=2

|P(En1 ∩ Enl )− P(En1 )P(Enl )|

where the last equalities stem from the rotational symmetry.

Now, take εn = n2q−n. We split the last sum in the l from 2 to ln = b2nεnc, and the rest.
By Lemma 3.1,

P(En1 ) = q−nα

so, for l ∈ {2, . . . , ln},
|P(En1 ∩ Enl )− P(En1 )P(Enl )| ≤ 2q−nα.

But εn � nq−n, so Lemma 3.1 applies for l > ln (corresponding to angles θ ≥ εn), and
provides

|P(En1 ∩ Enl )− P(En1 )P(Enl )| ≤ C
1

q2αn
n

qn2−n(l − 1)

for some constant C, all n ≥ 1 and all l ≥ ln. Then, it is easy to compute

Var(Mn(u)) ≤ 2n−m

q−nα + (ln − 1)q−nα + Cnq−2αnq−n2n
2n−m∑
l=ln

1

l − 1


≤ 2n−mq−nα

(
ln + Cnq−αnq−n2n × 2 log(2n)

)
= 2n−mq−nαn22nq−nO(1).

We may then pick ζ(n) = O(n22nq−n) in Lemma 2.3, which readily implies the result.

4. The lower bound for q > 2 is obtained similarly, but then, there is no need to cut
at level ln and Lemma 3.1 applies right away. This allows to take ζ(n) = O(1), thus
providing the expected lower bound.

Remark 3.5. • The result still holds with q = 2, but it is unnecessary to us and
would make the proof a bit more complicated.

• The bound

|P(En1 ∩ Enl )− P(En1 )P(Enl )| = O(q−nα).

for 1 < q < 2 is essentially optimal, up to a factor q−nεn , where εn → 0, which
does not improve the computations. Hence, this is the best which can be obtained
thanks to Lemma 2.3.
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3.4 Exceptional angles

Recall that our main interest is to consider the “true” set of exceptional angles, i.e.
those angles θ such that |Bn(θ)| is exceptionally large infinitely often. In formulas

D′α = {θ ∈ [0, 1), |Bn(θ)| > φ(n) i.o.}.

We wish to prove (1.1), to wit that dimD′α = (1− α) ∨ 0 a.s.

Proof of (1.1). We proved this equality for the tree-dimension, which is obtained by
sampling our process at specific angles and times. The idea is then to prove than in
between these times and angles, things cannot go too bad, i.e. the process does not
vary much. More specifically, for the lower bound, we only need to control the angular
variations, since we already know that Bn is large i.o. on a large set of rays. For the
upper bound, we need to control both the angular and time variations, to see that if
Bqn(i2

−n) is not too large, then it is also the case for every angle in [i2−n, (i + 1)2−n)

and time qn + 1, . . . , qn+1 − 1 that the tree does not see.
In our notation, we will consider the set

D′(1+η)2α := {θ ∈ [0, 1), |Bqn(in(θ)2−n)| > (1 + η)φ(qn) i.o.}

for η > −1.

1. Let us start with the lower bound. Let us fix η > 0, q ∈ (1, 2), and define

D′η = {θ ∈ [0, 1), sup
x∈An

in(θ)

|Bqn(x)−Bqn(in(θ)2−n)| > ηφ(qn) i.o.}.

The set D′η is precisely the limsup fractal associated to (Zv), if we let Zvni = 1 when

sup
θ∈Ani

|Bqn(θ)−Bqn(i2−n)| > ηφ(qn)

and 0 otherwise. But

P

(
sup
x∈Ani

|Bqn(x)−Bqn(i2−n)| > ηφ(qn)

)

decays faster than any power of qn by Lemma 3.2, so Lemma 2.2 ensures that

dimD′η = 0.

On the other hand
dimD′(1+η)2α ≥ (1− α(1 + η)2) log2 q

by Proposition 3.3. Finally, it is clear that

D′(1+η)2α\D
′
η ⊂ D′α

so
dimD′α ≥ (1− α(1 + η)2) log2 q.

Since this is valid for any η > 0 and q < 2, the result follows.

2. To get the lower bound, fix 0 < η < 1, q = 1 + η2α/(4(1 + α)), and define similarly

D′η = {θ ∈ [0, 1), sup
x∈Anin(θ)

r∈{qn+1,...,qn+1}

|Br(x)−Bqn(in(θ)2−n))| > ηφ(qn) i.o.},
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which is the limsup fractal associated to (Zv), if we let Zvni = 1 when

sup
x∈Anin(θ)

r∈{qn+1,...,qn+1}

|Br(x)−Bqn(in(θ)2−n))| > ηφ(qn).

But we can compute

P

 sup
x∈Ani

r∈{qn+1,...,qn+1}

|Br(x)−Bqn(i2−n)| > ηφ(qn)


≤

qn+1∑
r=qn+1

P

(
sup
x∈Ani

|Br(x)−Bqn(i2−n)| > ηφ(qn)

)

≤
qn+1∑

r=qn+1

(
P

(
sup
x∈Ani

|Br(x)−Br(i2−n)| >
ηφ(qn)

2

)

+ P

(
|Br(i2−n)−Bqn(i2−n)| >

ηφ(qn)

2

))
.

By Lemma 3.2, there exists Kn diverging to +∞ (which we may assume increasing) and
a constant C > 0 such that, whenever qn < r ≤ qn+1,

P

(
sup
x∈Ani

|Br(x)−Br(i2−n)| >
ηφ(qn)

2

)
≤ Cr−Kr ≤ Cq−nKqn .

On the other hand, still for qn < r ≤ qn+1,

Br(i2
−n)−Bqn(i2−n)

(d)
= NC(0, r − qn + 1) =

√
r − qn + 1NC(0, 1),

so

P

(
|Br(i2−n)−Bqn(i2−n)| >

ηφ(qn)

2

)
≤ exp−αη

2qn log(qn)

4(r − qn + 1)

≤ exp−αη
2qn log(qn)

4qn(q − 1)

= q−nαη
2/(4(q−1)) = q−nq−nα

by our very choice of q. Gathering the pieces, we thus obtain that

P

 sup
x∈Ani

r∈{qn+1,...,qn+1}

|Br(x)−Bqn(i2−n)| > ηφ(qn)

 = O
(
q−nα

)
so by Lemma 2.2, this shows that

dimD′η ≤ 1− α.

Moreover, by Proposition 3.3,

dimD′(1−η)2α = 1− α(1− η)2 > 1− α

To conclude, note that
D′α ⊂ D′(1−η)2α ∪ D

′
η
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so that
dimD′α ≤ 1− α(1− η)2.

Since this is valid for any η > 0, the result follows.

4 Random walk with general increments

4.1 Result

Now, as mentioned in the introduction, we are interested in the random walk with
rotationally symmetric increments

Sn(θ) = U1e
iπθ + · · ·+ Une

iπnθ,

where the Ui have an exponential moment. We shall prove Theorem 1.1, the most
general form of (1.1). Recall that we define

Dα = {θ ∈ [0, 1), |Sn(θ)| > σφ(n) i.o.}.

Following the steps of the proof of (1.1), we will prove that, almost surely,

dimDα = (1− α) ∨ 0.

The strategy of proof is the same as for (1.1). The major difference is that computing
moderate deviations is more challenging, the remaining of the proof being essentially
the same.

4.2 Moderate deviations

4.2.1 First-order comparison

Thanks to Lemma 2.1, let us give an estimation of P(|Sn| > φ(n)), and E(g(|Sn|)), where
g is a smooth approximation of the indicator function 1{·>φ(n)}. This provides the main
ideas in a quite easy setting, and we shall give less details in the next part, where we
estimate E(g(|Sn|)g(|Sn(θ)|)).

In the following, fix p a four times continuously differentiable plateau function from
C to R, which is zero on {|z| ≤ 1}, 1 on {|z| ≥ 2}, positive on {1 < |z| < 2} and
nondecreasing in |z|. Consider the rescaling pm,ε(z) = p(1+(z−m)/ε), which is zero on
{|z| ≤ m}, 1 on {|z| ≥ m+ ε}. To simplify notations, we let g = pm,ε for some 0 < m ≤ 1,
ε > 0.

Lemma 4.1. The estimate∣∣∣E(g (|S̃n|))− E(g (|B̃n|))∣∣∣ = 1

nαm2O

(
1

n

)
and

P (|Sn| > σφ(n)) =
1

nα

(
1 +O

(
log n

n1/5

))
hold uniformly in n.

Proof. 1. Let us consider X = σ−1(U1, . . . , Un) and Y = (G1, . . . , Gn), which we may
assume in this proof to be independent. In all the following, C is a constant, which may
change from line to line, but only depends on the distribution of X1. Let

f(z1, . . . , zn) =
1

φ(n)
(z1 + · · ·+ zn).
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Note the rescaling of X so that

E(<(σ−1Uj)2) = E(=(σ−1Uj)2) = E(<(Gj)2) = E(=(Gj)2) = 1.

Clearly, the other first, second and third moments are all zero for both variables, and
we are thus able to use Lemma 2.1.

2. Let us bound Rj , in the notation of Lemma 2.1, since bounding Tj is done in a similar
manner. To simplify notation, define, for z ∈ C,

[X,Y, z]j = X1 + · · ·+Xj−1 + z + Yj+1 + · · ·+ Yn, [X,Y]j = [X,Y, 0]j .

Let H = g ◦ f . Note first that,

sup
z∈C

∣∣∣∣ ∂k+lg∂xk∂yl
(z)

∣∣∣∣ ≤ C

εk+l
1{ 1

φ(n)
|z1+···+zn|>m}

for every k + l ≤ 4, since g is 0 on {|z| ≤ m}. Then, for k + l = 4,

∂4H

∂xkj ∂y
l
j

(z1, . . . , zn) =
1

φ(n)4
∂4g

∂xkj ∂y
l
j

(
1

φ(n)
(z1 + · · ·+ zn)

)
≤ C

(εφ(n))4
1{ 1

φ(n)
|z1+···+zn|>m}.

Then, consider a sequence 1� Kn � φ(n), to be fixed later. We have

sup
z∈[0,Xj ]

∣∣D4
j (g ◦ f)([X,Y, z]j).Xj

∣∣ ≤ C

(εφ(n))4
sup

z∈[0,Xj ]
|Xj |41{|[X,Y,z]j |>mφ(n)}

≤ C

(εφ(n))4
|Xj |4

(
1{|[X,Y]j |>mφ(n)−Kn} + 1{|Xj>Kn|}

)
.

Note that Xj is independent from [X,Y]j , so this and Cauchy-Schwarz inequality finally
give

E(Rj) ≤
C

(εφ(n))4

(
E(X4

j )P(|[X,Y]j | > mφ(n)−Kn) + E(X
8
j )

1/2P(|Xj | > Kn)
1/2
)
.

The second term is easily dealt with thanks to Markov’s inequality, which provides

P(|Xj | > Kn) ≤ Ce−κKn ,

where we recall that κ is some constant such that E(expκ|Xj |) < +∞.

3. To bound the first term, we shall use Bernstein’s inequality. First, note that for z ∈ C,
dn ∈ N,

|z| > 1⇒ ∃k ∈ {1, . . . , 2dn} z · eikπ/dn ≥ cos
π

dn

where · is the scalar product when we see complex numbers as vectors in R2. So now,
if we write

ψ(n) = (mφ(n)−Kn) cos
π

dn
,

then

P(|[X,Y]j | > mφ(n)−Kn) ≤
2dn∑
k=1

P([X,Y]j · eikπ/dn > ψ(n))

= 2dnP(<([X,Y]j) > ψ(n))

= 2dnP(C1 + · · ·+ Cj−1 +Nj+1 + · · ·+Gn > ψ(n)),
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where we used the rotational invariance and wrote Xk = Ck + iC ′k and Gk = Nk + iN ′k.
Now, after truncating the variables at level Kn, we may use Bernstein inequality, to get

P(C1 + · · ·+ Cj−1 +Nj+1 + · · ·+Nn > ψ(n))

≤ P(C11{|C1|<Kn} + · · ·+ Cj−11{|Cj−1|<Kn} + · · ·+Nn1{|Nn|<Kn} > ψ(n))

+ P(∃k ∈ {1, . . . , j − 1} |Ck| > Kn) + P(∃k ∈ {j + 1, . . . , n} |Nk| > Kn)

≤ exp− ψ(n)2/2

n+ ψ(n)Kn/3
+ (j − 1)P(|C1| > Kn) + (n− j)P(|N1| > Kn)

≤ exp− ψ(n)2/2

n+ ψ(n)Kn/3
+ Cne−κKn .

Take now dn = log n and Kn = log2 n. Then ψ(n)2 = 2m2αn log n + O(n3/4), n +

ψ(n)Kn/3 = n(1 +O(n−3/4)), and thus

P(C1 + · · ·+ Cj−1 +Nj+1 + · · ·+Nn > ψ(n))

≤ exp(−αm2 log n+O(n−1/4)) + Cne−κKn

≤ C 1

nαm2 .

Gathering the pieces, we get

E(Rj) ≤
C

(εφ(n))4

(
e−κKn/2 +

1

nαm2

)
and finally, Lemma 2.1 provides

|E(f ◦ g(X))− E(f ◦ g(Y))| ≤ Cn

(εφ(n))4

(
e−κKn/2 +

1

nαm2

)
.

This gives the first part of the result.

4. To get the second part, let us take, in the same notation, m = 1, consider ε := εn
has a function of n, and assume that εn log n → 0. Then, using this last equation and
remembering that C does not depend on n or ε,

P(|σ(U1 + · · ·+ Un)| > φ(n))

≥ E(f ◦ g(X))

≥ E(f ◦ g(Y))− |E(f ◦ g(X))− E(f ◦ g(Y))|
≥ P(|G1 + · · ·+Gn| > (1 + εn)φ(n))− |E(f ◦ g(X))− E(f ◦ g(Y))|

≥ P(|G1 + · · ·+Gn| > (1 + εn)φ(n))−
C

nε4n

(
1

nα
+ e−κKn/2

)
=

1

nα(1+εn)2
− C

nε4n

(
1

nα
+ e−κKn/2

)
=

1

nα

(
1 + εnO(log n)− C

nε4n

(
1 + nαe−κKn/2

))
.

This can be roughly optimized by taking εn = n−1/5, and the first inequality of the result
follows. The upper bound is obtained in the same way by letting m = 1− ε.
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4.2.2 Second-order comparison

Let us now provide second-moment estimates for the random walk (Sn). This relies on
similar but slightly more tedious computations as before, and we shall thus not provide
all the details.

Lemma 4.2. As n→ +∞,

∣∣∣E(g (|S̃n|) g (|S̃n(θ)|))− E(g (|B̃n|) g (|B̃n|))∣∣∣ = 1

n2α
O

(
1

n

)
.

In particular, for a fixed εn such that log n/n� εn � 1,

∣∣∣E(g (|S̃n|) g (|S̃n(θ)|)) −E(g (|S̃n(θ)|))E(g (|S̃n(θ)|))∣∣∣
=

1

n2α

(
O

(
1

n

)
+O

(
log n

nθ

))

uniformly for θ ∈ [εn, 1).

Proof. Let us consider, for θ ∈ [0, 1),

f(z1, . . . , zn) =
1

φ(n)
(z1 + · · ·+ zn, z1e

iπθ + · · ·+ zne
iπnθ), g(z, z′) = p1,2(z)p1,2(z

′).

We write for z ∈ C, θ ∈ [0, 1),

[X,Y](θ)j = X1e
iπθ + · · ·+Xj−1e

iπ(j−1)θ + Yj+1e
iπ(j+1)θ + · · ·+ Yne

iπnθ.

It is easy to check that for some universal constant C, in the notation of Lemma 2.1 and
the previous section,

E(Rj) ≤
C

(εφ(n))4
(P(|[X,Y]j | > φ(n)−Kn, |[X,Y](θ)j | > φ(n)−Kn)

+P(|Xj | > Kn) + P(|Yj | > Kn))

and once again, we shall bound the first probability with Bernstein’s inequality. First,
using the same trick as above, write

P(|[X,Y]j | >φ(n)−Kn, |[X,Y](θ)j | > φ(n)−Kn)

≤
2dn∑
k,l=1

P([X,Y]j · eikπ/dn > ψ(n), [X,Y](θ)j · eilπ/dn > ψ(n))

= 2dn

2dn∑
k=1

P([X,Y]j · 1 > ψ(n), [X,Y](θ)j · eikπ/dn > ψ(n))

≤ 2dn

2dn∑
k=1

P

(
1

2
([X,Y]j · 1 + [X,Y](θ)j · eikπ/dn) > ψ(n)

)

EJP 18 (2013), paper 89.
Page 19/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2523
http://ejp.ejpecp.org/


Random walks veering left

where the penultimate step stems from the rotational invariance. We may then rewrite

1

2

(
|[X,Y]j | · 1 + |[X,Y](θ)j | · eikπ/dn

)
=

1

2

j−1∑
r=1

(Cr(1 + cos(π(rθ + k/dn)))

+ C ′r sin(π(rθ + k/dn)))

+
1

2

j−1∑
r=1

(Nr(1 + cos(π(rθ + k/dn)))

+N ′r sin(π(rθ + k/dn)))

:=

j−1∑
r=1

Ar +

n∑
r=j+1

Ar,

where the variables Ar are independent. One readily checks that

E(Ar) = 0, E(A2
r) =

1

2
(1 + cos(π(rθ + k/dn))) ,

and
n∑
r=1

cos(π(rθ + k/dn)) =
sinnπθ/2

sinπθ/2
cos(π(k/dn + (n− 1)θ/2))

so that, uniformly for θ ∈ [εn, π],

j−1∑
r=1

E(A2
r) +

n∑
r=j+1

E(A2
j ) ≤

n

2

(
1 +O

(
1

nθ

))
=
n

2

(
1 +O

(
1

nεn

))
.

Then, as before, Bernstein’s inequality and truncation imply that

P

(
1

2
(|[X,Y]j | · 1 + |[X,Y](ω)j | · e2ikπ/dn) > ψ(n)

)
≤ exp− ψ(n)2/2

n
2

(
1 +O

(
1
nεn

))
+ ψ(n)Kn/3

+ Cne−κKn

≤ C 1

n2α
.

Gathering the pieces, we get

|E(f ◦ g(X))− E(f ◦ g(Y))| ≤ 1

n2α
O

(
1

n

)
.

The second part of the result is just given by using additionally Lemma 3.1 and 4.1.

4.3 Angular deviations

In pretty much the same fashion as Lemma 3.2, we may prove the following.

Lemma 4.3. Fix β > 0, a sequence εn � n−(1+β) and η > 0. Then there exists a
sequence Kn, diverging to +∞, depending only on εn and η, such that

P

(
sup

|θ−θ′|<εn
|Sn(θ)− Sn(θ′)| > ηφ(n)

)
= O

(
n−Kn

)
.
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Proof. Just as in the proof of Lemma 3.2, and with the same notation, we may take
θ′ = 0 and write

P

(
sup

θ∈[0,εn]
|Sn(θ)− Sn| > ηφ(n)

)

≤
k−1∑
j=1

P

(
C

∣∣∣∣∣
n∑
r=1

rjUj

∣∣∣∣∣ ≥ 1

k
ηφ(n)

)
+

n∑
r=1

P

(
Cnkεkn|Ur| ≥

1

kn
ηφ(n)

)
.

The first term can be dealt with by writing

P

(
C

∣∣∣∣∣
n∑
r=1

rjUj

∣∣∣∣∣ ≥ ηφ(n)

k

)

≤ P

(
C

∣∣∣∣∣
n∑
r=1

rj<(Uj)

∣∣∣∣∣ ≥ ηφ(n)

2k

)
+ P

(
C

∣∣∣∣∣
n∑
r=1

rj=(Uj)

∣∣∣∣∣ ≥ ηφ(n)

2k

)

= 4P

(
C

n∑
r=1

rj<(Uj) ≥
ηφ(n)

2k

)
,

where we use the rotational invariance, and then using Bernstein’s inequality, which
shows that it tends to 0 faster than any power of n; one may also use the same trick
as in Section 4.2.1. The second term is easy to bound using the fact that |Ur| has an
exponential moment, and the result follows immediately.

4.4 End of the proof

We shall now construct a tree as in Section 2.3. Fix q > 1, and for v = vni ∈ T , define

Zv = p1,2

(
|S̃qn(i2−n)|

)
.

Let also

Dα = {θ ∈ [0, 1),#{v ∈ R(θ), Zv > 0} = +∞}

the limsup fractal associated to (Zv). We shall prove the equivalent of Proposition 3.3,
namely the following result.

Proposition 4.4. Almost surely

(1− α) log2 q ≤ dimDα ≤ (1− α) ∨ 0

for q ∈ (1, 2), and

dimDα = (1− α log2 q) ∨ 0

for q > 2.

Proof. 1. The upper bounds are obtained as for Proposition 3.3. Note indeed that, for
|v| = n,

P(Zv > 0) ≤ P (|Sn| > σφ(n)) = O(q−nα)

according to Lemma 4.1. The remaining of the proof is similar as for Proposition 3.3,
using Lemmas 2.2 and 4.3.

2. To get the lower bound for q > 2, let

mn = E(Zv), |v| = n.
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Then Lemmas 4.1 and 4.2 provide

mn =
1

qαn
(
1 +O

(
q−n

))
and

|E(ZvZu)− E(Zv)E(Zu)| =
1

q2αn

(
O
(
q−n

)
+O

(
n

qn|v − u|

))
for v 6= u. We are thus able to do the same computations as in the proof of Proposition
3.3, so as to apply Lemma 2.2 and pick ζ(n) = O(1), which provides

dimDα ≥ 1− α log2 q.

The proof for q ∈ (1, 2) is similar, along with the few difficulties detailed in Point 3 of
the proof of Proposition 3.3.

The remaining of the proof of Theorem 1.1, as one would expect, is just copy-pasting
the end of the proof of (1.1), using the result just proven and Lemma 4.3. The only
difference is that one needs to bound, for 1 < q < 2, r ∈ {qn + 1, . . . , qn+1},

P (|Sr(i2−n)− Sqn(i2−n)| > ηφ(qn)

which is readily done as in the proof of Lemma 4.1, by truncating at level log2 n and
using Bernstein’s inequality.

5 Boundary behavior of the GAF

Let us end this article by saying a word on the proof of Theorem 1.2. Recall that we
define

F (z) =
∑
k≥1

Gkz
k,

and let Fr(θ) = F (reiπθ),

F̃r(θ) =

√
1− r2
r2

Fr(θ),

and

φ(r) =
√
−2α log(1− r)/(1− r), ψ(r) =

√
−2α log(1− r).

This rescaling of F̃r is chosen precisely such that, for r < 1, F̃r(θ) has distribution
NC(0, 1), and thus

P
(
|F̃r(θ)| > ψ(r)

)
= (1− r)α.

As mentioned in the introduction, this is the right rescaling to obtain non trivial Haus-
dorff dimensions. It is then natural to try and adapt the proof of Formula (1.1) to this
case. The latter relies on several points.

(i) The first and second moment estimates of Lemma 3.1.

(ii) The fact that the process at time n is almost constant on angle-intervals of length
εn � n−(1+β): this is Lemma 3.2.

(iii) The fact that the process has little chance of varying too much on a time interval
(qn, qn+1), when q is close to 1, as appears in Point 2 of Section 3.4.
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The remaining of the proof does not use the structure of the process whatsoever and
it is thus enough to check these three points. This is done essentially as in Section 3,
except for some added tediousness in the computations. We shall summarize the results
in the following lemmas.

Lemma 5.1. The following estimates hold.

1. For every θ ∈ [0, 1),

P
(
|F̃r(θ)| > ψ(r)

)
= (1− r)α.

2. Fix a function −(1− r) log(1− r)� εr � 1. Then,

P
(
|F̃r(0)| > ψ(r), |F̃r(θ)| > ψ(r)

)
= (1− r)2α

(
1 +O

(
−(1− r) log(1− r)

θ

))
uniformly for θ ∈ [εr, 1).

Proof. The proof of this result is similar to that of Lemma 3.1. We shall assume, here
and always, that r is bounded away from 0, e.g. r > 1/2. Now, it suffices to show
that, essentially, (F̃r(θ)) has the same covariance structure as B̃r(θ). But, as we already
mentioned, the rescaling of F̃r is chosen precisely such that, for r < 1, F̃r(θ) has dis-
tribution NC(0, 1). Moreover, (F̃r(0), F̃r(θ)) is complex Gaussian with mean (0,0), zero
relation matrix, and covariance matrix(

1 Cr(θ)

Cr(θ) 1

)
where

Cr(θ) =
1

r2
1− r2

1− r2eiπθ
.

Now,

|Cr(θ)|2 =
1

r4
1

1 + 4 r2

(1−r2)2 sin
2(πθ/2)

,

from which it is easy to check that

|Cr(θ)| = O

(
1− r
θ

)
uniformly in θ and r > 1/2. The remaining of the proof is then exactly similar.

Lemma 5.2. Fix β > 0, a function εr � (1 − r)1+β and η > 0. Then there exists a
function Kr diverging to +∞ such that

P

(
sup

|θ−θ′|<εr
|Fr(θ)− Fr(θ′)| > ηφ(r)

)
= O

(
(1− r)Kr

)
.

Proof. This again follows the same pattern as the proof of Lemma 3.2, but several points
need to be modified. Once again, assume θ′ = 0 and fix k ∈ N such that βk ≥ 1/2. On
a side note, this is slightly less restrictive than for the proof of Lemma 3.2 since using
Bernstein’s inequality, as is done below, is more powerful than the technique employed
there. In the following, C shall be a constant depending only on k and which may
change from line to line. Taylor’s formula ensures that, for θ ∈ [0, εr],

Fr(θ)− Fr(0) =
k−1∑
j=1

F
(j)
r (0)

j!
θj +Rk(θ),
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where

|Rk(θ)| ≤ θk
1

k!
sup

θ∈[0,εr]
|F (k)
r (θ)|.

Now,
F (j)
r (θ) =

∑
n≥1

Gnr
n(iπn)jeiπnθ

so

F (j)
r (0)

(d)
= πjNC

0,
∑
n≥1

r2nn2j

 .

It is easy to convince oneself that this variance behaves like the 2j-th derivative of
1/(1− r). More precisely,∑

n≥1

r2nn2j ≤ C 1

(1− r)2j+1
, r ∈ [0, 1). (5.1)

A rigorous proof can for instance be derived using an Abelian theorem, as can be found
in [13]. On the other hand, we also write

|Rk(θ)| ≤ Cθk
∑
n≥1

|Gn|rnnk

to obtain

P

(
sup

θ∈[0,εn]
|Fr(θ)− Fr(0)| > ηφ(r)

)

≤
k−1∑
j=1

P

∣∣∣∣∣∣NC
0,

∑
n≥1

r2nn2j

∣∣∣∣∣∣ > Cφ(r)/εjr

+ P

∑
n≥1

|Gn|rnnk > φ(r)/εkr


Using (5.1), it is easy to check that

P

∣∣∣∣∣∣NC
0,

∑
n≥1

r2nn2j

∣∣∣∣∣∣ > Cφ(r)/εjr

 ≤ exp−C
(
1− r
εr

)2j

log
1

1− r
.

For the second term, one can use Bernstein’s inequality, after centering the variables,
and truncating at level log(1− r). Essentially, both these operations do not matter, and
it is then a somewhat tedious job to check that

P

∑
n≥1

|Gn|rnnk > φ(r)/εkr

 ≤ C ′ exp−C (1− r)2k

ε2kr
log

1

1− r
,

what tends to 0 faster than any power of (1− r).

Lemma 5.3. Let q ∈ (1, 2) and η > 0. Then there exists constants c and C, which do not
depend on q, such that

P

 sup
θ∈[0,2−n]

r∈[1−q−n,1−q−n−1]

|Fr(θ)| > ηφ(1− q−n)

 ≤ Cq−cn/(1−q),
for all n ∈ N.
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Proof. Since in this case, time is continuous, the technique of Section 3.4 cannot be
applied. Nonetheless, one can use the two-dimensional Taylor formula for Fr(θ) to
obtain the result. The computations are essentially the same as above, using Bernstein’s
inequality to bound the last term of the Taylor expansion. This last term turns out to
be the only one that decreases as a power of q−n, and provides this upper bound. The
tedious computations are left to the motivated reader.

As for the end of the proof of (1.1), the power in this upper bound can be made
arbitrarily small by taking q close enough to 1. Mimicking the remaining of the proof
shows that

dim

{
θ ∈ [0, 1), lim sup

r→1−

1

ψ(r)

∣∣∣F̃r(θ)∣∣∣ ≥ 1

}
= 1− α.

It is then a straightforward computation to check that this set is DGAF√
α

, thus completing
the proof of Theorem 1.2.
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