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Abstract

Non-Gaussian concentration estimates are obtained for invariant probability mea-
sures of reversible Markov processes. We show that the functional inequalities ap-
proach combined with a suitable Lyapunov condition allows us to circumvent the
classical Lipschitz assumption of the observables. Our method is general and offers
an unified treatment of diffusions and pure-jump Markov processes on unbounded
spaces.
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1 Introduction

In the last few decades, the concentration of measure phenomenon has attracted
a lot of attention. Given a metric probability space (X , d, µ) and a sufficiently large
class of functions defined on this space (we call them observables), the concentration
of measure occurs when, observed through these functions, the space seems to be
actually smaller than it is. In other words, there exists a non-decreasing continuous
function α : [0,∞) → [0,∞), null at the origin and tending to infinity at infinity, such
that for a given class C of observables f : X → R,

µ

(
{x ∈ X : f(x)−

∫
X
f dµ > r}

)
≤ exp (−α(r)) , r ≥ 0.

The concentration is said to be Gaussian when α is quadratic-like. In connection with
isoperimetry theory, the class C is usually taken to be the space of Lipschitz functions
on (X , d, µ), say Lip(X ). A good review on the subject is the monograph of Ledoux [35]
where the interested reader will find a clear introduction to the topic. One may mention
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Concentration of invariant measures

also the recent progress in the area through mass transportation techniques. See the
survey of Gozlan and Léonard [23].

In this paper, we emphasize a dynamical point of view on concentration of measure.
Given the invariant measure µ of an ergodic and reversible continuous-time Markov
process (Xt)t≥0 with carré du champ operator Γ (see below for the definition), we pro-
vide concentration properties of µ through observables which depend on the dynamics.
As it is sometimes the case in previous studies, our starting point is to assume that the
pair (µ,Γ) satisfies a convenient functional inequality such as Poincaré or the entropic
inequality. We refer to the notes of Ledoux [34] for precise credit and historical ref-
erences for this large body of work. Such functional inequalities, which are verified
by a wide variety of examples, are closely related to the long-time behaviour of the
process. In particular, this approach offers an unified treatment of Markov processes
on continuous and discrete space settings even if, in essence, these two situations are
rather different from each other. In both cases the carré du champ refers to a natu-
ral distance related to the dynamics and, within this notion of distance, the Lipschitz
observables under which Gaussian concentration estimates are obtained are the ones
with a bounded carré du champ, that is to say the space LipΓ(X ) of functions f such
that Γ(f, f) is bounded. However it is quite common in applications to need a con-
trol of the concentration through non-Lipschitz observables. Then a natural question
arises: which type of measure concentration can we obtain beyond the space LipΓ(X )

? In particular in discrete space settings, such a study basically makes sense on an
unbounded state space X . Using the notion of Ricci curvature for Markov chains (the
so-called Wasserstein curvature in continuous-time), a first result of this kind was given
by Ollivier [37], in which he obtains concentration bounds involving a mixed Gaussian-
exponential regime, i.e. α(r) is quadratic/linear for small/large deviation level r. In
our language, he requires that the carré du champ Γ(f, f) belongs to the space Lip(X ).
Despite this interesting and new result, which is sufficiently robust to be extended to
additive functionals, see e.g. [30] and [31], it seems to the authors that there is no
satisfactory treatment yet to this question and we hope to give (the beginning of) an
answer to this problem with the present article.

Our idea is to use a Lyapunov condition on the observables. Namely we will consider
the class LV (a, b) of observables f such that

Γ(f, f) ≤ −a LV
V

+ b,

where a, b are two positive constants and V is a convenient test function. Our Lyapunov
condition is somewhat different from the classical ones which have been successfully
used for proving various types of functional inequalities, cf. [2, 13, 14, 25] and for
concentration estimates of additive functionals, see for instance [12, 22, 17], since it
applies directly on the observables. When a vanishes the class LV (a, b) reduces to the
space LipΓ(X ) and the classical concentration results apply, cf. [34]. In particular,
the behaviour of the carré du champ Γ(f, f) depends now on the growth of the term
−LV/V , which has no reason to be bounded. Certainly, there is a price to pay for such
an improvement: the concentration for large deviation level r is no longer Gaussian but
only of exponential type under this class of observables.

The paper is organized as follows. In Section 2, we recall some basic material on
reversible Markov processes and functional inequalities. Two types of processes are
considered in our study: diffusions and pure-jump Markov processes. Next we state in
Section 3 our main results of the paper, Theorems 3.6 and 3.12, in which some mixed
Gaussian-exponential concentration properties of µ are obtained through observables
satisfying the Lyapunov condition above and under the assumption of a convenient func-
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tional inequality satisfied by the dynamics (µ,Γ). As a result, such new concentration
inequalities extend the classical estimates obtained when the observables belong to
the space LipΓ(X ), corresponding to the case where a vanishes. Finally, Section 4 is
devoted to numerous examples in continuous and discrete settings.

2 Preliminaries

2.1 Functional inequalities

Let (X , d, µ) be a metric probability space endowed with the corresponding Borel
σ-field B. Denote A0 a suitable algebra of real-valued functions defined on X and let
A be an algebra extending A0, containing the constants, being stable under the action
of smooth multivariate functions and such that for any f ∈ A, we have fg ∈ A0 for
any g ∈ A0. In the sequel we denote Lp(µ) := Lp(X ,B, µ) for p ∈ [1,∞]. One of the
main protagonists of the present paper is the carré du champ Γ, which is a bilinear
symmetric operator defined on A×A by

Γ(f, g) :=
1

2
(L(fg)− fLg − gLf) ,

where L is an operator defined on A which is assumed to be symmetric on A0 in L2(µ).
As mentioned in the Introduction, there is a natural pseudo-distance associated to the
operator Γ which can be defined as

dΓ(x, y) := sup
{
|f(x)− f(y)| : f ∈ A, ‖Γ(f, f)‖L∞(µ) ≤ 1

}
, x, y ∈ X .

Although this distance can be infinite, it is well-defined in the situations of interest
and carries a lot of information. In the sequel, we denote LipΓ(X ) the space of Lipschitz
functions with respect to dΓ. Certainly, there is no reason a priori that the space LipΓ(X )

coincides with the usual Lipschitz space Lip(X ), i.e. the space of Lipschitz functions on
X with finite Lipschitz seminorm with respect to the given distance d,

‖f‖Lip := sup
x 6=y

|f(x)− f(y)|
d(x, y)

<∞.

Consider the pre-Dirichlet form defined on A0 ×A0 by

Eµ(f, g) :=

∫
X

Γ(f, g) dµ = −
∫
X
f Lg dµ = −

∫
X
gLf dµ.

We assume in the remainder of the paper that this form is closable, that is, it can be
extended to a true Dirichlet form (still denoted Eµ) on a domain D(Eµ) in which A0 is
dense for the associated norm

‖f‖Eµ :=
√
‖f‖2L2(µ) + Eµ(f, f).

In other words, the space A0 is a core of the domain of the Dirichlet form. In particular,
the Donsker-Varadhan information of any probability measure ν on X with respect to
the invariant measure µ is defined as

I(ν|µ) :=

{
Eµ
(√
f,
√
f
)

if dν = fdµ,
√
f ∈ D(Eµ);

∞ otherwise.

Denote (L,D2(L)) the self-adjoint extension of the operator (L,A0) corresponding to
the generator of a strongly continuous symmetric Markov semigroup (Pt)t≥0 on L2(µ).
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In the probabilistic language, we have an X -valued càdlàg ergodic Markov process
{(Xt)t≥0, (Px)x∈X } defined on a filtered probability space (Ω,F , (Ft)t≥0,P), with re-
versible invariant measure (or stationary distribution) µ. A key point in the forthcoming
analysis is that the functional ν 7→ I(ν|µ) defined above is nothing but the rate func-
tion governing the Large Deviation Principle in large time of the empirical measure of
(Xt)t≥0. However in the non-reversible case, it is given by a contraction form of the
Donsker-Varadhan entropy which is different from the Donsker-Varadhan information,
so that our study will not extend to the non-symmetric case, unfortunately.

Now let us introduce the functional inequalities we will focus on in the paper. Given
an integrable function f ∈ L1(µ), we denote µ(f) :=

∫
X fdµ. Let I be an open interval

of R and for a convex function φ : I → R we define the φ-entropy of a function f : X → I

with φ(f) ∈ L1(µ) as

Entφµ(f) := µ (φ(f))− φ (µ(f)) .

The dynamics (µ,Γ) satisfies a φ-entropy inequality with constant Cφ > 0 if for any
I-valued function f ∈ D(Eµ) such that φ′(f) ∈ D(Eµ),

Cφ Entφµ(f) ≤ 1

2
Eµ(f, φ′(f)).

See for instance the work of Chafaï [16] for a careful investigation of the properties
of φ-entropies. The latter inequality is satisfied if and only if the following entropy
dissipation of the semigroup holds: for any I-valued function f such that φ(f) ∈ L1(µ),

Entφµ(Ptf) ≤ e−2Cφt Entφµ(f), t ≥ 0.

In this paper we will consider three cases:

(i) the Poincaré inequality: φ(u) = u2 with I = R and the φ-entropy inequality
rewrites as

λVarµ(f) ≤ Eµ (f, f) , (2.1)

where the variance of f under µ is given by

Varµ(f) := µ(f2)− µ(f)2.

The optimal constant λ1 (say) is nothing but the spectral gap in L2(µ) of the operator
−L. Estimating λ1 allows us to obtain the optimal rate of convergence of the semigroup
in L2(µ).

(ii) the entropic inequality: φ(u) = u log u with I = (0,∞) and the φ-entropy inequal-
ity is given by

ρEntµ(f) ≤ Eµ (f, log f) , (2.2)

where the entropy under µ of the smooth positive function f is defined by

Entµ(f) := µ(f log f)− µ(f) log µ(f).

We have skipped in the inequality the constant 1/2 for convenience in future computa-
tions. Once again, the best constant ρ0 in (2.2) gives the optimal exponential decay of
the entropy along the semigroup.

(iii) the Beckner-type inequality: φ(u) = up with p ∈ (1, 2] and I = (0,∞). We have
in this case

αp (µ(fp)− µ(f)p) ≤ p

2
Eµ
(
f, fp−1

)
. (2.3)

Estimating αp gives the optimal rate of convergence of the semigroup in Lp(µ).
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The entropic and Beckner-type inequalities (in the case 1 < p < 2) are stronger than
the Poincaré inequality (apply these inequalities to the function 1 + εf and let ε → 0).
Moreover it reduces to the Poincaré inequality (2.1) if p = 2, whereas dividing both
sides by p− 1 and taking the limit as p→ 1 we obtain the entropic inequality (2.2).

In this paper we will mainly consider two general classes of reversible Markov pro-
cesses: diffusions and pure jump Markov processes, to which we turn now.

2.2 Diffusion processes

A diffusion process on the Euclidean space X = Rd corresponds to a path continuous
Markov process onRd whose generator L is a second order differential operator defined
initially on A := C∞(Rd), the space of infinitely differentiable real-valued functions on
Rd:

Lf(x) =

d∑
i,j=1

ai,j(x)
∂2f

∂xi∂xj
(x) +

d∑
i=1

bi(x)
∂f

∂xi
(x), x ∈ Rd.

Here L is assumed to be symmetric on A0 := C∞0 (Rd) with respect to some probability
measure µ, where C∞0 (Rd) is the subspace of C∞(Rd) consisting of compactly supported
functions. Moreover a := σσ∗ is a measurable and locally bounded function from Rd to
the space of d × d symmetric positive definite matrices with smooth entries, σ∗ being
the transpose of the matrix σ, and the measurable drift b : Rd → Rd is also assumed to
be smooth. In this case the carré du champ is given by

Γ(f, g) =

d∑
i,j=1

ai,j
∂f

∂xi

∂f

∂xj

= < σ∗∇f, σ∗∇g >,

where < ·, · > stands for the Euclidean scalar product in Rd and ∇ is the usual gradient
operator. In particular when σ is the identity matrix, the spaces Lip(Rd) and LipΓ(Rd)

might be identified.
In contrast to the jump case introduced below, Γ is a differentiation, i.e. for any func-
tions (fk)1≤k≤n, f in C∞(Rd) and any smooth enough function φ : Rn → R,

Γ(φ(f1, . . . , fn), f) =
n∑
i=1

∂φ

∂xi
(f1, . . . , fn) Γ(fi, f). (2.4)

Due to this chain rule derivation formula, the entropic inequality (2.2) rewrites in the
diffusion case as the famous log-Sobolev inequality

ρEntµ(f2) ≤ 4 Eµ(f, f), (2.5)

which is the original inequality (up to the extra factor 4) derived by Gross [24] to study
hypercontractivity of the underlying semigroup. When we will consider diffusion pro-
cesses in the sequel, we will use the terminology “log-Sobolev inequality" instead of
“entropic inequality".
On the other hand, letting p = 2/q for q ∈ [1, 2) and f = gq, the Beckner-type inequality
(2.3) rewrites as the so-called standard Beckner inequality:

α2/q

(
µ(g2)− µ(gq)2/q

)
≤ (2− q) Eµ(g, g). (2.6)

Such an inequality was introduced by Beckner [3] for the Gaussian measure. In particu-
lar, the limiting case q → 2 recovers the classical log-Sobolev inequality. Note however
that the inequality (2.6) is weaker than the log-Sobolev inequality, cf. [33].
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2.3 Markov jump processes

Dealing with a pure-jump Markov process, the generator L is defined on the space
A of real-valued bounded functions on the discrete space X by

Lf(x) =

∫
X

(f(y)− f(x))Qx(dy), x ∈ X ,

where the transition kernel x 7→ Qx is a measurable mapping from X to the set of Radon
measures on X endowed with the corresponding Borel σ-field, and which satisfies the
following stability assumption: ∫

X
Qx(dy) <∞, x ∈ X , (2.7)

so that the process is piecewise constant. If the transition kernel has finite support then
one can take for A the space of all real-valued functions on X . Here, reversibility means
that the following detailed balance condition is satisfied:

Qx(dy)µ(dx) = Qy(dx)µ(dy). (2.8)

The carré du champ operator Γ admits an explicit expression given for any f, g ∈ A by

Γ(f, g)(x) =
1

2

∫
X

(f(y)− f(x)) (g(y)− g(x)) Qx(dy),

and we have

Γ(f, f)(x) =
1

2

∫
X

(f(y)− f(x))
2
Qx(dy).

In particular, the spaces Lip(X ) and LipΓ(X ) have no reason to coincide since the kernel
of the generator may be unbounded, i.e.

sup
x∈X

∫
X
Qx(dy) =∞. (2.9)

Finally the pre-Dirichlet form is defined initially on the space A0 ⊂ A of functions with
finite support and after extension the Dirichlet form is given for any f, g ∈ D(Eµ) by

Eµ(f, g) =
1

2

∫
X

∫
X

(f(y)− f(x)) (g(y)− g(x)) Qx(dy)µ(dx)

=

∫ ∫
f(x)>f(y)

(f(y)− f(x)) (g(y)− g(x)) Qx(dy)µ(dx),

where in the last line the reversibility is used. In our jump framework, the entropic
inequality (2.2) corresponds to one of the so-called modified log-Sobolev inequalities
introduced by Bobkov and Ledoux [7]. However, due to the lack of chain rule for dis-
crete gradients, this inequality is different from the discrete version of the log-Sobolev
inequality (2.5), and the same remark holds between the Beckner-type inequality (2.3)
and the standard Beckner inequality (2.6). We refer to [21, 7, 10] for historical and
tutorial references on these discrete functional inequalities, together with a hierarchy
of the various modified log-Sobolev inequalities.

3 Main results

In this paper, we emphasize a dynamical point of view on the concentration of mea-
sure phenomenon. As announced in the Introduction, we obtain concentration proper-
ties of the invariant measure µ through observables which are not required to belong

EJP 18 (2013), paper 65.
Page 6/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2425
http://ejp.ejpecp.org/


Concentration of invariant measures

to the spaces Lip(X ) nor LipΓ(X ), but which satisfy a Lyapunov condition. In order to
state this condition properly, let us introduce first the extended domain of the gener-
ator. Denote the probability measure Pν(·) :=

∫
X Px(·) ν(dx) where ν is an arbitrary

initial probability distribution. Recall that if X is discrete then any function from X to R
is continuous. A continuous function f is said to belong to the extended domain De(L)

of the generator L if there exists some measurable function g : X → R such that for any
t ≥ 0,

∫ t
0
|g(Xs)| ds <∞, Pµ-a.s. and the process

Mf
t = f(Xt)− f(X0)−

∫ t

0

g(Xs) ds, t ≥ 0,

is a local Pµ-martingale. In this case we write f ∈ De(L) and Lf = g.

The first result on which our analysis is based is closely related to the theory of large
deviations, see for instance [25], Lemma 5.6 for a proof in the general case of reversible
Markov processes.

Lemma 3.1. For any continuous function 1 ≤ V ∈ De(L) such that −LV/V is bounded
from below µ-a.s., we have for any probability measure ν on X ,∫

X
−LV
V

dν ≤ I(ν|µ). (3.1)

Now we are able to state the Lyapunov condition we will focus on along this paper.

Definition 3.2. Let a, b be two positive constants and let V ∈ De(L) be a test function
with values in [1,∞). A function f ∈ D2(L) belongs to the class LV (a, b) if the following
inequality is satisfied µ-a.s.:

Γ(f, f) ≤ −a LV
V

+ b. (3.2)

Remark 3.3. In the examples of Section 4, the test function V will always be chosen
sufficiently smooth and close to be non-integrable with respect to µ. Indeed it allows us
in general to consider the largest possible ratio −LV/V and thus the largest possible
class LV (a, b) of observables for which our concentration results will be available.

Remark 3.4. The Poincaré inequality can be seen as a minimal assumption in our
study of concentration by means of the Lyapunov condition (3.2). Indeed, if there exists
a function f ∈ LV (a, b) such that Γ(f, f) is lower bounded by a positive constant at
infinity, and this the case in the main examples of interest (except in the Cauchy-like
case appearing briefly in Section 4), then the Poincaré inequality is satisfied, cf. [15].
Moreover, integrating with respect to µ both sides of the inequality (3.2) and using the
Poincaré inequality yield Varµ(f) ≤ b/λ1. In other words the constant b/λ1 plays the
role of the variance of the observable f in our work.

Before stating our first main result, let us provide a key lemma. In the remainder
of this paper, we only give the proofs in the jump case since the diffusion framework
requires no additional difficulties and is even simpler, according to the chain rule deriva-
tion formula (2.4) satisfied by the carré du champ.

Lemma 3.5. Let f belong to the class LV (a, b). Given λ ∈ (0, 2/
√
a), let µλ be the

probability measure with density fλ := eλf/Zλ with respect to µ, where Zλ is the appro-
priate normalization constant, which is assumed to be finite. We assume moreover that√
fλ ∈ D(Eµ). Then we have the inequality

I(µλ|µ) ≤ λ2b

4− λ2a
, 0 < λ <

2√
a
.
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Proof. Since f ∈ LV (a, b), we have for any λ ∈ (0, 2/
√
a):

I(µλ|µ) =
1

Zλ

∫ ∫
f(x)>f(y)

(
eλf(x)/2 − eλf(y)/2

)2

Qx(dy)µ(dx)

=

∫ ∫
f(x)>f(y)

(
1− e−λ(f(x)−f(y))/2

)2

fλ(x)Qx(dy)µ(dx)

≤ λ2

4

∫
X

Γ(f, f) dµλ

≤ λ2

4

∫
X

(
−a LV

V
+ b

)
dµλ

≤ λ2

4
(aI(µλ|µ) + b) ,

where in the last line we used Lemma 3.1. Finally rearranging the terms allows us to
obtain the desired inequality.

We turn now to our first main and new result which exhibits a non-Gaussian con-
centration estimate through observables belonging to the class LV (a, b). Due to the
approach we will use, the numerical constants in the estimates below have no reason
to be sharp.

Theorem 3.6. Assume that the pair (µ,Γ) satisfies the entropic inequality (2.2). Let
f ∈ LV (a, b) and let

rmax :=
8b

3ρ0
√
a

be the size of the Gaussian window. Then the invariant measure µ has the follow-
ing concentration property: for any deviation level 0 ≤ r ≤ rmax, the deviation is of
Gaussian-type:

µ ({x ∈ X : f(x)− µ(f) > r}) ≤ exp

(
−3ρ0r

2

16b

)
, (3.3)

and for any r ≥ rmax, the decay is exponential:

µ ({x ∈ X : f(x)− µ(f) > r}) ≤ exp

(
− r

2
√
a

)
. (3.4)

Remark 3.7. In the sequel, a concentration property such as (3.3)-(3.4) will be called
Gaussian-exponential concentration.

Proof. Denote Lλ := λ−1 logZλ, where Zλ :=
∫
X e

λf dµ, with λ ∈ (0, 1/
√
a), and let µλ be

the absolutely continuous probability measure with density fλ := eλf/Zλ with respect
to µ. Using a standard approximation procedure one may assume that the observable
f ∈ LV (a, b) is bounded so that Zλ < ∞ and

√
fλ ∈ D(Eµ). The following proof is a

modification of the famous Herbst method popularized by Ledoux. Using the entropic
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inequality (2.2),

d

dλ
Lλ =

1

λ2Zλ
Entµ(eλf )

≤ 1

ρ0λ2Zλ
Eµ
(
λf, eλf

)
=

1

ρ0λ

∫ ∫
f(x)>f(y)

(f(x)− f(y))
(

1− e−λ(f(x)−f(y))
)
fλ(x)Qx(dy)µ(dx)

≤ 1

ρ0

∫
X

∫
X

Γ(f, f) dµλ

≤ 1

ρ0

∫
X

(
−aLV

V
+ b

)
dµλ

≤ 1

ρ0
(aI(µλ|µ) + b) ,

where we used that f ∈ LV (a, b) and then Lemma 3.1 in the two last lines. Thus
Lemma 3.5 entails the inequality

d

dλ
Lλ ≤

4b

3ρ0
, 0 < λ <

1√
a
,

and therefore the following log-Laplace estimate is available for any 0 < λ < 1/
√
a:

log

∫
X
eλf dµ ≤ λµ(f) +

4bλ2

3ρ0
. (3.5)

Finally using Chebyshev’s inequality and optimizing in λ ∈ (0, 1/
√
a) yields the tail

estimates (3.3) and (3.4). The proof of Theorem 3.6 is thus complete.

Remark 3.8. Two deviation regimes appear, Gaussian and exponential, with continu-
ous transition from one to the other. In contrast to the classical Herbst method where
the observables belong to LipΓ(X ), i.e. a = 0 in the Lyapunov condition (3.2), our
assumption allows us to go beyond this Lipschitz property. Although the Gaussian con-
centration is preserved for small deviation levels, this feature is lost for large r and is
replaced by an exponential tail which reveals to be sharp, as it will be developed in the
examples of Section 4.

Remark 3.9. By the Central Limit Theorem, the order of magnitude in the Gaussian
regime is correct in terms of all the parameters of interest. Since the entropic inequality
entails a Poincaré inequality, we have ρ0 ≤ λ1 and thus for any observable f ∈ LV (a, b),
we get Varµ(f) ≤ b/ρ0. Therefore, if X is a product space and the process (Xt)t≥0 has
independent and identically distributed coordinates, then under the observable f(x) :=∑d
k=1 φ(xk), x = (x1, . . . , xd) ∈ X , we obtain the following concentration

µ
({
x ∈ X : f(x)− µ(f) > r

√
d
})
≤ exp

(
−3ρ0r

2

16b̃

)
, 0 ≤ r ≤ 8b̃

√
d

3ρ0
√
a
,

which is sharp for large d. Here the important point is that the positive parameter b̃,
given by the Lyapunov condition on the univariate function φ, is independent of d.

Remark 3.10. The most naive approach to obtain concentration of measure under a
given non-Lipschitz observable f is controlling f by a monotone function of a Lipschitz
function and then making a change of variable of the deviation level in the concentration
estimates. For instance if the concentration under Lipschitz observables is Gaussian
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Concentration of invariant measures

then it is of exponential type under quadratic like observables. However this naive
approach is not always feasible since this method requires monotonicity, and when it
is, one obtains the correct order of magnitude for large deviation levels but without
the sharp dependence with respect to the important parameters, in particular if the
expectation of f is not explicitly computable. Therefore one deduces that in most of the
cases of interest such an approach is not convenient.

Remark 3.11. The method is sufficiently robust to get, for large deviation level r, other
regimes than exponential under particular observables. For example, assume that we
consider f ∈ LV (a, b) such that Γ(f, f)� −aLV/V +b but that there exists two functions
φ, ψ : (0,∞)→ (0,∞) such that for all ε > 0,

Γ(f, f) ≤ φ(ε)

(
−a LV

V
+ b

)
+ ψ(ε).

Then plugging this estimate in the previous proofs of Lemma 3.5 and Theorem 3.6, one
has for all ε > 0,

I(µλ|µ) ≤ λ2

4
(aφ(ε)I(µλ|µ) + bφ(ε) + ψ(ε)) .

Optimizing in ε > 0 enables to get for some function Φ : [0,∞)→ [0,∞] and all λ > 0,

I(µλ|µ) ≤ Φ(λ),

leading then to super-exponential regime for large r. We will illustrate this on an exam-
ple in Section 4.

Inspired by the method of Otto and Villani [38], who studied the links between log-
Sobolev and transportation inequalities on continuous spaces (see also Sammer [40] in
the finite state space case), let us recover Theorem 3.6 by using a semigroup proof.
Once again we focus our attention on the jump case. Let h be a smooth density with
respect to µ. Given t > 0, denote νt the probability measure with density Pth with
respect to µ. We assume that the Donsker-Varadhan information I(νt|µ) is well-defined,
i.e.
√
Pth ∈ D(Eµ). Using Cauchy-Schwarz’s inequality and then reversibility,

Eµ(Pth, f) =
1

2

∫
X

∫
X

(Pth(x)− Pth(y)) (f(x)− f(y)) Qx(dy)µ(dx)

≤
√
I(νt|µ)

√
1

2

∫
X

∫
X

(√
Pth(x) +

√
Pth(y)

)2

(f(x)− f(y))
2
Qx(dy)µ(dx)

≤ 2
√
I(νt|µ)

√∫
X

Γ(f, f) dνt

≤ 2
√
I(νt|µ)

√∫
X

(
−a LV

V
+ b

)
dνt

≤ 2
√
I(νt|µ)

√
aI(νt|µ) + b,

where in the two last lines we used that f ∈ LV (a, b) and then Lemma 3.1. Using now
the elementary inequality 2(a−b)2 ≤ (a2−b2) log(a/b) available for any a, b > 0 and then
the entropic inequality (2.2), we get

Eµ(Pth, f) ≤ Eµ(Pth, logPth)

(√
a

2
+

√
b

Eµ(Pth, logPth)

)

≤ Eµ(Pth, logPth)

(√
a

2
+

√
b

ρ0Entµ(Pth)

)
.
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Integrating time between 0 and infinity entails the covariance inequality:

Covµ(f, h) := µ(fh)− µ(f)µ(h)

=

∫ ∞
0

Eµ(Pth, f) dt

≤
∫ ∞

0

Eµ(Pth, logPth)

(√
a

2
+

√
b

ρ0Entµ(Pth)

)
dt

=

√
a

2
Entµ(h) + 2

√
bEntµ(h)

ρ0
,

which in turn yields the inequality

α (Covµ(f, h)) ≤ Entµ(h),

where α is the function

α(r) =
ρ0r

2

4b+ 2ρ0
√
a r
, r > 0.

Finally using Theorem 3.2 in [23], we obtain the following concentration estimate through
the observable f ∈ LV (a, b):

µ ({x ∈ X : f(x)− µ(f) > r}) ≤ exp (−α(r)) , r ≥ 0.

One deduces that, up to numerical constants, this result is similar to that emphasized in
Theorem 3.6 since for small deviation level, α(r) = O(ρ0r

2/b) whereas α(r) = O(r/
√
a)

for large r.

As we have seen above, the entropic inequality (2.2) entails on the one hand a con-
centration property for the invariant measure µ through observables f ∈ LV (a, b). On
the other hand and as announced in Remark 3.4, the Poincaré inequality can be seen as
a minimal assumption in our study. Hence one may wonder if the Beckner-type inequal-
ity (2.3), which interpolates between both, provides qualitative concentration estimates
through observables in LV (a, b). Our second main result, Theorem 3.12, goes in this
way.

Theorem 3.12. Assume that there exists p ∈ (1, 2] such that the pair (µ,Γ) satisfies the
Beckner-type inequality (2.3). Moreover, assume that the observable f ∈ LV (a, b) with
the restriction αp ≤ 2b(p− 1)/(3pa) and let

rmax :=

√
32bp

27(p− 1)αp
.

Then the following tail estimates hold: for any deviation level 0 ≤ r ≤ rmax,

µ ({x ∈ X : f(x)− µ(f) > r}) ≤ exp

(
−9αp r

2

32b

)
, (3.6)

whereas for any r ≥ rmax,

µ ({x ∈ X : f(x)− µ(f) > r}) ≤ exp

(
−r

√
3pαp

32b(p− 1)

)
. (3.7)

Proof. The proof is adapted from the method of Aida and Stroock introduced in [1].
Assume without loss of generality that f is centered and bounded and for any λ ∈ (0, λ0),
where

λ0 :=

√
3pαp

2b(p− 1)
≤ 1√

a
,
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denote once again Zλ :=
∫
X e

λf dµ which is finite and let µλ be the probability measure
with density fλ := eλf/Zλ with respect to µ, which satisfies

√
fλ ∈ D(Eµ). We have by

the Beckner-type inequality (2.3) applied to the function eλf/p,

Zλ − Zpλ/p ≤ p

2αp
Eµ(eλf/p, eλ(1−1/p)f )

=
p

2αp

∫ ∫
f(x)>f(y)

eλf(x)
(

1− e−λ(f(x)−f(y))/p
)(

1− e−λ(1−1/p)(f(x)−f(y))
)
Qx(dy)µ(dx)

≤ λ2(p− 1)Zλ
2pαp

∫
X

Γ(f, f) dµλ

≤ λ2(p− 1)Zλ
2pαp

∫
X

(
−a LV

V
+ b

)
dµλ

≤ λ2(p− 1)Zλ
2pαp

(aI(µλ|µ) + b)

≤
(
λ

λ0

)2

Zλ,

where we used that f ∈ LV (a, b) and Lemmas 3.1-3.5 in the last three lines. Hence
rearranging the terms above and iterating the procedure yields for every n ≥ 1,

Zλ ≤
n−1∏
k=0

(
λ2

0

λ2
0 − λ2/p2k

)pk
(Zλ/pn)p

n

.

Since f is centered, the quantity Zp
n

λ/pn goes to 1 as n→∞ and from the latter inequality
we obtain after taking logarithm,

logZλ ≤ −
∞∑
k=0

pk log

(
1− (λ/λ0)2

p2k

)

=

∞∑
k=0

p2k+1

p2k+1 − 1
× (λ/λ0)2(k+1)

k + 1

≤ − p

p− 1
log

(
1−

(
λ

λ0

)2
)
.

In the last inequality we used the trivial inequality p2k+1 ≤ ( p
p−1 ) (p2k+1 − 1) available

for any integer k because p ∈ (1, 2]. We thus obtain for any 0 < λ ≤ λ0/2,

Zλ ≤
(

1 +
λ2

λ2
0 − λ2

)p/(p−1)

≤ exp

(
pλ2

(p− 1)(λ2
0 − λ2)

)
≤ exp

(
4pλ2

3(p− 1)λ2
0

)
.

Finally using the exponential Chebyshev inequality and optimizing in λ entails the de-
sired result.

Remark 3.13. Taking r = rmax in the inequality (3.6) above entails the upper bound
exp(−p/3(p− 1)) which is independent of all the parameters of interest. In other words
there is essentially no Gaussian window since we obtain rmax = O(

√
b) instead of the
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correct order of magnitude O(b). But this issue was expected: our proof is adapted
from the method of Aida and Stroock, which is known in the classical case of Lipschitz
observables (i.e. the case a = 0 in our Lyapunov condition) to capture the optimal
concentration behaviour only for large deviation levels. Although we worked quite a bit
to obtain the expected Gaussian decay for small deviation levels (through a modified
entropic inequality in the spirit of Section 3 of Bobkov and Ledoux [6]), it seems that
Theorem 3.12 still leaves room for improvement, in particular the assumption relying
αp to the parameters a, b which is technical but cannot be avoided for the moment
(however it will be satisfied as soon as b is taken sufficiently large, or a small enough).

Remark 3.14. As already mentioned, the Beckner-type inequality is stronger than the
Poincaré inequality, i.e. αp ≤ λ1. However Theorem 3.12 does not entail a better
concentration estimate than that obtained under the Poincaré inequality, except maybe
when focusing on the constants depending on p (this is clearly not our interest here).
The reason is due to the approach emphasized above which is exactly the same for any
p ∈ (1, 2], in contrast to Theorem 3.6 where the Herbst method is used.

4 Examples

4.1 Diffusion processes

Let us apply now Theorems 3.6 and 3.12 to diffusion processes. In this part, the
function U is a smooth potential such that e−U is Lebesgue integrable, and denote µ

the Boltzmann probability measure with density e−U/Z with respect to the Lebesgue
measure, where Z is the appropriate normalization factor.

The first example of interest is the so-called Kolmogorov process with generator
given for any f ∈ C∞(Rd) by

Lf = ∆f− < ∇U,∇f > .

One easily checks that µ is reversible for this process and the carré du champ is
Γ(f, f) = ‖∇f‖2 where ‖·‖ stands for the Euclidean norm inRd. Hence by Rademacher’s
theorem, the spaces Lip(Rd) and LipΓ(Rd) coincide. Moreover the domain D(Eµ) of the
Dirichlet form is H1(µ).

4.1.1 Ornstein-Uhlenbeck process and the standard Gaussian distribution

Let us consider first the Ornstein-Uhlenbeck process which is a special case of the
Kolmogorov process with potential U(x) = ‖x‖2/2. It has the standard Gaussian distri-
bution as invariant measure. By the famous Gross theorem [24], the pair (µ,Γ) satisfies
the log-Sobolev inequality, i.e. the entropic inequality with (optimal) constant ρ0 = 2.
Hence Theorem 3.6 will apply for observables in LV (a, b) for some good test function V .
For instance if f(x) = ‖x‖2, then choose the test function V = ecU with c ∈ (0, 1), i.e. V
is at the boundary of non-integrability. Then we have

−LV (x)

V (x)
= −cd+ c(1− c) ‖x‖2.

Thus with the choice c = 1/2 we get f ∈ LV (a, b) with a = 16 and b = 8d and by
Theorem 3.6, we obtain for any 0 ≤ r ≤ 8d/3,

µ
(
{x ∈ Rd : ‖x‖2 > d+ r}

)
≤ exp

(
− 3r2

64d

)
,
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which is sharp up to a numerical constant since in this case Varµ(f) = 2d. In the
exponential regime we get for any r ≥ 8d/3,

µ
(
{x ∈ Rd : ‖x‖2 > d+ r}

)
≤ exp

(
−r

8

)
.

Actually, such a behaviour is expected since under µ, the variable f(x) is distributed as
a chi-squared random variable with d degrees of freedom, for which the decay is known
to be only exponential for large deviation levels. Moreover we mention that we are
in the (rare) cases where the naive approach discussed in Remark 3.10 is convenient.
Denoting the expectation m :=

∫
Rd
‖x‖µ(dx), we have

µ
(
{x ∈ Rd : ‖x‖2 > d+ r}

)
= µ

(
{x ∈ Rd : ‖x‖ −m >

√
d+ r −m}

)
≤ exp

(
− (
√
d+ r −

√
d)2

2

)
,

an estimate which can be transformed into a similar Gaussian-exponential concentra-
tion as above. Here we used Cauchy-Schwartz’ inequality to get m ≤

√
d and then the

classical Gaussian deviation estimate satisfied by Lipschitz functions. The reason for
which this naive method is sharp resides in the following facts: on the one hand the
observable x 7→ ‖x‖2 can be written as an increasing function of a (non-negative) Lip-
schitz function and on the other hand replacing the mean m by

√
d is optimal in large

dimension since standard computations yield

m =
√

2
Γ((d+ 1)/2)

Γ(d/2)
,

which behaves like
√
d for large d (together with Cauchy-Schwartz, an alternative proof

is to apply the Poincaré inequality to the function x → ‖x‖ to obtain m ≥
√
d− 1).

Despite its simplicity, it reveals that the naive approach requires restrictive arguments
which are hardly satisfied in the cases of interest.

Let us come back to the example announced in Remark 3.11. As observed above,
our concentration result is convenient as soon as f is close to realizing the equality in
the Lyapunov condition (3.2). However what happens for a function g such that ‖∇g‖ �
‖∇f‖ at infinity ? For instance if f(x) = ‖x‖2 as above then how does the invariant
measure concentrate through the observable g(x) = ‖x‖3/2 ? Let us investigate this
point in detail now. Although the method we use below applies in the Gaussian case,
we mention that it works in a more general framework. Assume that f ∈ LV (a, b) and
that there exists an observable g satisfying for any ε > 0,

‖∇g‖2 ≤ ε‖∇f‖2 +
1

ε
. (4.1)

Denote aε := aε and bε := bε+1/ε. Using the argument given in the proof of Lemma 3.5,
we have for any λ > 0,

I(µλ|µ) ≤ inf
ε>0

λ2

4
(aεI(µλ|µ) + bε)

=
λ2

2

√
aI(µλ|µ) + b,

where in the definition of I(µλ|µ) we replaced f by g. Hence we obtain

I(µλ|µ) ≤ λ2

2

(
aλ2

2
+
√
b

)
.
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Now the same argument as in the proof of Theorem 3.6 together with the latter inequal-
ity entail

d

dλ
Lλ ≤ inf

ε>0

1

ρ0
(aεI(µλ|µ) + bε)

=
2

ρ0

√
aI(µλ|µ) + b

≤ 2

ρ0

(
aλ2

2
+
√
b

)
,

since
√
x(x+ y) + y2 ≤ x+ y for any x, y ≥ 0. Hence we get for any λ > 0,

log

∫
X
eλg dµ ≤ λµ(g) +

2

ρ0

(
aλ4

6
+ λ2

√
b

)
≤ λµ(g) +

4

ρ0
max

(
aλ4

6
, λ2
√
b

)
.

Finally using the exponential Chebyshev inequality and optimizing in λ entails for small
deviations the Gaussian-type estimate

µ
(
{x ∈ Rd : g(x)− µ(g) > r}

)
≤ exp

(
− ρ0 r

2

16
√
b

)
, 0 ≤ r ≤ 8

√
6 b3/4

ρ0
√
a

,

whereas for large deviations,

µ
(
{x ∈ Rd : g(x)− µ(g) > r}

)
≤ exp

(
−
(

6ρ0

a

)1/3
r4/3

4

)
, r ≥ 8

√
6 b3/4

ρ0
√
a

.

Hence we have improved the decay in the concentration estimate for large deviation
level r since it is no longer of order exp(−cr) but of order exp(−cr4/3). In terms of small
deviations, the parameter

√
b appears in the exponential at the denominator instead

of b. But this is expected since by Poincaré inequality, the inequality (4.1) and the
assumption f ∈ LV (a, b), we obtain the following estimate on the variance of g:

Varµ(g) ≤ 1

ρ0

(
inf
ε>0

ε

∫
Rd
‖∇f‖2 dµ+

1

ε

)
≤ 2

ρ0

√∫
Rd
‖∇f‖2 dµ

≤ 2
√
b

ρ0
.

Coming back to our example, if f(x) = ‖x‖2 and g(x) is proportional to ‖x‖3/2, then
as observed before we have f ∈ LV (16, 8d) with V (x) = e‖x‖

2/4 and moreover (4.1)
is satisfied. Then we obtain the following inequalities: for small deviations 0 ≤ r ≤√

6 (8d)3/4,

µ

(
{x ∈ Rd : ‖x‖3/2 −

∫
Rd
‖x‖3/2 µ(dx) > r}

)
≤ exp

(
− r2

8
√

8d

)
,

and for large deviations r ≥
√

6 (8d)3/4,

µ

(
{x ∈ Rd : ‖x‖3/2 −

∫
Rd
‖x‖3/2 µ(dx) > r}

)
≤ exp

(
−31/3

(r
4

)4/3
)
.
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Now let us consider another type of observables. Take f as a quadratic form on Rd,
i.e. there exists a positive definite symmetric matrix A = (ai,j)i,j=1,...,d of size d such
f(x) =< Ax, x >, x ∈ Rd. Then in the Gaussian regime we expect the variance of f in
the denominator,

Varµ(f) = 2

d∑
i,j=1

a2
i,j = 2

d∑
i=1

λ2
i ,

where (λi) are the real eigenvalues of the symmetric matrix A. In other words Varµ(f)

is nothing but 2 times the square of the Hilbert-Schmidt norm ‖A‖HS of the matrix
A. Using the same test function V as before would entail that f ∈ LV (a, b) with a =

16 ‖A‖2op and b = 8d ‖A‖2op. Here ‖A‖op denotes the (Euclidean) operator norm of the
matrix A, i.e. its spectral radius, maxi λi. With this choice of parameters the inequality
Varµ(f) ≤ b/ρ0 is too weak to provide a reasonable variance estimate since b behaves
badly in terms of dimension. To obtain a qualitative concentration estimate, the idea is
to change the test function and choose V (x) = ec‖Ax‖

2

with c > 0 to be fixed later to
ensure the integrability of V with respect to the Gaussian measure µ. Then we have
f ∈ LV (a, b) for some constants a and b if and only if for any y ∈ Rd, the following
inequality holds:

4ac2
d∑
i=1

λ4
i y

2
i ≤ 2 (ac− 2)

d∑
i=1

λ2
i y

2
i + b− 2ac

d∑
i=1

λ2
i .

After a bit of analysis, choosing c := 1/4‖A‖2op, the same a as before and

b := 2ac

d∑
i=1

λ2
i = 8

d∑
i=1

λ2
i ,

we get f ∈ LV (a, b) and applying then Theorem 3.6, we obtain the following concentra-
tion estimate: for any 0 ≤ r ≤ 8‖A‖2HS/3‖A‖op,

µ

(
{x ∈ Rd :< Ax, x > −

∫
Rd

< Ax, x > µ(dx) > r}
)
≤ exp

(
− 3r2

64‖A‖2HS

)
,

whereas for any r ≥ 8‖A‖2HS/3‖A‖op,

µ

(
{x ∈ Rd :< Ax, x > −

∫
Rd

< Ax, x > µ(dx) > r}
)
≤ exp

(
− r

8‖A‖op

)
.

This example emphasizes the importance of the choice of the function V in the condition
LV (a, b). See also for instance [26, 32] for some nice studies on the concentration
properties of Gaussian-like quadratic forms and Gaussian chaoses.

4.1.2 Kolmogorov process and the Boltzmann invariant measure

Recall that the Boltzmann probability measure µ has density proportional to e−U with
respect to the Lebesgue measure and is reversible for the Kolmogorov process with
generator

Lf = ∆f− < ∇U,∇f > .

To begin, assume that the measure µ is spherically log-concave, i.e. there exists a C2

function φ : R+ → R+ convex non-decreasing with φ(0) = 0 and such that U(x) = φ(‖x‖)
for any x ∈ Rd. By a famous result of Bobkov [5], the dynamics (µ,Γ) satisfy (at least) a
Poincaré inequality. Let us consider the potential U as an observable and also the test
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function V = ecU , which belongs to L1(µ) for any c ∈ (0, 1) since φ is convex. Assume
that there exists a truncation level R > 0 and M = M(R) ∈ (0, 1− c) such that

∆U(x)

‖∇U(x)‖2
=

(d− 1)φ′(‖x‖) + ‖x‖φ′′(‖x‖)
‖x‖φ′(‖x‖)2

≤ M, ‖x‖ ≥ R.

Since we have

−LV (x)

V (x)
= −c∆U(x) + c(1− c) ‖∇U(x)‖2

= −c(d− 1)
φ′(‖x‖)
‖x‖

− c φ′′(‖x‖) + c(1− c)φ′(‖x‖)2,

one deduces that U belongs to the class LV (a, b) with a = 1/c(1− c−M), the parameter
b = b(R) being chosen conveniently on BR, the centered ball of radius R in Rd. Actually
one can take b as the maximum between 3aλ1 (a quantity appearing in the restriction of
Theorem 3.12) and ∥∥∥∥(a LVV + ‖∇U‖2

)
1BR

∥∥∥∥
L∞(µ)

.

As a result, one can apply Theorem 3.12 to obtain the following concentration estimate:
for any 0 ≤ r ≤

√
64b/27λ1,

µ
(
{x ∈ Rd : U(x)− µ(U) > r}

)
≤ exp

(
−9λ1r

2

32b

)
,

whereas for any r ≥
√

64b/27λ1,

µ
(
{x ∈ Rd : U(x)− µ(U) > r}

)
≤ exp

(
−r
√

3λ1

16b

)
.

As mentioned in Remark 3.13, only the exponential decay is interesting since we do not
obtain the correct order of magnitude in terms of the variance of U in the Gaussian
window. See also the recent and elegant article of Bobkov and Madiman [9] where
a somewhat similar tail estimate is established via a different approach, but with the
sharp Gaussian regime.

Actually, spherically log-concave probability measures include the case of a potential
U such that U(x) = ‖x‖β with β ≥ 1. Since the case β = 2 has already been considered,
three different situations arise:

(i) the case β = 1, for which only the Poincaré inequality is satisfied.
(ii) the case β ∈ (1, 2): the standard Beckner inequality holds, cf. [33].
(iii) the case β > 2: using Wang’s criterion [41], the log-Sobolev inequality is then

verified.

In these three cases, one may choose the following parameters:

c :=
1

2
, M :=

1

4
, a := 8 and R := 41/β

(
d+ β − 2

β

)1/β

,

provided the restriction d + β − 2 > 0 holds. Finally, if β > 2 then the parameter
b can be easily computed according to the previous choice, in contrast to the case
β ∈ [1, 2) for which U is not C2 at 0. Therefore, an approximation procedure is required
to obtain a convenient constant b in this non-smooth situation. To do so, we apply
the proof above with an increasing sequence of test functions Vn = ecUn converging
pointwise to V , where Un is C2 on Rd. Then we use an easy perturbation argument to
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get the standard Beckner inequality (or the Poincaré inequality in the case β = 1) for
the Boltzmann probability measure defined with respect to the potential Un and finally,
we apply Fatou’s lemma in the concentration estimate obtained for the observable Un.

One may also extend the result to the case of a general potential U , when for example
a logarithmic Sobolev inequality holds. Let us assume for example that the potential U
is such that its Hessian matrix, denoted HessU , is lower bounded and that the following
Lyapunov condition holds:

LV (x) ≤
(
−c1 ‖x‖2 + c2

)
V (x), x ∈ Rd,

where c1, c2 > 0 and V ≥ 1 is C2. Then a logarithmic Sobolev inequality holds, cf. [13],
and one can apply Theorem 3.6 for observables f such that the norm of ∇f(x) is con-
trolled by ‖x‖, since in this case f ∈ LV (a, b) with a = 1/c1 and b = c2/c1. For instance,
the Lyapunov condition above will be verified if at least one of the two conditions below
is satisfied: there exist α ∈ (0, 1) and β > 0 such that for sufficiently large x,

(1− α) ‖∇U(x)‖2 −∆U(x) ≥ β‖x‖2 or < x,∇U(x) >≥ β‖x‖2.

4.1.3 Log-Sobolev inequality for modified dynamics

Our last example concerns the case where a log-Sobolev inequality does not hold for the
classical dynamics but for a slightly modified dynamics, both with the same Boltzmann
invariant probability measure µ. We will focus here on the simple case U(x) := ‖x‖α for
1 < α < 2, so that the standard Beckner inequality (thus the Poincaré inequality) holds
for the classical dynamics (µ,Γ), but not a log-Sobolev inequality. However according
to [14], the following weighted log-Sobolev inequality holds:

Entµ(f2) ≤ C
∫
Rd

(
1 + ‖x‖2−α

)
‖∇f(x)‖2 µ(dx),

where C > 0 is some constant depending on dimension d. Now consider the process
with the following generator:

Lσ
2

f := σ2 ∆f+ < ∇(σ2)− σ2∇U,∇f >,

where σ is some smooth function from Rd to R. Once again the measure µ is reversible
for this process, but the notable difference relies on the weight σ2 in the carré du
champ, i.e. Γσ

2

(f, f) := σ2 ‖∇f‖2, so that a Lipschitz function f may have an unbounded
carré du champ Γσ

2

(f, f), in contrast to the example of the Kolmogorov process studied
above. In particular, the domain of the Dirichlet form is a weighted H1 space, i.e.

D(Eµ) :=

{
f ∈ L2(µ) :

∫
Rd
σ2 ‖∇f‖2 dµ <∞

}
.

Letting now σ(x)2 := 1 + ‖x‖2−α, one observes that the weighted log-Sobolev inequality
above rewrites as the log-Sobolev inequality for the new dynamics (µ,Γσ

2

). Choosing
the test function V (x) = ec‖x‖

α

, which belongs to L1(µ) for any c ∈ (0, 1), we have for
any x outside a neighborhood of 0,

− L
σ2

V (x)

V (x)
= −cα(d+ α− 2) (1 + ‖x‖2−α)‖x‖α−2 + α2c(1− c)(1 + ‖x‖2−α)‖x‖2(α−1)

−cα(2− α),

which behaves like α2c(1 − c)‖x‖α at infinity. Hence using the same reasoning as in
the case of the Kolmogorov process above, one deduces that observables f having a
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gradient ‖∇f(x)‖ controlled by ‖x‖α−1 satisfy Theorem 3.6. In particular, the observ-
able f(x) = ‖x‖α belongs to this class, as expected: according to a result of Latala and
Oleszkiewicz [33], the measure µ concentrates like exp(−crα) for large deviation level r
through Lipschitz observables in Lip(Rd). We point out that our results might be made
more precise by following the approach provided in Remark 3.11. To that aim, one has
to consider the functional inequality Iµ(a) involved in Latala and Oleszkiewicz’s work
[33], which is more general than the standard Beckner inequality emphasized above.

In fact using the modified dynamics (µ,Γσ
2

), one can even consider interesting cases
for which even the Poincaré inequality does not hold for the original dynamics (µ,Γ).
For instance consider the generalized Cauchy measure µ with density proportional to
(1 + ‖x‖2)−β , β > d/2. Such a measure satisfies some weighted Poincaré inequality [8]
as well as the following weighted log-Sobolev inequality [14]:

Entµ(f2) ≤ C
∫
Rd

(
1 + ‖x‖2

)
log
(
e+ ‖x‖2

)
‖∇f(x)‖2 µ(dx), (4.2)

where C is some positive constant depending on β and d. Letting

σ(x)2 :=
(
1 + ‖x‖2

)
log
(
e+ ‖x‖2

)
,

then the weighted inequality (4.2) rewrites as the log-Sobolev inequality for the dynam-
ics (µ,Γσ

2

). Now let V (x) = 1 + ‖x‖k for some 0 < k < 2β − d, so that V lies in L1(µ).
Then we have for any x outside a neighborhood of 0,

− L
σ2

V (x)

V (x)
= −k(d+ k − 2)

1 + ‖x‖2

‖x‖2
log
(
e+ ‖x‖2

)
−

2k
(
1 + ‖x‖2

)
e+ ‖x‖2

+2k(β − 1) log
(
e+ ‖x‖2

)
,

which is of order k(2β − d − k) log
(
e+ ‖x‖2

)
for large ‖x‖. Then we obtain by Theo-

rem 3.6 a Gaussian-exponential concentration estimate through observables f having
their gradient ‖∇f(x)‖ dominated by 1/‖x‖. Note that the function f(x) = log (‖x‖)
belongs to this class of observables, leading to the well-known heavy tail phenomenon
satisfied by Cauchy-type measures, cf. [8]. Finally, we mention that one can take profit
of Remark 3.11 to get intermediate concentration regime for observables not saturating
the Lyapunov condition.

4.2 Birth-death processes

Let us begin the study of jump processes by considering a simple but however non
trivial example, namely birth-death processes. Here (Xt)t≥0 is a Markov process on the
state spaceN := {0, 1, 2, . . .} endowed with the classical metric d(x, y) = |x−y|, x, y ∈ N.
The transition probabilities are given by

Px(Xt = y) =


λxt+ o(t) if y = x+ 1,

νxt+ o(t) if y = x− 1,

1− (λx + νx)t+ o(t) if y = x,

where limt→0 t
−1o(t) = 0. The transition rates λ and ν are respectively called the birth

and death rates and satisfy to λ > 0 on N and ν > 0 on N∗ := {1, 2, . . .} and ν0 = 0, so
that the process is irreducible. Although we assume that the stability condition (2.7),
which rewrites as

λx + νx <∞, x ∈ N,
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is satisfied, the generator might be unbounded in the sense of (2.9), i.e.

sup
x∈N

λx + νx =∞.

The process is positive recurrent and non-explosive when the rates satisfy to

∞∑
x=1

λ0λ1 · · ·λx−1

ν1ν2 · · · νx
<∞ and

∞∑
x=1

(
1

λx
+

νx
λxλx−1

+ · · ·+ νx · · · ν1

λx · · ·λ1λ0

)
=∞,

respectively. In this case the detailed balance condition (2.8) rewrites as

λx µ({x}) = νx+1 µ({x+ 1}), x ∈ N,

where µ is the unique stationary distribution of the process given by

µ({x}) = µ({0})
x∏
y=1

λy−1

νy
, x ∈ N, (4.3)

µ({0}) being the normalization constant. In the situations of interest, the death rate ν
has to be bigger than λ to ensure such criteria.

For any function f : N→ R, the generator L of the process is given by

Lf(x) = λx (f(x+ 1)− f(x)) + νx (f(x− 1)− f(x)) , x ∈ N,

and the carré du champ is

Γ(f, f)(x) =
1

2

{
λx (f(x+ 1)− f(x))

2
+ νx (f(x− 1)− f(x))

2
}
, x ∈ N.

In particular, the Dirichlet form is given by

Eµ(f, g) :=
∑
x∈N

λx (f(x+ 1)− f(x)) (g(x+ 1)− g(x)) µ({x}),

where f, g belong to the space D(Eµ) of functions u : N→ R such that Eµ(u, u) is finite.

Let us recall two recent results on the concentration of invariant measures of birth-
death processes under Lipschitz observables in Lip(N). On the one hand, under a conve-
nient ergodic condition (a positive Wasserstein - or Ricci - curvature of the process, both
definitions referring more or less to the same object), Joulin [29] gives some concentra-
tion estimates of Poisson-type (i.e. similar to the tail of the Poisson measure) for pro-
cesses with bounded rates λ and ν. On the other hand, when we apply Ollivier’s result
[37] to birth-death processes with positive Ricci curvature, his Gaussian-exponential
concentration property is available for processes having (at most) linear rates λ and ν.
As we will see below, Theorems 3.6 and 3.12 apply for observables f such that the asso-
ciated carré du champ Γ(f, f) has a growth comparable to that of ν. In particular when
focusing on Lipschitz observables in Lip(N), our concentration estimates hold without
restriction on the growth of the rates (except that induced by the functional inequalities
assumed in these two theorems), in contrast to the two aforementioned results of Joulin
and Ollivier. Note however that our results are not directly comparable to theirs since
the assumptions are not the same.

First let us provide some basic conditions which ensure an entropic or Poincaré
inequality. The following condition is due to Caputo, Dai Pra and Posta [11] and has
been recently recovered by Chafaï and Joulin [17] by using a semigroup approach: if λ
is non-increasing and ν is non-decreasing and there exists α > 0 such that

inf
x∈N

λx − λx+1 + νx+1 − νx ≥ α, (4.4)
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then the entropic inequality (2.2) is satisfied with constant α, or equivalently ρ0 ≥ α.
Such an assumption exhibits very asymmetric rates. More precisely, it enforces the
rates λ and ν to be bounded and super-linear, respectively, excluding some interesting
cases which can be however considered for the Poincaré inequality. Indeed, Miclo [36]
states that the spectral gap λ1 is positive if and only if

δ := sup
x≥1

x−1∑
k=0

1

λkµ({k})
∑
l≥x

µ({l}) < ∞, (4.5)

and in this case we have 1/δ ≥ λ1 ≥ 1/4δ, i.e. λ1 is of order 1/δ. In particular, in contrast
to the entropic inequality, one may find examples satisfying the Poincaré inequality with
an unbounded birth rate λ. Now assume that the test function V (x) := κx is in L1(µ) for
some constant κ > 1 depending on λ, ν. Then an observable f belongs to LV (a, b) if and
only if

Γ(f, f) ≤ a(κ− 1)

κ
(ν − κλ) + b,

showing that on a large scale the behaviour of Γ(f, f) is controlled by the growth of
the death rate ν. Certainly, the parameters a, b cannot be specified explicitly without
any other information on the observable f . According to this observation and to make
the link with the results of Joulin and Ollivier mentioned previously, assume that the
observable f ∈ Lip(N). Then two extreme situations may appear when the death rate ν
is unbounded:

(i) a small birth rate λ, i.e. λ is bounded. In this case one may choose the following
parameters to ensure that f ∈ LV (a, b):

a :=
κ

2(κ− 1)
and b :=

(1 + κ)‖λ‖L∞(µ)

2
.

(ii) a birth rate λ of the order of ν. Let x0 ∈ N∗ and assume that λx ≤ cνx for all
x ≥ x0, where c ∈ (0, 1) is some parameter. Then in order to get f ∈ LV (a, b), one can
choose for κ ∈ (1, 1/c),

a :=
κ(1 + c)

2(1− cκ)(κ− 1)
,

and b :=

∥∥∥∥(λ+ ν

2
+ a
LV
V

)
1[0,x0]

∥∥∥∥
L∞(µ)

=
1 + κ

2(1− cκ)

∥∥(λ− cν) 1[0,x0]

∥∥
L∞(µ)

.

In both cases (i) and (ii) there exist plenty of examples satisfying Poincaré inequality
and thus Theorem 3.12, whereas only the case (i) may satisfy the entropic inequality
and so Theorem 3.6. Of course b has also to be at least 3aλ1 if only the Poincaré inequal-
ity is satisfied (due to the restriction appearing in the statement of Theorem 3.12). For
instance in the case (i), the desired Gaussian-exponential concentration result obtained
from Theorem 3.6 is the following: if the rates λ and ν are respectively non-increasing
and non-decreasing and satisfy the inequality (4.4), then for any observable f ∈ Lip(N)

and any deviation level r ≥ 0,

µ ({x ∈ N : f(x)− µ(f) > r}) ≤ exp

(
−min

{
3α r2

8(1 + κ)λ0
,

√
κ− 1

2κ
r

})
. (4.6)

Here the parameter κ > 1 is free and an optimization could be done to improve the
constants in the estimate.

To conclude with the birth-death example, let us focus our attention on a model
which mimics the diffusion case, namely ultra log-concave distributions on N, see for
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instance [28, 11]. We say that a probability measure µ on N is ultra log-concave (resp.
log-concave) if it satisfies for any x ∈ N∗,

xµ({x})2 ≥ (x+ 1)µ({x+ 1})µ({x− 1}) (resp. µ({x})2 ≥ µ({x+ 1})µ({x− 1})).

For instance the Poisson distribution is ultra log-concave whereas the geometric mea-
sure is only log-concave. Assume that the measure µ has density e−U/Z with respect to
the counting measure on N, where U is some nice function and Z is the normalization
constant. Denote ∆U the discrete Laplacian of the potential U , i.e.

∆U(x) := U(x+ 1)− 2U(x) + U(x− 1), x ∈ N∗.

Then µ is ultra log-concave (resp. log-concave) if and only if ∆U(x) ≥ log(1 + 1/x) for
any integer x ∈ N∗ (resp. ∆U is non-negative).

From a dynamical point of view, measure µ is the stationary distribution of the birth-
death process with rates

λx = 1 and νx = eU(x)−U(x−1) 1{x6=0}, x ∈ N.

Then under the ultra log-concavity assumption, we have for any integer x ≥ 2,

λx − λx+1 + νx+1 − νx =
(
e∆U(x) − 1

)
e
∑x−1
k=1 ∆U(k)+U(1)−U(0)

≥
x−1∏
k=1

(
1 +

1

k

)
eU(1)−U(0)

x

= eU(1)−U(0)

= ν1.

One deduces that the rate ν is non-decreasing and moreover (4.4) is satisfied with
α = ν1 (the cases x ∈ {0, 1} being straightforward). Hence the concentration estimate
(4.6) applies. Finally, note that the log-concavity assumption only is not sufficient to
ensure an entropic inequality since one obtains in this case the inequality

inf
x∈N

λx − λx+1 + νx+1 − νx ≥ 0.

However, as in the diffusion case, one may find examples of log-concave distributions
on N satisfying the Poincaré inequality by using condition (4.5), which simply rewrites
as

sup
x∈N∗

∑
0≤k≤x−1<l

eU(k)−U(l) < ∞,

so that Theorem 3.12 can be used.

4.3 Glauber dynamics for unbounded particles

We consider the situation where X is the unbounded configuration space NΛ, where
Λ is a bounded subset of Zd. For each site x ∈ Λ, denote ηx the number of particles
located at x. Given the activity z > 0, let π be the Poisson measure on NΛ given by

π({η}) = e−z|Λ|
∏
x∈Λ

zηx

ηx!
, η ∈ NΛ,

where |Λ| denotes the cardinality of Λ. We equip NΛ with the total variation distance,
i.e. if η and η̄ are two configurations in NΛ, then

d(η, η̄) :=
∑
x∈Λ

|ηx − η̄x|.
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Our definition is a straightforward generalization of the classical notion of total vari-
ation distance between probability measures, since it coincides with the usual defini-
tion when the configurations are normalized by their total masses. For any function
f : NΛ → R, the discrete gradient operators are defined by

D+
x f(η) := f(η + δx)− f(η), D−x f(η) := f(η − δx)− f(η), η ∈ NΛ,

where δx is the Dirac mass at point x ∈ Λ and by convention D−x f(∅) := 0. Note that by
[20], a given function f belongs to the space Lip(NΛ) if and only if

sup
(η,x)∈NΛ×Λ

|D+
x f(η)| <∞.

Now let φ : Zd → [0,∞) be an even function, null at the origin and satisfying
∑
x∈Zd φ(x) <

∞. We define the Hamiltonian H : NΛ → R+ as

H(η) :=
1

2

∑
x,y∈Λ

φ(x− y) ηx ηy.

Then the Gibbs measure µ at inverse temperature β > 0 is the probability measure on
NΛ given by

µ({η}) =
1

Z
e−β H(η) π({η}),

where Z is the normalization constant. As observed below, our study is based on the
configuration space NΛ since our model exhibits free boundary condition, that is to say
Λ is, in some sense, disconnected from the lattice Zd. However the aforementioned
model might be extended outside Λ by introducing an appropriate boundary condition.

Now, let us introduce the Glauber dynamics associated to the Gibbs measure above,
which can be seen as a spatial birth-death process, cf. Preston [39]. If η is the configu-
ration of the system at time t, then a particle appears or disappears at site x ∈ Λ with
rates z e−βD

+
xH(η)dt and dt, respectively. In particular, the case H = 0 corresponds to

the non-interacting case. The generator L is thus of birth-death type and defined for
any function f : NΛ → R by

Lf(η) :=
∑
x∈Λ

(
c−(η, x)D−x f(η) + c+(η, x)D+

x f(η)
)
, η ∈ NΛ,

where the rates of the dynamics c+ and c− are given by{
c+(η, x) = z e−βD

+
xH(η) = z e−β

∑
y∈Λ φ(x−y) ηy ;

c−(η, x) = ηx.

In particular, the stability condition (2.7) is clearly satisfied since Λ is finite and more-
over, according to the detailed balance condition (2.8) which in our context rewrites
as

c±(η, x)µ({η}) = c∓(η ± δx, x)µ({η ± δx}), ηx > 0, (η, x) ∈ NΛ × Λ,

the Gibbs measure µ is reversible for these dynamics. Finally, the carré du champ of an
observable f is given by

Γ(f, f)(η) =
1

2

∑
x∈Λ

{
c−(η, x) |D−x f(η)|2 + c+(η, x) |D+

x f(η)|2
}
, η ∈ NΛ.
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Recently, the problem of finding the speed of convergence to equilibrium of this
model has been addressed in several articles, cf. for instance [4] or Wu’s paper [42] for
a spectral method (i.e. related to Poincaré inequality) in the continuum Rd, and also
[18] for an approach through the entropic inequality. In all these papers, the objective
is to find constants which are independent of Λ and of the boundary condition. In a
recent work [19], Dai Pra and Posta established the entropic inequality with constant
ρ0 ≥ 1− z ε(β), under the following Dobrushin-type uniqueness condition:

ε(β) :=
∑
x∈Zd

(
1− e−βφ(x)

)
<

1

z
. (4.7)

Note that assumption (4.7) will be verified as soon as β is small enough, i.e. the tem-
perature of the system is sufficiently high. If we choose for some κ > 1 the test function
V (η) := κ

∑
x∈Λ ηx which is in L1(µ), then an observable f belongs to the class LV (a, b) if

and only if

Γ(f, f)(η) ≤ a(κ− 1)

κ

∑
x∈Λ

(
ηx − κ z e−βD

+
xH(η)

)
+ b, η ∈ NΛ,

as in the context of birth-death processes above. Thus if the Dobrushin-type uniqueness
condition (4.7) is satisfied, then the Gaussian-exponential concentration estimate of
Theorem 3.6 applies under these observables. Finally, we have D+

xH(η) ≥ 0 because
φ is non-negative and if we consider an observable f in the space Lip(NΛ), then the
parameters a, b are chosen independently of f by taking

a :=
κ

2(κ− 1)
and b :=

(1 + κ)

2
z|Λ|,

and we obtain the following Gaussian-exponential concentration estimate: for any r ≥ 0,

µ
({
η ∈ NΛ : f(η)− µ(f) > r

})
≤ exp

(
−min

{
3(1− zε(β)) r2

8(1 + κ)z|Λ|
,

√
κ− 1

2κ
r

})
.

Once again an optimization in terms of the free parameter κ > 1 can be done to refine
the estimate. Note however that we do not recover the Poisson-type behaviour expected
when comparing to the non-interacting case, for which µ is nothing but the Poisson
distribution π.
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