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Abstract

We are interested in phase transitions in certain percolation models on point pro-
cesses and their dependence on clustering properties of the point processes. We
show that point processes with smaller void probabilities and factorial moment mea-
sures than the stationary Poisson point process exhibit non-trivial phase transition
in the percolation of some coverage models based on level-sets of additive func-
tionals of the point process. Examples of such point processes are determinantal
point processes, some perturbed lattices, and more generally, negatively associated
point processes. Examples of such coverage models are k-coverage in the Boolean
model (coverage by at least k grains) and SINR-coverage (coverage if the signal-to-
interference-and-noise ratio is large). In particular, we prove the existence of the
phase transition in the percolation of a spherical Boolean model depending on the
grain radius (and, more generally, k-faces in the C̆ech simplicial complex, also called
clique percolation) on point processes which cluster less than the Poisson process,
including determinantal point processes.

We also construct a Cox point process, which is “more clustered” than the Poisson
point process and whose Boolean model percolates for arbitrarily small radius. This
shows that clustering (at least, as detected by our specific tools) does not always
“worsen” percolation.
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1 Introduction

Starting with the work of [19], percolation problems on geometric models defined
over the Poisson point process have garnered interest among both stochastic geometers
and network theorists. Relying and building upon the (on-going) successful study of
its discrete counterpart ([20]), continuum percolation has also received considerable
attention as evinced in the monographs [27] and [29]. Our work shall deviate from the
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Clustering and percolation of point processes

standard approach of studying geometric models based on the Poisson point process,
by focusing on percolation models defined over general stationary point processes. In
particular, we shall try to formalize the comparison of “clustering” phenomena in point
processes and investigate its impact on percolation models.

Specifically, we relate percolation properites of Boolean models and, more generally,
level-sets of additive functionals of point processes, to the more intrinsic properties of
the underlying point processes, such as moment measures and void probabilities. It has
already been observed in [8] that smaller values of these characteristics indicate less
clustering. In this paper we show that point processes having voids probabilities and
moment measures smaller than a (homogeneous) Poisson point process (we call them
weakly sub-Poisson), exhibit a non-trivial phase transition in the percolation of their
level-set coverage models.

Perhaps a most interesting class of point processes which is amenable to our analysis
are determinantal point processes. Indeed, using the representation of the number of
points of a determinantal process as the sum of independent Bernoulli variables and
using the Hadamard’s theorem on determinants it can be checked that they are weakly
sub-Poisson, cf [8]. Hence, in particular, the general results presented in the present
paper lead to a proof of the non-triviality of the critical radius for the percolation of the
spherical Boolean model on determinantal processes. Moreover, the obtained upper
and lower bounds on the critical radius are the same for all determinantal (and all
weakly sub-Poisson) processes of a given intensity.

The new approach contributes to both theory and applications. Results regarding
percolation on “clustered” or “repulsive” point processes are scarce (we shall say more
in Section 1.5). Our methods help in a more systematic study of models over gen-
eral stationary point processes apart from the ubiquitous Poisson point process. As
regards applications, we observe that the Poisson assumption on point processes is not
always preferable in many models of spatial networks. In such scenarios, the question
of whether clustering or repulsion increases various performance measures (related to
some property of the underlying geometric graph) or not arises naturally.

Percolation is one such performance measure naturally related to network connec-
tivity. In this paper we will study also percolation of a more specific coverage model,
which arose in the context of wireless communication networks.

We refer the reader to the upcoming survey [6, Section 4] for a more comprehensive
overview of applications of our methods for comparison of various other properties of
geometric graphs.

With this succinct introduction, we shall now get into our key percolation model. As
a sample of our results, we will present here in detail the particular case of k-percolation
alone with a brief discussion of other results. The point process notions used in the rest
of the section and the paper are described formally in Section 2.1.

1.1 k-percolation

By percolation of a set (in the Euclidean space usually), we mean that the set con-
tains an unbounded connected subset. We shall also use percolation of a graph, where
it means existence of an infinite connected subgraph. By k-percolation in a Boolean
model, we understand percolation of the subset of the space covered by at least k
grains of the Boolean model and more rigorously, we define as follows.

Definition 1.1 (k-percolation). Let Φ be a point process in Rd, the d-dimensional Eu-
clidean space. For r ≥ 0 and k ≥ 1, we define the coverage number field VΦ,r(y) :=∑
Xi∈Φ 1[ y ∈ Br(Xi) ], where Br(x) denotes the Euclidean ball of radius r centred at x.
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Clustering and percolation of point processes

The k-covered set is defined as

Ck(Φ, r) := {y : VΦ,r(y) ≥ k}.

Define the critical radius for k-percolation as

rkc (Φ) := inf{r : P (Ck(Φ, r) percolates) > 0} ,

where, as before, percolation means existence of an unbounded connected subset.

Note that C(Φ, r) := C1(Φ, r) is the standard Boolean model or continuum percola-
tion model mentioned in the first paragraph. It can also be viewed as a graph by taking
Φ as the vertex set and the edge-set being E(Φ, r) := {(X,Y ) ∈ Φ2 : 0 < |X − Y | ≤ 2r}.
This is the usual random geometric graph, called also the Gilbert’s disk graph. The two
notions of percolation (graph-theoretical and topological) are the same in this case. The
more general set Ck(Φ, r) can also be viewed as a graph on k-faces of the Čech complex
on Φ and this shall be explained later in Remark 3.8. Clearly, rc(Φ) := r1

c (Φ) is the criti-
cal radius of the “usual” continuum percolation model on Φ, and we have rc(Φ) ≤ rkc (Φ).
We shall use clustering properties of Φ to get bounds on rkc (Φ).

1.2 Clustering and percolation — heuristics

Before stating our percolation result, let us discuss more about clustering and per-
colation heuristics. Clustering of Φ roughly means that the points of Φ lie in clusters
(groups) with the clusters being well spaced out. When trying to find the minimal r
for which the continuum percolation model C(Φ, r) percolates, we observe that points
lying in the same cluster of Φ will be connected by edges for some smaller r but points
in different clusters need a relatively higher r for having edges between them. More-
over, percolation cannot be achieved without edges between some points of different
clusters. It seems to be evident that spreading points from clusters of Φ “more homoge-
neously” in the space would result in a decrease of the radius r for which the percolation
takes place. This is a heuristic explanation why clustering in a point process Φ should
increase the critical radius rc(Φ) and a similar reasoning can also be given for rkc (Φ).
Our study was motivated by this heuristic.

To make a formal statement of the above heuristic, one needs to adopt a tool to
compare clustering properties of point processes1. In this regard, our initial choice
was directionally convex (dcx) order 2 (to be formally defined later). It has its roots in
[5], where one shows various results as well as examples indicating that the dcx order
on point processes implies ordering of several well-known clustering characteristics in
spatial statistics such as Ripley’s K-function and second moment densities. Namely, a
point process that is larger in the dcx order exhibits more clustering, while having equal
mean number of points in any given set.

In view of what has been said above, a possible formalization of the heuristic de-
veloped above, that clustering “worsens” percolation, would be Φ1 ≤dcx Φ2 implies
rc(Φ1) ≤ rc(Φ2). The numerical evidences gathered for a certain class of point pro-
cesses, called perturbed lattice point processes, were supportive of this conjecture
(cf [8]). However, such a statement is not true in full generality and we shall provide a
counterexample in Section 4.

1The reader should also keep in mind that we are interested in looking at point processes of same intensities
and hence the usual strong order (possibility of coupling as a subset) is not a suitable comparison.

2The dcx order of random vectors is an integral order generated by twice differentiable functions with
all their second order partial derivatives being non-negative. Its extension to point processes consists in
comparison of vectors of number of points in every possible finite collection of bounded Borel subsets of the
space.
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Trying to make the whole approach more general, one considers some weaker no-
tions of clustering, for which only moment measures or void probabilities need to be
compared. Again, smaller values of these characteristics suggest less clustering. When
comparing to Poisson point process, this approach lead in [8] to the following definition.

Definition 1.2. A point process Φ is said to be weakly sub-Poisson if the following two
conditions are satisfied:

P (Φ(B) = 0) ≤ e−E(Φ(B)) (ν-weakly sub-Poisson) (1.1)

E

(
k∏
i=1

Φ(Bi)

)
≤

k∏
i=1

E(Φ(Bi)) (α-weakly sub-Poisson) (1.2)

where Bi ⊂ Rd are pairwise disjoint bBs (bounded Borel subsets) and B is any bBs.
If only either of the conditions is satisfied, accordingly we call the point process to
be ν-weakly sub-Poisson (ν stands for void probabilities) or α-weakly sub-Poisson (α
stands for moment measures). Similar notions of super-Poissonianity can be defined by
reversing the inequalities.

As already mentioned in the Introduction, determinantal point processes are weakly
sub-Poisson. Similarly, permanental processes are weakly super-Poisson. More details
on these notions are provided in Section 2 and examples are given in Section 2.4. Let
us mention here only that this comparison is weaker than dcx ordering with respect to
Poisson process and association as well.

It is explained in [8], that weak sub-Poissonianity allows for a slightly different con-
clusion than the heuristic described before the definition. Suppose that Φ2 is a sta-
tionary Poisson point process and Φ1 is a stationary weakly sub-Poisson point process
on d-dimensional Euclidean space Rd, with d ≥ 2. Then, Φ1 exhibits the usual phase
transition 0 < rc(Φ1) < ∞, provided Φ2 exhibits a (potentially) stronger, “double phase
transition”: 0 < rc(Φ2) and rc(Φ2) < ∞, where rc(Φ2) and rc(Φ2) are some “nonstan-
dard” critical radii 3 sandwiching rc(Φ2), and exhibiting opposite monotonicity with
respect to clustering:

rc(Φ2) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ2) .

Conjecturing that the above “double phase transition” holds for the Poisson point pro-
cess Φ2, one obtains the result on the “usual” phase transition for r(Φ1) for all weakly
sub-Poisson point processes Φ1. From [8, Proposition 6.1], we know that rc(Φ2) ≥
(λθd)

− 1
d , where λ is the intensity of the point process and θd is the volume of the unit

ball in Rd. However, finiteness of rc(Φ2) is not clear and hence, in this paper we will
prove the results in a slightly different way. The generality of this method shall be
explained below and will be obvious from the results in Section 3.

1.3 Results

We can finally state now one of the main results on phase transition in k-percolation
which follows as a corollary from Theorem 3.7 (to be stated later). Recall the definition
of weak sub-Poissonianity from Definition 1.2.

Corollary 1.3. Let Φ be a simple, stationary, weakly sub-Poisson point process of in-
tensity λ on Rd, with d ≥ 2. For k ≥ 1, λ > 0, there exist constants c(λ) and c(λ, k) (not
depending on the distribution of Φ) such that

0 < c(λ) ≤ r1
c (Φ) ≤ rkc (Φ) ≤ c(λ, k) <∞.

3rc(Φ2) and rc(Φ2) are critical radii related, respectively, to the finiteness of asymptotic of the expected
number of long occupied paths from the origin and the expected number of void circuits around the origin in
suitable discrete approximations of the continuum model.
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Remark 1.4. The above result not only shows non-triviality of critical radius for sta-
tionary weakly sub-Poisson processes but also provides uniform bounds. Examples of
particular point processes for which this non-triviality result holds are determinantal
point processes with trace-class integral kernels and perturbed latices with convexly
sub-Poisson replication kernels (see Section 2.4 and [8]).

Random field VΦ,r(·) introduced in Definition 1.1 is but one example of an additive
shot-noise field (to be defined in Section 3.1). Replacing the indicator function in the
definition of VΦ,r(·) by more general functions of Xi, one can get more general additive
shot-noise fields. Ck(Φ, r) is an example of an excursion set or a level-set (i.e, sets of the
form {VΦ,r(·) ≥ h} or its complement for some h ∈ R) that can be associated with the
random field VΦ,r(·). In this paper we shall develop more general methods suitable for
the study of percolation of level sets of additive shot-noise fields. Besides Ck(Φ, r), we
shall apply these methods to study percolation of SINR coverage model (coverage by a
signal-to-interference-and-noise ratio; [1, 13, 14]) in non-Poisson setting. Though, we
do not discuss it here, our methods can also be used to show non-trivial phase transition
in the continuum analogue of word percolation (cf.[24]). The details can be found in [31,
Section 6.3.3].

1.4 Paper organization

The necessary notions, notations as well as some preliminary results are introduced
and recalled in Section 2. In Section 3 we state and prove our main results regarding
the existence of the phase transition for percolation models driven by sub-Poisson point
processes. A Cox point process, which is dcx larger than the Poisson point process
(clusters more) and whose Boolean model percolates for arbitrarily small radius (rc = 0)
is provided in the Section 4.

1.5 Related work

Let us first remark on studies in continuum percolation which are comparisons of
different models driven by the same (usually Poisson) point process. In [21], it was
shown that the critical intensity for percolation of the Poisson Boolean model on the
plane is minimized when the shape of the typical grain is a triangle and maximized when
it is a centrally symmetric set. Similar result was proved in [30] using more probabilistic
arguments for the case when the shapes are taken over the set of all polygons and the
idea was also used for three dimensionial Poisson Boolean models. It is known for many
discrete graphs that bond percolation is strictly easier than site percolation. A similar
result as well as strict inequalities for spread-out connections in the Poisson random
connection model has been proved in [15, 16].

For determinantal point processes, [17, Cor. 3.5] shows non-existence of percolation
for small enough integral kernels (or equivalently for small enough radii) via coupling
with a Poisson point process. This shows non-zero critical radius (rc > 0) for percolation
of determinantal point processes. Our result (Corollary 1.3) goes beyond this result
and proves non-degeneracy (non-zero and finite) of critical radius for k-percolation in
determinantal point processes.

Non-trivial critical radius for continuum percolation on point processes representing
zeros of Gaussian analytic functions, is shown in [18]. These processes are reputed to
cluster less than Poisson processes, however currently we are not able to make this
comparison formal using our tools. Also, [18] shows uniqueness of infinite clusters for
both zeros of Gaussian analytic functions and the Ginibre point process (a special case
of determinantal process).

Critical radius of the continuum percolation model on the hexagonal lattice per-
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turbed by the Brownian motion is studied in a recent pre-print [4].This is an example of
our perturbed lattice and as such it is a dcx sub-Poisson point process.4 It is shown that
for a short enough time of the evolution of the Brownian motion the critical radius is
not larger than that of the non-perturbed lattice. This result is shown by some coupling
in the sense of set inclusion of point processes.

Many other inequalities in percolation theory depend on such coupling arguments
(cf. e.g. [26]), which for obvious reasons are not suited to comparison of point processes
with the same mean measures.

2 Notions, notation and basic observations

2.1 Point processes

Let Bd be the Borel σ-algebra and Bdb be the σ-ring of bounded (i.e., of compact
closure) Borel subsets (bBs) in the d-dimensional Euclidean space Rd. Let Nd = N(Rd)
be the space of non-negative Radon (i.e., finite on bounded sets) counting measures on
Rd. The Borel σ-algebra N d is generated by the mappings µ 7→ µ(B) for all B bBs. A
point process Φ on Rd is a random element in (Nd,N d) i.e, a measurable map from a
probability space (Ω,F ,P) to (Nd,N d). Further, we shall say that a point process Φ is
simple if a.s. Φ({x}) ≤ 1 for all x ∈ Rd. As always, a point process on Rd is said to be
stationary if its distribution is invariant with respect to translation by vectors in Rd.

Donote by ν(·) the void probabilities of Φ; ν(B) = P (Φ(B) = 0) for bBs B. The

measure αk(·) defined by αk(B1 × . . . × Bk) = E
(∏k

i=1 Φ(Bi)
)

for all (not necessarily

disjoint) bBs Bi (i = 1, . . . , k) is called k th order moment measure of Φ. For simple
point processes, the truncation of the measure αk(·) to the subset {(x1, . . . , xk) ∈ (Rd)k :

xi 6= xj , for i 6= j} is equal to the k th order factorial moment measure α(k)(·). To
explicitly denote the dependence on Φ, we shall sometimes write as αkΦ for the moment
measures and similarly for factorial moment measures. This is the standard framework
for point processes and more generally, random measures (see [23]).

We shall be very brief in our introduction to stochastic ordering of point processes
necessary for our purposes. We shall start with a discussion on weakly sub-Poisson
point processes defined in Definition 1.2.

2.2 Weak sub- and super-Poisson point processes

Note that, α-weakly sub-Poisson (super-Poisson) point process have factorial mo-
ment measures α(k)(·) smaller (respectively larger) than those of the Poisson point
process of the same mean measure; inequalities hold everywhere provided the point
processes is simple and “off the diagonals” otherwise. Recall also that moment mea-
sures αk(·) of a general point process can be expressed as non-negative combinations
of products of its (lower-dimensional) factorial moment measures (cf [11, Ex. 5.4.5,
p. 143]) i.e.,

αk(dx1 × . . .× dxk) =

k∑
j=1

∑
V
α(j)(dy1(V)× . . .× dyj(V))δ(V), (2.1)

where the inner sum is taken over all partitions of k coordinates into j non-empty sub-
sets, the yi(V) constitute one coordinate chosen arbitrarily among the coordinates in
each of the j non-empty subsets and δ(V) is a δ-function that equals zero unless there
is equality among all the coordinatees in the each of the j non-empty subsets of the V.

4More precisely, at any time t of the evolution of the Brownian motion, it is dcx smaller than a non-
homogeneous Poisson point process of some intensity which depends on t, and converges to the homogeneous
one for t→∞.
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Consequently, simple, α-weakly sub- (super-)Poisson point processes have also moment
measures αk(·) smaller (larger) than those of Poisson point process.

The reason for using the adjective “weak” will be clear once we introduce the
stronger notion of directionally convex ordering. This will be very much needed for
the example presented in Section 4 but not for the results of Section 3. So, the reader
may skip the following subsection now and return back to it later when needed.

2.3 Directionally convex ordering

Let us quickly introduce the theory of directionally convex ordering. We refer the
reader to [28, Section 3.12] for a more detailed introduction.

For a function f : Rk → R, define the discrete differential operators as ∆i
εf(x) :=

f(x + εei) − f(x), 1 ≤ i ≤ k where ε > 0 and {ei}1≤i≤k are the canonical basis vectors
for Rk. Now, one introduces the following families of Lebesgue-measurable functions
on Rk: A function f : Rk → R is said to be directionally convex (dcx) if for every x ∈
Rk, ε, δ > 0, i, j ∈ {1, . . . , k}, we have that ∆i

ε∆
j
δf(x) ≥ 0. We abbreviate increasing (i.e.

increasing in each co-ordinate) and dcx by idcx and decreasing and dcx by ddcx. There
are various equivalent definitions of these and other multivariate functions suitable for
dependence ordering (see [28, Chapter 3]).

Unless mentioned, when we state E(f(X)) for a function f and a random vector X,
we assume that the expectation exists. Assume that X and Y are real-valued random
vectors of the same dimension. ThenX is said to be less than Y in dcx order if E(f(X)) ≤
E(f(Y )) for all f dcx such that both the expectations are finite. We shall denote it as
X ≤dcx Y . This property clearly regards only the distributions of X and Y , and hence
sometimes we will say that the law of X is less in dcx order than that of Y .

A point process Φ on Rd can be viewed as the random field {Φ(B)}B∈Bdb . As the
dcx ordering for random fields is defined via comparison of their finite dimensional
marginals, for two point processes on Rd, one says that Φ1(·) ≤dcx Φ2(·), if for any
B1, . . . , Bk bBs in Rd,

(Φ1(B1), . . . ,Φ1(Bk)) ≤dcx (Φ2(B1), . . . ,Φ2(Bk)). (2.2)

The definition is similar for other orders, i.e., those defined by idcx, ddcx functions. It
was shown in [5] that it is enough to verify the above condition for Bi pairwise disjoint.

In order to avoid technical difficulties, we will consider here only point processes
whose mean measures E(Φ(·)) are Radon (finite on bounded sets). For such point pro-
cesses, dcx order is a transitive order. Note also that Φ1(·) ≤dcx Φ2(·) implies the equal-
ity of their mean measures: E(Φ1(·)) = E(Φ2(·)) as both x and −x are dcx functions on
R. For more details on dcx ordering of point processes and random measures, see [5].

2.4 Relations and examples

We now concentrate on comparison of point processes to the Poisson point process
of same mean measure. Following [8] we will call a point process dcx sub-Poisson
(respectively dcx super-Poisson) if it is smaller (larger) in dcx order than the Poisson
point process (necessarily of the same mean measure). For simplicity, we will just refer
to them as sub-Poisson or super-Poisson point process omitting the word dcx.

From [8, Proposition 3.1 and Fact 3.2], we can see that weak sub- and super-
Poissonianity are actually weaker than that of dcx sub- and super-Poissonianity respec-
tively. Interestingly, they are also weaker than the notion of association (see [8, Section
2]). More precisely, it is shown in [8, Cor. 3.1] that under very mild regularity condi-
tions, positively associated point processes are weakly super-Poisson, while negatively
associated point processes are weakly sub-Poisson.

EJP 18 (2013), paper 72.
Page 7/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2468
http://ejp.ejpecp.org/


Clustering and percolation of point processes

We list here briefly some examples of dcx and weak sub-Poisson and super-Poisson
point processes. It was observed in [5] that some doubly-stochastic Poisson (Cox) point
processes, such as Poisson-Poisson cluster point processes and, more generally, Lévy
based Cox point processes are super-Poisson. Examples of positively associated Cox
point processes, namely those driven by a positively associated random measure, are
provided in [10].

A rich class of point processes called the perturbed lattices, including both sub- and
super-Poisson point processes, is provided in [8] (see Section 4 for one of the simpler
perturbed lattices). These point processes can be seen as toy models for determinantal
and permanental point processes; cf. [3]. Regarding these latter point processes, it
is shown in [8] that determinantal and permanental point processes are weakly sub-
Poisson and weakly super-Poisson respectively.

3 Non-trivial phase transition for percolation models on sub-Poisson
point processes

We will be particularly interested in percolation models on level-sets of additive
shot-noise fields. The rough idea is as follows: level-crossing probabilities for these
models can be bounded using Laplace transform of the underlying point process. For
weakly sub-Poisson point process, this can further be bounded by the Laplace transform
of the corresponding Poisson point process, which has a closed-form expression. For
“nice” response functions of the shot-noise, these expressions are amenable enough to
deduce the asymptotic bounds that are good enough to use the standard arguments of
percolation theory. Hence, we can deduce percolation or non-percolation of a suitable
discrete approximation of the model.

3.1 Bounds on Shot-Noise fields

Denote by

VΦ(y) :=
∑
X∈Φ

`(X, y) (3.1)

the (additive) shot-noise field generated by a point process Φ where `(·, ·) : Rd × Rd →
R+ is called the response function. The response function is assumed to be Lebesgue
measurable in its first co-ordinate. We shall start with two complimentary results about
ordering of Laplace transforms of weakly sub-Poisson (super-Poisson) point processes
which are needed for the Proposition 3.3 that follows them. This key proposition will
provide us with bounds on level-crossing probabilities of shot-noise fields which drive
all the proofs that follow later in the section. We shall prove the two lemmas only for
the case of weakly sub-Poisson point processes and the analagous results for weakly
super-Poisson point processes follow via similar arguments.

Lemma 3.1. Assume that Φ is a simple point process of a Radon mean measure α.
Let the response function `(·, ·) : Rd × Rd → R+ be Lebesgue measurable in its first
co-ordinate and the shot-noise field VΦ(.) be defined as in (3.1). If Φ is α-weakly sub-
Poisson then for all y ∈ Rd,

E
(
eVΦ(y)

)
≤ exp

[∫
Rd

(e`(x,y) − 1)α(dx)

]
. (3.2)

If Φ is α-weakly super-Poisson then the above inequality is reversed.

Proof. From the known representation of the Laplace transform of a functional of Pois-
son point process Φα of intensity measure α (cf [12, eqn. 9.4.17 p. 60]), we observe
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that the RHS of (3.2) is the same as E
(
eVΦα (y)

)
. So, the rest of the proof will be only

concerned with proving that for any y ∈ Rd,

E
(
eVΦ(y)

)
≤ E

(
eVΦα (y)

)
. (3.3)

From Taylor’s series expansion for the exponential function and the positivity of sum-
mands, we get that

E
(
eVΦ(y)

)
= 1 +

∞∑
k=1

1

k!

∫
Rdk

`(x1, y) . . . `(xk, y)αkΦ(d(x1, . . . , xk)) ,

where αkΦ are moment measures of Φ. By the assumption that Φ is simple and α-weakly
sub-Poisson αkΦ ≤ αkΦα , which completes the proof.

Lemma 3.2. Assume that Φ is a simple point process of a Radon mean measure α. Let
the response function `(·, ·) : Rd × Rd → R+ be Lebesgue measurable in its first co-
ordinate and the shot-noise field VΦ(.) be defined as in (3.1). Φ is ν-weakly sub-Poisson
if and only if for all y ∈ Rd,

E
(
e−VΦ(y)

)
≤ exp

[∫
Rd

(e−`(x,y) − 1)α(dx)

]
. (3.4)

Φ is ν-weakly super-Poisson if and only if the above inequality is reversed.

Proof. Firstly, let us prove the easy implication by assuming that (3.4) holds. Let B be
a bBS and set `(x, y) = t1[x ∈ B ] for t > 0. Then VΦ(y) = tΦ(B) and so we get the
required inequality (1.1) to prove that Φ is ν-weakly sub-Poisson:

ν(B) = lim
t→∞

E
(
e−tΦ(B)

)
≤ lim
t→∞

exp
[
(e−t − 1)α(B)

]
= e−α(B),

where the inequality is due to (3.4) for our specific choice of `.
Now for the reverse implication, assume that Φ is ν-weakly sub-Poisson. As with

many other proofs, we shall only prove the inequality in the case of simple functions
i.e, `(·, y) =

∑k
i=1 ti1[x ∈ Bi ] for disjoint bBs Bi, i = 1, . . . , k and appeal to standard-

measure theoretic arguments for extension to the general case. Thus for a simple func-
tion `(·, y), we need to prove the following:

E
(
e−

∑
i tiΦ(Bi)

)
≤
∏
i

exp
[
α(Bi)(e

−ti − 1)
]
. (3.5)

Setting si = e−ti , let Φ′ be the thinned point process obtained from Φ by deleting points
independently with probability p(x), where p(x) = si for points x ∈ Bi and p(x) ≡ 1

outside
⋃
iBi. Similary, we define Φ′α for the Poisson point process Φα of intensity

measure α. Thus, we have that

E

(∏
i

s
Φ(Bi)
i

)
=

∑
n1,...,nk≥0

∏
i

snii P (Φ(Bi) = ni, 1 ≤ i ≤ k)

= P

(
Φ′(
⋃
i

Bi) = 0

)
.

Now to prove (3.5), it suffices to prove that for any bBs B,

P (Φ′(B) = 0) ≤ P (Φ′α(B) = 0) .
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This follows from a more general observation that independent thinning preserves or-
dering of void probabilities of simple point processes, which we show in the remaining
part of the proof using a coupling argument.

Consider a null-array of partitions {Bn,j}n≥1,j≥1 of Rd 5. Further, we assume that
either Bn,j ⊂ Bi for some i ∈ {1, . . . , k} or Bn,j ∩ (∪iBi) = ∅. Such a choice of par-
tition can be always made by refining any given partition {B′n,j}n≥1,j≥1 to {B′n,j ∩
Bi}i∈{1,...,k},n≥1,j≥1. For every x ∈ Rd, let j(n, x) be the unique index such that x ∈
Bn,j(n,x). For every n, j, define s(n, j) = si if Bn,j ⊂ Bi else s(n, j) ≡ 1. Thus by the
choice of partition, we get that s(n, j(n, x)) = si if x ∈ Bi for some i ∈ {1, . . . , k} or else
s(n, j(n, x)) = 1. Let {ξ} = {ξn,j}n≥1,j≥1 be a family of independent Bernoulli random
variables Ber(1−s(n, j)) defined on a common probability space with Φ and independent
of it. Define the family of point processes Φn =

∑
Xi∈Φ ξn,j(n,Xi)δXi . For given n ≥ 1,

Φn is a (possibly dependent) thinning of Φ. Moreover, because Φ is simple, Φn(B) con-
verges in distribution to Φ′(B) (recall, Φ′ is an independent thinning of Φ with retention
probability 1− si in Bi and 0 outside

⋃
iBi). The result follows by conditioning on {ξ}:

ν′(B) = lim
n→∞

P (Φn(B) = 0) = lim
n→∞

E
(
P
(
Φ(B1

n) = 0 | (ξ)
))

= lim
n→∞

E
(
ν(B1

n)
)
,

with B1
n =

⋃
j:ξn,j=1Bn,j . This completes the proof as for all realizations of ξ, we have

that
ν(B1

n) ≤ P
(
Φα(B1

n) = 0 | (ξ)
)
.

Proposition 3.3. Let Φ be a simple, stationary point process of intensity λ.

1. If Φ is α-weakly sub-Poisson then we have that for any y1, . . . , ym ∈ Rd and s, h > 0,

P (VΦ(yi) ≥ h, 1 ≤ i ≤ m) ≤ e−smh exp

{
λ

∫
Rd

(es
∑m
i=1 `(x,yi) − 1)dx

}
. (3.6)

2. If Φ is ν-weakly sub-Poisson, then we have that for any y1, . . . , ym ∈ Rd and s, h > 0,

P (VΦ(yi) ≤ h, 1 ≤ i ≤ m) ≤ esmh exp

{
λ

∫
Rd

(e−s
∑m
i=1 `(x,yi) − 1)dx

}
. (3.7)

Proof. Suppose that inequalities (3.6) and (3.7) are true for m = 1. Observe that∑m
i=1 VΦ(yi) =

∑
X∈Φ

∑m
i=1 `(X, yi) is itself a shot-noise field driven by the response

function
∑m
i=1 `(·, yi). Thus if (3.6) and (3.7) are true for m = 1, we can get the general

case from the following easy inequalities:

P (VΦ(yi) ≥ h, 1 ≤ i ≤ m) ≤ P

(
m∑
i=1

VΦ(yi) ≥ mh

)

P (VΦ(yi) ≤ h, 1 ≤ i ≤ m) ≤ P

(
m∑
i=1

VΦ(yi) ≤ mh

)
.

Hence, we shall now prove only the case of m = 1 for both the inequalities. Setting
y1 = y and using Chernoff’s bound, we have that

P (VΦ(y) ≥ h) ≤ e−shE
(
esVΦ(y)

)
,

P (VΦ(y) ≤ h) ≤ eshE
(
e−sVΦ(y)

)
.

Using Lemmas 3.1 and 3.2, we can upper bound the RHS of the both the equations and
thus we have shown the inequalities in the case m = 1 as required.

5i.e., for every n, {Bn,j}j≥1 form a partition of Rd with finitely many elements, and maxj≥1{|Bn,j |} → 0
as n→∞ where | · | denotes the diameter in any fixed metric; see [23, page 11])
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Remark 3.4. Assuming in Proposition 3.3 that Φ is stationary and weakly sub-Poisson,
we compare Φ to the Poisson point process of the same intensity (λ). We see from the
proof that this assumption can be weakened in the following way:

1. If Φ is simple and its factorial moment measures α(k)
Φ can be bounded by those of a

homogeneous Poisson point process of some intensity λ′ > 0 then (3.6) holds true
for any y1, . . . , ym ∈ Rd and s, h > 0 with λ replaced by λ′.

2. If Φ is simple and its void probabilities ν(·) can be bounded by those of a homoge-
neous Poisson point process of some intensity λ′′ > 0 then (3.7) holds true for any
y1, . . . , ym ∈ Rd and s, h > 0 with with λ replaced by λ′′.

The two bounds can be obtained by comparison to Poisson processes of two different
intensities, with λ′′ ≤ λ′.

3.2 Auxiliary discrete models

Though we focus on the percolation of Boolean models (continuum percolation mod-
els), but as is the wont in the subject we shall extensively use discrete percolation
models as approximations. For r > 0, x ∈ Rd, define the following subsets of Rd. Let
Qr := (−r, r]d and Qr(x) := x + Qr. We will consider the following discrete graph :
L∗d(r) = (rZd,E∗d(r)) is a close-packed graph on the scaled-up lattice rZd; the edge-set
is E∗d(r) := {(zi, zj) ∈ (rZd)2 : Qr(zi) ∩Qr(zj) 6= ∅}.

In what follows, we will define auxiliary site percolation models on the above graph
by randomly declaring some of its vertices (called also sites) open. As usual, we will say
that a given discrete site percolation model percolates if the corresponding sub-graph
consisting of all open sites contains an infinite component.

Define the corresponding lower and upper level sets of the shot-noise field VΦ(., .)

on the lattice rZd by Zdr(VΦ,≤ h) := {z ∈ rZd : VΦ(z) ≤ h} and Zdr(VΦ,≥ h) := {z ∈ rZd :

VΦ(z) ≥ h}. The percolation of these two discrete models (i.e, Zdr(VΦ,≤ h) and Zdr(VΦ,≥
h)) understood in the sense of site-percolation of the close-packed lattice L∗d(r) will be
of interest to us.

There are two standard arguments used in percolation theory to show non-percolation
and percolation in discrete (d ≥ 2)-dimensional models. We shall describe them here
below as we use one or the other of these two arguments in our proofs for Theorems
3.7, 3.10, 3.12 and 3.13. In the remaining part of this section we assume d ≥ 2. In
sections 3.4 and 4 we will consider two-dimensional models (i.e, d = 2).

Remark 3.5 (Standard argument for non-percolation). Since the number of paths on
L∗d(r) of length n starting from the origin is at most (3d − 1)n, in order to show non-
percolation of a given model it is enough to show that the corresponding probability of
having n distinct sites simultaneously open is smaller than ρn for some 0 ≤ ρ < (3d−1)−1

for n large enough. From this we can get that the expected number of open paths of
length n starting from the origin (which is at most (ρ(3d − 1))n) tends to 0 and hence by
Markov’s inequality, we get that almost surely there is no infinite path from the origin.
Since the same observation holds true for any node of the lattice, we can also conclude
that almost surely there is no percolation.

Remark 3.6 (Peierls’ argument for percolation). Recall that the number of contours
surrounding the origin in L∗d(r) 6 is at most n(3d − 2)n−1 7. Hence, in order to prove
percolation of a given model using Peierls argument (cf. [20, pp. 17–18]), it is enough to

6A contour surrounding the origin in L∗d(r) is a minimal collection of vertices of L∗d(r) such that any
infinite path on this graph from the origin has to contain one of these vertices.

7The bounds n(3d − 2)n−1 and (3d − 1)n (in Remark 3.5) are not tight; we use them for simplicity of
exposition. For more about the former bound, refer [25, 2].
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show that the corresponding probability of having n distinct sites simultaneously closed
is smaller than ρn for some 0 ≤ ρ < (3d−2)−1 for n large enough. Thus the expected the
number of closed contours around the origin (which is at most

∑
n≥1 n(3d − 2)n−1ρn) is

finite and hence by a duality argument, we can infer that almost surely there will be at
least one infinite path i.e, percolation.

3.3 k-percolation in Boolean model

Recall that k-percolation has already been introduced rigorously in the introduction
itself; see Definition 1.1. The aim of this section is to show that for weakly sub-Poisson
point processes, the critical intensity for k-percolation of the Boolean model is non-
degenerate.

Theorem 3.7. Let Φ be a simple, stationary point process of intensity λ on Rd, with
d ≥ 2. For k ≥ 1, there exist constants c(λ) and c(λ, k) (not depending on the distribution
of Φ) such that 0 < c(λ) ≤ r1

c (Φ) provided Φ is α-weakly sub-Poisson and rkc (Φ) ≤
c(λ, k) <∞ provided Φ is ν-weakly sub-Poisson.

More simply, Theorem 3.7 gives an upper and lower bound for the critical radius of
a stationary weakly sub-Poisson point process dependent only on its intensity and not
on the finer structure. This is the content of Corollary 1.3 stated in the introduction.
Recall that examples of such point processes, including determinantal point processes
with trace-class integral kernels, have been already mentioned in Section 2.4.

Remark 3.8 (Clique percolation). The C̆ech simplicial complex on a point process Φ is
defined as the simplicial complex whose k-dimensional faces are subsets {X0, . . . , Xk} ⊂
Φ such that

⋂k
i=0BXi(r) 6= ∅. Define a graph on the k-dimensional faces by placing

edges between two k-dimensional faces if they are contained within the same (k + 1)-
dimensional face. The case k = 0 corresponds to the random geometric graph or the
Boolean model C(Φ, r). Is there a non-trivial phase transition for percolation in this
graph for all k ≥ 1? This question was posed in [22, Section 4] for the case of the
Poisson point process. The question was motivated by positive answer to the discrete
analogue of this question for Erdös-Rényi random graphs in [9] where it was called as
clique percolation. Note that when Φ is the Poisson point process and k = 0, existence
of non-trivial phase transition for percolation follows from the classical results of [27].
For k ≥ 1, once we observe that percolation of k-faces in the C̆ech simplicial complex
is equivalent to (k + 1)-percolation in the Boolean model, Corollary 1.3 answers the
question in affirmative not only for the Poisson point process but also for weakly sub-
Poisson point processeses.

Proof of Theorem 3.7. As explained before, we shall use the standard arguments as
described in Remarks 3.5 and 3.6 to show the lower and upper bounds respectively.

In order to prove the first statement, let Φ be α-weakly sub-Poisson and r > 0.
Consider the close packed lattice L∗d(3r). Define the response function lr(x, y) :=

1
[
x ∈ Q 3r

2
(y)
]

and the corresponding shot-noise field V rΦ(z) on L∗d(3r). Note that if

C(Φ, r) percolates then Zd3r(V rΦ ,≥ 1) percolates as well. To see why, consider an in-
finite path (X0, X1, . . .) of the graph C(Φ, r) and let wi ∈ 3rZd be defined such that
Xi ∈ Q 3r

2
(wi). Since ∀i ≥ 0, |Xi −Xi+1| ≤ 2r, we have that

∅ 6= B 3r
2

(Xi) ∩B 3r
2

(Xi+1) ⊂ Q3r(wi) ∩Q3r(wi+1)

Thus, wi = wi+1 or (wi, wi+1) ∈ E∗d(3r). This shows that the subset {wi, i ≥ 1} forms
a connected subgraph of L∗d(3r) and since the infinite set of points {Xi, i ≥ 1} is con-
tained in Φ(

⋃
i≥1Q 3r

2
(wi)), the set {wi, i ≥ 0} is also infinite. Thus, we have shown the
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existence of an infinite connected subgraph in Zd3r(V rΦ ,≥ 1) or equivalently, Zd3r(V rΦ ,≥ 1)

percolates whenever C(Φ, r) percolates.
We shall now show that there exists a r > 0 such that Zd3r(V rΦ ,≥ 1) does not percolate.

For any n and distinct zi ∈ 3rZd, 1 ≤ i ≤ n,
∑n
i=1 lr(x, zi) = 1 iff x ∈

⋃n
i=1Q 3r

2
(zi) and

else 0. Thus, from Proposition 3.3, for s ≥ 0, we have that

P (V rΦ(zi) ≥ 1, 1 ≤ i ≤ n) ≤ e−sn exp

{
λ

∫
Rd

(es
∑n
i=1 lr(x,zi) − 1)dx

}
,

= e−sn exp

{
λ‖

n⋃
i=1

Q 3r
2

(zi)‖(es − 1)

}
,

= (exp{−(s+ (1− es)λ(3r))d)})n, (3.8)

where ‖ · ‖ denote the d-dimensional Lebesgue’s measure. Choosing s large enough
that e−s < (3d − 1)−1 and then by continuity of s + (1 − es)λ(3r)d in r, we can choose a
c(λ, s) > 0 such that for all r < c(λ, s), exp{−(s+(1−es)λ(3r)d))} < (3d−1)−1. Now, using
the standard argument involving the expected number of open paths (cf Remark 3.5),
we can show non-percolation of Zd3r(V rΦ ,≥ 1) for r < c(λ) := sups>log(3d−1) c(λ, s). Hence
for all r < c(λ), C(Φ, r) does not percolate and so c(λ) ≤ rc(Φ).

For the second statement on the finiteness of rkc (Φ), let Φ be ν-weakly sub-Poisson.
Consider the close packed lattice, L∗d( r√

d
). Define the response function lr(x, y) :=

1
[
x ∈ Q r

2
√
d
(y)
]

and the corresponding additive shot-noise field V rΦ(z) on L∗d( r√
d
).

We will now show that Ck(Φ, r) percolates if Zdr√
d

(V rΦ ,≥ k) percolates. Let (w0, w1, . . .)

be an infinite path in Zdr√
d

(V rΦ ,≥ k). We have that ∀i ≥ 0, Q r

2
√
d
(wi) ⊂ Ck(Φ, r) as

supx,y∈Q r
2
√
d

(wi) |x−y| ≤ r and where A denotes the topological closure of a set A. Since⋃
iQ r

2
√
d
(wi) is connected, unbounded and contained in Ck(Φ, r), we have shown the

existence of an unbounded connected subset of Ck(Φ, r) i.e., Ck(Φ, r) percolates.
We shall now show that there exists a r <∞ such that Zdr√

d

(V rΦ ,≥ k) percolates and

thereby completing the proof. For any n and zi, 1 ≤ i ≤ n, from Proposition 3.3, for
s ≥ 0, we have that

P (V rΦ(zi) ≤ k − 1, 1 ≤ i ≤ n) (3.9)

≤ esn(k−1) exp

{
λ

∫
Rd

(e−s
∑n
i=1 lr(x,zi) − 1) dx

}
= esn(k−1) exp

{
λ‖

n⋃
i=1

Q r

2
√
d
(zi)‖(e−s − 1)

}
= (exp{−((1− e−s)λ(

r√
d

)d − s(k − 1))})n. (3.10)

For any s > 0, there exists c(λ, k, s) <∞ such that for all r > c(λ, k, s), the the expression
in (3.10) is strictly less than (3d − 2)−n. Thus one can use the standard argument
involving the expected number of closed contours around the origin (cf Remark 3.6) to
show that Zdr√

d

(V rΦ ,≥ k) percolates. Further defining c(λ, k) := infs>0 c(λ, k, s), we have

that Ck(Φ, r) percolates for all r > c(λ, k). Thus rkc (Φ) ≤ c(λ, k).

Remark 3.9. Following Remark 3.4, bounds on the critical radii can be obtained by
comparison to Poisson processes of two different intensities: 0 < c(λ′) ≤ r1

c (Φ) provided
Φ is simple and its factorial moment measures are bounded by those of a homogeneous
Poisson point process of intensity λ′ > 0 and rkc (Φ) ≤ c(λ′′, k) < ∞ provided the void
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probabilities of Φ are bounded by those of the homogeneous Poisson point process of
intensity λ′′ > 0.

For k = 1; i.e., for the usual percolation in Boolean model, we can avoid the usage of
exponential estimates of Proposition 3.3 and work directly with void probabilities and
factorial moment measures. The gain is improved bounds on the critical radius.

Theorem 3.10. Let Φ be a stationary point process of intensity λ on Rd, d ≥ 2, and

ν-weakly sub-Poisson. Then rc(Φ) ≤ c̃(λ) :=
√
d
(

log(3d−2)
λ

)1/d

≤ c(λ, 1) <∞.

Proof. We follow the same arguments as in the second part of the proof of Theorem 3.7
and use different bound for the probabilities in (3.9) with k = 1:

P (V rΦ(zi) = 0, 1 ≤ i ≤ n) = P

(
Φ ∩

n⋃
i=1

Q r

2
√
d
(zi) = ∅

)

≤ P

(
Φλ ∩

n⋃
i=1

Q r

2
√
d
(zi) = ∅

)
= (exp{−λ(

r√
d

)d})n . (3.11)

Clearly, for r > c̃(λ), the expression in (3.11) is less than (3d−2)−n and thus {z : V rΦ(z) ≥
1} percolates by Peierls argument (cf Remark 3.6). It is easy to see that for any s > 0,
exp{−λ( r√

d
)d} ≤ exp{−(1− e−s)λ( r√

d
)d} and hence c̃(λ) ≤ c(λ, 1).

Combining the results of Theorem 3.10 and [8, Proposition 6.1], we have the follow-
ing phase-transition result for usual continuum percolation. Recall that θd is the volume
of the unit ball in Rd.

Corollary 3.11. For a stationary weakly sub-Poisson point process Φ on Rd, d ≥ 2, we

have that 0 < 1
(λθd)1/d ≤ rc(Φ) ≤

√
d
(

log(3d−2)
λ

)1/d

<∞

3.4 Percolation in SINR graphs

Study of percolation in the Boolean model C(Φ, r) was proposed in [19] to address
the feasibility of multi-hop communications in large “ad-hoc” networks, where full con-
nectivity is typically hard to maintain. The Signal-to-interference-and-noise ratio (SINR)
model (see [1, 13, 14] 8) is more adequate than the Boolean model in the context of
wireless communication networks as it allows one to take into account the interference
intrinsically related to wireless communications. For more motivation to study SINR
model, refer [7] and the references therein.

We begin with a formal introduction of the SINR graph model. In this subsection, we
shall work only in R2. The parameters of the model are non-negative numbers P (signal
power), N (environmental noise), γ (interference parameter), T (SINR threshold) and a
continuous (power attenuation) function l : R+ → R+, strictly decreasing on its support,
with l(0) ≥ TN/P , l(·) ≤ 1, and

∫∞
0
xl(x)dx < ∞. These are exactly the assumptions

made in [14] and we refer to this paper for a discussion on their validity.
Given a point process Φ, the interference generated by the point process Φ at a

location x is defined as the following shot-noise field IΦ(x) :=
∑
X∈Φ\{x} l(|X − x|).

Define the SINR value from x to y as follows:

SINR(x, y,Φ, γ) :=
Pl(|x− y|)

N + γPIΦ\{x}(y)
. (3.12)

8The name shot-noise germ-grain process was also suggested by D. Stoyan in his private communication
to BB.
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Let ΦB and ΦI be two point processes. Let P,N, T > 0 and γ ≥ 0. The SINR graph
is defined as G(ΦB ,ΦI , γ) := (ΦB , E(ΦB ,ΦI , γ)) with vertices ΦB and edges

E(ΦB ,ΦI , γ) :={(X,Y )∈Φ2
B : SINR(Y,X,ΦI , γ)>T, SINR(X,Y,ΦI , γ)>T}.

The SNR graph G(ΦB) := (ΦB , E(ΦB)) (i.e, the graph without interference) is defined
as above assuming γ = 0. Note that it does not depend on ΦI and thus we omit it from
the parameters and notation of the SNR graph.

Observe also that the SNR graph G(Φ) is same as the (Boolean model) graph C(Φ, rl)

with 2rl = l−1(TNP ). Recall that percolation in all the above graphs is existence of an
infinite connected component in the graph-theoretic sense.

3.4.1 Poissonian back-bone nodes

Firstly, we consider the case when the backbone nodes (ΦB) form a Poisson point pro-
cess and in the next section, we shall relax this assumption. When ΦB = Φλ, the
Poisson point process of intensity λ, we shall use G(λ,ΦI , γ) and G(λ) to denote the
SINR and SNR graphs respectively. Denote by λc(r) := λ(rc(Φλ)/r)2 the critical inten-
sity for percolation of the Boolean model C(Φλ, r). The following result says that for
any sub-Poisson point process Φ = ΦI , the SINR graph G(λ,Φ, γ) percolates for suffi-
ciently small γ > 0 if and only if the corresponding SNR graph G(λ) (assuming γ = 0)
percolates.

Theorem 3.12. Let λ > λc(rl) and Φ be a stationary α-weakly sub-Poisson point pro-
cess on R2, with intensity µ > 0. Then there exists a γ0 > 0 such that G(λ,Φ, γ) perco-
lates for all γ < γ0. If λ < λc(rl) then G(λ,Φ, γ) does not percolate for any γ ≥ 0.

Note that we have not assumed the independence of Φ and Φλ. In particular, Φ could
be Φλ ∪ Φ0 where Φ0 is an independent α-weakly sub-Poisson point process. The case
Φ0 = ∅ was proved in [14]. Our proof follows their idea of coupling the continuum model
with a discrete model and then using the Peierls argument (see Remark 3.6). As in [14],
it is clear that for N ≡ 0, the above result holds with λc(rl) = 0.

Sketch of the proof of Theorem 3.12. The second statement is trivial, as G(λ,Φ, γ) is a
sub-graph of G(λ). Regarding the first statement, since the probability of percolation
is a non-increasing function of γ, it suffices to show that there exists γ > 0 such that
G(λ,Φ, γ) percolates. Our proof follows the arguments given in [14] and here, we will
only give a sketch of the proof. The details can be found in [31, Section 6.3.4].

Assuming λ > λc(rl), one observes first that the graph G(λ) also percolates with any
slightly larger constant noise N ′ = N + δ′, for some δ′ > 0. Essential to the proof of the
result is to show that the level-set {x : IΦI (x) ≤ M} of the interference field percolates
(contains an infinite connected component) for sufficiently large M . Suppose that it
is true. Then taking γ = δ′/M one has percolation of the level-set {y : γIΦI (y) ≤ δ′}.
The main difficulty consists in showing that G(λ) with noise N ′ = N + δ′ percolates
within an infinite connected component of {y : γIΦI (y) ≤ δ′}. This was done in [14], by
mapping both models G(λ) and the level-set of the interference field to a discrete lattice
and showing that both discrete approximations not only percolate but actually satisfy a
stronger condition, related to the Peierls argument. We follow exactly the same steps
and the only fact that we have to prove, regarding the interference, is that there exists
a constant ε < 1 such that for arbitrary n ≥ 1 and arbitrary choice of locations x1, . . . , xn
one has P (IΦI (xi) > M, i = 1, . . . , n) ≤ εn. In this regard, we use the first statement of
Proposition 3.3 to prove, exactly as in [14, Prop. 2], that for sufficiently small s it is not
larger than Kn for some constant K which depends on λ but not on M . This completes
the proof.
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3.4.2 Non-Poissonian back-bone nodes

We shall now consider the case when the backbone nodes are formed by a ν-weakly
sub-Poisson point process. In this case, we can give a weaker result, namely that with
an increased signal power P the SINR graph will percolate for small interference pa-
rameter γ > 0.

Theorem 3.13. Let Φ be a stationary, ν-weakly sub-Poisson point process on R2, and
ΦI be an α-weakly sub-Poisson point process with intensity µ for some µ > 0. Also
assume that l(x) > 0 for all x ∈ R+. Then there exist P0 < ∞ and γ0 > 0 such that
G(Φ,ΦI , γ) percolates for all P > P0 and γ < γ0.

As in Theorem 3.12, we have not assumed the independence of ΦI and Φ. For exam-
ple, ΦI = Φ ∪ Φ0 where Φ and Φ0 are independent ν-weakly and α-weakly sub-Poisson
point processes respectively. Let us also justify the assumption of unbounded support
for l(·). Suppose that r = sup{x : l(x) > 0} < ∞. Then if C(Φ, r) does not percolate,
then G(Φ,ΦI , γ) does not percolate for any ΦI , P, γ.

Sketch of the proof of Theorem 3.13. Again by noting that percolation probability is a
non-decreasing function of P and a non-increasing function of γ, it suffices to show the
result for a finite P and a non-zero γ. In this scenario, increased power is equivalent to
increased radius in the Boolean model corresponding to SNR model. From this obser-
vation, it follows from Theorem 3.10 that with possibly increased power the associated
SNR model percolates. Then, we use the approach from the proof of Theorem 3.12 to
obtain a γ > 0 such that the SINR network percolates as well. The details can be found
in [31, Section 6.3.4].

4 Super-Poisson point process with null critical radius

The objective of this section is to show an example of highly clustered and well
percolating point process. More precisely we construct a Poisson-Poisson cluster point
process (which is known to be dcx larger than the Poisson point process) for which
rc = 0. This invalidates the temptation to conjecture the monotonicity of rc with respect
to the dcx order (and hence with respect to void probabilities and moment measures)
of point process, in full generality. Recall that Bx(r) is the ball of radius r centered at
x ∈ R2.

Example 4.1 (Poisson-Poisson cluster point process on R2, with annular clusters). Let
Φα be the Poisson point process of intensity α on the plane R2; we call it the process of
cluster centers. For any δ,R, µ such that 0 < δ ≤ R < ∞ and 0 < µ < ∞, consider a
Poisson-Poisson cluster point process ΦR,δ,µα ; i.e., a Cox point process with the random
intensity measure Λ(·) := µ

∑
X∈Φα

X (X, ·), where X (x, ·) is the uniform distribution on
the annulus Bx(R) \ Bx(R − δ) of inner and outer radii R − δ and R respectively; see
Figure 1.

By [5, Proposition 5.2], it is a super-Poisson point process. More precisely, Φλ ≤dcx
ΦR,δ,µα , where Φλ is homogeneous Poisson point process of intensity λ = αµ.

For a given arbitrarily large intensity λ < ∞, taking sufficiently small α,R, δ = R

and sufficiently large µ, it is straightforward to construct a Poisson-Poisson cluster point
process ΦR,R,µα with spherical clusters, which has an arbitrarily large critical radius rc
for percolation. It is less evident that one can construct a Poisson-Poisson cluster point
process that always percolates, i.e., with degenerate critical radius rc = 0.

Proposition 4.2. Let ΦR,δ,µα be a Poisson-Poisson cluster point process with annular
clusters on the plane R2 as in Example 4.1. Given arbitrarily small a, r > 0, there exist
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Figure 1: Poisson-Poisson cluster process of annular cluster; cf. Example 4.1.

constants α, µ, δ, R such that 0 < α, µ, δ, R < ∞, the intensity αµ of ΦR,δ,µα is equal to
a and the critical radius for percolation rc(Φ

R,δ,µ
α ) ≤ r. Moreover, for any a > 0 there

exists point process Φ of intensity a, which is dcx-larger than the Poisson point process
of intensity a, and which percolates for any r > 0; i.e., rc(Φ) = 0.

Proof. Let a, r > 0 be given. Assume δ = r/2. We will show that there exist sufficiently
large µ,R such that rc(ΦR,δ,µα ) ≤ r where α = a/µ. In this regard, denote K := 2πR/r

and assume thatR is chosen such thatK is an integer. For a α > 0 and any point (cluster
center) Xi ∈ Φα, let us partition the annular support AXi(R, δ) := BXi(R)\BXi(R−δ) of
the Poisson point process constituting the cluster centered at Xi into K cells as shown
in Figure 1. Recall that all (individual) clusters have finite, Poisson Poi(µ), total number
of points. We will call Xi “open” if in each of the K cells of AXi(R, δ), there exists at
least one point of the cluster centered at Xi. Note that given Φα, each point Xi ∈ Φα
is open with probability p(R,µ) := (1 − e−µ/K)K , independently of other points of Φα.
Consequently, open points of Φα form a Poisson point process of intensity αp(R,µ); call
it Φopen. Note that the maximal distance between any two points in two neighbouring
cells of the same cluster is not larger than 2(δ + 2πR/K) = 2r. Similarly, the maximal
distance between any two points in two non-disjoint cells of two different clusters is not
larger than 2(δ+2πR/K) = 2r. Consequently, if the Boolean model C(Φopen, AO(R, δ)) :=⋃
Xi∈Φopen

AXi(R, δ) with annular grains AO(R, δ) centered at the origin O percolates

then the Boolean model C(ΦR,δ,µα , r) with spherical grains of radius r percolates as well.
The former Boolean model percolates if and only if C(Φopen, R) percolates.

Since Φopen is a Poisson point process, the Boolean model C(Φopen, R) percolates

if its volume fraction P (O ∈ C(Φopen, R)) = 1 − e−αp(R,µ)πR2

is large enough. Hence,
in order to guarantee rc(Φ

R,δ,µ
α ) ≤ r, it is enough to chose R,µ such that the volume

fraction 1− e−αp(R,µ)πR2

= 1− e−ap(R,µ)πR2/µ is larger than the critical volume fraction
for the percolation of the Poisson Boolean model on the plane. In what follows, we
will show that by choosing appropriate R,µ one can make p(R,µ)R2/µ arbitrarily large.
Indeed, take

µ := µ(R) =
2πR

r
log

R√
logR

=
2πR

r

(
logR− 1

2
log logR

)
.
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Then, as R→∞

p(R,µ)R2/µ =
R2

µ
(1− e−µr/(2πR))2πR/r

=
Rr

2π(logR− 1
2 log logR)

(
1−
√

logR

R

)2πR/r

= eO(1)+logR−log(2π(logR− 1
2 log logR))−O(1)

√
logR →∞ .

This completes the proof of the first statement.

In order to prove the second statement, for a given a > 0, denote an := a/2n and let
rn = 1/n. Consider a sequence of independent (super-Poisson) Poisson-Poisson cluster
point processes Φn = ΦRn,δn,µnαn with intensities λn := αnµn = an, satisfying rc(Φn) ≤ rn.
The existence of such point processes was shown in the first part of the proof. By the
fact that Φn are super-Poisson for all n ≥ 0 and by [5, Proposition 3.2(4)] the superpo-
sition Φ =

⋃∞
n=1 Φn is dcx-larger than Poisson point process of intensity a. Obviously

rc(Φ) = 0. This completes the proof of the second statement.

Remark 4.3. By Proposition 4.2, we know that there exists point process Φ with inten-
sity a > 0 such that rc(Φ) = 0 and Φa ≤dcx Φ, where Φa is homogeneous Poisson point
process. Since one knows that rc(Φa) > 0 so Φ is a counterexample to the monotonicity
of rc in dcx ordering of point processes.

5 Concluding remarks

We come back to the initial heuristic discussed in the Introduction — clustering in a
point process should increase the critical radius for the percolation of the corresponding
continuum percolation model. As we have seen, even a relatively strong tool such as
the dcx order falls short, when it comes to making a formal statement of this heuristic.

The two natural questions are what would be a more suitable comparison of cluster-
ing that can be used to affirm the heuristic and whether dcx order can satisfy a weaker
version of the conjecture.

As regards the first question, one might start by looking at other dependence orders
such as super-modular, component-wise convex or convex order but it has been already
shown that the first two are not suited to comparison of clustering in point processes
(cf. [31, Section 4.4]). Properties of convex order on point processes are yet to be
investigated fully and this research direction is interesting in its own right, apart from
its relation to the above conjecture. In a similar vein, it is of potential interest to study
other stochastic orders on point processes.

On the second question, it is pertinent to note that sub-Poisson point processes sur-
prisingly exhibited non-trivial phase transitions for percolation. Such well-behavedness
of the sub-Poisson point processes makes us wonder if it is possible to prove a rephrased
conjecture saying that any homogeneous sub-Poisson point process has a smaller criti-
cal radius for percolation than the Poisson point process of the same intensity. Such a
conjecture matches well with [4, Conjecture 4.6].
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