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Abstract

We study the convergence rate to stationarity for a class of exchangeable partition-
valued Markov chains called cut-and-paste chains. The law governing the transitions
of a cut-and-paste chain is determined by products of i.i.d. stochastic matrices, which
describe the chain induced on the simplex by taking asymptotic frequencies. Using
this representation, we establish upper bounds for the mixing times of ergodic cut-
and-paste chains; and, under certain conditions on the distribution of the governing
random matrices, we show that the “cutoff phenomenon” holds.
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1 Introduction

A Markov chain {Xt}t=0,1,2,... on the space [k]N of k−colorings of the positive inte-
gers N is said to be exchangeable if its transition law is equivariant with respect to
finite permutations of N (that is, permutations that fix all but finitely many elements of
N). Exchangeability does not imply that the Markov chain has the Feller property (rel-
ative to the product topology on [k]N), but if a Markov chain is both exchangeable and
Feller then it has a simple paintbox representation, as proved by Crane [4]. In partic-
ular, there exists a sequence {St}t≥1 of independent and identically distributed (i.i.d.)
k×k random column-stochastic matrices (the paintbox sequence) such that, conditional
on the entire sequence {St}t≥1 and on X0, X1, . . . , Xm, the coordinate random variables
{Xi

m+1}i∈[n] are independent, and Xi
m+1 has the multinomial distribution specified by

the Xi
m column of Sm+1. Equivalently (see Proposition 3.3 in Section 3.3), conditional

on the paintbox sequence, the coordinate sequences {Xi
m+1}m≥0 are independent, time-

inhomogeneous Markov chains on the state space [k] with one-step transition probabil-

ity matrices S1, S2, . . . . This implies that, for any integer n ≥ 1, the restriction X [n]
t of Xt

to the space [k][n] is itself a Markov chain. We shall refer to such Markov chains Xt and
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X
[n]
t as exchangeable Feller cut-and-paste chains, or EFCP chains for short. Under mild

hypotheses on the paintbox distribution (see the discussion in Section 5) the restric-
tions of EFCP chains X [n]

t to the finite configuration spaces [k][n] are ergodic. The main
results of this paper, Theorems 1.1–1.2, relate the convergence rates of these chains to
properties of the paintbox sequence S1, S2, . . . .

Theorem 1.1. Assume that for some m ≥ 1 there is positive probability that all entries
of the matrix product SmSm−1 · · ·S1 are nonzero. Then the EFCP chain X [n] is ergodic,
and it mixes in O(log n) steps.

Theorem 1.2. Assume that the distribution of S1 is absolutely continuous relative to
Lebesgue measure on the space of k × k column-stochastic matrices, with density of
class Lp for some p > 1. Then the associated EFCP chains X [n] exhibit the cutoff
phenomenon: there exists a positive constant θ such that for all sufficiently small δ, ε > 0

the (total variation) mixing times satisfy

(θ − δ) log n ≤ t(n)
mix(ε) ≤ t(n)

mix(1− ε) ≤ (θ + δ) log n (1.1)

for all sufficiently large n.

Formal statements of these theorems will be given in due course (see Theorems 5.4
and 5.7 in Section 5), and less stringent hypotheses for the O(log n) convergence rate
will be given. In the special case k = 2 the results are related to some classical results
for random walks on the hypercube, e.g. the Ehrenfest chain on {0, 1}[n]; see Examples
5.9 and 5.10.

The key to both results is that the relative frequencies of the different colors are
determined by the random matrix products StSt−1 · · ·S1 (see Proposition 3.3). The hy-
potheses of Theorem 1.1 ensure that these matrix products contract the k−simplex to
a point at least exponentially rapidly. The stronger hypotheses of Theorem 1.2 prevent
the simplex from collapsing at a faster than exponential rate.

In addition to their own mathematical interest, our main theorems have potential
implications in population genetics, as Markov chains on spaces of partitions arise nat-
urally in various contexts. Ewens [5] was first to note the interplay between neutral
alleles models and random partitions. Kingman [11] later introduced the coalescent
process, a special Markov process on partitions that arises as the scaling limit of both
the Wright-Fisher and Moran models in population genetics; see [15]. Since the semi-
nal work of Ewens and Kingman, there has been considerable study of partition-valued
Markov chains in the probability literature, mostly involving processes of fragmentation
and coagulation. The monographs [1, 14] give an overview of this work from different
mathematical perspectives. In this paper, we study Markov chains on [k]N, which (un-
der obvious restrictions on the transition probabilities) project to Markov chainson the
space of partitions with a bounded number of blocks (see Section 3.1). When k = 4,
Markov chains on [k]N are models of natural interest in problems related to DNA se-
quencing, where the four colors correspond to the nucleotides (A,C,G,T) that appear
in DNA sequences. Our methods draw on the recent work [4], in which the class of
exchangeable Feller chains on [k]N has been characterized in terms of products of i.i.d.
stochastic matrices.

The paper is organized as follows. In Section 2, we record some simple and ele-
mentary facts about total variation distance, and in Section 3, we define cut-and-paste
Markov chains formally and establish the basic relation with the paintbox sequence
(Proposition 3.3). In Section 4, we discuss the contractivity properties of products of
random stochastic matrices. In Section 5, we prove the main results concerning er-
godicity and mixing rates of cut-and-paste chains, and in Section 5.3, we discuss some
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examples of cut-and-paste chains not covered by our main theorems. Finally, in Section
6, we deduce mixing rate and cutoff for projections of the cut-and-paste chain into the
space of ordinary set partitions.

2 Preliminaries: Total Variation Distance

Since the state spaces of interest in our main results are finite, it is natural to use
the total variation metric to measure the distance between the law D(Xm) of the chain
X at time m ≥ 1 and its stationary distribution π. The total variation distance ‖µ−ν‖TV
between two probability measures µ, ν on a finite or countable set X is defined by

‖µ− ν‖TV =
1

2

∑
x∈X
|µ(x)− ν(x)| = max

B⊂X
(ν(B)− µ(B)). (2.1)

The maximum is attained at B∗ = {x : ν(x) ≥ µ(x)} and, since the indicator 1B∗ is
a function only of the likelihood ratio dν/dµ, the total variation distance ‖µ − ν‖TV is
the same as the total variation distance between the µ− and ν− distributions of any
sufficient statistic. In particular, if Y = Y (x) is a random variable such that dν/dµ is a
function of Y , then

‖µ− ν‖TV =
1

2

∑
y

|ν(Y = y)− µ(Y = y)|, (2.2)

where the sum is over all possible values of Y (x).
Likelihood ratios provide a useful means for showing that two probability measures

are close in total variation distance.

Lemma 2.1. Fix ε > 0 and define

Bε =

{
x :

∣∣∣∣µ(x)

ν(x)
− 1

∣∣∣∣ > ε

}
.

If ν(Bε) < ε, then ‖µ− ν‖TV < 2ε.

Proof. By definition of Bε, B
c
ε := {x : |µ(x)− ν(x)| ≤ εν(x)} and so (1− ε)ν(x) ≤ µ(x) ≤

(1 + ε)ν(x) for every x ∈ Bc
ε and

µ(Bc
ε) ≥ (1− ε)ν(Bc

ε).

By assumption ν(Bε) < ε, it follows that µ(Bc
ε) ≥ (1− ε)2 and

‖µ− ν‖TV =
1

2

∑
x∈Bε

|µ(x)− ν(x)|+
∑
x∈Bc

ε

|µ(x)− ν(x)|


≤ 1

2

∑
x∈Bε

µ(x) +
∑
x∈Bε

ν(x) +
∑
x∈Bc

ε

|µ(x)− ν(x)|


< 2ε.

The convergence rates of EFCP chains will be (in the ergodic cases) determined
by the contractivity properties of products of random stochastic k × k matrices on the
(k − 1)-dimensional simplex

∆k :=

{
(s1, . . . , sk)T : si ≥ 0 and

∑
i

si = 1

}
. (2.3)
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We now record some preliminary lemmas about convergence of probability measures
on ∆k that we will need later. For each n ∈ N and each element s ∈ ∆k, we define a
probability measure %ns , the product-multinomial-s measure, on [k][n] by

%ns (x) :=

n∏
j=1

sxj for x = x1x2 · · ·xn ∈ [k][n] . (2.4)

Observe that the vectorm(x) := (m1, . . . ,mk) of cell counts defined bymj :=
∑n
i=1 1j(x

i)

is a sufficient statistic for the likelihood ratio %ns (x)/%ns′(x) of any two product-multinomial
measures %ns and %ns′ .

Corollary 2.2. Fix δ, ε > 0. If sn, s′n are two sequences in ∆k such that all coordinates
of sn, s′n are in the interval [δ, 1− δ] for every n, and if ‖sn − s′n‖∞ < n−1/2−ε, then

lim
n→∞

‖%nsn − %
n
s′n
‖TV = 0.

Proof. This is a routine consequence of Lemma 2.1, as the hypotheses ensure that the
likelihood ratio d%nsn/d%

n
s′n

is uniformly close to 1 with probability approaching 1 as n→
∞.

A similar argument can be used to establish the following generalization, which is
needed in the case of partitions with k ≥ 3 classes. For s1, . . . , sk ∈ ∆k, let %n1

s1 ⊗· · ·⊗%
nk
sk

denote the product measure on [k]n1+···+nk , where the first n1 coordinates are i.i.d.
multinomial-s1, the next n2 are i.i.d. multinomial-s2, and so on.

Corollary 2.3. Fix δ, ε > 0. For each i ∈ [k], let {sin}n≥1 and {tin}n≥1 be sequences
in ∆k all of whose entries are in the interval [δ, 1 − δ], and let {Ki

n}n≥1 be sequences

of nonnegative integers such that
∑
iK

i
n = n, for every n ≥ 1. If

∑k
i=1 ‖tin − sin‖∞ <

n−1/2−ε, then

lim
n→∞

∥∥∥%K1
n

s1n
⊗ · · · ⊗ %K

k
n

skn
− %K

1
n

t1n
⊗ · · · ⊗ %K

k
n

tkn

∥∥∥
TV

= 0.

In dealing with probability measures that are defined as mixtures, the following
simple tool for bounding total variation distance is useful.

Lemma 2.4. Let µ, ν be probability measures on a finite or countable space X that are
both mixtures with respect to a common mixing probability measure λ(dθ), that is, such
that there are probability measures µθ and νθ for which

µ =

∫
µθ dλ(θ) and ν =

∫
νθ dλ(θ).

If ‖µθ − νθ‖TV < ε for all θ in a set of λ−probability > 1− ε then

‖µ− ν‖TV < 2ε.

Lower bounds on total variation distance between two probability measures µ, ν

are often easier to establish than upper bounds, because for this it suffices to find a
particular set B such that µ(B)− ν(B) is large. By (2.2), it suffices to look at sets of the
form B = {Y ∈ F}, where Y is a sufficient statistic. The following lemma for product
Bernoulli measures illustrates this strategy. For α ∈ [0, 1], we write νnα := %ns , where
s := (α, 1− α) ∈ ∆2, to denote the product Bernoulli measure determined by α.

Lemma 2.5. Fix ε > 0. If αm, βm are sequences in [0, 1] such that |αm−βm| > m−1/2+ε,
then

lim
m→∞

‖νmαm
− νmβm

‖TV = 1.
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Proof. Without loss of generality, assume that αm < βm, and let γm = (αm + βm)/2.
Denote by Sm the sum of the coordinate variables. Then, by Chebyshev’s inequality,

lim
m→∞

νmαm
{Sm < mγm} = 1 and

lim
m→∞

νmβm
{Sm < mγm} = 0.

Remark 2.6. Similar results hold for multinomial and product-multinomial sampling.
(A) If sn, s′n ∈ ∆k are distinct sequences of probability distributions on [k] such that for
some coordinate i ∈ [k] the ith entries of sn and s′n differ by at least n−1/2+ε, then

lim
n→∞

‖%nsn − %
n
s′n
‖TV = 1.

(B) If sin, t
i
n ∈ ∆k are distinct sequences of probability distributions on [k] such that for

some pair i, j ∈ [k] the jth entries of sin and tin differ by at least n−1/2+ε, then for any
sequences Ki

n of nonnegative integers such that
∑
iK

i
n = n,

lim
n→∞

∥∥∥%K1
n

s1n
⊗ · · · ⊗ %K

k
n

skn
− %K

1
n

t1n
⊗ · · · ⊗ %K

k
n

tkn

∥∥∥
TV

= 1.

These statements follow directly from Lemma 2.5 by projection on the appropriate co-
ordinate variable.

3 Preliminaries: CP chains and Paintbox Representation

3.1 k-colorings and set partitions

For k, n ∈ N, a k-coloring of [n] := {1, . . . , n} is a sequence x = x1 · · ·xn ∈ [k][n]. A
partition π of [n] is a collection {π1, . . . , πr} of non-empty, disjoint subsets (blocks) for
which

⋃r
i=1 πi = [n]. We denote by P[n] the space of all partitions of [n] and, in particular,

we write P[n]:k to denote the subspace of partitions of [n] having at most k blocks.
There is an obvious and natural projection Πn : [k][n] → P[n]:k that coincides with

[k][n] → [k][n] / ∼, where ∼ is the equivalence relation

x1x2 · · ·xn ∼ x1
∗x

2
∗ · · ·xn∗

if and only if there exists a permutation σ : [k] → [k] such that xi∗ = σ(xi) for every
i = 1, . . . , n. In particular, for x ∈ [k][n], we define π = Πn(x) by

i and j are in the same block of π ⇐⇒ xi = xj .

In this paper, we primarily study Markov chains on [k][n]; however, some of the Markov
chains considered have transition laws that are invariant under permutations of colors
[k]. In these cases, the image of the Markov chain on [k][n] by Πn is a Markov chain on
P[n]:k. By elementary properties of total variation distance, the projected chain exhibits
the same behavior as the chain on [k][n] in these cases. We discuss this further in
Section 6.

3.2 Matrix operations on [k]N

A key ingredient to our proofs of Theorems 1.1 and 1.2 is the so-called cut-and-paste
representation of EFCP chains, proven in [4], which we now introduce. To describe the
cut-and-paste Markov chain on [k][n], it is convenient to regard x ∈ [k][n] as an ordered
partition (L1, . . . , Lk), where Li, i = 1, . . . , k, is a subset of [n] and

⋃k
i=1 Li = [n]. (Note

that, in contrast to the definition of partition above, the Li need not be non-empty.)
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The space [k][n] is in one-to-one correspondence with the space of ordered partitions
through the relation

i ∈ Lj ⇐⇒ xi = j, (3.1)

for i = 1, . . . , n and j = 1, . . . , k. In particular, Lj consists of those indices colored j in x.
To avoid unnecessary notation, we may regard x ∈ [k][n] as a sequence x1 · · ·xn of

colors or an ordered partition (L1, . . . , Lk), depending on which is more convenient.
The representation as an ordered partition is convenient for characterizing the cut-and-
paste Markov chain on [k][n] by a product of i.i.d. random set-valued partition matrices,
which we now define.

Definition 3.1 (Partition matrices). For any subset S ⊂ N, define k×k partition matrix
over S to be a k×k matrix M whose entries Mij are subsets of S such that every column
M j := (M1j , . . . ,Mkj) corresponds to the ordered partition of some k-coloring of S. For
any two k × k partition matrices M,M ′, we define the product M ∗M = MM ′ by

(MM ′)ij :=
⋃

1≤l≤k

(Mil ∩M ′lj), for all 1 ≤ i, j ≤ k. (3.2)

We write M[n]:k to denote the space of k × k partition matrices of [n]. Observe
that the matrix product defined by (3.2) makes sense for matrices with entries in any
distributive lattice, provided ∪,∩ are replaced by the lattice operations.

As each column of any M ∈ M[n]:k is an ordered partition of [n], the set M[n]:k

of k × k partition matrices over [n] can be identified with [k][n]× · · · × [k][n] (k times).
Furthermore, a k × k partition matrix M induces a mapping M : [k][n] → [k][n] by

(ML)i =
⋃
j

(Mij ∩ Lj). (3.3)

Equivalently, we can define M : [k][n] → [k][n] by x 7→ x′ := M(x), where, for each
i = 1, . . . , n, x′i is the color assigned to coordinate i in the xi-th column of M . As these
are equivalent, we use the same notation to describe the map on [k][n].

In the following lemma, we write L,L′ to, respectively, denote the ordered partitions
corresponding to x, x′ ∈ [k][n].

Lemma 3.2. Let k, n ∈ N. Then

(i) for each x ∈ [k][n], ML ∈ [k][n] for all M ∈M[n]:k;

(ii) for any x, x′ ∈ [k][n], there exists M ∈M[n]:k such that ML = L′;

(iii) the pair (M[n]:k, ∗) is a monoid (i.e., semigroup with identity) for every n ∈ N.

The proof is elementary and follows mostly from the definition (3.2) (the semigroup
identity is the partition matrix whose diagonal entries are all [n] and whose off-diagonal
entries are ∅). We now describe the role of the semigroup (M[n]:k, ∗) in describing the
transitions of the cut-and-paste Markov chain.

3.3 Cut-and-paste Markov chains

Fix n, k ∈ N, let µ be a probability measure on M[n]:k, and let %0 be a probability
measure on [k][n]. The cut-and-paste Markov chain X = (Xm)m≥0 on [k][n] with initial
distribution %0 and directing measure µ is constructed as follows. Let X0 ∼ %0 and,
independently of X0, let M1,M2, . . . be i.i.d. according to µ. Define

Xm = Mm(Xm−1) = (Mm ◦Mm−1 ◦ · · · ◦M1)(X0), for m ≥ 1, (3.4)
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where the operations Mi(·) on [k][n] are defined in (3.3). We call any Markov chain
with the above dynamics a CPn(µ; %0) chain, or simply a CPn(µ) chain if the initial
distribution is unspecified. Henceforth we will use the notation Xi

m to denote the ith
coordinate variable in Xm (that is, Xi

m is the color of the site i ∈ [n] at time m ≥ 0).
Our main results concern the class of cut-and-paste chains whose directing mea-

sures are mixtures of product-multinomial measures µS , where S ranges over the set
∆k
k of k × k column-stochastic matrices. For any S ∈ ∆k

k, the product-multinomial mea-
sure µS is defined by

µS(M) :=

k∏
j=1

n∏
i=1

S(M j(i), j) for M ∈M[n]:k, (3.5)

where M j(i) =
∑
r r1{i ∈Mrj} denotes the index r of the row such that i is an element

of Mrj . (In other words, the columns of M ∼ µS are independent labeled k-colorings,
and, in each column M j , the elements i ∈ [n] are independently assigned to rows r ∈ [k]

according to draws from the multinomial-Sj distribution determined by the jth column
of S.) For any Borel probability measure Σ on ∆k

k, we write µΣ to denote the Σ-mixture
of the measures µS onM[n]:k, that is,

µΣ(·) :=

∫
∆k

k

µS(·)Σ(dS). (3.6)

Crane [4] has shown that every exchangeable, Feller Markov chain on the the space [k]N

of k-colorings of the positive integers is a cut-and-paste chain with directing measure of
the form (3.6), and so henceforth, we shall refer to such chains as exchangeable Feller
cut-and-paste chains, or EFCP chains for short.

An EFCP chain on [k][n] (or [k]N) with directing measure µ = µΣ can be constructed
in two steps as follows. First, choose i.i.d. stochastic matrices S1, S2, . . . with law Σ,
all independent of X0; second, given X0, S1, S2, . . ., let M1,M2, . . . be conditionally inde-
pendent k× k partition matrices with laws Mi ∼ µSi for each i = 1, 2, . . ., and define the
cut-and-paste chain Xm by equation (3.4). This construction is fundamental to our ar-
guments, and so henceforth, when considering an EFCP chain with directing measure
µΣ, we shall assume that it is defined on a probability space together with a paintbox
sequence S1, S2, . . . .

For each m ∈ N, set
Qm := SmSm−1 · · ·S1. (3.7)

Note that Qm is itself a stochastic matrix. Denote by S the σ-algebra generated by the
paintbox sequence S1, S2, . . . .

Proposition 3.3. Given G := σ(X0) ∨ S, the n coordinate sequences (Xi
m)m≥0, where

i ∈ [n], are conditionally independent versions of a time-inhomogeneous Markov chain
on [k] with one-step transition probability matrices S1, S2, . . . . Thus, in particular, for
each m ≥ 1,

P(Xi
m = xim for each i ∈ [n] | G) =

n∏
i=1

Qm(xim, X
i
0). (3.8)

Proof. We prove that the Markov property holds by induction on m. The case m = 1

follows directly by (3.5), as this implies that, conditional on G, the coordinate random
variablesXi

1 are independent, with multinomial marginal conditional distributions given
by the columns of S1. Assume, then, that the assertion is true for somem ≥ 1. Let Fm be
the σ-algebra generated by G and the random partition matrices M1,M2, . . . ,Mm. Since
the specification (3.4) expresses Xm as a function of X0,M1,M2, . . . ,Mm, the random
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variables Xi
t , where t ≤ m, are measurable with respect to Fm. Moreover, given G, the

random matrix Mm+1 is conditionally independent of Fm, with conditional distribution
(3.5) for S = Sm+1. Equation (3.5) implies that, conditional on G, the columns M c

m+1 of
Mm+1 are independent k-colorings obtained by independent multinomial−Sc sampling.
Consequently,

P (Xi
m+1 = xim+1 ∀ i ∈ [n] | Fm) = P ((Mm+1Xm)i = xim+1 ∀ i ∈ [n] | Fm)

= P ((Mm+1Xm)i = xim+1 ∀ i ∈ [n] | G ∨ σ(Xm))

=

n∏
i=1

Sm+1(xim+1, X
i
m),

the second equality by the induction hypothesis and the third by definition of the prob-
ability measure µSm+1 . This proves the first assertion of the proposition. Equation (3.8)
follows directly.

Proposition 3.3 shows that, for any n ≥ 1, a version of the EFCP chain on [k][n] can
be constructed by first generating a paintbox sequence Sm and then, conditional on S,
running independent, time-inhomogeneous Markov chains Xi

m with one-step transition
probability matrices Sm. From this construction it is evident that a version of the EFCP
chain on the infinite state space [k]N can be constructed by running countably many
conditionally independent Markov chains Xi

m, and that, for any n ∈ N, the projection of
this chain to the first n coordinates is a version of the EFCP chain on [k][n].

4 Random stochastic matrix products

For any EFCP chain {Xm}m≥0, Proposition 3.3 directly relates the conditional distri-
bution of Xm to the product Qm = SmSm−1 · · ·S1 of i.i.d. random stochastic matrices.
Thus, the rates of convergence of these chains are at least implicitly determined by
the contractivity properties of the random matrix products Qm. The asymptotic behav-
ior of i.i.d. random matrix products has been thoroughly investigated, beginning with
the seminal paper of Furstenberg and Kesten [6]: see [2] and [7] for extensive re-
views. However, the random matrices Si that occur in the paintbox representation of
the CPn(µΣ) chain are not necessarily invertible, so much of the theory developed in [2]
and [7] doesn’t apply. On the other hand, the random matrices St are column-stochastic,
and so the deeper results of [2] and [7] are not needed here. In this section, we collect
the results concerning the contraction rates of the products Qm needed for the study of
the EFCP chains, and give elementary proofs of these results.

Throughout this section assume that {Si}i≥1 is a sequence of independent, identi-
cally distributed k× k random column-stochastic matrices with common distribution Σ,
and let

Qm := SmSm−1 · · ·S1, m ≥ 1.

4.1 Asymptotic Collapse of the Simplex

In the theory of random matrix products, a central role is played by the induced
action on projective space. In the theory of products of random stochastic matrices an
analogous role is played by the action of the matrices on the simplex ∆k. By definition,
the simplex ∆k consists of all convex combinations of the unit vectors e1, e2, . . . , ek ofRk;
since each column of a k × k column-stochastic matrix S ∈ ∆k

k lies in ∆k, the mapping
v 7→ Sv preserves ∆k. This mapping is contractive in the sense that it is Lipschitz
(relative to the usual Euclidean metric on Rk) with Lipschitz constant ≤ 1.

The simplex ∆k is contained in a translate of the (k − 1)-dimensional vector sub-
space V = Vk of Rk consisting of all vectors orthogonal to the vector 1 = (1, 1, . . . , 1)T
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(equivalently, the subspace with basis ei − ei+1 where 1 ≤ i ≤ k − 1). Any stochastic
matrix A leaves the subspace V invariant, and hence induces a linear transformation
A|V : V → V . Since this transformation is contractive, its singular values are all be-
tween 0 and 1. (Recall that the singular values of a d× d matrix S are the square roots
of the eigenvalues of the nonnegative definite matrix STS. Equivalently, they are the
lengths of the principal axes of the ellipsoid S(Sd−1), where Sd−1 is the unit sphere in
Rd.) Denote the singular values of the restriction Qn|V by

1 ≥ λn,1 ≥ λn,2 ≥ · · · ≥ λn,k−1 ≥ 0. (4.1)

Because the induced mapping Qn : ∆k → ∆k is affine, its Lipschitz constant is just the
largest singular value λn,1.

Proposition 4.1. Let (Si)i≥1 be independent, identically distributed k × k column-
stochastic random matrices, and let Qm = SmSm−1 · · ·S1. Then

lim
m→∞

diameter(Qm(∆k)) = 0 (4.2)

if and only if there exists m ≥ 1 such that with positive probability the largest singular
value λm,1 of Qm|V is strictly less than 1. In this case,

lim sup
m→∞

diameter(Qm(∆k))1/m < 1 almost surely. (4.3)

(Here diameter refers to the standard Euclidean metric on the simplex.)

Proof. In order that the asymptotic collapse property (4.2) holds it is necessary that for
some m the largest singular value of Qm|V be less than one. (If not then for each m

there would exist points um, vm ∈ ∆k such that the length of Qm(um − vm) is at least
the length of um− vm; but this would contradict (4.2).) Conversely, if for some ε > 0 the
largest singular of Qm|V is less than 1−ε with positive probability then with probability
1 infinitely many of the matrix products Smn+mSmn+m−1 · · ·Smn+1 have largest singular
value less than 1 − ε. Hence, the Lipschitz constant of the mapping on ∆k induced
by Qmn must converge to 0 as n → ∞. In fact even more is true: the asymptotic
fraction as n→∞ of blocks where Smn+mSmn+m−1 · · ·Smn+1 has largest singular value
< 1 − ε is positive, by strong law of large numbers, and so the Lipschitz constant of
Qmn : ∆k → ∆k decays exponentially.

Hypothesis 4.2. For some integer m ≥ 1 the event that all entries of Qm are positive
has positive probability.

Corollary 4.3. Hypothesis 4.2 implies the asymptotic collapse property (4.2).

Proof. It is well known that if a stochastic matrix has all entries strictly positive then
its only eigenvalue of modulus 1 is 1, and this eigenvalue is simple (see, for instance,
the discussion of the Perron-Frobenius theorem in the appendix of [9]). Consequently,
if Qm has all entries positive then λm,1 < 1.

4.2 The induced Markov chain on the simplex

The sequence of random matrix products (Qm)m≥1 induce a Markov chain on the
simplex ∆k in the obvious way: for any initial vector Y0 ∈ ∆k independent of the se-
quence (Sm)m≥0, put

Ym = QmY0, m ≥ 1. (4.4)

That the sequence {Ym}m≥0 is a Markov chain follows from the assumption that the ma-
trices Si are i.i.d. Since matrix multiplication is continuous, the induced Markov chain
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is Feller (relative to the usual topology on ∆k). Consequently, since ∆k is compact, the
induced chain has a stationary distribution, by the usual Bogoliubov-Krylov argument
(see, e.g., [13]).

Proposition 4.4. The stationary distribution of the induced Markov chain on the sim-
plex is unique if and only if the asymptotic collapse property (4.2) holds.

Proof of sufficiency. Let π be a stationary distribution, and let Y0 ∼ π and Ỹ0 be random
elements of ∆k that are independent of the sequence {Qm}m≥1. Define Ym = QmY0

and Ỹm = QmỸ0. Both sequences {Ym}m≥0 and {Ỹm}m≥0 are versions of the induced
chain, and since the distribution of Y0 is stationary, Ym ∼ π for every m ≥ 0. But the
asymptotic collapse property (4.2) implies that as m→∞,

d(Ym, Ỹm)→ 0 a.s.,

so the distribution of Ỹm approaches π weakly as m→∞.

The converse is somewhat more subtle. Recall that the linear subspace V = Vk
orthogonal to the vector 1 is invariant under multiplication by any stochastic matrix.
Define U ⊂ V to be the set of unit vectors u in V such that ‖Qmu‖ = ‖u‖ almost surely
for every m ≥ 1. Clearly, the set U is a closed subset of the unit sphere in V , and it is
also invariant, that is, Qm(U) ⊂ U almost surely.

Lemma 4.5. The set U is empty if and only if the asymptotic collapse property (4.2)
holds.

Proof. If (4.2) holds then limm→∞ λm,1 = 0, and so ‖Qmu‖ → 0 a.s. for every unit vector
u ∈ V . Thus, U = ∅.

To prove the converse statement, assume that the asymptotic collapse property (4.2)
fails. Then by Proposition 4.1, for each m ≥ 1 the largest singular value of Qm|V is
λm,1 = 1, and consequently there exist (possibly random) unit vectors vm ∈ V such that
‖Qmvm‖ = 1. Since each matrix Si is contractive, it follows that ‖Qmvm+n‖ = 1 for
all m,n ≥ 1. Hence, by the compactness of the unit sphere and the continuity of the
maps Qm|V , there exists a possibly random unit vector u such that ‖Qmu‖ = 1 for every
m ≥ 1.

We will now show that there exists a non-random unit vector u such that ‖Qmu‖ = 1

for every m, almost surely. Suppose to the contrary that there were no such u. For each
unit vector u, let pm(u) be the probability that ‖Qmu‖ < 1. Since the matrices Sm are
weakly contractive, for any unit vector u the events ‖Qmu‖ = 1 are decreasing in m,
and so pm(u) is non-decreasing. Hence, by a subsequence argument, if for every m ≥ 1

there were a unit vector um such that pm(um) = 0, then there would be a unit vector u
such that pm(u) = 0 for every m. But by assumption there is no such u; consequently,
there must be some finite m ≥ 1 such that pm(u) > 0 for every unit vector.

For each fixed m, the function pm(u) is lower semi-continuous (by the continuity of
matrix multiplication), and therefore attains a minimum on the unit sphere of V . Since
pm is strictly positive, it follows that there exists δ > 0 such that pm(u) ≥ δ for every
unit vector u. But if this is the case then there can be no random unit vector u such that
‖Qmu‖ = 1 for every m ≥ 1, because for each m the event ‖Qm+1u‖ < ‖Qmu‖ would
have conditional probability (given S1, S2, . . . , Sm) at least δ.

Proof of necessity in Proposition 4.4. If the asymptotic collapse property (4.2) fails, then
by Lemma 4.5 there exists a unit vector u ∈ V such that ‖Qmu‖ = 1 for all m ≥ 1, almost
surely. Hence, since ∆k is contained in a translate of V , there exist distinct µ, ν ∈ ∆k

such that ‖Qm(µ− ν)‖ = ‖µ− ν‖ for all m ≥ 1, a.s. By compactness, there exists such a
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pair (µ, ν) ∈ ∆2
k for which ‖µ− ν‖ is maximal. Fix such a pair (µ, ν), and let A ⊂ ∆2

k be
the set of all pairs (y, z) such that

‖S1y − S1z‖ = ‖µ− ν‖ a.s.

Note that the set A is closed, and consequently compact. Furthermore, because µ, ν

have been chosen so that ‖µ − ν‖ is maximal, for any pair (y, z) ∈ A the points y and z

must both lie in the boundary ∂∆k of the simplex.
Define Ym = Qmµ, Zm = Qmν, and Rm = (Ym + Zm)/2. By construction, for each

m ≥ 0, the pair (Ym, Zm) lies in the set A. The sequence (Ym, Zm, Rm) is a ∆3
k−valued

Markov chain, each of whose projections on ∆k is a version of the induced chain.
Since ∆3

k is compact, the Bogoliubov-Krylov argument implies that the Markov chain
(Ym, Zm, Rm) has a stationary distribution λ whose projection λY,Z on the first two co-
ordinates is supported by A. Each of the marginal distributions λY , λZ , and λR is
obviously stationary for the induced chain on the simplex, and both λY and λZ have
supports contained in ∂∆k. Clearly, if (Y,Z,R) ∼ λ then R = (Y + Z)/2.

We may assume that λY = λZ , for otherwise there is nothing to prove. We claim
that λR 6= λY . To see this, let D be the minimal integer such that λY is supported
by the union ∂D ∆k of the D−dimensional faces of ∆k. If (Y,Z,R) ∼ λ, then Y 6= Z,
since λY,Z has support in A. Consequently, (Y + Z)/2 is contained in the interior of a
(D + 1)−dimensional face of ∆k. It follows that λR 6= λY .

Remark 4.6. Recurrence Times. Assume that the asymptotic collapse property (4.2)
holds, and let ν be the unique stationary distribution for the induced chain on the sim-
plex. Say that a point v of the simplex is a support point of ν if ν gives positive prob-
ability to every open neighborhood of v. Fix such a neighborhood U , and let τ be the
first time m ≥ 1 that Ym ∈ U . Then there exists 0 < r = rU < 1 such that for all m ≥ 1,

P{τ > m} ≤ rm,

regardless of the initial state Y0 of the induced chain. To see this, observe that because
ν(U) > 0 there exists m such that the event Qm(∆k) ⊂ U has positive probability.
Consequently, because the matrices Si are i.i.d., the probability that Qmn(∆k) 6⊂ U for
all n = 1, 2, . . . , N is exponentially decaying in N .

Remark 4.7. Relation between the induced chain on ∆k and the EFCP. Let {Xm}m≥0

be a version of the EFCP chain on [k]N with paintbox sequence {Sm}m≥1. By Proposi-
tion 3.3, the individual coordinate sequences {Xi

m}m≥0 are conditionally independent
given G = σ(X0, S1, S2, . . . ), and for each i the sequence {Xi

m}m≥0 evolves as a time-
inhomogeneous Markov chain with one-step transition probability matrices Sm. Conse-
quently, by the strong law of large numbers, if the initial state X0 has the property that
the limiting frequencies of all colors r ∈ [k] exist with probability one (as would be the
case if the initial distribution is exchangeable), then this property persists for all times
m ≥ 1. In this case, the sequence {Ym}m≥0, where Ym is the vector of limiting color
frequencies in the mth generation, is a version of the induced Markov chain on the sim-
plex ∆k. Moreover, the jth column of the stochastic matrix Sm coincides with the limit
frequencies of colors in Xm among those indices i ∈ N such that Xi

m−1 = j. Thus, the
paintbox sequence can be recovered (as a measurable function) from the EFCP chain.

4.3 Asymptotic Decay Rates

Lebesgue measure on ∆k is obtained by translating Lebesgue measure on V (the
choice of Lebesgue measure depends on the choice of basis for V , but for any two
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choices the corresponding Lebesgue measures differ only by a scalar multiple). The
k−fold product of Lebesgue measure on ∆k will be referred to as Lebesgue measure on
∆k
k.

Hypothesis 4.8. The distribution Σ of the random stochastic matrix S1 is absolutely
continuous with respect to Lebesgue measure on Sk and has a density of class Lp for
some p > 1.

Hypothesis 4.8 implies that the conditional distribution of the ith column of S1, given
the other k − 1 columns, is absolutely continuous relative to Lebesgue measure on ∆k.
Consequently, the conditional probability that it is a linear combination of the other
k− 1 columns is 0. Therefore, the matrices St are almost surely nonsingular, and so the
Furstenberg theory ([2], chapters 3–4) applies. Furthermore, under Hypothesis 4.8, all
entries of S1 are almost surely positive. Thus, Hypothesis 4.8 implies Hypothesis 4.2.

Proposition 4.9. Under Hypothesis 4.8,

E| log |detS1|| <∞, (4.5)

and consequently

lim
n→∞

(det(Qn|V ))1/n = eκ where κ = E log detS1. (4.6)

Remark 4.10. The determinant of S1 is the volume of the polyhedron S1[0, 1]k, which
is
√
k times the volume of the (k−1)−dimensional polyhedron with vertices S1ei, where

1 ≤ i ≤ k. The volume of this (k − 1)−dimensional polyhedron is the determinant of the
restriction S1|V . Consequently,

detS1|V =

k−1∏
i=1

λ1,i.

Proof. The assertion (4.6) follows from (4.5), by the strong law of large numbers, since
the determinant is multiplicative. It remains to prove (4.5). Fix ε > 0, and consider the
event detS1 < ε. This event can occur only if the smallest singular value of S1 is less
than ε1/k, and this can happen only if one of the vectors S1ei lies within distance ε1/k

(or so) of a convex linear combination of the remaining S1ej .
The vectors S1ei, where i ∈ [k], are the columns of S1, whose distribution is assumed

to have a Lp density f(M) with respect to Lebesgue measure dM on Sk. Fix an integer
m ≥ 1, and consider the subset Bm of Sk consisting of all k × k stochastic matrices M
such that the ith column Mei lies within distance e−m of the set of all convex combi-
nations of the remaining columns Mej . Elementary geometry shows that the set Bm
has Lebesgue measure ≤ Ce−m, for some constant C = Ck depending on the dimen-
sion but not on m or i. Consequently, by the Hölder inequality, for a suitable constant
C ′ = C ′k <∞,

E| log |detS1|| ≤ C ′
∞∑
m=0

(m+ 1)

∫
Bm

f(M) dM

≤ C ′
∞∑
m=0

(m+ 1)

{∫
Bm

1 dM

}1/q {∫
f(M)p dM

}1/p

≤ C ′
∞∑
m=0

(m+ 1)e−m/q
{∫

f(M)p dM

}1/p

<∞

where 1/p + 1/q = 1. In fact, this also shows that log |detS1| has finite moments of all
orders, and even a finite moment generating function in a neighborhood of 0.
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Proposition 4.11. Under Hypotheses 4.8,

lim
n→∞

λ
1/n
n,1 := λ1 exists a.s. (4.7)

Moreover, the limit λ1 is constant and satisfies 0 < λ1 < 1.

Remark 4.12. It can be shown that the Lyapunov exponents of the sequence Qm are
the same as those of Qm|V , but with one additional Lyapunov exponent 0. Thus, log λ1

is the second Lyapunov exponent of the sequence Qm.

Remark 4.13. Hypothesis 4.8 implies that the distribution of S1 is strongly irreducible
(cf. [2], ch. 3), and so a theorem of Furstenberg implies that the top two Lyapunov
exponents of the sequence Qm are distinct. However, additional hypotheses are needed
to guarantee that λ1 > 0. This is the main point of Propositions 4.9–4.11.

Proof of Proposition 4.11. The almost sure convergence follows from the Furstenberg-
Kesten theorem [6] (or alternatively, Kingman’s subadditive ergodic theorem [10]), be-
cause the largest singular value of Qn|V is the matrix norm of Qn|V , and the matrix
norm is sub-multiplicative. That the limit λ1 is constant follows from the Kolmogorov
0-1 law, because if the matrices Sj are nonsingular (as they are under the hypothe-
ses on the distribution of S1) the value of λ1 will not depend on any initial segment
SmSm−1 · · ·S1 of the matrix products.

That λ1 < 1 follows from assertion (4.3) of Proposition 4.1, because Hypothesis 4.2
implies that there is a positive probability η > 0 that all entries of S1 are at least ε > 0,
in which case S1 is strictly contractive on ∆k – and hence also on V – with contraction
factor θ = θ(ε) < 1 ([8], Proposition 1.3).

Finally, the assertion that λ1 > 0 follows from Proposition 4.9, because for any
stochastic matrix each singular value is bounded below by the determinant.

Corollary 4.14. Under Hypothesis 4.8,

lim
n→∞

max
i 6=j
‖Qnei −Qnej‖1/n = λ1 almost surely.

Proof. The lim sup of the maximum cannot be greater than λ1, because for each n the
singular value λn,1 ofQn|V is just the matrix norm ‖Qn‖. To prove the reverse inequality,
assume the contrary. Then there is a subsequence n = nm →∞ along which

lim sup
m→∞

max
i 6=j
‖Qnei −Qnej‖1/n < λ1 − ε

for some ε > 0. Denote by u = un ∈ V the unit vector that maximizes ‖Qnu‖. Because
the vectors ei − ei+1 form a basis of V , for each n the vector un is a linear combination
un =

∑
i ani(ei − ei+1), and because each un is a unit vector, the coefficients ani are

uniformly bounded by (say) C in magnitude. Consequently,

‖Qnun‖ ≤ C
∑
i

‖Qn(ei − ei+1)‖.

This implies that along the subsequence n = nm we have

lim sup
m→∞

‖Qnun‖1/n < λ1 − ε.

But this contradicts the fact that ‖Qn|V ‖1/n → λ1 from Proposition 4.11.

EJP 18 (2013), paper 61.
Page 13/23

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2389
http://ejp.ejpecp.org/


Convergence Rates

Remark 4.15. It can be also be shown that

lim
n→∞

min
i 6=j
‖Qnei −Qnej‖1/n = λ1.

This, however, will not be needed for the results of Section 5.

Remark 4.16. The argument used to prove that λ1 < 1 in the proof of Proposition 4.11
also proves that even if Hypothesis 4.8 fails, if the distribution of S1 puts positive weight
on the set of stochastic matrices with all entries at least ε, for some ε > 0, then

lim sup
n→∞

max
i 6=j
‖Qnei −Qnej‖1/n < 1. (4.8)

Hypothesis 4.8 guarantees that the sequence ‖Qnei − Qnej‖1/n has a limit, and that
the limit is positive. When Hypothesis 4.8 fails, the convergence in (4.8) can be super-
exponential (i.e., the limsup in (4.8) can be 0). For instance, this is the case if for some
rank-1 stochastic matrix A with all entries positive there is positive probability that
S1 = A.

5 Convergence to stationarity of EFCP chains

Assume throughout this section that {Xm}m≥1 is an EFCP chain on [k][n] or [k]N

with directing measure µΣ, as defined by (3.6). Let S1, S2, . . . be the associated paint-
box sequence: these are i.i.d. random column-stochastic matrices with distribution Σ.
Proposition 3.3 shows that the joint distribution of the coordinate variables Xi

m of an
EFCP chain with paintbox sequence {Si}i≥1 is controlled by the random matrix prod-
ucts Qm = SmSm−1 · · ·S1. In this section, we use this fact together with the results
concerning random matrix products recounted in Section 4 to determine the mixing
rates of the restrictions {X [n]

m }m≥1 of EFCP chains to the finite configuration spaces
[k][n].

5.1 Ergodicity

An EFCP chain need not be ergodic: for instance, if each Si is the identity matrix
then every state is absorbing and Xi

m = Xi
0 for every m ≥ 1 and every i ∈ N. More

generally, if the random matrices Si are all permutation matrices then the unlabeled
partitions of N induced by the labeled partitions Xm do not change with m, and so the
restrictions X [n]

m cannot be ergodic. The failure of ergodicity in these examples stems
from the fact that the matrix products Qm do not contract the simplex ∆k.

Proposition 5.1. Let λ be any stationary distribution for the induced Markov chain on
the simplex. Then for each n ∈ N ∪ {∞} the λ−mixture %nλ of the product-multinomial
measures on [k][n] is stationary for the EFCP chain on [k][n].

Remark 5.2. Recall that the product-multinomial measures %ns are defined by equation
(2.4); the λ−mixture is defined to be the average

%nλ =

∫
∆k

%ns λ(ds).

Thus, a random configuration X ∈ [k][n] with distribution %nλ can be obtained by first
choosing s ∼ λ, then, conditional on s, independently assigning colors to the coordi-
nates i ∈ [n] by sampling from the %ns distribution.

Proof. This is an immediate consequence of Proposition 3.3.
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Proposition 5.3. Assume that with probability one the random matrix products Qm
asymptotically collapse the simplex ∆k, that is,

lim
m→∞

diameter(Qm(∆k)) = 0. (5.1)

Then for each n ∈ N the corresponding EFCP chain {X [n]
m }m≥0 on [k][n] is ergodic, i.e.,

has a unique stationary distribution. Conversely, if, for some n ≥ 1, the EFCP chain
{X [n]

m }m≥0 is ergodic, then the asymptotic collapse property (5.1) must hold.

Proof. Fix n ≥ 1. By Propositions 4.4 and 5.1, there exists at least one stationary
distribution π. Let {Xm}m≥0 and {X̃m}m≥0 be conditionally independent versions of
the EFCP chain given the (same) paintbox sequence (Si)i≥1, with X̃0 ∼ π and X0 ∼ ν

arbitrary. Then, for any time m ≥ 1, the conditional distributions of Xm and X̃m, given
the paintbox sequence, can be recovered from the formula (3.8) by integrating out over
the distributions of X0 and X̃0, respectively. But under the hypothesis (5.1), for large
m the columns of Qm are, with high probability, nearly identical, and so for large m the
products

n∏
i=1

Qm(xim, X
i
0) and

n∏
i=1

Qm(xim, X̃
i
0)

will be very nearly the same. It follows, by integrating over all paintbox sequences,
that the unconditional distributions of Xm and X̃m will be nearly the same when m is
large. This proves that the stationary distribution π is unique and that as m → ∞ the
distribution of Xm converges to π.

By Proposition 4.4, if the asymptotic collapse property (5.1) fails then the induced
Markov chain on the simplex has at least two distinct stationary distributions µ, ν. By
Proposition 5.1, these correspond to different stationary distributions for the EFCP.

5.2 Mixing rate and cutoff for EFCP chains

We measure distance to stationarity using the total variation metric (2.1). Write
D(Xm) to denote the distribution of Xm. In general, the distance ‖D(Xm) − π‖TV will
depend on the distribution of the initial state X0. The ε−mixing time is defined to be
the number of steps needed to bring the total variation distance between D(Xm) and π
below ε for all initial states x0:

tmix(ε) = t
(n)
mix(ε) = min{m ≥ 1 : max

x0

‖D(Xm)− π‖TV < ε}. (5.2)

Theorem 5.4. Assume that with probability one the random matrix products Qm =

SmSm−1 · · ·S1 asymptotically collapse the simplex ∆k, that is, relation (4.2) holds. Then
for a suitable constant K = KΣ < ∞ depending only on the distribution Σ of S1, the
mixing times of the corresponding EFCP chains on the finite state spaces [k][n] satisfy

t
(n)
mix(ε) ≤ K log n. (5.3)

Remark 5.5. In some cases the mixing times will be of smaller order of magnitude
than log n. Suppose, for instance, that for some m ≥ 1, the event that the matrix Qm is
of rank 1 has positive probability. (This would be the case, for instance, if the columns
of S1 were independently chosen from a probability distribution on ∆k with an atom.)
Let T be the least m for which this is the case; then T < ∞ almost surely, since matrix
rank is sub-multiplicative, and Qm(∆k) is a singleton for any m ≥ T . Consequently, for
any elements a, b, c ∈ [k],

Qm(a, b) = Qm(a, c) if T ≤ m.
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Hence, if {Xm}m≥0 and {X̃m}m≥0 are versions of the EFCP chain with different initial
conditions X0 and X̃0, but with the same paintbox sequence Sm, then, by Proposition
3.3, Xm and X̃m have the same conditional distribution, given σ(Si)i≥1, on the event T ≤
m. It follows that the total variation distance between the unconditional distributions
of Xm and X̃m is no greater than P{T > m}. Thus, for any n ∈ N, the EFCP chain mixes
in O(1) steps, that is, for any ε > 0 there exists Kε <∞ such that for all n,

t
(n)
mix(ε) ≤ Kε.

Proof of Theorem 5.4. (A) Consider first the special case where for some δ > 0 every
entry of S1 is at least δ, with probability one. It then follows that no entry of Qm is
smaller than δ. By Proposition 4.1, if (4.2) holds then the diameters of the sets Qm(∆k)

shrink exponentially fast: in particular, for some (nonrandom) % < 1,

diameter(Qm(∆k)) < %m (5.4)

eventually, with probability 1.
Let {Xm}m≥0 and {X̃m}m≥0 be versions of the EFCP on [k][n] with different initial

conditions X0 and X̃0, but with the same paintbox sequence Sm. By Proposition 3.3,
the conditional distributions of Xm and X̃m given the paintbox sequence are product-
multinomials:

P (Xi
m = xi for each i ∈ [n] | S) =

n∏
i=1

Qm(xim, X
i
0) and (5.5)

P (X̃i
m = xi for each i ∈ [n] | S) =

n∏
i=1

Qm(xim, X̃
i
0).

Since the multinomial distributions Qm(·, ·) assign probability at least δ > 0 to ev-
ery color j ∈ [k], Corollary 2.3 implies that for any ε > 0, if m = K log n, where
K > −1/(2 log %), then for all sufficiently large n the total variation distance between
the conditional distributions of Xm and X̃m will differ by ε on the event (5.4) holds.
Since (5.4) holds eventually, with probability one, the inequality (5.3) now follows by
Lemma 2.4.

(B) The general case requires a bit more care, because if the entries of the matrices
Qm are not bounded below then the product-multinomial distributions (5.5) will not be
bounded away from ∂∆k, as required by Corollary 2.3.

Assume first that for some m ≥ 1 there is positive probability that Qm(∆k) is con-
tained in the interior of ∆k. Then for some δ > 0 there is probability at least δ that every
entry of Qm is at least δ. Consequently, for any α > 0 and any K > 0, with probability
converging to one as n→∞, there will exist m ∈ [K log n,K(1 + α) log n] (possibly ran-
dom) such that every entry of Qm is at least δ. By (5.4) the probability that the diameter
of Qm(∆k) is less than %m converges to 1 as m→∞. It then follows from Corollary 2.3,
by the same argument as in (A), that if K > −1/(2 log %) then the total variation distance
between the conditional distributions of Xm and X̃m will differ by a vanishingly small
amount. Since total variation distance decreases with time, it follows that the total
variation distance between the conditional distributions of XK+Kα and X̃K+Kα are also
vanishingly small. Consequently, the distance between the unconditional distributions
is also small, and so (5.3) follows, by Lemma 2.4.

(C) Finally, consider the case where Qm(∆k) intersects ∂∆k for every m, with prob-
ability one. Recall (Proposition 5.1) that if the asymptotic collapse property (4.2) holds
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then the induced Markov chain Ym on the simplex has a unique stationary distribution
ν. If there is no m ∈ N such that Qm(∆k) is contained in the interior of ∆k, then the
support of ν must be contained in the boundary ∂∆k. Fix a support point v, and let m
be sufficiently large that (5.4) holds. Since Qm(∆k) must intersect ∂∆k, it follows that
for any coordinate a ∈ [k] such that va = 0 (note that there must be at least one such a,
because v ∈ ∂∆k), the ath coordinate (Qmy)a of any point in the image Qm(∆k) must
be smaller than %m. If K is chosen sufficiently large and m ≥ K log n, then %m < n−2;
hence, by Proposition 3.3,

P (Xi
m = a for some i ∈ [n] |σ(Sl)l≥1) ≤ n · n−2 = n−1 → 0,

and similarly for X̃m. Therefore, the contribution to the total variation distance between
the conditional distributions of Xm and X̃m from states x1x2 · · ·xn in which the color a
appears at least once is vanishingly small. But for those states for which no such color
appears, the factors Qm(a, b) in (5.5) will be bounded below by the minimum nonzero
entry of v, and the result will follow by a routine modification of the argument in (B)
above.

Parts (A)-(B) of the foregoing proof provide an explicit bound in the special case
where Qm(∆k) is contained in the interior of ∆k with positive probability.

Corollary 5.6. Assume that with probability one the random matrix products Qm =

SmSm−1 · · ·S1 asymptotically collapse the simplex ∆k, so that for some 0 < % < 1,

diameter(Qm(∆k)) < %m

for all sufficiently large m, with probability 1. Assume also that with positive probability
Qm(∆k) is contained in the interior of ∆k, for somem ≥ 1. Then for anyK > −1/(2 log %)

the bound (5.3) holds for all sufficiently large n.

Theorem 5.7. Assume that the paintbox distribution Σ satisfies Hypothesis 4.8. Then
the corresponding EFCP chains exhibit the cutoff phenomenon, that is, for all ε, δ ∈
(0, 1/2), if n is sufficiently large, then

(θ − δ) log n ≤ t(n)
mix(1− ε) ≤ t(n)

mix(ε) ≤ (θ + δ) log n, (5.6)

where
θ = −1/(2 log λ1) (5.7)

and λ1 is the second Lyapunov exponent of the sequence Qm, that is, as in Proposition
(4.11).

Proof of the Upper Bound tmix(ε) ≤ (θ + δ) log n. Because the distribution of S1 is abso-
lutely continuous with respect to Lebesgue measure, there is positive probability that
all entries of S1 = Q1 are positive, and so there is positive probability that Q1(∆k) is
contained in the interior of ∆k. Therefore, Corollary 5.6 applies. But Proposition 4.11
and Corollary 4.14 implies that, under Hypothesis 4.8, that % = λ1.

Proof of the Lower Bound tmix(ε) ≥ (θ − δ) log n. It suffices to show that there exist ini-
tial states x0, x̃0 such that if {Xt}t≥0 and {X̃t}t≥0 are versions of the EFCP chain with
initial states X0 = x0 and X̃0 = x̃0, respectively, then the distributions of Xm and X̃m

have total variation distance near 1 when m ≤ (θ − δ) log n. The proof will rely on
Corollary 4.14, according to which there is a (possibly random) pair of indices i 6= j for
which

lim
m→∞

‖Qmei −Qmej‖1/m = λ1. (5.8)
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Consider first, to fix ideas, the special case k = 2. In this case (5.8) holds with
i = 1 and j = 2. Assume that n = 2n′ is even (if n is odd, project onto the first n − 1

coordinates), and let

x0 = 11 · · · 111 · · · 1 and x̃0 = 111 · · · 122 · · · 2

be the elements of [k]n such that x0 has all coordinates colored 1, while x̃0 has its first
n′ colored 1 but its second n′ colored 2. We will show that the distributions of Xm

and X̃m remain at large total variation distance at time m = (θ − α) log n. Without
loss of generality, assume that both of the chains {Xt}t≥0 and {X̃t}t≥0 have the same
paintbox sequence S1, S2, . . . . Then by Proposition 3.3, the conditional distributions of
Xm and X̃m given S = σ(St)t≥1 are product-multinomials; in particular, for any state
x = (xl)l∈[n] ∈ [k][n],

P (X l
m = xl for all l ∈ [n] |σ(St)t≥1) =

n∏
l=1

Qm(xl, 1) and

P (X̃ l
m = x̃l for all l ∈ [n] |σ(St)t≥1) =

n′∏
l=1

Qm(x̃l, 1)

2n′∏
l=n′+1

Qm(x̃l, 2).

But relation (5.8) implies that, for some α = α(δ) > 0, if m = (θ − δ) log n then the
`∞−distance between the ith and jth columns ofQm is at least n−1/2+α, with probability
approaching 1 as n→∞. Consequently, the first n′ and second n′ coordinates of X̃m are
(conditional on S) independent samples from Bernoulli distributions whose parameters
differ by at least n−1/2+α, but the 2n′ coordinates of Xm are (conditional on S) a single
sample from the same Bernoulli distribution. It follows, by Lemma 2.5 (see Remark 2.6,
statement (B)), that the unconditional distributions of Xm and X̃m are at large total
variation distance, because in X̃m the first and second blocks of n′ coordinates are
distinguishable whereas in Xm they are not. Thus, if m = (θ − δ) log n then as n→∞,

‖D(Xm)−D(X̃m)‖TV −→ 1.

The general case is proved by a similar argument. Let n = 2k(k − 1)n′ be an integer
multiple of 2k(k − 1). Break the coordinate set [n] into k(k − 1) non-overlapping blocks
of size 2n′, one for each ordered pair (i, j) of distinct colors. In the block indexed by
(i, j) let x0 take the value i, and let x̃0 take the value i in the first half of the block and
the value j in the second half. Let {Xt}t≥0 and {X̃t}t≥0 be versions of the EFCP chain
with initial states x0 and x̃0, respectively. Then by an argument similar to that used in
the binary case k = 2, if m = (θ − δ) log n, then for large n, in some block (i, j) of X̃m

the first n′ and second n′ coordinates of X̃m will be distinguishable, but in Xm they will
not. Therefore, the unconditional distributions of Xm and X̃m will be at total variation
distance near 1.

Example 5.8 (Self-similar cut-and-paste chains). Self-similar cut-and-paste chains were
introduced in [3]. These are EFCP chains for which the paintbox measure Σ = Σν is
such that the columns of S1 ∼ Σ are i.i.d. with common distribution ν on ∆k. If S1, S2, . . .

are i.i.d. with distribution Σν then the random matrix products Qm = SmSm−1 · · ·S1

asymptotically collapse the simplex, and so Theorem 5.4 applies. If, in addition, the
measure ν has a density of class Lp relative to Lebesgue measure on ∆k, then Theo-
rem 5.7 applies.

A particular example of the self-similar cut-and-paste chain is determined by the
symmetric Dirichlet distribution on ∆k. For any choice of α > 0, let

ν(k)
α (dx) :=

Γ(kα)

Γ(α)k
xα−1

1 · · ·xα−1
k dx, x ∈ ∆k,
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the density of the Dirichlet(α, . . . , α) distribution on ∆k. In this case, the transition
probabilities of the corresponding EFCP chain can be written down explicitly and it is
easy to show that this chain is reversible with respect to a version of the Pitman-Ewens
two-parameter distribution on [k][n]; see [3], Section 6 for more discussion. In the case

k = 2, ν(k)
α corresponds to the Beta distribution with parameter (α, α), and the transition

probabilities on [k][n] are

qn(x, x′) :=
α↑n00α↑n01α↑n10α↑n11

(2α)↑n0(2α)↑n1
, x, x′ ∈ [k][n],

where nij :=
∑n
l=1 1(xl = i and x′l = j), ni := ni0 + ni1, i, j = 0, 1, and α↑j := α(α +

1) · · · (α+ j − 1). In this case, S1 ∼ Σν has the form

S1 :=

(
Θ Θ′

1−Θ 1−Θ′

)
,

where Θ,Θ′ are independent Beta(α, α) random variables. Hence, the determinant of
S1 is Θ − Θ′. The singular values of a 2 × 2 stochastic matrix are determined by its
determinant, and so the exact value of the constant θ in Theorem 5.7 can be derived
from the quantity

E| log |detS1|| = E| log |Θ−Θ′|| =
∫

[0,1]×[0,1]

| log |θ − θ′||ν(2)
α (dθ)ν(2)

α (dθ′),

which can be computed explicitly for specific values of α.

5.3 Examples

We now discuss some examples of Markov chains on [k][n] whose transitions are
governed by an i.i.d. sequence of random partition matrices M1,M2, . . . with law µ, but
which are not EFCP chains because µ does not coincide with µΣ for some probability
measure Σ on ∆k

k. As a result, the examples we show are not covered by Theorems 5.4
or 5.7. We are, however, able to establish upper bounds and, in some cases, cutoff using
different techniques. All of the chains in these examples are reversible and ergodic
relative to the uniform distribution on [k][n].

Example 5.9 (Ehrenfest chain on the hypercube). For k = 2, we regard x ∈ {0, 1}[n] as
an element of n-dimensional hypercube. For each i = 1, . . . , n and a ∈ {0, 1}, we define
Ma,i as the 2× 2 partition matrix with entries

M0,i :=

(
[n]\{i} ∅
{i} [n]

)
or M1,i :=

(
[n] {i}
∅ [n]\{i}

)
.

Let x0 ∈ {0, 1}n be an initial state and first choose a1, a2, . . . i.i.d. Bernoulli(1/2) and,
independently of (am), choose i1, i2, . . . i.i.d. from the uniform distribution on [n]. Then
the chain X = (Xm)m≥0 is constructed by X0 = x0 and, for m = 1, 2, . . ., Xm =

Mam,im(Xm−1), as defined in (3.3). This corresponds to the usual Ehrenfest chain on
the hypercube, which is known to exhibit the cutoff phenomenon at (1/2)n log n; e.g.
see [12], Example 18.2.2.

Example 5.10 (General Ehrenfest chain). A more general form of the Ehrenfest chain
in the previous example is described as follows. Fix n ∈ N, take α ∈ (0, 1) and choose
a random subset A ⊂ [n] uniformly among all subsets of [n] with cardinality bαnc :=

max{r ∈ N : r ≤ αn}, the floor of αn. For i ∈ {0, 1} and A ⊂ [n], we define the partition
matrix M(A, i) by either

M(A, 0) :=

(
[n]\A ∅
A [n]

)
or M(A, 1) :=

(
[n] A

∅ [n]\A

)
.
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Let A = (A1, A2, . . .) be an i.i.d. sequence of uniform subsets of size bαnc, let I =

(I1, I2, . . .) be i.i.d. Bernoulli(1/2) and let x0 ∈ {0, 1}n. Conditional on A and I, we
construct X = (Xm)m≥0 by putting X0 = x0 and, for each m ≥ 1, define Xm as in (3.4)
from the sequence M(A1, I1),M(A2, I2), . . .. We call X an Ehrenfest(α) chain.

Define the coupling time T by

T := min

t ≥ 1 :

t⋃
j=1

Aj = [n]

 .

Any two Ehrenfest(α) chains X and X ′ constructed from the same sequences A and I

will be coupled by time T .
An upper bound on the distance to stationarity of the general Ehrenfest(α) chain

is obtained by standard properties of the hypergeometric distribution. In particular,

let Rt := #
(

[n]\
⋃t
j=1Aj

)
be the number of indices that have not appeared in one of

A1, . . . , At. By definition, {T ≤ t} = {Rt = 0} and standard calculations give

P(Rt+1 = j|Rt = r) =

(
r

r − j

)(
n− r
j

)(
n

bαnc

)−1

, j = 0, 1, . . . , r,

E(Rt) = n

(
1− bαnc

n

)t
.

For fixed α ∈ (0, 1), the ε-mixing time is bounded above by

‖D(Xt)− π‖TV ≤ n
(

1− bαnc
n

)t
≤ n exp{−bαnct/n} (5.9)

and it immediately follows, for β > 0 and t =
(

n
2bαnc log n+ β n

bαnc

)
, that

‖D(Xt)− π‖TV ≤ n−1/2 exp(−β)→ 0 as β →∞.

When α ∈ (0, 1/2], we can use Proposition 7.8 from [12] and some standard theory for
coupon collecting to obtain the lower bound

‖D(Xt)− π‖TV ≥ 1− 8 exp{−2β + 1},

when t =
(

n
2bαnc log n− β n

bαnc

)
. Hence, these chains exhibit cutoff at n/(2bαnc) log n.

Note that the standard Ehrenfest chain (Example 5.9) corresponds to α = 1/n.

Example 5.11 (A log log n upper bound on mixing time). For the general Ehrenfest
chains described above, the upper bound (5.9) on mixing time can be applied more
generally to sequences α := (α1, α2, . . .) in (0, 1). For each n ∈ N, let αn = 1 −
exp{− log n/ log log n} and let Xn be an Ehrenfest(αn) chain. By (5.9), for t ≥ (1 +

β) log log n, β > 0, we have

‖D(Xn
t )− π‖TV ≤ n−β ,

which converges to 0 as n→∞.
In general, for any function f(n) of n ∈ N, we can obtain an upper bound of (1 +

β)f(n) by the relation

αn = 1− exp

{
− log n

f(n)

}
.
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The space [k] is a group under addition modulo k defined by

x+∗ x′ := x+ x′ − 2 (mod k) + 1.

(To avoid unnecessary formalism, we henceforth write x+ x′ to denote the above addi-
tion operation.)

Write Nnk to denote the group [k][n] together with the operation +, which we define
by componentwise addition modulo k of the coordinates of x ∈ [k][n]. That is, for any
x, x′ ∈ [k][n], we define

(x+ x′)i := xi + x′i − 2 (mod k) + 1, 1 ≤ i ≤ n.

This action makes the space [k][n] into a group with a corresponding action, also denoted
+. In fact, for x, x′ ∈ [k][n], x+x′ equals Mx(x′), where Mx is the partition matrix whose
jth column is the jth cyclic shift of the classes of x; that is, for L = (L1, . . . , Lk), the
ordered partition associated to x through (3.1), we define

Mx :=


L1 Lk Lk−1 · · · L2

L2 L1 Lk · · · L3

L3 L2 L1 · · · L4

...
...

...
. . .

...
Lk Lk−1 Lk−2 · · · L1

 . (5.10)

Then, for every x, x′ ∈ [k]N, we have x+ x′ = Mx(x′).

Example 5.12. For n ∈ N, let %n be a probability measure on [k][n] and let x0 ∈ [k][n].
A CPn(%n) chain X with initial state X0 = x0 can be constructed as follows. First,
generate Y1, Y2, . . . i.i.d. from %n. Conditional on Y1, Y2, . . . , put

Xm = Ym + Ym−1 + · · ·+ Y1 +X0, m ≥ 1.

Under the definition (5.10), this is a cut-and-paste chain; however, the columns of each
matrix are a deterministic function of one another.

Consider the case where %n is a product measure of a probability measure λ on [k]

which is symmetric, i.e.

λ(j) = λ(k − j + 1) > 0, j = 1, . . . , k.

In this case, it is easy to see that the CPn(%n) chain is reversible and hence has the
uniform distribution as its unique stationary distribution.

For this construction of X, the directing measure µ on M[n]:k induced by λ cannot
be represented as µΣ for some measure Σ on Sk. Nonetheless, the mixing time of X is
bounded above by K log n for some constant K ≤ 2/minj λ(j) <∞.

6 Projected cut-and-paste chains

Recall from Section 3.1 that there is a natural projection Πn : [k][n] → P[n]:k. If
{Xm}m≥0 is a Markov chain on [k][n] whose transition probability matrix is invariant
under permutations of the colors [k], then the projection {Πn(Xm)}m≥0 is also a Markov
chain. Assume henceforth that this is the case.

Following is a simple sufficient condition for the law of an EFCP chain to be invariant
under permutations of the label set [k]. Say that a probability measure Σ on the space
∆k
k of column-stochastic matrices is row-column exchangeable if the distribution of S1 ∼

Σ is invariant under independent permutations of the rows or the columns.
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Lemma 6.1. If {Xm}m≥0 is an EFCP chain on [k][n] whose paintbox measure Σ is row-
column exchangeable then its transition probability matrix is invariant under permuta-
tions of the colors [k].

Proof. For any permutation γ of [k], define the recoloring of x ∈ [k][n] by γ by xγ =

(xiγ)i∈[n], where xiγ = γ(xi) for i = 1, . . . , n. For x, x′ ∈ [k][n], let P (x, x′) denote the
transition probability from x to x′ under the operation (3.4) with directing measure µΣ.
By row-column exchangeability of Σ, we have, for all permutations γ, γ′ of [k],

P (x, x′) = P (x, x′γ) = P (xγ , x
′) = P (xγ , x

′
γ),

for every x, x′ ∈ [k][n]. It follows immediately that the transition probability Q = PΠ−1
n

of the projected chain Πn(X) is given by

Q(Πn(x),Πn(x′)) = k↓#Πn(x′)P (x, x′), for every x, x′ ∈ [k][n],

where #Πn(x′) denotes the number of blocks of the partition Πn(x′).

Following Crane [4], we call the induced chain Π := Π∞(X) of an EFCP chain with
RCE directing measure Σ a homogeneous cut-and-paste chain.

If the chain {Xm}m≥0 is ergodic, then its unique stationary distribution is invari-
ant under permutations of [k], since its transition probability matrix is, and therefore
projects via Πn to a stationary distribution for the projected chain {Πn(Xm)}m≥0. The
sufficiency principle (equation (2.2)) for total variation distance (see also Lemma 7.9
of [12]) implies that the rate of convergence of the projected chain {Πn(Xm)}m≥0 is
bounded by that of the original chain {Xm}m≥0. Theorem 5.4 provides a bound for this
convergence when the chain {Xm}m≥0 is an EFCP chain.

Corollary 6.2. Assume that {Xm = X
[n]
m }m≥0 is an EFCP chain on [k][n] whose paintbox

measure Σ is RCE and satisfies the hypothesis of Theorem 5.4 (in particular, the ran-
dom matrix products Qm asymptotically collapse the simplex ∆k). Then, for a suitable
constant K = KΣ <∞ depending only on the distribution Σ of S1 and for any ε > 0, the
mixing times t(n)

mix(ε) of the projected chain {Πn(Xm)}m≥0 satisfy

t
(n)
mix(ε) ≤ K log n

for all sufficiently large n.

Theorem 6.3. Suppose Σ is a row-column exchangeable probability measure on Sk.
Let X be a CPn(µΣ) chain and let Y = Πn(X) be its projection into P[n]:k. Let tX(ε) and
tY (ε) denote the ε-mixing times of X and Y respectively. Then

tX(ε) = tY (ε).

In particular, if l(ε, n) ≤ tX(ε) ≤ L(ε, n) are upper and lower bounds on the ε-mixing
times of X, then

l(ε, n) ≤ tY (ε) ≤ L(ε, n),

and vice versa. Moreover, X exhibits the cutoff phenomenon if and only if Y exhibits
the cutoff phenomenon.

Proof. If π is the stationary distribution for X, then πΠ−1
n is the stationary distribution

of Y . The rest follows by the proceeding discussion regarding sufficiency of Πn(X) and
the sufficiency principle (2.2).

Corollary 6.4. Assume that the paintbox measure Σ is row-column exchangeable and
satisfies Hypothesis 4.8, and let {Xm}m≥0 be the EFCP chain on [k][n] with associated
paintbox measure Σ. Then the homogeneous cut-and-paste chain Πn(X) exhibits the
cutoff phenomenon at time θ log n, where θ = −1/(2 log λ1).
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