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Abstract

We prove a conjecture of Lalley and Sellke [Ann. Probab. 15 (1987)] asserting
that the empirical (time-averaged) distribution function of the maximum of branching
Brownian motion converges almost surely to a double exponential, or Gumbel, distri-
bution with a random shift. The method of proof is based on the decorrelation of the
maximal displacements for appropriate time scales. A crucial input is the localization
of the paths of particles close to the maximum that was previously established by the
authors [Comm. Pure Appl. Math. 64 (2011)].
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1 Introduction

Branching Brownian Motion (BBM) onR is a continuous-time Markov branching pro-
cess which plays an important role in the theory of partial differential equations [6, 7,
29], in particle physics [30], in the theory of disordered systems [10, 18], and in mathe-
matical biology [21, 24]. It is constructed as follows on a filtered space (Ω,F , (Ft)t≥0,P).
Consider a standard Brownian motion x(t), starting at 0 at time 0. We consider x(t) to
be the position of a particle at time t. After an exponential random time T of mean
one and independent of x, the particle splits into k particles with probability pk, where∑∞
k=1 pk = 1,

∑∞
k=1 kpk = 2, and

∑
k k(k − 1)pk < ∞. (The choice of mean 2 is arbi-

trary and is fixed to lighten notation.) The positions of the k particles are independent
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Ergodicity of branching Brownian motion

Brownian motions starting at x(T ). Each of these processes have the same law as the
first Brownian particle. Thus, after a time t > 0, there will be n(t) particles located at
x1(t), . . . , xn(t)(t), with n(t) being the random number of offspring generated up to that
time (note that En(t) = et).

An interesting link between BBM and partial differential equations was observed by
McKean [29]. If one denotes by

u(t, x) ≡ P
[

max
1≤k≤n(t)

xk(t) ≤ x
]

(1.1)

the law of the maximal displacement, a renewal argument shows that u(t, x) solves
the Kolmogorov-Petrovsky-Piscounov equation [KPP], also referred to as the Fisher-KPP
equation,

ut =
1

2
uxx +

∞∑
k=1

pku
k − u,

u(0, x) =

{
1, if x ≥ 0,

0, if x < 0.

(1.2)

This equation has raised a lot of interest, in part because it admits traveling wave
solutions: there exists a unique solution satisfying

u
(
t,m(t) + x

)
→ ω(x), uniformly in x, as t ↑ ∞, (1.3)

where the centering term, the front of the wave, is given by

m(t) =
√

2t− 3

2
√

2
ln t, (1.4)

and ω(x) is the unique solution (up to translation) of the o.d.e.

1

2
ωxx +

√
2ωx +

∞∑
k=1

pkω
k − ω = 0. (1.5)

The leading order of the front has been established by Kolmogorov, Petrovsky, and Pis-
counov [25]. The logarithmic corrections have been obtained by Bramson [11], us-
ing the probabilistic representation given above. (See also the recent contribution by
Roberts [26] for a different derivation through spine techniques).

Equations (1.1) and (1.3) show the weak convergence of the distribution of the re-
centered maximum of BBM.

Let

M(t) ≡ max
k≤n(t)

xk(t)−m(t) , (1.6)

yk(t) ≡
√

2t− xk(t), zk(t) ≡ yk(t)e−yk(t), (1.7)

and finally

Y (t) ≡
∑
k≤n(t)

e−
√

2yk(t) and Z(t) ≡
∑
k≤n(t)

zk(t) . (1.8)

In 1987, Lalley and Sellke [27] proved that

lim
t↑∞

Y (t) = 0 a.s. and lim
t↑∞

Z(t) = Z a.s., (1.9)

where Z is a strictly positive, almost surely finite random variable (with infinite mean).
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Ergodicity of branching Brownian motion

This paper is concerned with the large time limit of the empirical (time-averaged)
distribution of the maximal displacement

FT (x) ≡ 1

T

∫ T

0

1{M(s)≤x} ds, x ∈ R . (1.10)

The main result is that FT converges almost surely as T ↑ ∞ to a random distribution
function. The limit is the double exponential (Gumbel) distribution that is shifted by the
random variable 1√

2
lnZ:

Theorem 1 (Ergodic Theorem). For any x ∈ R,

lim
T↑∞

FT (x) = exp
(
−CZe−

√
2x
)
, a.s., (1.11)

where C > 0 is a positive constant.

The derivative martingale Z encodes the dependence on the early evolution of the
system. The mechanism for this is subtle, and we shall provide first some intuition in
the next section.

Theorem 1 was conjectured by Lalley and Sellke in [27]. They showed that, despite
the weak convergence (1.3), the empirical distribution FT (x) cannot converge to ω(x)

in the limit of large times (for any x ∈ R), and proved that the latter is recovered when
Z is integrated, i.e.

ω(x) = E
[
exp

(
−CZe−

√
2x
)]
. (1.12)

(A similar representation for the law of the branching random walk has been recently
obtained by Aïdékon [1]). The issue of ergodicity of BBM has also been discussed by
Brunet and Derrida in [15]. Ergodic results similar to Theorem 1 can be proved for
statistics of extremal particles of BBM other than the distribution of the maximum. This
will be detailed in a separate work.

A description of the law of the statistics of extremal particles has been obtained in a
series of papers by the present authors [3, 4, 5] and in the work of Aïdékon, Berestycki,
Brunet, and Shi [2]: it is now known that the joint distribution of extremal particles
re-centered by m(t) converges weakly to a randomly shifted Poisson cluster process;
the positions of the clusters is a random shift of a Poisson point process with exponen-
tial density, and the law of the individual clusters is also known, but has a different
description in each work. We refer the reader to the aforementioned papers for details.

We point out that the interest in the properties of BBM stems also from its alleged
universality: it is conjectured, and in some instances also proved, that different mod-
els of probability and of statistical mechanics share many structural features with the
extreme values of BBM. A partial list includes the two-dimensional Gaussian free field
[8, 9, 13], the cover times of graphs by random walks [19, 20], and in general, log-
correlated Gaussian fields, see e.g. [17, 22].

2 Outline of the proof

Consider a compact interval D = [d,D] with −∞ < d < D < ∞. It is clear that
almost sure convergence of the empirical distribution on these sets implies almost sure
convergence of the distribution function FT (x). As a first step in the proof of Theorem
1, we introduce a “cutoff” ε > 0 and split the integration over the sets [0, T ε] and (Tε, T ]:

FT (D)− FT (d) =
1

T

∫ T

εT

1{M(s)∈D} ds+
1

T

∫ εT

0

1{M(s)∈D} ds. (2.1)
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Ergodicity of branching Brownian motion

The second term on the r.h.s. above does not contribute in the limit when T ↑ ∞ first,
and ε ↓ 0 next. It thus suffices to compute the double limit for the first term.

To this aim, we introduce the time RT > 0, which will play the role of the early
evolution. For the moment we only require that RT ↑ ∞, but RT /

√
T ↓ 0, as T ↑ ∞. A

particular choice will be made later. We rewrite the empirical distribution as

1

T

∫ T

εT

1{M(s)∈D}ds =
1

T

∫ T

εT

P [M(s) ∈ D | FRT ] ds (2.2)

+
1

T

∫ T

εT

(
1{M(s)∈D} − P [M(s) ∈ D | FRT ]

)
ds .

We now state two theorems which immediately imply Theorem 1: Theorem 2 below
addresses the first term on the r.h.s of (2.2), while Theorem 3 addresses the second
term.

Theorem 2. Let RT ↑ ∞ as T ↑ ∞ but with RT = o(
√
T ). Then for any s ∈ [ε, 1],

lim
T↑∞

P [M(T · s) ∈ D | FRT ] =

∫
D
d
(

exp
(
−CZe−

√
2x
))

, a.s.. (2.3)

The above statement is an improvement of [27, Theorem 1], where the probability
was conditioned on a fixed time that only subsequently was let to infinity. The proof
closely follows this case and relies on precise estimates of the law of the maximal dis-
placement obtained by Bramson [12].

Theorem 2 together with a change of variables and using dominated convergence
imply

lim
ε↓0

lim
T↑∞

1

T

∫ T

εT

P [M(s) ∈ D | FRT ] ds =

∫
D
d
(

exp−CZe−
√

2x
)

a.s., (2.4)

which is the r.h.s. of (1.11).
The integrand of the second term on the r.h.s of (2.2) has mean zero. Therefore, to

prove Theorem 1 we need only the following strong law of large numbers.

Theorem 3. For ε > 0, D as above, and RT as in Theorem 2,

lim
T↑∞

1

T

∫ T

εT

(
1{M(s)∈D} − P [M(s) ∈ D | FRT ]

)
ds = 0, a.s. (2.5)

The short proof of Theorem 2 is given in Section 3. The proof of Theorem 3 turns
out to be quite delicate. Due to the possibly strong correlations among the Brownian
particles, it is perhaps surprising that a law of large numbers holds at all. Let T be large
and consider two times s, s′ ∈ [0, T ]. It is clear that if the distance between s and s′ is of
order one, say, then the extremal particles at s are strongly correlated with the ones at
s′, since the children of extremal particles are very likely to remain extremal for some
time. Therefore, s and s′ need to be well separated for the correlations to be weak. On
the other hand, and this is the crucial point, it is generally not true that the correlations
between the extremal particles at time s and s′ decay as the distance between s and s′

increases. As shown by Lalley and Sellke [27, Theorem 2 and corollary], “every particle
born in a branching Brownian motion has a descendant particle in the lead at some
future time”. Hence, if s and s′ are too far from each other (for example, if s is of order
one with respect to T and s′ is of order T ), correlations build up again and mixing fails.
Therefore, weak correlations between the frontiers at two different times only set in at
precise time scales. It turns out that if s and s′ are both of order T , s, s′ ∈ [εT, T ] and
well separated, i.e. |s − s′| > T ξ for some 0 < ξ < 1, then the correlations between
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Ergodicity of branching Brownian motion
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Figure 1: Leaders and their ancestors.

the frontiers are weak enough to provide a law of large numbers. By weak enough,
we understand a summability condition on the correlations that lead to a SLLN by a
theorem of Lyons, see Theorem 8 below. See Figure 1 for a graphical representation.
A precise control on the correlations is achieved by controlling the paths of extremal
particles in the spirit of [3] (see Section 4 below for precise statements).

3 Almost sure convergence of the conditional maximum

We start with some elementary facts that will be of importance. First, observe that
for t, s > 0 such that s = o(t) for t ↑ ∞, the level of the maximum (1.4) satisfies

m(t) = m(t− s) +
√

2s+
3

2
√

2
ln

(
t− s
t

)
= m(t− s) +

√
2s+ o(1).

(3.1)

Here and henceforth, we write xk(t) for the position of particle k at time t shifted by
the level of the maximum, i.e. xk(t) ≡ xk(t)−m(t).

Second, let {xj(s), j ≤ n(s)} and, for j = 1 . . . n(s), {x(j)
k (t− s), k ≤ n(j)(t− s)} be all

independent, identically distributed BBMs. The Markov property of BBM implies

{xk(t), k ≤ n(t)} law= {xj(s) + x
(j)
k (t− s), j ≤ n(s), k ≤ n(j)(t− s)}, (3.2)

In particular, if Fs denotes the σ-algebra generated by the process up to time s, the
combination of (3.1) and (3.2) yields for X ∈ R

P
[
∀k≤n(t) : xk(t) ≤ X | Fs

]
=

∏
k≤n(s)

P
[
∀j≤n(t−s) : xj(t− s) ≤ X + xk(s) + o(1) | Fs

]
.

(3.3)
We will typically deal with situations where only a subset of {k : k = 1, . . . , n(t)} ap-
pears. In all such cases, the generalization of (3.3) is straightforward.

A key ingredient to the proof of Theorem 2 is a precise estimate on the right-tail of
the distribution of the maximal displacement. It is related to [5, Proposition 3.3], which
heavily relies on the work by Bramson [12].
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Ergodicity of branching Brownian motion

Lemma 4. Consider t ≥ 0 and X(t) ≥ 0 such that limt↑∞X(t) = +∞ and X(t) = o(
√
t)

in the considered limit. Then, for X(t) and t both greater than 8r,

Cγ(r)−1X(t)e−
√

2X(t)

(
1− X(t)

t− r

)
≤ P [M(t) ≥ X(t)] ≤ Cγ(r)X(t)e−

√
2X(t) (3.4)

for some γ(r) ↓ 1 as r ↑ ∞ and C as in (1.12).

Proof. Let us denote by u(t, x) ≡ 1 − u(t, x), with u the distribution of the maximal
displacement defined in (1.1). We define

ψ(r, t, x+
√

2t) ≡ e−
√

2x

√
t− r

∫ ∞
0

dy′√
2π
· u(r, y′ +

√
2r) · ey′

√
2

×
{

1− exp

(
−2y′

x+ 3
2
√

2
ln t

t− r

)}
exp

(
− (y′ − x)2

2(t− r)

)
.

(3.5)

According to [5, Proposition 3.3], for t ≥ 8r, and x ≥ 8r− 3
2
√

2
ln(t), the following bounds

hold:

γ(r)−1ψ(r, t, x+
√

2t) ≤ u(t, x+
√

2t) ≤ γ(r)ψ(r, t, x+
√

2t) (3.6)

for some γ(r) ↓ 1 as r ↑ ∞.

As
√

2t = m(t) + 3
2
√

2
ln(t), by putting x ≡ x+ 3

2
√

2
ln(t), we reformulate the above as

γ(r)−1ψ(r, t, x+m(t)) ≤ u(t, x+m(t)) ≤ γ(r)ψ(r, t, x+m(t)). (3.7)

(The bounds in (3.7) hold for x ≥ 8r).

Setting

G(t, r;x, y′) ≡ u(r, y′ +
√

2r) · ey′
√

2 · exp

(
−

(y′ − x+ 3
2
√

2
ln t)2

2(t− r)

)
, (3.8)

we can rewrite (3.7) as

ψ(r, t, x+m(t)) =
t3/2e−x

√
2

√
t− r

∫ ∞
0

dy′√
2π
·
{

1− e−2y′ x
t−r

}
·G(t, r;x, y′)

= t(1 + o(1))e−x
√

2

∫ ∞
0

dy′√
2π
·
{

1− e−2y′ x
t−r

}
·G(t, r;x, y′).

(3.9)

By a dominated convergence argument [12, Prop. 8.3 and its proof], one shows that

C(r) ≡ lim
t↑∞

∫ ∞
0

2y′G(t, r;x, y′)
dy′√
2π
, (3.10)

exists, uniformly for x in compacts. In fact, Bramson’s argument easily extends to
the case where x = o(

√
t) (to see this, one simply expands the quadratic term in the

Gaussian density appearing in the definition of the function G). Moreover, C(r) → C

as r ↑ ∞, with C as in (1.12), see [12, p. 145-146]. An elementary estimate on the
exponential function yields

2y′
x

t− r −
2(y′)2x2

(t− r)2
+
f(t, r;x, y′)

(t− r)3
≤ 1− e−2y′ x

t−r ≤ 2y′
x

t− r , (3.11)

EJP 18 (2013), paper 53.
Page 6/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2082
http://ejp.ejpecp.org/


Ergodicity of branching Brownian motion

for some function f(t, r;x, y′) which is integrable with respect to G(t, r;x, y′)dy′. Insert-
ing (3.11) into (3.9), we get the bounds

xe−x
√

2

∫ ∞
0

2y′G(t, r;x, y′)
dy′√
2π

(3.12)

≥ u(t, x+m(t))

≥ xe−x
√

2

(
1 +

x

t− r

)∫ ∞
0

2y′G(t, r;x, y′)
dy′√
2π

+O((t− r)−2),

for large enough t. The assertion of the Lemma follows by taking x ≡ X(t) in (3.12) and
using(3.10).

Proof of Theorem 2. The proof of Theorem 2 is a straightforward application of Lemma
4 and the convergence of the derivative martingale. First we write

P [M(T · s) ∈ D | FRT ] = P [M(T · s) ≤ D | FRT ]− P [M(T · s) ≤ d | FRT ] . (3.13)

We show only the almost sure convergence of the first term, the treatment of the second
is identical. Since s is in (ε, 1), we have RT = o(T · s) for T ↑ ∞. Therefore, by (3.1) and
(3.2),

P [M(T · s) ≤ D | FRT ] =

=
∏

k≤n(RT )

P [M(Ts−RT ) ≤ D + yk(RT ) | FRT ]

=
∏

k≤n(RT )

{1− P [M(Ts−RT ) > D + yk(RT ) | FRT ]}

= exp

 ∑
k≤n(RT )

ln
(
1− P [M(Ts−RT ) > D + yk(RT ) | FRT ]

) .

(3.14)

By (1.9), limRT ↑∞mink≤n(RT ) yk(RT ) = +∞ a.s. Therefore, we may use Lemma 4 to
establish upper and lower bounds for the probability of the maximum being larger than
D + yk(RT ), namely

Cγ(r)−1
{
D + yk(RT )

}
exp

{
−
√

2(D + yk(RT )
}(

1− (D + yk(RT ))

Ts−RT − rT

)
≤

≤ P [M(Ts−RT ) ≥ D + yk(RT ) | FRT ] ≤
≤ Cγ(r)

{
D + yk(RT )

}
exp

{
−
√

2(D + yk(RT )
}
,

(3.15)

for Ts−RT ≥ 8r > 0. Now write (3.15) as

Cγ(r)−1e−
√

2Dzk(RT ) + ωk(RT ) ≤ P [M(Ts−RT ) ≥ D + yk(RT ) | FRT ]

≤ Cγ(r)e−
√

2Dzk(RT ) + Ωk(RT ) , (3.16)

where

ωk(RT ) ≡ C D γ(r)−1e−
√

2De−
√

2yk(RT )

(
1− D + yk(RT )

Ts−RT − rT

)
(3.17)

−C γ(r)−1e−
√

2Dzk(RT )
D + yk(RT )

Ts−RT − rT
,

and

Ωk(RT ) ≡ C D γ(r)e−
√

2De−
√

2yk(RT ) . (3.18)
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Ergodicity of branching Brownian motion

Using that −a ≤ ln(1− a) ≤ −a+ a2/2 (valid for 0 < a < 1/2) together with the bounds
(3.16), we obtain

exp

−Cγ(r)e−
√

2DZ(RT )−
∑

k≤n(RT )

Ωk(RT )

 ≤ P [M(T · s) ≤ D | FRT ]

≤ exp

(
−Cγ(r)−1e−

√
2DZ(RT )−

∑
k≤n(RT )

ωk(RT )

+
1

2

∑
k≤n(RT )

{
Cγ(r)e−

√
2Dzk(RT ) + Ωk(RT )

}2
)
. (3.19)

Next we show that the only contribution in the limit of large times in the above upper
and lower bounds comes from the Z-terms. Regarding the terms involving Ωk(RT ) in
the lower bound, we note that

0 ≤
∑

k≤n(RT )

Ωk(RT ) = CDγ(r)e−
√

2DY (RT ), (3.20)

which is indeed vanishing by (1.9) in the limit T ↑ ∞ To control the term involving
ωk(RT ) in the upper bound, we first observe that∣∣∣ ∑

k≤n(RT )

ωk(RT )
∣∣∣ ≤ ∑

k≤n(RT )

∣∣∣ωk(RT )
∣∣∣

≤ CDγ(r)−1e−
√

2D {Y (RT ) + Z(RT )} supk(D + yk(RT ))

Tε−RT − rT
.

(3.21)

But this term vanishes in the large time limit, since Y (RT )→ 0 and Z(RT )→ Z, a.s., as
T ↑ ∞, again by (1.9). Moreover, one easily sees that one can choose κ < ∞ such that
supk |yk(RT )| ≤ κ log(RT ), a.s., and therefore

supk(D + yk(RT ))

Tε−RT − rT
→ 0. (3.22)

Thus, the ωk(RT ) term in the upper bound vanishes in the limit T ↑ ∞.
It remains to control the third term in the exponential on the r.h.s. of (3.19). Using

that (a+ b)2 ≤ 2a2 + 2b2, one gets

1

2

∑
k

{
Cγ(r)e−

√
2Dzk(RT ) + Ωk(RT )

}2

≤
(
Cγ(r)e−

√
2D
)2
(∑

k

zk(RT )2 +
∑
k

e−2
√

2yk(RT )

)
.

(3.23)

Clearly, ∑
k

zk(RT )2 ≤ sup
k

(
yk(RT )2e−

√
2yk(RT )

)
Y (RT ), (3.24)

which vanishes by (1.9). A similar reasoning shows that
∑
k e
−2
√

2yk(RT ) → 0.
To summarize, the non-trivial contributions in (3.19) come from the terms involving

the random variable Z: taking the limit T ↑ ∞ first and r ↑ ∞ next (so that γ(r) ↓ 1),
implies that

lim
T↑∞

P [M(T · s) ≤ D | FRT ] = exp
(
−CZe−

√
2D
)
, a.s. (3.25)

This concludes the proof of Theorem 2.
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Ergodicity of branching Brownian motion

4 The strong law of large numbers

This section is divided into two subsections. In Subsection 4.1 we analyse localiza-
tion properties of the paths of extremal particles. Localization of the paths has played
a fundamental role in [3] in the context of the genealogies of extremal particles. The
details of the proof of the law of large numbers are given in Subsection 4.2.

4.1 Preliminaries and localization of the paths

The following fundamental result by Bramson [11] provides bounds to the right tail
of the maximal displacement. (See also Roberts [26] for a different derivation). These
bounds are not optimal (in fact, Lemma 4 is an improvement), they are however suffi-
cient for our purposes here, and simpler.

Lemma 5. [11, Section 5] Consider a branching Brownian motion {xj(t)}j≤n(t). Then,
for 0 ≤ y ≤ t1/2 and t ≥ 2,

P [M(t) ≥ y] ≤ γ(y + 1)2e−
√

2y, (4.1)

where γ is independent of t and y.

Next we recall a property of the paths of extremal particles established in [3]. This
requires some notation. For t ∈ R+ and γ > 0, we define

fγ,t(s) ≡
{
sγ 0 ≤ s ≤ t/2,
(t− s)γ t/2 ≤ s ≤ t.

(4.2)

Choose
0 < α < 1/2 < β < 1, (4.3)

and introduce the time-t entropic envelope, and the time-t lower envelope respectively:

Fα,t(s) ≡
s

t
m(t)− fα,t(s), 0 ≤ s ≤ t, (4.4)

and
Fβ,t(s) ≡

s

t
m(t)− fβ,t(s), 0 ≤ s ≤ t, (4.5)

(m(t) is the level of the maximum of a BBM of length t). By definition,

Fβ,t(s) < Fα,t(s), 0 < s < t, (4.6)

and
Fβ,t(0) = Fα,t(0) = 0, Fβ,t(t) = Fα,t(t) = m(t). (4.7)

The space/time region between the entropic and lower envelopes will be denoted through-
out as the time-t tube, or simply the tube.

Given a particle k ≤ n(t) which is at position xk(t) at time t, we denote by xk(t, s) the
position of its ancestor at time s ∈ (0, t). We refer to the map s 7→ xk(t, s) as the path of
the particle k. We say that a particle k is localized in the time t-tube during the interval
(r, t− r) if and only if

Fβ,t(s) ≤ xk(t, s) ≤ Fα,t(s),∀s ∈ (r, t− r) . (4.8)

Otherwise, we say that it is not localized. The following proposition gives strong bounds
on the probability of finding particles which are, at given times, close to the level of the
maximum, but not localized.
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J

m(J)

I

T

m(I)

RT

εT

: regions with no control on paths

Figure 2: Maxima at different times I, J are localized. The first shaded region is the
interval (0, rT ), the second is (I − rT , I), the third is (J − rT , J).

Proposition 6. Let the subset D = [d,D] be given, with −∞ < d < D ≤ ∞. There exist
ro, δ > 0 depending on α, β and D such that for r ≥ ro

sup
t≥3r

P
[
∃k≤n(t) xk(t) ∈ D but xk(s, t) not localized during (r, t− r)

]
≤ exp

(
−rδ

)
. (4.9)

Proof. The bound (4.9) is obtained combining equations (5.5), (5.54), (5.62) and (5.63)
in [3, Corollary 2.6].

What lies behind the Proposition is a phenomenon of “energy vs. entropy" which
is fundamental for the whole picture. This is explained in detail in [3], but for the
convenience of the reader we briefly sketch the argument here.

As it turns out, at any given time s ∈ (r, t−r) well inside the lifespan of a BBM, there
are simply not enough particles lying above the entropic envelope for their offspring to
make the jumps which eventually bring them to the edge at time t. On the other hand,
although there are plenty of ancestors lying below the lower envelope, their position is
so low that again none of their offspring will make it to the edge at time t. A delicate
balance between number and positions of ancestors has to be met, and this feature is
fully captured by the tubes.

Take δ = δ(α, β,D) as in Proposition 6. We pick r ≥ ro(α, β,D): we choose

rT ≡ (20 lnT )1/δ . (4.10)

We now consider the maximum of the particles at a given time s ∈ (RT , T ) that are also
localized during the interval (rT , s − rT ). See Figure 2 for a graphical representation.
We denote this maximum by Mloc(s). With this notation, by Proposition 6 and the choice
(4.10),

0 ≤ P [M(s) ∈ D]− P [Mloc(s) ∈ D] ≤ 1

T 20
. (4.11)

We pick RT ≡ 40 · rT , with rT as in (4.10). This choice clearly satisfies RT = o(
√
T )

as required in Theorem 2. The choice of the prefactor is arbitrary: we only need that
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RT > rT (for the localization of path on [RT , T − RT ]) and a choice of RT that ensures
summability in T (as seen, e.g. in (4.11)). We assume henceforth without loss of gener-
ality that both T and εT are integers.

4.2 Implementing the strategy

Recall that Theorem 3 asserts that

Restε,D(T ) ≡ 1

T

∫ T

εT

(
1{M(s)∈D} − P [M(s) ∈ D | FRT ]

)
ds (4.12)

tends to zero a.s. for T ↑ ∞. In order to prove the claim, we consider Restloc
ε,D(T ),

defined as Restε,D(T ) but with the requirement that all particles in D are localized:

Restloc
ε,D(T ) ≡ 1

T

∫ T

εT

(
1{Mloc(s)∈D} − P [Mloc(s) ∈ D | FRT ]

)
ds . (4.13)

We now claim that the large T -limit of Restloc
ε,D(T ) and that of Restε,D(T ) coincide

(provided one of the two exists, but this will become apparent below).

Lemma 7. With the notation introduces above,

lim
T↑∞

(
Restε,D(T )− Restloc

ε,D(T )
)

= 0, a.s. (4.14)

Proof of Lemma 7. We have

Restε,D(T )− Restloc
ε,D(T ) =

1

T

∫ T

εT

(
1{M(s)∈D} − 1{Mloc(s) ∈ D}

)
ds

− 1

T

∫ T

εT

(
P [M(s) ∈ D | FRT ]− P [Mloc(s) ∈ D | FRT ]

)
ds

≡ (1)T,ε − (2)T,ε. (4.15)

The proofs that limT↑∞ (1)T,ε = 0 and limT↑∞ (2)T,ε = 0 (almost surely) are identical
and relies on an application of the Borel-Cantelli lemma. We thus prove only the first
limit. Let ε > 0. By Markov’s inequality,

P [(1)T,ε > ε] ≤ 1

Tε

∫ T

εT

(
P [M(s) ∈ D]− P [Mloc(s) ∈ D]

)
ds ≤

(4.11)
≤ 1− ε

ε
T−20,

(4.16)

which is summable in T (recalling that we assume T ∈ N). Therefore, by Borel-Cantelli,

P [{(1)T,ε > ε} infinitely often] = 0. (4.17)

As the above holds for all ε > 0 we have that (1)T,ε converges to 0 as T ↑ ∞ almost
surely, and concludes the proof of Lemma 7.

The following result is the major tool to establish the SLLN for the term Restloc
ε,D(T ).

(By Lemma 7, this will then imply that the same is true for Restε,D(T )). The result is a
small extension of a theorem of Lyons [28, Theorem 1], where the statement is given
for the sum of random variables.

Theorem 8. Consider a process {Xs}s∈R+
such that E[Xs] = 0 for all s. Assume fur-

thermore that the random variables are uniformly bounded almost surely. If

∞∑
T=1

1

T
E
[∣∣∣ 1

T

∫ T

0

Xs ds
∣∣∣2] <∞, (4.18)
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Ergodicity of branching Brownian motion

then

lim
T↑∞

1

T

∫ T

0

Xs ds = 0, a.s. (4.19)

Proof. We suppose without loss of generality that sups |Xs| ≤ 1. The extension to inte-
grals is straightforward. By the summability assumption, we can find a subsequence
Tk ∈ N of times such that

∞∑
k=1

E
[∣∣∣ 1

Tk

∫ Tk

0

Xt dt
∣∣∣2] <∞ (4.20)

where Tk ↑ ∞ and Tk+1/Tk → 1. (In our case, the expectation in (4.18) will decay
faster than e−(lnT )ε for some ε > 0, see Theorem 9 below. In particular, one can take
the subsequence Tk = exp(k1/2). For the general case, we refer to [28, Lemma 2] and
references therein.) Therefore by Fubini, the sum without the expectation is almost
surely finite, and we must have

lim
k↑∞

1

Tk

∫ Tk

0

Xt dt→ 0 a.s. (4.21)

It remains to show this is true for all T ∈ N. This is easy since the variables are bounded.
For any T , there exists k such that Tk ≤ T ≤ Tk+1. Thus

∣∣∣ 1

T

∫ T

0

Xt dt
∣∣∣ ≤ ∣∣∣ 1

Tk

∫ Tk

0

Xt dt
∣∣∣+ sup

1≤s≤Tk+1−Tk

∣∣∣ 1

Tk

∫ Tk+s

Tk

Xt dt
∣∣∣ . (4.22)

The first term goes to zero by the previous argument. The second term goes to zero
since

sup
1≤s≤Tk+1−Tk

∣∣∣ 1

Tk

∫ Tk+s

Tk

Xt dt
∣∣∣ ≤ TK+1 − Tk

Tk
, (4.23)

and Tk+1/Tk → 1.

Note that

Restloc
ε,D(T ) =

1

T

∫ T

εT

(
1{Mloc(s)≤D} − P [Mloc(s) ≤ D | FRT ]

)
ds

− 1

T

∫ T

εT

(
1{Mloc(s) ≤ d} − P [Mloc(s) ≤ d | FRT ]

)
ds

≡ 1

T

∫ T

εT

X{D}s ds− 1

T

∫ T

εT

X{d}s ds,

(4.24)

with obvious notations. The goal is thus to prove that both integrals satisfy the as-
sumptions of Theorem 8. We address the first integral, the proof for the second being
identical. By construction,

∣∣X{D}s

∣∣ ≤ 2 a.s. for all s, and

E
[
X{D}s

]
= 0 . (4.25)

It therefore suffices to check the assumption concerning the summability of correla-
tions. Let

ĈT (s, s′) ≡ E
[
X(D)
s ·X(D)

s′

]
. (4.26)
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Note that by the properties of conditional expectation

ĈT (s, s′) = E

[ (
1{Mloc(s)≤D} − P [Mloc(s) ≤ D | FRT ]

)
×
(
1{Mloc(s′)≤D} − P [Mloc(s′) ≤ D | FRT ]

) ]

= E

[(
P [Mloc(s) ≤ D,Mloc(s′) ≤ D | FRT ]

− P [Mloc(s) ≤ D | FRT ]× P [Mloc(s′) ≤ D | FRT ]

)]
.

(4.27)

We claim that

∑
T

1

T
E

[∣∣∣ 1

T

∫ T

εT

X(D)
s ds

∣∣∣2] = 2
∑
T

1

T 3

∫ T

εT

ds

∫ T

s

ds′ĈT (s, s′) <∞ . (4.28)

In order to see this, and proceeding with the program outlined at the end of Section 2,
we now specify the concept of times well separated from each other. Choose 0 < ξ < 1

and split the integration according to the distance between s and s′:

1

T 3

∫ T

εT

ds

∫ T

s

ds′(·) =
1

T 3

∫ T

εT

ds

∫ s+T ξ

s

ds′(·) +
1

T 3

∫ T

εT

ds

∫ T

s+T ξ
ds′(·). (4.29)

The contribution of the first term on the r.h.s. above is negligible due to the uniform
boundedness of the integrand and to the choice 0 < ξ < 1. We are thus left to prove
that the contribution to (4.28) of the second term in (4.29) is finite. The following is the
key estimate.

Theorem 9. There exists a finite To such that the following holds for T ≥ To: for some
ε > 0 not depending on T (but on the other underlying parameters), the bound

ĈT (s, s′) ≤ e−(lnT )ε (4.30)

holds uniformly for all s, s′ such that εT ≤ s < s′ ≤ T and s′ − s > T ξ.

Theorem 9 controls the decay of correlations at specific timescales. We have not
tried to derive optimal bounds. There is in fact a certain freedom in the choice of the
timescales, and certain choices are likely to yield better estimates. For the purpose
of checking the conditions in Lyons Theorem, the bounds established are more than
sufficient: they imply that the second term in (4.29) is at most T−1e−(lnT )ε , which is
summable over T by comparing to (T lnT )−1 (recall that T is assumed to be an integer).
Theorem 3 therefore follows as soon as we prove Theorem 9. The proof of the latter is
somewhat lengthy, and done in the next section.

5 Uniform bounds for the correlations.

We use here I and J to denote the two times s, s′ from the statement of Theorem 9.
ĈT (I, J) is the expectation of the random variable

ĉT (I, J) ≡ P [Mloc(I) ≤ D,Mloc(J) ≤ D | FRT ]

− P [Mloc(I) ≤ D | FRT ]× P [Mloc(J) ≤ D | FRT ] .
(5.1)
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We rewrite these conditional probabilities using the Markov property of BBM, consid-
ering independent BBM’s starting at their respective position at time RT and shifting
the time by RT . This requires some additional notation. Take

IT ≡ I −RT , JT ≡ J −RT ,

and note thatm(I) = m(IT )+
√

2IT+o(1) as T ↑ ∞. We consider the collection {yk(RT ) ≡√
2RT − xk(RT )}k≤n(RT ) where the {xk(RT )} are the positions of the particles of the

original BBM at time RT .

Let {x̃l(JT ), l ≤ n(JT )} be a BBM starting at zero, of length JT , and of law P̃ inde-
pendent of P. We write M̃loc(JT ) for the maximum shifted by m(JT ) of this collection,
restricted to l’s whose paths (recall the notation introduced in Section 4.1) satisfy

yk(RT ) +
s′

J
m(J)− fβ,J(RT + s′) ≤ x̃l(JT , s′) ≤ yk(RT ) +

s′

J
m(J)− fα,J(RT + s′) ,

(5.2)
for 0 ≤ s′ ≤ JT − rT , the “shifted" J -tube.

Similarly, M̃k
loc(IT ) is the maximum shifted by m(IT ) of the positions of the particles

at time IT with the localization condition

yk(RT ) +
s′

I
m(I)− fβ,I(RT + s′) ≤ x̃l(IT , s′) ≤ yk(RT ) +

s′

J
m(J)− fα,J(RT + s′),

(5.3)
for 0 ≤ s′ ≤ IT − rT , the “shifted" I-tube.

(Note that the localization depends on k through the random variable yk(RT )).

By the Markov property, the first conditional probability in ĉT (I, J) can be written in
terms of the shifted process just defined:

P [Mloc(I) ≤ D,Mloc(J) ≤ D | FRT ]

=

?∏
k≤n(RT )

P̃
[
M̃k

loc(IT ) ≤ D + yk(RT ), M̃k
loc(JT ) ≤ D + yk(RT )

]
,

(5.4)

where the product runs over all the particles k’s at time RT whose path is localized
in the intersection of the I− and J−tubes during the interval (rT , RT ). The restriction
to localized positions at time RT is weaker and sufficient for our purpose: we thus
introduce the set of particles

4 ≡
{
k = 1, . . . , n(RT ) : yk(RT ) ∈

(
RαT + ΩT , R

β
T + ΩT

)}
. (5.5)

(Here and henceforth, we will use ΩT to denote a negligible term, which is not neces-
sarily the same at different occurrences. In the above case it holds ΩT = O(ln lnT ) by
definition of the tubes). We thus get that (5.4) is at most∏

k∈4

P̃
[
M̃k

loc(IT ) ≤ D + yk(RT ), M̃k
loc(JT ) ≤ D + yk(RT )

]
. (5.6)

Let

℘(IT ; yk(RT )) ≡ P̃
[
M̃k

loc(IT ) > D + yk(RT )
]
, (5.7)

(analogously for JT ) and

℘(IT , JT ; yk(RT )) ≡ P̃
[
M̃loc(IT ) > D + yk(RT ) and M̃loc(JT ) > D + yk(RT )

]
. (5.8)
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Finally, define

Ẑ( · ;RT ) ≡
∑
k∈4

℘( · ; yk(RT )), (5.9)

RT ≡ 1

2

∑
k∈4

{
℘(IT ; yk(RT )) + ℘(JT ; yk(RT ))− ℘(IT , JT ; yk(RT )

}2

. (5.10)

Proposition 10. With the above definitions,

0 ≤ ĉT (I, J) ≤ Ẑ(IT , JT ;RT ) +RT , (5.11)

almost surely, for T large enough.

Proof. To simplify the notation, we drop here and henceforth the dependence on k in
M̃k

loc. We have:∏
k∈4

P̃
[
M̃loc(IT ) ≤ D + yk(RT ), M̃loc(JT ) ≤ D + yk(RT )

]

= exp

∑
k∈4

ln
[
1− ℘(IT ; yk(RT ))− ℘(JT ; yk(RT )) + ℘(IT ; JT ; yk(RT ))

] .

(5.12)

Note that for all k ∈ 4

℘(IT ; yk(RT )) ≤ P̃
[
M̃(IT ) ≥ D + yk(RT )

]
≤ γ(1 + yk(RT ) +D)2e−

√
2(yk(RT )+D) . (5.13)

The first inequality holds by dropping the localization condition, the second follows from
(5). Therefore, this probability can be made arbitrarily small (uniformly in k) by choos-
ing T large enough. The same obviously holds for ℘(JT ; yk(RT )) and ℘(IT , JT ; yk(RT )).
Choose T large enough so that

sup
4

max{℘(IT ; yk(RT )), ℘(JT ; yk(RT )), ℘(IT , JT ; yk(RT ))} ≤ 1/6. (5.14)

Coming back to (5.12) and using that

− a ≤ ln(1− a) ≤ −a+ a2/2 (0 ≤ a ≤ 1/2), (5.15)

(with a ≡ ℘(IT ; yk(RT )) + ℘(JT ; yk(RT )) − ℘(IT ; JT ; yk(RT )), for k ∈ 4), we get that
(5.12) is at most

exp

(
− Ẑ(IT ;RT )− Ẑ(JT ;RT ) + Ẑ(IT , JT ;RT ) +RT

)
. (5.16)

This is an upper bound for the first conditional probability in the definition of ĉT (I, J). A
similar reasoning, using this time the first inequality in (5.15), yields a lower bound for
the second term in ĉT (I, J), i.e, the product of the conditional probabilities. This gives

ĉT (I, J) ≤ e−Ẑ(IT ;RT )−Ẑ(JT ;RT )
{
eẐ(IT ,JT ;RT )+RT − 1

}
, (5.17)

almost surely for T large enough. Using that for a ≥ 0, ea − 1 ≤ a · ea shows that the
right-hand side of (5.17) is bounded from above by

e−Ẑ(IT ;RT )−Ẑ(JT ;RT )
(
Ẑ(IT , JT ;RT ) +RT

)
eẐ(IT ,JT ;RT )+RT . (5.18)
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Ergodicity of branching Brownian motion

By construction, Ẑ(IT , JT ;RT ) ≤ min
{
Ẑ(IT ;RT ); Ẑ(IT ;RT )

}
. This implies that

Ẑ(IT , JT ;RT )− 1

2
Ẑ(IT ;RT )− 1

2
Ẑ(JT ;RT ) ≤ 0, (5.19)

and therefore

ĉT (I, J) ≤
(
Ẑ(IT , JT ;RT ) +RT

)
eRT−

1
2 Ẑ(IT ;RT )− 1

2 Ẑ(JT ;RT ). (5.20)

To arrive at the claim of Proposition 10, it remains to get rid of the exponential on the
r.h.s. of the preceeding inequality. Using the bound (5.26) together with the definition
of Ẑ and rearranging terms, we arrive at

RT −
1

2
Ẑ(IT ;RT )− 1

2
Ẑ(JT ;RT ) ≤

∑
k∈4

℘(IT ; yk(RT ))

(
3℘(IT ; yk(RT ))− 1

2

)

+
∑
k∈4

℘(JT ; yk(RT ))

(
3℘(JT ; yk(RT ))− 1

2

)
.(5.21)

In view of (5.13), there exists T <∞ such that for all k ∈ 4:

3℘(IT ; yk(RT ))− 1

2
≤ 0, 3℘(JT ; yk(RT ))− 1

2
≤ 0. (5.22)

Thus, for such T , all terms appearing in (5.21) are negative, and this implies that

ĉT (I, J) ≤ Ẑ(IT , JT ;RT ) +RT , (5.23)

concluding the proof of Proposition 10.

Proof of Theorem 9. Taking expectation in Proposition 10, we first show that the expec-
tation ofRT by its expectation yields the the desired bound in Theorem 9. Indeed, using
that (a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2, we get the upper bound

RT =
1

2

∑
k∈4

(℘(IT ; yk(RT )) + ℘(JT ; yk(RT ))− ℘(IT , JT ; yk(RT ))
2

≤ 2
∑
k∈4

(
℘(IT ; yk(RT ))2 + ℘(JT ; yk(RT ))2 + ℘(IT , JT ; yk(RT ))2

)
.

(5.24)

Moreover,

℘(IT , JT ; yk(RT )) ≤ 1

2
℘(IT ; yk(RT )) +

1

2
℘(JT ; yk(RT )). (5.25)

Inserting this estimate into (5.24), we get

RT ≤
∑
k∈4

(
3℘(IT ; yk(RT ))2 + 3℘(JT ; yk(RT ))2

)
. (5.26)

By (5.26), (5.13) and (5.5), and using the density of branching Brownian motion at
time RT , we get that there is a constant κ <∞ such that for sufficiently large T ,

E [RT ] ≤ κE

∑
k∈4

yk(RT )2e−2
√

2yk(RT )


≤ κeRT

∫ RβT+ΩT

RαT+ΩT

y2e−2
√

2ye
− (y−

√
2RT )2

2RT
dy√

2πRT

≤ κR2
T e
−
√

2RαT = κ(lnT )2/δe−κ(lnT )α/δ .

(5.27)
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JI

RT

εT

m(J)

m(I)

particle (1)

particle (2)

ancestor

Figure 3: Time of branching before I. The first shaded region depicts the interval
(0, rT ), the second (I − rT , I), etc.

It remains to prove similar estimates for E[Ẑ(IT , JT ;RT )] in order to prove Theorem 9.
Recall that

Ẑ(IT , JT ;RT ) =
∑
k∈4

℘(IT , JT ; yk(RT )), (5.28)

and

℘(IT , JT ; yk(RT )) = P̃
[
M̃loc(IT ) > D + yk(RT ) and M̃loc(JT ) > D + yk(RT )

]
. (5.29)

By definition, (5.29) is the probability to find a particle of the BBM which has two
extremal descendants, particle (1) say, whose position is above m(IT ) + D + yk(RT ) at
time IT , and particle (2), which lies above m(JT ) + D + yk(RT ) at time JT . These two
particles also satisfy localization conditions on their paths. In other words, this is the
probability that the same ancestor k, with (relative) position yk(RT ), produces children
(1) and (2) which are extremal at time I and J . As these generations are well separated
in time, that is J − I > T ξ (and thus also JT − IT > T ξ), we may expect this probability
to be very small.

In order to see that this is indeed the case, split the probabilities according to
whether the most recent common ancestor of particles (1) and (2) has branched before
time IT − rT (with rT as in (4.10)), or after. We write this as

℘(IT , JT ; yk(RT )) = ℘(IT , JT ; yk(RT ); split before IT − rT )

+ ℘(IT , JT ; yk(RT ); split after IT − rT ).

(Figure 3 illustrates the first case). The second probability is in fact zero. Indeed, the
condition (5.2) implies that the ancestor of (2) at time I − rT lies at height which is at
most the level of the entropic envelope associated with J . Since J − I > T ξ and this
is easily seen to be way lower than the lower envelope of particle (1) associated with
time I. In other words, the localization tubes of particles (1) and (2) are disjoint if their
ancestor split after I − rT . Hence, the splitting of the ancestor of particles (1) and (2)
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Ergodicity of branching Brownian motion

can only happen before time IT − rT :

Ẑ(IT , JT ;RT ) =
∑
k∈4

℘(IT , JT ; yk(RT ); split before IT − rT ), a.s. (5.30)

Proposition 11. For some ε > 0 and T large enough,

℘(IT , JT ; yk(RT ); split before IT − rT )

≤ e−(lnT )εyk(RT )e−
√

2(yk(RT ),
(5.31)

uniformly for all k ∈ 4 and IT , JT as considered, almost surely.

The proof of this proposition is technical and postponed to Section 5.1. We show
how this provides the last piece for the proof of Theorem 9. This is straightforward: by
similar computations as in (5.27),

E

∑
k∈4

yk(RT )e−
√

2yk(RT )

 ≤ κRT = κ′ ln(T )1/δ, (5.32)

for large enough κ′ > 0 and recalling that by definition RT = 40(lnT )1/δ. This, together
with (5.31) implies

E

∑
k∈4

℘(IT , JT ; yk(RT ); split before IT − rT )

 ≤ κ′e−(lnT )ε , (5.33)

where ε has been adjusted to absorb the log-term. Combining this estimate with (5.27),
the claim of Theorem 9 follows.

5.1 Proof of Proposition 11

The claim is that
℘(IT , JT ; yk(RT ); split before IT − rT )

≤ e−(lnT )εyk(RT )e−
√

2yk(RT ),
(5.34)

holds uniformly for k ∈ 4. In order to prove this, we use a formula by Sawyer [31]
concerning the expected number of pairs of particles whose ancestor branched in the
interval (0, IT − rT ) and whose paths satisfy certain localization conditions, say T (1) and
T (2) respectively. The expected number of such pairs is given by

KeIT
∫ IT−rT

0

ds · eJT−s
∫
dµs(y)P

[
x ∈ T (1)

(0,s) ∩ T
(2)
(0,s) | x(s) = y

]
× P

[
x ∈ T (1)

(s,IT ) | x(s) = y
]
× P

[
x ∈ T (2)

(s,JT ) | x(s) = y
]
.

(5.35)

Here the probability P is the law of a Brownian motion x, and K =
∑
j pjj(j − 1)

(with {pj} the offspring distribution). The time s is the branching time of the common

ancestor, and µs is the Gaussian measure with variance s. T (·)
(a,b) denotes the condition

on the path during the time interval (a, b).
A proof of this formula is given in [31, p. 664 and 686]. Sawyer counts the pairs of

particles for the same time, whereas our case concerns particles for two different times:
particle (1) at time IT , and particle (2) at time JT . The generalization of Sawyer’s
formula is straightforward, although a formal derivation is somewhat involved. The
reader is referred to the intuitive construction of the formula provided by Bramson [11,
p. 564].
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Dropping the condition T (2) in the first probability of (5.35) yields a simpler bound:

(5.35) ≤KeIT
∫ IT−rT

0

ds · eJT−s
∫
dµs(y)P

[
x ∈ T (1)

(0,IT ) | x(s) = y
]

× P
[
x ∈ T (2)

(s,JT ) | x(s) = y
]
.

(5.36)

Note that ℘(IT , JT ; yk(RT ); split before IT −rT ) is by Markov’s inequality at most the ex-
pected number of pairs {(1), (2)} of particles which satisfy their respective localization
conditions with the common ancestor branching before time IT − rT . By (5.36), it holds
that

℘(IT , JT ; yk(RT ); split before IT − rT )

≤ KeIT
∫ IT−rT

0

ds · eJT−s
∫
dµs(y)P

[
x ∈ T (1)

(0,IT ) | x(s) = y
]

× P
[
x ∈ T (2)

(s,JT ) | x(s) = y
] (5.37)

with T (1) and T (2) being the shifted tubes defined in (5.2) and (5.3).
The idea is now to bound the second probability appearing in (5.37) uniformly in

y. This procedure has been introduced in Bramson [11, Lemma 11], and proved useful
also in [3, Theorem 2.1].

Lemma 12. It holds that

P
[
x ∈ T (2)

(s,JT ) | x(s) = y
]

≤ Ω2
T e
−(JT−s) exp

(
−
√

2fα,J(RT + s)− 3

2
ln

(
JT − s
JT

)
− 3

2

s

JT
ln JT

)
,

(5.38)

where ΩT = O((lnT )1/2δ) as T ↑ ∞.

For the proof of Lemma 12 some facts concerning the Brownian bridge are needed.
Denoting a standard Brownian motion by x, the Brownian bridge of length t starting
and ending at zero, is the Gaussian process

zt(s) ≡ x(s)− s

t
x(t), 0 ≤ s ≤ t. (5.39)

The Brownian bridge is a Markov process, and it has the property that zt(s), 0 ≤ s ≤ t is
independent of x(t). This construction generalizes to the case where the endpoints of

the bridge are a, b 6= 0; we denote by z
(a,b)
t (s) such a process. The following is also well

known:

z
(a,b)
t (s)

(d)
= zt(s) +

(
1− s

t

)
a+

(s
t

)
b, 0 ≤ s ≤ t, (5.40)

with equality holding in distribution.

We now recall [3, Lemma 3.4] which deals with probabilities that a Brownian bridge
stays below linear functions; the proof is elementary and will not be given here.

Lemma 13. Let z1, z2 ≥ 0 and r1, r2 ≥ 0. Then for t > r1 + r2,

P
[
zt(s) ≤

(
1− s

t

)
z1 +

s

t
z2, r1 ≤ s ≤ t− r2

]
≤ 2

t− r1 − r2

∏
i=1,2

{z(ri) +
√
ri} ,

(5.41)

where z(r1) ≡
(
1− r1

t

)
z1 + r1

t z2 and z(r2) ≡ r2
t z1 +

(
1− r2

t

)
z2.
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Proof of Lemma 12. We begin by first writing explicitly the underlying conditions on
the paths. For f : R+ → R, t 7→ f(t) a generic function, we denote by fS(·) ≡ f(S + ·)
its time-shift by S > 0. We also shorten y(s) ≡

√
2s − x(s), where x(s) = y as in (5.37),

and JT,s ≡ JT − s. We also set ΩT ≡ O(ln lnT ). Elementary manipulations lead to

P
[
x ∈ T (2)

(s,JT ) | x(s) = y
]

= P [(E)] , (5.42)

where (E) is the event

(E) =

{
x(JT,s) ≥ m(JT,s) + y(s) + 3

2
√

2
ln
(
JT,s
JT

)
+D + yk(RT ) + ΩT (E1)

F2(t) ≤ x(t) ≤ F1(t), 0 ≤ t ≤ JT,s − rT (E2)
(5.43)

where F1, F2 are the entropic (resp. lower) envelopes of (5.2) shifted by s:

F1(t) ≡ yk(RT ) + y(s) +
t

JT
m(JT ) +

3

2
√

2

s

JT
ln(JT )− fRT+s

α,J (t) + ΩT ,

F2(t) ≡ yk(RT ) + y(s) +
t

JT
m(JT ) +

3

2
√

2

s

JT
ln(JT )− fRT+s

β,J (t) + ΩT ,

(5.44)

with ΩT = O(ln lnT ). By the very same localization, we also have a condition on x(s).
This reads

x(s) ∈
(
− fRTβ,J (s);−fRTα,J(s)

)
+ yk(RT ) +

√
2s− 3

2
√

2

s

JT
ln(JT ). (5.45)

For later use, we reformulate (5.45) into a condition on yk(RT ) + y(s), namely:

yk(RT ) + y(s) ∈
(
fRTα,J(s); fRTβ,J (s)

)
+

3

2
√

2

s

JT
ln(JT ). (5.46)

We now construct an event (E′) ) (E). First, we drop the condition that the Brown-
ian path is required to stay above F2. Second, we replace the condition on F1 by the
condition that the x-path remains, on the interval (0, JT,s − rT ), below the line seg-
ment interpolating between (0, F1(0)) and (JT,s, F1(JT,s)), see Figure 4 for a graphical
representation. We consider

(E′) =

x(JT,s) ≥ m(JT,s) + y(s) + 3
2
√

2
ln
(
JT,s
JT

)
+D + yk(RT ) + ΩT (E′

1)

x(t) ≤
(

1− t
JT,s

)
F1(0) + t

JT,s
F1(JT,s) 0 ≤ t ≤ JT,s − rT (E′

2)
(5.47)

By construction,
P [(E)] ≤ P [(E′)] . (5.48)

Let us put

X(s, JT ) ≡ m(JT,s) + y(s) +
3

2
√

2
ln

(
JT,s
JT

)
+D + yk(RT ) + ΩT

=
√

2JT,s −
3

2
√

2
ln JT,s +

{
3

2
√

2
ln

(
JT,s
JT

)
+ y(s) + yk(RT ) + ΩT

}
.

(5.49)

We write

P [(E′)] =

∫ ∞
0

P
[
(E′

2)
∣∣x(JT,s) = X(s, JT ) +X

]
µ̃(dX), (5.50)

where µ̃ is a Gaussian with variance JT,s and mean −X(s, JT ), i.e.

µ̃(dX) = exp

(
− (X +X(s, JT ))2

2JT,s

)
dX√
2πJT,s

. (5.51)
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Figure 4: The path of an extremal particle at J stays below the linear interpolation.

We now make some observations concerning the Gaussian density and the conditional
probability appearing in (5.50).

For the Gaussian density, we recall that JT,s = JT − s for 0 ≤ s ≤ IT − rT ≤ IT .
Moreover, since JT − IT > T ξ and JT ≥ εT , we see that

− (1− ξ) lnT − ln ε ≤ ln

(
JT,s
JT

)
≤ 0. (5.52)

And,

y(s) + yk(RT ) = o(JT,s) (T ↑ ∞), (5.53)

by (5.46). Therefore, combining (5.52) and (5.53) we have that X(s, JT ) =
√

2JT,s +

o(JT,s) as T ↑ ∞. The Gaussian density can thus be developed as follows

µ̃(dX) = JT,se
−JT,se−

√
2∆T (s)gT (X)dX, (5.54)

where

∆T (s) ≡ y(s) +
3

2
√

2
ln

(
JT,s
JT

)
+ yk(RT ), (5.55)

and

gT (X) ≡ e−X
2/2JT,s

√
2π

e−
√

2(1+ωT )X (1 + ΩT ) , (5.56)

ωT = o(1) as T ↑ ∞, and ΩT = O(ln lnT ).

For the conditional probability appearing in (5.50), we observe that conditioning on
the event {x(JT,s) = X}, turns the Brownian motion involved in the definition of E′

2 into
a Brownian bridge ending at the conditioning point:

P
[
(E′

2) | x(JT,s) = X(s, JT ) +X
]

= P [(E′′)] , (5.57)
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where

(E′′) ≡
{
∀0≤t≤JT,s−rT : zJT,s(t) ≤

(
1− t

JT,s

)
F1(0) +

t

JT,s
(F1(JT,s)−X(s, JT )−X)

}
=
{
∀0≤t≤JT,s−rT : zJT,s(t) ≤

(
1− t

JT,s

)
F1(0) +

t

JT,s
(ΩT −X)

}
,

(5.58)
since by (5.44) one has F1(JT,s) = ΩT = O(ln lnT ). We easily compute an upper bound
to the probability of the (E′′)-event. By Lemma 13, putting there z1 ≡ F1(0) and z2 ≡
max{ΩT −X; 0}), it holds:

P [(E′′)] ≤ 2

JT,s − rT
F1(0)

(
rT
JT,s

F1(0) +

(
1− rT

JT,s

)
max{ΩT −X; 0}+

√
rT

)
.

(5.59)
Since F1(0) = yk(RT ) + y(s) − fβ,J(RT + s) ≤ ΩT by the localization (5.53), and rT �
JT,s = O(T ), as T ↑ ∞,

P [(E′′)] ≤ 2 max{ΩT −X; 0}+
√
rT

JT,s
. (5.60)

Inserting the bounds (5.60) and (5.54) into (5.50), perform the integral over dX, we
immediately get that

P [(E′)] ≤ Ω2
T e
−JT,s−

√
2∆T (s), (5.61)

for some ΩT = O ((lnT )ε). By (5.46) we may now bound ∆T (s) from below, uniformly in
y(s): the upshot is

P [(E′)] ≤ Ω2
T e
−JT,s exp

(
−
√

2fα,J(RT + s)− 3

2
ln

(
JT,s
JT

)
− 3

2

s

JT
ln JT

)
. (5.62)

This is the uniform bound we were looking for and concludes the proof of Lemma 12.

We finally give the

Proof of Proposition 11. Using the uniform bound provided by Lemma 12 in (5.37) and
integrating over µs(dy) we obtain

℘(IT , JT ; yk(RT ); split before IT − rT ) ≤ κ · ΩT · eIT · P
[
x ∈ T (1)

(0,IT )

]
×
∫ IT−rT

0

ds · exp

(
−
√

2fα,J(RT + s)− 3

2
ln

(
JT − s
JT

)
− 3

2

s

JT
ln JT

)
.

(5.63)

The term eITP
[
x ∈ T (1)

(0,IT )

]
can be handled by considerations similar to those in the

proof of Lemma 12. The condition T (1)
(0,IT ) gives rise to the event{

x(IT ) ≥ m(IT ) +D + yk(RT ),

F2(t) ≤ x(t) ≤ F1(t), 0 ≤ t ≤ IT − rT .
(5.64)

where

F1(t) ≡ yk(RT ) +
t

IT
m(IT )− fRTα,I (t) + ΩT

F2(t) ≡ yk(RT ) +
t

IT
m(IT )− fRTβ,I (t) + ΩT .

(5.65)

(For some ΩT = O(ln lnT )). In particular, the probability of the event is bounded by the
probability that a Brownian motion stays below the linear interpolation of the points
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(0, F1(0)) and (IT − rT , F1(IT − rT )) during the interval of time (0, IT − rT ) intersected
with the event x(It − rT ) ≥ F2(IT − rT ), that is:

P

[
x(t) ≤ t

IT − rT
F1(IT − rT ) +

(
1− t

IT − rT

)
F1(0), ∀0 ≤ t ≤ IT − rT ,

x(It − rT ) ≥ F2(IT − rT )

] (5.66)

Subtracting t
IT−rT x(IT − rT ) and using the fact that x(It − rT ) ≥ F2(IT − rT ), the above

can be bounded above by P
[
x(It − rT ) ≥ F2(IT − rT )

]
times the Brownian bridge prob-

ability:

P

[
zIT−rT (t) ≤ t

IT − rT
(F1(IT − rT )− F2(IT − rT ))

+

(
1− t

IT − rT

)
F1(0), ∀0 ≤ t ≤ IT − rT

]
.

(5.67)
Now F1(IT − rT ) − F2(IT − rT ) ≤ κRβT , for some κ > 0. Therefore the probability in
(5.67) can be bounded using Lemma 13 by

2κ

IT − rt
RβT F1(0) =

2κ

IT − rt
RβT (yk(RT ) +D −RαT + ΩT ) . (5.68)

Now, note that m(IT )−m(IT − rT ) =
√

2 rT + o(1). Therefore, for some κ > 0,

F2(IT − rT )−m(IT − rT ) ≥ yk(RT ) + κ rT . (5.69)

A standard Gaussian estimate thus yields for some ε > 0,

P
[
x(It − rT )−m(IT − rT ) ≥ F2(IT − rT )−m(IT − rT )

]
≤ κ(IT − rT )e−

√
2yk(RT )e−(lnT )ε .

(5.70)

A combination of the above equation and (5.68) gives a bound of the desired form (5.31).
It remains to provide a similar bounds for the integral in (5.63). We first write∫ IT−rT

0

=

∫ IT /2

0

+

∫ IT−rT

IT /2

. (5.71)

For the first integral, since s ≤ IT /2, we have

ln

(
JT − s
JT

)
= ln

(
1− s

JT

)
≥ ln

(
1

2

)
(5.72)

hence, up to irrelevant numerical constant, the contribution of the first integral is at
most

Ω2
T

∫ IT /2

0

dse−
√

2(RT+s)α ≤ Ω2
T

∫ ∞
RT

dse−
√

2sα ≤ e−
√

2RεT (5.73)

for some ε > 0 small enough. The contribution of the second integral is sub-exponentially
small (in T ). To see this, recall that JT − IT > T ξ and s ∈ [IT /2, IT − rT ], thus for some
κ1 < 0 < κ2,

κ1 lnT ≤ ln

(
JT − s
JT

)
≤ κ2 lnT (5.74)
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implying that the second integral is, for some κ > 0, at most

Tκ
∫ IT−rT

IT /2

e−
√

2fα,J (RT+s)ds ≤ Tκe−T ε
(6)

≤ e−T ε
(7)

(5.75)

for some ε(6), ε(7) > 0. This is obviously much smaller than the first contribution (5.73).
Therefore, summing this up,

℘(IT , JT ; yk(RT ); split before IT − rT )

≤ (lnT )εe−(lnT )εyk(RT )e−
√

2yk(RT ).
(5.76)

We can now adjust the value of ε to absorb the log-term. This concludes the proof of
Proposition 11.
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