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Abstract

The paper deals with convergence of solutions of a class of stochastic differential
equations driven by infinite-dimensional semimartingales. The infinite-dimensional
semimartingales considered in the paper are Hilbert-space valued. The theorems
presented generalize the convergence result obtained by Wong and Zakai for stochas-
tic differential equations driven by linear interpolations of a finite-dimensional Brow-
nian motion. In particular, a general form of the correction factor is derived. Exam-
ples are given illustrating the use of the theorems to obtain other kinds of approxi-
mation results.
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1 Introduction

The subject of stochastic differential equations (SDEs) in infinite-dimensional spaces
has gained substantial popularity since the publication of Itô’s monograph [7] and
Walsh’s notes on stochastic partial differential equations [26]. The practical applica-
tions of infinite-dimensional stochastic analysis involve investigation of various prob-
lems in a variety of disciplines including neurophysiology, chemical reaction systems,
infinite particle systems, turbulence etc.

The stability of stochastic integrals and stochastic differential equations is an impor-
tant topic in stochastic analysis. More precisely, appropriate conditions on the driving
sequence of semimartingales {Yn} are sought, such that (Xn, Yn) ⇒ (X,Y ) will imply
Xn− · Yn ⇒ X− · Y . Here and throughout the rest of the paper, ‘⇒’ will denote conver-
gence in distribution and X− · Y ≡

∫
X(s−)dY (s) is the stochastic integral of X with

respect to the integrator Y . That it is not true automatically, is shown by Wong and
Zakai in [27, 28]. Let W be a standard Brownian motion, and Wn a linear interpolation
of W defined by

d

dt
Wn(t) = n

(
W (

k + 1

n
)−W (

k

n
)

)
,

k

n
≤ t < k + 1

n
.
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Wong-Zakai type convergence in infinite dimensions

Then ∫ t

0

Wn(s) dWn(s)→
∫ t

0

W (s) dW (s) + t/2 =

∫ t

0

W (s) ◦ dW (s),

where
∫
W (s) ◦ dW (s) is the Stratonovich integral. Moreover, if Xn satisfies

dXn(t) = σ(Xn(t))dWn(t) + b(Xn(t))dt, (1.1)

then {Xn} does not converge to the solution of the corresponding Itô SDE driven by W
but goes to the solution of

dX(t) = σ(X(t))dW (t) + (b(X(t)) +
1

2
σ(X(t))σ′(X(t))) dt. (1.2)

Generalization of the Wong-Zakai result to the multi-dimensional case has been done
by Stroock and Varadhan in [22]. Further generalizations included replacement of the
Brownian motion with general semimartingales. The observant reader will once again
note that the above equation is just the Stratonovich SDE [21] written in Itô form. The
connection shouldn’t be surprising for the type of approximation considered in (1.1) as
the Wong-Zakai correction factor and the Stratonovich correction factor (which appears
when writing the Stratonovich integral in Itô form) both stem from the fact that Itô in-
tegral is defined as the limit of a Riemann-type sum with the integrand being evaluated
at the leftmost point of each partition. The relationship between Stratonovich type
integrals and Wong-Zakai type corrections is further investigated by Kurtz, Pardoux
and Protter in [13] where they studied a broader class of Stratonovich type equations
driven by general semimartingales. For continuous semimartingale differentials, Nakao
and Yamato [17] proved the following result.

Theorem 1.1. Let U be a continuous semimartingale. Suppose Xn satisfies

dXn(t) = σ(t,Xn(t), Un(t))dUn(t),

where the Un are piecewise C1 approximations of U . If Un tends to U , then under
suitable assumptions Xn goes to X, where X satisfies

dX(t) = σ(t,X(t), U(t)) dU(t) +
1

2
(σ ∂2σ + ∂3σ)(t,X(t), U(t))d[U,U ]t.

Here ∂iσ denotes partial derivative of σ with respect to the i-th component.

Several extensions of the above theorem were made (see Marcus [14], Konecny [10],
Protter [18]), where the requirement of continuous differentials was removed, and the
coefficient σ was allowed to be more general. For semimartingales with jumps, most
treatments consider the case of approximating differentials with jumps, as convergence
is typically proved in uniform or Skorohod topology. This is mainly because in uniform
or Skorohod topology the limit of continuous approximating differential has to be con-
tinuous. The case of continuous approximation of a general semimartingale has been
considered in Kurtz, Pardoux and Protter [13]. Specifically, for a given semimartin-
gale Z, the authors showed that the limit of a suitable sequence of SDEs driven by
Zn ≡ n

∫ ·
·− 1

n
Z(s)ds is an appropriate Stratanovich SDE. However as Theorem 1.2 be-

low and Theorems 5.1, 5.4 (in the infinite-dimensional case) show that the limit might
not always be in Stratonovich (or Itô) form. The general form of the correction factor
depends on the type of approximations considered.

In the infinite-dimensional case, generalizations are known for approximations of
some stochastic evolution equations, where the driving Brownian motion is finite di-
mensional, but the state-space of the solution of the SDE is infinite dimensional (see e.g
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Wong-Zakai type convergence in infinite dimensions

[1, 2, 23]). Twardowska [24] considered the case where the driving Brownian motion is
Hilbert space-valued.

Conditions like uniform tightness (UT) (Jakubowski, Meḿin and Pagès [8], also see
Definition 3.2) and uniform controlled variation (UCV) (Kurtz and Protter [11]) were
imposed on the driving semimartingale sequence {Yn} to ensure that Xn− ·Yn ⇒ X− ·Y
if (Xn, Yn) ⇒ (X,Y ). Slominski [20] studied the limit of a sequence of SDEs driven
by {Yn} under the UT condition while Kurtz and Protter [11] analyzed the limit for
a broader class of SDEs under the UCV condition. Extensions of the notion of uniform
tightness to a sequence of Hilbert space-valued semimartingales and the corresponding
weak convergence theorems for stochastic integrals were proved in [9]. For martingale
random measures, conditions for the desired convergence were given by Cho in [3, 4].
Kurtz and Protter [12] extended the notion of uniform tightness further to a sequence
of H#-semimartingales (semimartingales indexed by Banach space H satisfying certain
properties) and proved limit theorems for both stochastic integrals and stochastic dif-
ferential equations. These semimartingales form a broad class of infinite-dimensional
semimartingales encompassing the class of most (semi)martingale random measures,
Banach space-valued semimartingales, etc. Clearly, the approximations of the driving
integrators discussed above are not UT.

In the finite-dimensional case, Kurtz and Protter [11] studied weak convergence of
stochastic differential equations driven by a non-UT sequence of semimartingales. Their
theorem, in particular, generalized the result obtained by Wong and Zakai. A simpler
version of their theorem (Theorem 5.10, [11]) is stated below.

Theorem 1.2. Let {Un} and {Vn} be sequences of R-valued semimartingales, b : R −→
R be continuous, σ : R −→ R be bounded with bounded first and second order deriva-
tives. Suppose that Xn satisfies

Xn(t) = Xn(0) +

∫ t

0

σ(Xn(s−))dUn(s) +

∫ t

0

b(Xn(s−))dVn(s).

Write Un = Yn + Zn. Denote

Hn(t) =

∫ t

0

Zn(s−)dZn(s)

Kn(t) = [Yn, Zn]t.

Assume that {Yn}, {Hn} and {Vn} are UT, and

An ≡ (Xn(0), Vn, Yn, Zn, Hn,Kn)⇒ (X0, V, Y, 0, H,K) ≡ A

Then (An, Xn) is relatively compact and any limit point (A,X) satisfies

X(t) = X0 +

∫ t

0

σ(X(s−))dY (s) +

∫ t

0

σ′(X(s−))σ(X(s−))d(H(s)−K(s))

+

∫ t

0

b(X(s−))dV (s).

Notice that in the original Wong-Zakai case Un(t) = Wn(t), Vn(t) = t, Yn(t) =

W ([nt + 1]/n) and Zn(t) = Wn(t) −W ([nt + 1]/n. It could easily be proved that {Yn}
and {Hn} satisfy the condition of Theorem 1.2 and (H(t)−K(t)) = t/2. Similarly, Theo-
rem 1.1 can be derived from Theorem 1.2 by writing Un = Yn + Zn for suitable Yn and
Zn (see Example 5.5 for a generalization).
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Wong-Zakai type convergence in infinite dimensions

The objective of the present paper is to study weak convergence of stochastic differ-
ential equations driven by infinite-dimensional semimartingales. The results obtained
in this paper will be useful to investigate a broader class of approximation results. In
particular, such approximation results are helpful in deriving continuous time models
as limiting cases of discrete-time ones. We believe that our paper is a step towards a
unified theory of weak convergence of infinite-dimensional stochastic differential equa-
tions.

The sequence of stochastic differential equations considered in this paper are driven
by Hilbert space-valued semimartingales. However, the limiting semimartingale need
not be Hilbert space-valued. The rest of the paper is structured as follows. In Section 2,
we discuss briefly infinite-dimensional semimartingales focussing mainly on the concept
of H#-semimartingales and Banach space-valued semimartingales. In particular, it is
shown that stochastic integrals with respect to Banach space-valued semimartingales
are special cases of integrals with respect to appropriate H#-semimartingales. The
main reason for doing this is to pave the way for usage of results from [12] which are
proven in the context of H#-semimartingales. Section 3 is devoted to the review of the
concept of uniform tightness and weak convergence results that serve as prerequisites
for our proof. Section 4 contains technical lemmas that are required later. The main
results are presented in Section 5. Theorem 5.1 treats the case when the SDE is driven
by infinite-dimensional semimartingales, but the solutions are finite-dimensional, while
Theorem 5.4 extends the result to the case when the solutions of the SDE are also
infinite-dimensional. The section ends with illustrative examples. A few required facts
about tensor product are collected in the Appendix.

2 Infinite-dimensional semimartingales

Infinite-dimensional stochastic analysis is an active research area and depending
on the need, different types of infinite-dimensional semimartingales are used in mod-
eling. A few popular notions of infinite-dimensional semimartingales include orthogo-
nal martingale random measure[6], worthy martingale random measures [26], Banach
space-valued semimartingales [16], nuclear space-valued semimartingales [25]. In [12],
Kurtz and Protter introduced the notion of standard H#-semimartingale. Standard
H#-semimartingales form a very general class of infinite-dimensional semimartingales
which includes Banach space valued-semimartingales, cylindrical Brownian motion and
most semimartingale random measures. In particular, they cover the two important
cases: space-time Gaussian white noise and Poisson random measures. A few facts
about H#-semimartingales will be used in the present paper, and below we give a brief
outline of H#-semimartingales.

2.1 H#-semimartingale

Let H be a separable Banach space.

Definition 2.1. An R-valued stochastic process Y indexed by H × [0,∞) is an H#-
semimartingale with respect to the filtration {Ft} if

• for each h ∈ H, Y (h, ·) is a cadlag {Ft}-semimartingale, with Y (h, 0) = 0;

• for each t > 0, h1, . . . , hm ∈ H and a1, . . . , am ∈ R, we have

Y (

m∑
i=1

aihi, t) =

m∑
i=1

aiY (hi, t) a.s.

As in almost all integration theory, the first step is to define the stochastic integral in
a canonical way for simple functions and then extend it to a broader class of integrands.
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Let Z be an H-valued cadlag process of the form

Z(t) =

m∑
k=1

ξk(t)hk, h1, . . . , hk ∈ H, (2.1)

where the ξk are {Ft}-adapted real-valued cadlag processes.
The stochastic integral Z− · Y is defined as

Z− · Y (t) =

m∑
k=1

∫ t

0

ξk(s−)dY (hk, s).

Note that the integral above is just a real-valued process. It is necessary to impose
more conditions on the H#-semimartingale Y to broaden the class of integrands Z.
Let S be the collection of all processes of the form (2.1). Define

Ht =

{
sup
s≤t
|Z− · Y (s)| : Z ∈ S, sup

s≤t
‖Z(s)‖ ≤ 1

}
. (2.2)

Definition 2.2. An H#-semimartingale Y is standard if for each t > 0, Ht is stochasti-
cally bounded, that is, for every t > 0 and ε > 0, there exists k(t, ε) such that

P

[
sup
s≤t
|Z− · Y (s)| ≥ k(t, ε)

]
≤ ε

for all Z ∈ S satisfying sups≤t ‖Z(s)‖ ≤ 1.

The extension of the stochastic integral is then achieved by approximating the inte-
grand X by processes of the form (2.1). More precisely,

Theorem 2.3. Let Y be a standard H#-semimartingale, and X an H-valued adapted
and cadlag process. Then for every ε > 0, there exists a process Xε such that ‖X(t) −
Xε(t)‖ < ε, and moreover

X− · Y ≡ lim
ε→0

Xε
− · Y

exists in the sense that for each η > 0, t > 0,

lim
ε→0

P

[
sup
s≤t
|Xε
− · Y (s)−X− · Y (s)| > η

]
= 0.

X− · Y is a cadlag process and is defined to be the stochastic integral of X with respect
to Y

Example 2.4. Let (U, r) be a complete, separable metric space and µ a sigma finite
measure on (U,B(U)). Denote the Lebesgue measure on [0,∞) by λ, and let W be a
space-time Gaussian white noise on U × [0,∞) based on µ ⊗ λ, that is, W is a Gaus-
sian process indexed by B(U) × [0,∞) with E(W (A, t)) = 0 and E(W (A, t)W (B, s)) =

µ(A ∩ B) min {t, s}. For h ∈ L2(µ), define W (h, t) =
∫
U×[0,t) h(x)W (dx, ds). The above

integration is defined (see [26]), and it follows that W is an H#-semimartingale with
H = L2(µ). It is also easy to check that W is standard in the sense of Definition 2.2.

Example 2.5. Let U, r, µ and λ be as before. Let ξ be a Poisson random measure on
U × [0,∞) with mean measure µ ⊗ λ, that is, for each Γ ∈ B(U) ⊗ B([0,∞)), ξ(Γ) is a
Poisson random variable with mean µ⊗ λ(Γ), and for disjoint Γ1 and Γ2, ξ(Γ1) and ξ(Γ1)

are independent. For A ∈ B(U), define ξ̃(A, t) = ξ(A × [0, t]) − tµ(A). For h ∈ L2(µ), let
ξ̃(h, t) =

∫
U×[0,t) h(x)ξ̃(dx, ds) and for h ∈ L1(µ), let ξ(h, t) =

∫
U×[0,t) h(x)ξ(dx, ds). Then

ξ̃ is a standard H#-martingale with H = L2(µ) and ξ is a standard H#-semimartingale
with H = L1(µ).
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Wong-Zakai type convergence in infinite dimensions

Remark 2.6. In fact, it can be shown that most worthy martingale random measures
or more generally semimartingale random measures are standard H#-semimartingales
for appropriate choices of indexing space H (see [12]).

2.2 (L, Ĥ)#-semimartingale and infinite-dimensional stochastic integrals

In the previous part, observe that the stochastic integrals with respect to infinite-
dimensional standard H#-semimartingales are real-valued. Function valued stochastic
integrals are of interest in many areas of infinite-dimensional stochastic analysis, for
example, stochastic partial differential equations. With that in mind, we want to study
stochastic integrals taking values in some infinite-dimensional space. If Y is a standard
H#-semimartingale, we could put H(x, t) = X(·−, x) · Y (t) where for each x in a Polish
space E, X(·, x) is a cadlag process with values in H. The above integral is defined,
but the function properties of H are not immediately clear. Hence, a careful approach
is needed for constructing infinite-dimensional stochastic integrals. In [12], Kurtz and
Protter introduced the concept of (L, Ĥ)#-semimartingale as a natural analogue of the
H#-semimartingale for developing infinite-dimensional stochastic integrals. Below, we
give a brief outline of that theory.

Let (E, rE) and (U, rU ) be two complete, separable metric spaces. Let L,H be sep-
arable Banach spaces of R-valued functions on E and U respectively. Note that for
function spaces, the product fg, f ∈ L, g ∈ H has the natural interpretation of point-
wise product. Suppose that {fi} and {gj} are such that the finite linear combinations of
the fi and the finite linear combinations of the gj are dense in L and H respectively.

Definition 2.7. Let Ĥ be the completion of the linear space{∑l
i=1

∑m
j=1 aijfigj : fi ∈ {fi} , gj ∈ {gj}

}
with respect to some norm ‖ · ‖

Ĥ
.

For example, if

‖
l∑
i=1

m∑
j=1

aijfigj‖Ĥ = sup


l∑
i=1

m∑
j=1

aij〈λ, fi〉〈η, gj〉 : λ ∈ L∗, η ∈ H∗, ‖λ‖L∗ ≤ 1, ‖η‖H∗ ≤ 1


then Ĥ can be interpreted as a subspace of the space of bounded operators, L(K∗,L).

Let S
Ĥ

denote the space of all processes X ∈ D
Ĥ

[0,∞) of the form

X(t) =
∑
ij

ξij(t)figj , (2.3)

where the ξij are R-valued, cadlag, adapted processes and only fintely many ξij are non
zero. For X ∈ S

Ĥ
, define

X− · Y (t) =
∑
i

fi
∑
j

∫ t

0

ξij(s−) dY (gj , s).

Notice that X− · Y ∈ DL[0,∞).

Definition 2.8. An H#-semimartingale is a standard (L, Ĥ)#-semimartingale if

Ht ≡
{

sup
s≤t
‖X− · Y (s)‖L : X ∈ S

Ĥ
, sup
s≤t
‖X(s)‖

Ĥ
≤ 1

}
is stochastically bounded for each t > 0.
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As in Theorem 2.3, under the standardness assumption, the definition of X− · Y can
be extended to all cadlag Ĥ-valued processes X, by approximating X by a sequence of
processes of the form (2.3).

Remark 2.9. The standardness condition in Definition 2.8 will follow if there exists a
constant C(t) such that

E [‖X− · Y (t)‖L] ≤ C(t), t > 0

for all X ∈ S
Ĥ

satisfying sups≤t ‖X(s)‖
Ĥ
≤ 1.

Remark 2.10. If H and L are general Banach spaces (rather than Banach spaces of
functions), then Ĥ could be taken as the completion of L⊗H with respect to some norm,
for example the Hilbert-Schmidt norm or the projective norm (see [19]).

2.3 Banach space-valued semimartingales

Standard references for the materials in this section are [16, 15]. We start with the
definition of martingales taking values in a separable Banach space H. The definition is
analogous to that of real-valued martingales.

Definition 2.11. Let (Ω,F , {Ft}, P ) be a complete probability space. A stochastic pro-
cess M taking values in H is an {Ft}-martingale if

• M is {Ft}-adapted;

• E‖Mt‖H <∞, for all t > 0;

• for every F ∈ Fs,
∫
F
Mt dP =

∫
F
Ms dP, where t > s > 0.

The integration above is in the Bochner sense.

Remark 2.12. In the above definition, the measurability of H-valued process M is in
the strong sense. However since H is separable, the notion of strong measurability
of an H-valued function f is same as that of its weak measurability; and the Bochner
integral of f coincides with the Pettis integral of f provided that the scalar function
‖f‖H is integrable. Consequently, under the assumption E‖Mt‖H < ∞, M is an H-
valued martingale if and only if 〈M(t), h∗〉H,H∗ is a real-valued martingale for every
h∗ ∈ H∗. Here, for every h ∈ H and h∗ ∈ H∗, 〈h, h∗〉H,H∗ is defined by

〈h, h∗〉H,H∗ = h∗(h) = 〈h∗, h〉H∗,H. (2.4)

Just like the real-valued case, the notion of martingales can be generalized to that
of local martingales. Below we define Banach space-valued semimartingales

Definition 2.13. Let (Ω,F , {Ft}, P ) be a complete probability space. A stochastic pro-
cess Y taking values in H is an {Ft}-semimartingale if Y could be decomposed into

Y = M + V,

where M is a local martingale, and V is a finite variation process on every bounded
interval [0, t] ⊂ [0,∞).

Remark 2.14. The local martingale M in the above decomposition can be taken as
locally square integrable (see [15, Theorem 23.6] and [16, Section 9.16] ). In fact,
Métivier defined semimartingale when the local martingale part is locally square inte-
grable.
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2.4 Integration with Banach space-valued semimartingales

Let X be an {Ft}-adapted, cadlag process taking values in H∗. Suppose that Y is an
H-valued {Ft}-adapted semimartingale. Let σ = {ti} be a partition of [0,∞). Define

Xσ(s) =
∑
i

X(ti)1[ti,ti+1)(s) (2.5)

and the stochastic integral Xσ
− · Y (t) as

Xσ
− · Y (t) =

∑
i

〈X(ti), Y (ti+1 ∨ t)− Y (ti ∨ t)〉H∗,H,

Notice that Xσ
− ·Y is a real-valued process. The following theorem proves the existence

of the stochastic integral

Theorem 2.15. There exists an {Ft}-adapted, real-valued cadlag process X− · Y such
that for all T > 0,

sup
t≤T
|Xσ
− · Y (t)−X− · Y (t)| P−→ 0, as ‖σ‖ → 0.

The following lemma (see [16, Section 10.9]) gives a bound for the stochastic inte-
gral.

Lemma 2.16. Let Y be an {Ft}-adapted semimartingale taking values in a Banach
space H and X an {Ft}-adapted, cadlag process taking values in H∗. Then, there exists
a nondecreasing, {Ft}-adapted, real-valued cadlag process Q such that

E[sup
t≤T
|X− · Y (s)|2] ≤ E[

∫ T

0

‖Xs−‖2HdQs] (2.6)

Integration in the right side is in the Riemann-Stieltjes sense.

2.4.1 Banach space-valued semimartingale as standard H#-semimartingale

Let Y be a semimartingale taking values in a Banach space K. We will show that Y
can be considered as an H#-semimartingale, with H = K∗. Since K is isometrically
embedded in K∗∗, consider Y as an element of K∗∗. Then notice that

• for each h ∈ K∗, Y (h, ·) ≡ 〈Y (t), h〉K,K∗ is a real-valued semimartingale;

• for h1, h2 ∈ K∗, Y (h1 + h2, ·) = Y (h1, ·) + Y (h2, ·).

This proves that Y is an H#-semimartingale with H = K∗, and now (2.6) proves that Y
is standard. It is obvious that the two definitions of stochastic integral (see Theorem
2.3 and Theorem 2.15) coincide.

Remark 2.17. If K = L∗, for some Banach space L, then Y can be considered as an
L#-semimartingale.

2.4.2 Hilbert space-valued stochastic integrals

As before, let Y be a semimartingale taking values in a Banach space K. Let L be a
separable Hilbert space. Let X be an {Ft}-adapted, cadlag process taking values in the
operator space, L(K,L). Let σ = {ti} be a partition of [0,∞). Define

Xσ(s) =
∑
i

X(ti)1[ti,ti+1)(s) (2.7)
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Wong-Zakai type convergence in infinite dimensions

and the stochastic integral Xσ
− · Y (t) as

Xσ
− · Y (t) =

∑
i

X(ti)(Y (ti+1 ∧ t)− Y (ti ∧ t)).

Notice that Xσ
− · Y is an L-valued process. The following theorem proves the existence

of the stochastic integral.

Theorem 2.18. There exists an {Ft}-adapted, L-valued cadlag process X− · Y , such
that for all T > 0,

sup
t≤T
‖Xσ
− · Y (t)−X− · Y (t)‖L

P−→ 0.

Similar to (2.6), we have:

Lemma 2.19. Let Y be an {Ft}-adapted semimartingale taking values in a Banach
space K. Then, there exists a nondecreasing, {Ft}-adapted, real-valued cadlag process
Q, such that for any Hilbert space L

E[sup
t≤T
‖X− · Y (s)‖2L] ≤ E[

∫ T

0

‖Xs−‖2opdQs], (2.8)

whenever X is an {Ft}-adapted, cadlag L(K,L)-valued process. Here ‖ · ‖op denotes the
operator norm.

See [16, Section 10.9, Section 6.7])

Remark 2.20. The above lemma might not be true if L is an arbitrary Banach space.

Remark 2.21. If Y is a K-valued semimartingale, then (2.8) shows that for any Hilbert
space L, Y can be considered as a standard (L, Ĥ)#-semimartingale. Here Ĥ is the
completion of the space L ⊗ K∗ with respect to some norm which makes L ⊗ K∗ ⊂
L(K,L).

Suppose that X and Y are two cadlag semimartingales taking values in K,K∗. Then
both X− · Y and Y− ·X are defined. We define the (scalar) covariation process [X,Y ] as

[X,Y ]t = 〈X(t), Y (t)〉K,K∗ − 〈X(0), Y (0)〉K,K∗ −X− · Y (t)− Y− ·X(t). (2.9)

It is easy to see that

[X,Y ]t = lim
‖σ‖→0

∑
i

〈X(ti+1)−X(ti), Y (ti+1)− Y (ti)〉K,K∗

where σ = {ti} is a partition of [0, t], and ‖σ‖ = sup(ti+1− ti) is the mesh of the partition
σ.

2.5 Tensor stochastic integration

We briefly outline the theory of tensor stochastic integration. It will be used in the
next chapter. The reader might want to look at Section A.1 before reading this part. We
assume that Y is an adapted K-valued semimartingale, where K is a separable Hilbert
space with inner product denoted by 〈·, ·〉K. Let X be a cadlag and adapted K-valued
process. The tensor stochastic integral

∫
X− ⊗ dY is defined as∫ t

0

X(s−)⊗ dY (s) = lim
‖σ‖→0

∑
i

X(ti)⊗ (Y (ti+1)− Y (ti)),

where σ = {ti} is a partition of [0, t], and ‖σ‖ = sup(ti+1− ti) is the mesh of the partition
σ.

EJP 18 (2013), paper 31.
Page 9/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2650
http://ejp.ejpecp.org/
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Theorem 2.22. lim‖σ‖→0

∑
iX(ti)⊗ (Y (ti+1)− Y (ti)) exists.

Proof. Below, we give a quick proof which illustrates the fact that the tensor inte-
gration is an example of stochastic integration with respect to a standard (L, Ĥ)#-
semimartingale, for appropriate L and Ĥ. Take L = K⊗̂HSK, the completion of the
space K ⊗ K with respect to the Hilbert-Schmidt norm (see A.2). Recall that K⊗̂HSK
is a Hilbert space and can be identified with the space of Hilbert-Schmidt operators
HS(K,K). Let H = L⊗K, that is, H is the space of all elements of the form:

I,J∑
i,j=1

cijλi ⊗ kj , λi ∈ L, kj ∈ K, cij ∈ R.

Consider H as a subspace of L(K,L), by defining the action of an element in H on K as

I,J∑
i,j=1

cijλi ⊗ kj(k) =

I,J∑
i,j=1

cij〈kj , k〉Kλi, k ∈ K.

Let Ĥ be the completion of the space H with respect to the operator norm. Suppose
that {ei} forms an orthonormal basis of K. For h ∈ K, define

ĥ =
∑
i,j

〈h, ei〉K(ei ⊗ ej)⊗ ej

so that for any g ∈ K,

ĥ(g) =
∑
i,j

〈h, ei〉K〈g, ej〉Kei ⊗ ej .

Observe that

ĥ(g) = h⊗ g.

It is now trivial to check that ĥ ∈ Ĥ, and h → ĥ is an isometric isomorphism from K

into Ĥ. Consequently, h can be identified with ĥ and thought of as an element of Ĥ.
Therefore,

∑
i

X(ti)⊗ (Y (ti+1)− Y (ti)) =

∫ t

0

Xσ(s−)⊗ dY (s) =

∫ t

0

X̂σ(s−)dY (s).

The last quantity has a limit as ‖σ‖ → 0, because Y is a standard (L, Ĥ)#-semimartingale,
for any Hilbet space L (see Remark 2.21).

Note that by the construction,
∫
X− ⊗ dY ∈ K⊗̂HSK = HS(K,K). Since the tensor

product is not usually symmetric,
∫
X− ⊗ dY 6=

∫
dY ⊗X−. But as Lemma 2.23 shows,

we have the following relation

(

∫
X− ⊗ dY )∗ =

∫
dY ⊗X−,

where ∗ denotes the operator adjoint.
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Lemma 2.23. Let X be an adapted, cadlag K-valued process and Y an adapted K-
valued semimartingale.

〈
∫ t

0

X(s−)⊗ dY (s)φk, ψk〉K = 〈
∫ t

0

X(s−)⊗ dY (s), φk ⊗ ψk〉K⊗̂HSK

=

∫ t

0

〈X(s−), φk〉K d〈Y (s), ψk〉K

〈
∫ t

0

dY (s)⊗X(s−)ψk, φk〉K = 〈
∫ t

0

dY (s)⊗X(s−), ψk ⊗ φk〉K⊗̂HSK

=

∫ t

0

〈X(s−), φk〉K d〈Y (s), ψk〉K.

Proof. Let σ denote the partition {ti} of [0, t], and denote Xσ by (2.5) Notice that

〈
∫ t

0

Xσ
s ⊗ dYs, φk ⊗ ψk〉K⊗̂HSK

=
∑
i

〈(X(ti))⊗ (Y (ti+1)− Y (ti)), φk ⊗ ψk〉K⊗̂HSK

=
∑
i

〈X(ti), φk〉K 〈Y (ti+1)− Y (ti), ψk〉K

=

∫ t

0

〈Xσ
s , φk〉K d〈Ys, ψk〉K.

The theorem follows by taking limit as ‖σ‖ → 0, and using the continuity of the inner
product. The second part is similar.

Define Z =
∫
X− ⊗ dY . Since Z ∈ K⊗̂HSK = HS(K,K), by Remark 2.21, Z is a

standard (L, Ĥ)#-semimartingale, where L is any Hilbert space and Ĥ is the completion
of the space L ⊗ (K⊗̂HSK) with respect to some norm such that Ĥ ⊂ L(K⊗̂HSK,L).
Hence, if J is an Ĥ-valued cadlag and adpated process, the stochastic integral J− · Z is
defined.

Recall that for any two Hilbert spaces X,Y, X⊗̂HSY = HS(Y,X) ⊂ L(Y,X) (see
A.2). In particular, for u =

∑m
i=1 xi ⊗ yi and y ∈ Y, u(y) =

∑
i xi〈y, yi〉. Note that

‖u‖op ≤ ‖u‖HS , where ‖ · ‖op denotes the operator norm. The following chain rule holds.

Theorem 2.24. Suppose J is an (K⊗̂HSK)-valued cadlag and adapted process and
Zt =

∫ t
0
X(s−)⊗ dY (s). Then∫ t

0

J(s−) dZ(s) =

∫ t

0

J(s−)(X(s−)) dYs.

Proof. First, take J of the form

J(s) =

n∑
k=1

ξk(s)φk ⊗ ψk. (2.10)

Then note that∫ t

0

J(s−) dZ(s) =

n∑
k=1

∫ t

0

ξk(s−)d〈Z(s), φk ⊗ ψk〉

=

n∑
k=1

∫ t

0

ξk(s−)〈X(s−), φk〉 d〈Y (s), ψk〉 (by Lemma 2.23)

=

∫ t

0

n∑
k=1

ξk(s−)〈X(s−), φk〉ψk dY (s)

=

∫ t

0

J(s−)(X(s−)) dY (s).
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The third equality follows from the definition of the stochastic integral with respect to
a standard K#-semimartingale, and the last one by identifying K⊗̂HSK with L(K,K).
Now, for any K⊗̂HSK-valued adapted process J , there is a sequence of K⊗̂HSK valued
adapted processes Jn of the form (2.10) such that sups≤t ‖Jn(s) − J(s)‖HS → 0, which
in turn implies sups≤t ‖Jn(s)− J(s)‖op → 0. Letting n→∞ in∫ t

0

Jn(s−) dZ(s) =

∫ t

0

Jn(s−)(X(s−)) dY (s),

we are done.

Similar to (2.9), we define the tensor covariation as

[X,Y ]⊗t = X(t)⊗ Y (t)−X(0)⊗ Y (0)−
∫ t

0

X(s−)⊗ dY (s)−
∫ t

0

dX(s−)⊗ Y (s) (2.11)

It is easy to see that

[X,Y ]⊗t = lim
‖σ‖→0

∑
i

(X(ti+1)−X(ti))⊗ (Y (ti+1)− Y (ti))

where σ = {ti} is a partition of [0, t], and ‖σ‖ = sup(ti+1− ti) is the mesh of the partition
σ.

Let B be a Banach space. For φ ∈ DB [0,∞), define the total variation of φ in the
interval [0, t] as

Tt(φ) = sup
σ

∑
i

‖φ(ti)− φ(ti−1)‖B , (2.12)

where as before, σ = {ti} is a partition of the interval [0, t]. We say φ is of locally finite
variation (or sometimes simply finite variation) if Tt(φ) <∞, for all t > 0.

Remark 2.25. For any K-valued semimartingale Y , [Y, Y ]⊗ is an K⊗̂HSK = HS(K,K)-
valued process. In fact, it can be shown that almost all paths of [Y, Y ]⊗ take values
in the space of nuclear operators N (K,K) and trace([Y, Y ]⊗t ) = [Y, Y ]t. Moreover, the
total variation of paths of [Y, Y ]⊗ in the nuclear norm (hence also in the Hilbert-Schmidt
norm) satisfies Tt([Y, Y ]⊗) ≤ [Y, Y ]t. (See [15, Theorem 26.11])

3 Uniform tightness and weak convergence results

Since the state space of the H#-semimartingales is not known, weak convergence
of a sequence of H#-semimartingales is defined in the following way.

Definition 3.1. Let L and H be two separable Banach spaces. Let {Yn} be a se-
quence of {Fnt }-adapted H#-semimartingales and {Xn} be a sequence of cadlag, {Fnt }
adapted L valued processes. (Xn, Yn)⇒ (X,Y ) if for every finite collection of elements
φ1, . . . φd ∈ H,

(Xn, Yn(φ1, ·), . . . , Yn(φd, ·))⇒ (X,Y (φ1, ·), . . . , Y (φd, ·))

in DL×Rd [0,∞).

Let L,K be separable Banach spaces, and define Ĥ to be the completion of the space
L⊗K with respect to some norm. Let {Fnt } be a sequence of right continuous filtrations.
Let Sn denote the space of all Ĥ-valued processes Z, such that ‖Z(t)‖

Ĥ
≤ 1 and is of

the form

Z(t) =

I,J∑
i,j=1

ξij(t)λi ⊗ hj , λi ∈ L, hj ∈ K

where the ξij are cadlag and {Fnt }-adapted R-valued processes.
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Definition 3.2. A sequence of {Fnt } adapted, standard (L, Ĥ)#-semimartingales {Yn}
is uniformly tight (UT) if, for every δ > 0 and t > 0, there exists a M(t, δ) such that

sup
Z∈Sn

P [sup
s≤t
‖Z− · Yn(s)‖L > M(t, δ)] ≤ δ. (3.1)

Remark 3.3. Uniform tightness of the sequence {Yn} would follow if, for every t > 0,
there exists a constant C(t) (not depending on n), such that

sup
Z∈Sn

E[sup
s≤t
‖Z− · Yn(s)‖L] ≤ C(t).

Theorem 3.4. ([12, Theorem 4.2]) For each n = 1, 2, . . ., let Yn be an {Fnt }-adapted,
standard (L, Ĥ)#-semimartingale. Assume that the sequence {Yn} is UT. If (Xn, Yn) ⇒
(X,Y ), then there is a filtration {Ft} such that Y is an {Ft}-adapted, standard (L, Ĥ)#-
semimartingale, X is {Ft}-adapted and (Xn, Yn, Xn− · Yn)⇒ (X,Y,X− · Y ).

If (Xn, Yn)
P−→ (X,Y ) in probability then (Xn, Yn, Xn− · Yn)

P−→ (X,Y,X− · Y ).

A similar theorem for stochastic differential equations has also been proved.

Theorem 3.5. ([12, Theorem 7.5]) Let L = Rd. For each n = 1, 2, . . ., let Yn be an
{Fnt }-adapted, standard (L, Ĥ)#-semimartingale. Suppose that (Un, Xn, Yn) satisfies

Xn = Un + Fn(Xn−) · Yn,

where Fn, F : Rd → Kd are measurable functions satisfying

• Fn → F uniformly over compact subsets of Rd;

• F is continuous;

• supn supx ‖Fn(x)‖Kd <∞.

If (Un, Yn) ⇒ (U, Y ) and {Yn} is UT, then {(Un, Xn, Yn)} is relatively compact and any
limit point (U,X, Y ) satisfies

X = U + F (X−) · Y.

The corresponding theorem for general L is:

Theorem 3.6. ([12, Theorem 7.6]) For each n = 1, 2, . . ., let Yn be an {Fnt }-adapted,
standard (L, Ĥ)#-semimartingale. Suppose that (Un, Xn, Yn) satisfies

Xn = Un + Fn(Xn−) · Yn,

where Fn, F : L→ Ĥ are measurable functions satisfying

• Fn → F uniformly over compact subsets of L;

• F is continuous;

• supn supx ‖Fn(x)‖
Ĥ
<∞;

• for each δ > 0, there exists a compact Eδ such that sups≤t ‖x(s)‖
Ĥ
≤ δ implies that

Fn(x(t)) ∈ Eδ for all n.

If (Un, Yn) ⇒ (U, Y ) and {Yn} is UT, then {(Un, Xn, Yn)} is relatively compact and any
limit point (U,X, Y ) satisfies

X = U + F (X−) · Y. (3.2)

Remark 3.7. Suppose that in addition to the conditions of Theorem 3.5 or Theorem
3.6, strong uniqueness holds for (3.2) for any versions of (U, Y ) for which Y is an H# or
(L, Ĥ)#-semimartingale and that (Un, Yn) → (U, Y ) in probability. Then (Un, Yn, Xn) →
(U, Y,X) in probability.
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4 A few lemmas

Lemma 4.1. Let H and K be two separable Hilbert spaces. Let L = K⊗̂HSH =

HS(H,K). Then H is continuously embedded in L(L,K).

Proof. For h ∈ H, define h ∈ L(L,K) by

h(l) = l(h), l ∈ L.

Notice that h ∈ H −→ h ∈ L(L,K) is an isomorphism and ‖h‖ ≤ ‖h‖H.

Lemma 4.2. LetH,K and L be as in Lemma 4.1. Let u ∈ L(K,L), v ∈ HS(H,K). Define
ũv ∈ L(H⊗̂HSH,K) by

ũv(h1 ⊗ h2) = h1uv(h2),

where h1 is as in the proof of the previous lemma. Then ũv ∈ HS(H⊗̂HSH,K) and

‖ũv‖HS(H⊗̂HSH,K) = ‖uv‖HS(H,L).

Proof. If {ei} is an orthonormal basis of H, then {ei ⊗ ej} forms an orthonormal basis
for H⊗̂HSH. Notice that

ũv(ei ⊗ ej) = eiuv(ej) = uv(ej)(ei).

It follows that ∑
i,j

‖ũv(ei ⊗ ej)‖2K =
∑
j

∑
i

‖uv(ej)(ei)|‖2K =
∑
j

‖uv(ej)‖2L

= ‖uv‖2HS(H,L)

Notice that ifK = R, then ũv = u⊗v. The following lemma is a generalization of Lemma
2.24.

Lemma 4.3. Let H, V and U be adapted cadlag processes taking values in H, L ≡
HS(H,K) and L(K,L) respectively. Let Z be an adapted H-valued semimartingale.
Then ∫ t

0

H(s−)U(s−)V (s−)dZ(s) =

∫ t

0

˜U(s−)V (s−)dR(s), (4.1)

where R(t) =
∫ t
0
H(s−) ⊗ dZ(s). Here the ˜ and mappings are as in Lemma 4.2 and

the proof of Lemma 4.1 respectively.

Proof. Notice that both sides take values in K. For u ∈ L(K,L), v ∈ HS(H,K), define
ûv ∈ L(H, HS(H,K)) by

ûv(h) = huv.

Note that ûv 6= uv. It is easy to check that in fact, ûv ∈ HS(H, HS(H,K)). Thus for any
λ ∈ L(K,R), λûv ∈ HS(H, HS(H, R)) and can be identified with λũv ∈ HS(H,H). The
proof now follows by applying λ on both sides of (4.1) and using Lemma 2.24 to verify
their equality.

Lemma 4.4. Let H be a separable Hilbert space and Y an H-valued adapted semi-
martingale. Suppose that J and V are cadlag, adapted processes taking values inH. De-
fine X = V− ·Y . Note that X is a real- valued semimartingale. Let U(t) =

∫ t
0
J(s−)dX(s).

Then for any H-valued adapted semimartingale Z, we have

[U,Z] =

∫
J− ⊗ V− d[Z, Y ]⊗.
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Proof. Let σ = {ti} be a partition of [0, t]. For a process H, define Hσ by

Hσ(s) =
∑
i

H(ti)1[ti,ti+1](s).

Let

Xσ(u) ≡
∫ u

0

V σ(s−) dYs =
∑
i

〈V (ti ∧ u−), Y (ti+1 ∧ u)− Y (ti ∧ u)〉H 0 ≤ u ≤ t

and

Uσ(u) ≡
∫ u

0

Jσ(s−)⊗ dXσ(s) =
∑
i

J(ti ∧ u−)⊗ (Xσ(ti+1 ∧ u)−Xσ(ti ∧ u)).

Denote

A =

∫ t

0

J(s−)⊗ V (s−)d[Z, Y ]⊗(s)

and notice that

A = lim
‖σ‖→0

∑
i

〈J(ti)⊗ V (ti), (Z(ti+1 − Z(ti)))⊗ (Y (ti+1)− Y (ti))〉HS

= lim
‖σ‖→0

∑
i

〈J(ti), Z(ti+1 − Z(ti))〉H 〈V (ti), Y (ti+1)− Y (ti)〉H

= lim
‖σ‖→0

∑
i

〈J(ti), Z(ti+1 − Z(ti))〉H (V σ− · Y (ti+1)− V σ− · Y (ti))

= lim
‖σ‖→0

∑
i

〈J(ti), Z(ti+1 − Z(ti))〉H(Xσ(ti+1)−Xσ(ti))

= lim
‖σ‖→0

∑
i

〈J(ti)(Xσ(ti+1)−Xσ(ti)), Z(ti+1 − Z(ti))〉H

= lim
‖σ‖→0

∑
i

〈Uσ(ti+1)− Uσ(ti), Z(ti+1)− Z(ti)〉H = [U,Z]t.

If X is an L ≡ HS(H,K)-valued semimartingale and Y is an H-valued semimartin-
gale, then by Theorem 2.18, the stochastic integral X− ·Y exists. Now, by Lemma 4.1, Y
is an L(L,K)-valued process, and consequently, Y − ·X exists. Define the (generalized)
quadratic variation process between X and Y as

[[X,Y ]]t = X(t)(Y (t))−X(0)(Y (0))−X− · Y (t)− Y − ·X(t). (4.2)

[[X,Y ]] is a K-valued process and

[[X,Y ]]t = lim
‖σ‖→0

∑
i

(X(ti+1)−X(ti))(Y (ti+1)− Y (ti))

where σ = {ti} is a partition of [0, t], and ‖σ‖ = sup(ti+1− ti) is the mesh of the partition
σ. The next result is a generalization of Lemma 4.4.

Lemma 4.5. Let H be a separable Hilbert space and Y an H-valued adapted semi-
martingale. Let L = K⊗̂HSH ≡ HS(H,K). Suppose that J and V are cadlag, adapted
processes taking values in HS(K,L) and HS(H,K) respectively. Define X = V− · Y .
Note that X is a K- valued semimartingale. Let U(t) =

∫ t
0
J(s−)dX(s). Then for any

H-valued adapted semimartingale Z, we have

[[U,Z]]t =

∫ t

0

˜J(s−)V (s−) d[Z, Y ]⊗(s).
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Proof. Similar to the previous lemma, we adopt the following notations: Let σ = {ti} be
a partition of [0, t]. For a process H, define Hσ by

Hσ(s) =
∑
i

H(ti)1[ti,ti+1](s).

Let

Xσ(u) ≡
∫ u

0

V σ(s−) dYs =
∑
i

V (ti ∧ u−)(Y (ti+1 ∧ u)− Y (ti ∧ u)) 0 ≤ u ≤ t

and

Uσ(u) ≡
∫ u

0

Jσ(s−)dXσ(s) =
∑
i

J(ti ∧ u−)(Xσ(ti+1 ∧ u)−Xσ(ti ∧ u)).

Denote

A =

∫ t

0

˜J(s−)V (s−)d[Z, Y ]⊗(s)

and notice that

A = lim
‖σ‖→0

∑
i

˜J(ti)V (ti)(Z(ti+1 − Z(ti)))⊗ (Y (ti+1)− Y (ti))

= lim
‖σ‖→0

∑
i

(Z(ti+1 − Z(ti))J(ti)V (ti)(Y (ti+1)− Y (ti))

= lim
‖σ‖→0

∑
i

(Z(ti+1 − Z(ti))(J(ti)(Xs(ti+1)−Xs(ti)))

= lim
‖σ‖→0

∑
i

(Z(ti+1 − Z(ti))(Uσ(ti+1)− Uσ(ti))

= lim
‖σ‖→0

∑
i

(Uσ(ti+1)− Uσ(ti))(Z(ti+1)− Z(ti)) = [[U,Z]]t.

Recall that for a function φ mapping [0,∞) to a Banach space, the total variation
Tt(φ) was defined in (2.12).

Theorem 4.6. Let H be a separable Hilbert space. Suppose that Yn = Mn + An is an
adaptedH-valued semimartingale, where {An} is a sequence ofH-valued {Fnt }-adapted
processes of locally finite variation and {Mn} is a sequence of H-valued {Fnt }-adapted
local martingales . Then {Yn} is UT if for each t > 0, {Tt(An)} is stochastically bounded
(tight) and there exists a constant C(t) such that E([Mn,Mn]t) < C(t).

Proof. It is enough to prove that {An} and {Mn} are UT.
For an {Fnt }-adapted, cadlag process J , we have

|
∫ t

0

J(s−) dAn(s)| ≤
∫ t

0

‖J(s−)‖ dTs(An).

Thus, if sups≤t ‖J(s)‖H ≤ 1, we have

P (sup
s≤t
|
∫ s

0

J(r−) dAn(r)| > K) ≤ P (

∫ t

0

‖J(s−)‖ dTs(An) > K) ≤ P (Tt(An) > K)

which proves that {An} is UT.
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Wong-Zakai type convergence in infinite dimensions

Next notice that

P(sup
s≤t
|
∫ s

0

J(r−)dMn(r)| > K) ≤ E(sup
s≤t
|
∫ s

0

J(r−)dMn(r)|2)/K2

≤ 4E(

∫ t

0

‖J(r−)‖2d[Mn,Mn]r)/K
2

≤ E([Mn,Mn]t)/K
2 ≤ C(t)/K2

which proves that {Mn} is UT.

5 Wong-Zakai type SDE

We are now ready to state our main results. Notice that from Section 2.5, the Hn

and Kn defined below are (H⊗̂HSH) = (H⊗̂HSH)∗-valued semimartingales, hence stan-
dard (H⊗̂HSH)#-semimartingales. In fact, by Theorem 2.18, for any Hilbert space X
and an adapted cadlag process ξ taking values in L(H⊗̂HSH,X), the stochastic inte-
grals ξ− ·Hn and ξ− ·Kn exist. Therefore, more generally the Hn and Kn are (X, Ĥ)#-
semimartingales (see Remark 2.21), where Ĥ can be taken to be the completion of the
space X⊗ (H⊗̂HSH) with respect to some norm such that Ĥ ⊂ L(H⊗̂HSH,X).

Theorem 5.1. Let H be a separable Hilbert space. Let Yn, Zn be two cadlag and
adapted H-valued semimartingales and f : R −→ H a twice continuously differentiable
function with first and second-order derivatives denoted by Df and D2f respectively.
Define

Hn(t) =

∫ t

0

Zn(s−)⊗ dZn(s) , Kn(t) = [Yn, Zn]⊗t .

Suppose Xn satisfies

Xn(t) = Xn(0) +

∫ t

0

f(Xn(s−)) dYn(s) +

∫ t

0

f(Xn(s−)) dZn(s). (5.1)

Assume that {Yn} and {Hn} are UT sequences, and for each t > 0, {[Zn, Zn]t} is a
tight sequence. Also assume that there exist an H#-semimartingale Y and (H⊗̂HSH)#-
semimartingales H,K such that

An := (Xn(0), Yn, Zn, Hn,Kn)⇒ (X(0), Y, 0, H,K) := A,

in the following sense: for any {hi, h′i}mi=1 ⊂ H and {ui, u′i}mi=1 ⊂ H⊗̂HSH

{(Xn(0), Yn(hi, ·), Zn(h′i, ·), Hn(ui, ·),Kn(u′i, ·))}mi=1 ⇒ {(X(0), Y (hi, ·), 0, H(ui, ·),K(u′i, ·))}mi=1

in DR×Rm×Rm×Rm×Rm [0,∞). Then {(An, Xn)} is relatively compact, and any limit point
(A,X) satisfies

X(t) = X(0) +

∫ t

0

f(X(s−)) dY (s) +

∫ t

0

Df(X(s−))⊗ f(X(s−)) d(H∗(s)−K(s)).

Remark 5.2. Notice that ∫
dZn(s)⊗ Zn(s−) = H∗n,

where H∗n denotes adjoint of Hn. Therefore, by the hypothesis∫
dZn(s)⊗ Zn(s−)⇒ H∗.
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Remark 5.3. For a function φ, let ∆φ(s) = φ(s)−φ(s−). Notice that ∆Hn(s) = Zn(s−)⊗
∆Zn(s)⇒ 0. It follows that H is continuous. Similarly, K is continuous.

Proof. By Remark 2.25,

Tt([Zn, Zn]⊗) ≤ [Zn, Zn]t.

Since for each t > 0, [Zn, Zn]t is tight by the assumption, it follows from Theorem 4.6
that {[Zn, Zn]⊗} is UT. Note that by the integration by parts formula for tensor stochastic
integral, we have

[Zn, Zn]⊗t = Zn(t)⊗ Zn(t)− Zn(0)⊗ Zn(0)−
∫ t

0

Zn(s−)⊗ dZn(s)−
∫ t

0

dZn(s)⊗ Zn(s−).

It follows from the hypothesis that

[Zn, Zn]⊗ ⇒ −(H +H∗).

Observe that Tt([Yn, Zn]⊗) ≤ [Yn, Yn]t + [Zn, Zn]t, and since {[Yn, Yn]t} and {[Zn, Zn]t}
are tight for each t > 0, it follows again from Theorem 4.6 that {Kn ≡ [Yn, Zn]⊗} is UT.

By Itô’s formula we have

f(Xn(t)) = f(Xn(0)) +

∫ t

0

Df(Xn(s−)) dXn(s) +Rn(t).

Rn(t) =
1

2

∫ t

0

D2f(Xn(s−))d[Xn, Xn]cs +
∑
s≤t

[∆f(Xn(·))(s)−Df(Xn(s−))∆Xn(s)].

where [Xn, Xn]ct = [Xn, Xn]t −
∑
s≤t ∆Xn(s)∆Xn(s) is the continuous part of [Xn, Xn].

It follows that {Rn} is a locally finite variation process. Notice that Tt(Rn) is dominated
by a linear combination of [Zn, Zn]t, [Yn, Yn]t, and since each of them is tight, we have
{Rn} to be UT.
Next, an application of the integration by parts formula (see (2.9)) gives∫ t

0

f(Xn(s−)) dZn(s) = 〈f(Xn(s), Zn(s)〉 −
∫ t

0

Zn(s−) df(Xn(s))− [Zn, f(Xn)]t.

Now notice that∫ t

0

Zn(s−) df(Xn(s)) =

∫ t

0

Zn(s−)Df(Xn(s−)) dXn(s) +

∫ t

0

Zn(s−)dRn(s).

Notice that Zn(s) ∈ H∗ = L(H,R) andDf(Xn(s)) ∈ L(R,H). Therefore Zn(s−)Df(Xn(s−))

is well defined and ∈ L(R,R) ∼= R.
Hence,∫ t

0

Zn(s−) df(Xn(s)) =

∫ t

0

(Zn(s−)Df(Xn(s−)))f(Xn(s−))dYn(s)

+

∫ t

0

(Zn(s−)Df(Xn(s−)))f(Xn(s−))dZn(s) +

∫ t

0

Zn(s−)dRn(s)

=

∫ t

0

(Zn(s−)Df(Xn(s−)))f(Xn(s−))dYn(s)

+

∫ t

0

Df(Xn(s−))⊗ f(Xn(s−)) dHn(s) +

∫ t

0

Zn(s−) dRn(s),
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where Hn(s) =
∫ t
0
Zn(s−) ⊗ dZn(s), and the equality of the middle terms in the above

two lines follows by Lemma 2.24. Next by Lemma 4.4, we have

[Zn, f(Xn)]t =

∫ t

0

Df(Xn(s−))⊗ f(Xn(s−)) d[Zn, Yn]⊗s

+

∫ t

0

Df(Xn(s−))⊗ f(Xn(s−)) d[Zn, Zn]⊗s + [Zn, Rn]t.

Putting things together, we see that∫ t

0

f(Xn(s−)) dZn(s) = Vn(t)−
∫ t

0

Df(Xn(s−))⊗f(Xn(s−)) d(Hn(s)+Kn(s)+[Zn, Zn]⊗(s),

where

Vn(t) = 〈f(Xn(s)), Zn(s)〉 −
∫ t

0

(Zn(s−)Df(Xn(s−)))f(Xn(s−)) dYn(s)

−
∫ t

0

Zn(s−) dRn(s)− [Zn, Rn]t.

From the hypothesis, we get V n ⇒ 0. Plugging things back in the original equation, we
have,

Xn(t) = Xn(0) + Vn(t) +

∫ t

0

f(Xn(s−)) dYn(s)

−
∫ t

0

Df(Xn(s−))⊗ f(Xn(s−)) d(Hn(s) +Kn(s) + [Zn, Zn]⊗(s)).

Take the indexing space Y = (H,H⊗̂HSH) with the norm as ‖(h, u)‖Y = ‖h‖H + ‖u‖HS .
Consider Yn as an Y#-semimartingale by defining

Yn((h, u), ·) ≡ Yn(h, ·).

Similarly,Hn,Kn and [Zn, Zn] can be considered asY#-semimartingales. Since {Yn}, {Hn}, {Kn}
and {[Zn, Zn]⊗} are UT, Theorem 3.5 gives the desired result.

We next consider the case when the solutions of the stochastic differential equations
of the form (5.1) are also infinite-dimensional. We follows the steps in the above proof,
however, the difficulties lie in handling of infinite-dimensional Itô’s lemma, infinite-
dimensional covariation, chain rule, appropriate integration by parts etc. They are
taken care of by suitable use of results from Section 4. Notice that as in Theorem 5.1,
the Hn and Kn defined below are (H⊗̂HSH) = (H⊗̂HSH)∗-valued semimartingales.

Theorem 5.4. Let H and K be separable Hilbert spaces. Let Yn, Zn be two cadlag and
adapted H-valued semimartingales and f : K −→ L ≡ HS(H,K) a twice continuously
differentiable function with first and second-order derivatives denoted by Df and D2f

respectively. Notice that Df : K → L(K,L). Assume that for each x ∈ K, D2f(x) is an
element of L(K⊗̂HSK,L) and the mapping x → D2f(x) is uniformly continuous on any
bounded subset of K. Define

Hn(t) =

∫ t

0

Zn(s−)⊗ dZn(s) , Kn(t) = [Yn, Zn]⊗t .

Suppose Xn satisfies

Xn(t) = Xn(0) +

∫ t

0

f(Xn(s−)) dYn(s) +

∫ t

0

f(Xn(s−)) dZn(s). (5.2)

EJP 18 (2013), paper 31.
Page 19/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2650
http://ejp.ejpecp.org/


Wong-Zakai type convergence in infinite dimensions

Assume that {Yn} and {Hn} are uniformly tight sequences, and for each t > 0, {[Zn, Zn]t}
is a tight sequence. Also assume that there exist anH#-semimartingale Y and (H⊗̂HSH)#-
semimartingales H,K such that

An := (Xn(0), Yn, Zn, Hn,Kn)⇒ (X(0), Y, 0, H,K) := A,

in the same sense as in Theorem 5.1. Then (An, Xn) is relatively compact, and any limit
point (A,X) satisfies

X(t) = X(0) +

∫ t

0

f(X(s−)) dY (s) +

∫ t

0

˜Df(X(s−))f(X(s−)) d(H∗(s)−K(s)),

where the mapping ˜ was defined in Lemma 4.2.

Proof. As before,
∫ ·
0
dZn(s)⊗Zn(s−)⇒ H∗, [Zn, ·Zn]⊗ ⇒ −(H+H∗) and {[Zn, Zn]⊗}, {Kn ≡

[Yn, Zn]⊗} are UT.
By the infinite-dimensional Itô’s formula (Theorem A.2), we have

f(Xn(t)) = f(Xn(0)) +

∫ t

0

Df(Xn(s−)) dXn(s) +Rn(t). (5.3)

where Rn is given by

Rn(t) =
1

2

∫ t

0

D2f(Xn(s−))d[Xn, Xn]c,⊗s +
∑
s≤t

[∆f(Xn(·))(s)−Df(Xn(s−))∆Xn(s)].

where [Xn, Xn]c,⊗t = [Xn, Xn]⊗t −
∑
s≤t ∆Xn(s) ⊗ ∆Xn(s) is the continuous part of

[Xn, Xn]⊗. As before, {Rn} is UT.
Next, an application of the integration by parts formula (see (4.2)) gives∫ t

0

f(Xn(s−)) dZn(s) = f(Xn(s)(Zn(s))−
∫ t

0

Zn(s−) df(Xn(s))− [[f(Xn), Zn]]t,

where the mapping is defined in the proof of Lemma 4.1.
Notice that by (5.3)∫ t

0

Zn(s−) df(Xn(s)) =

∫ t

0

Zn(s−)Df(Xn(s−)) dXn(s) +

∫ t

0

Zn(s−)dRn(s).

Hence, by (5.2)∫ t

0

Zn(s−) df(Xn(s)) =

∫ t

0

Zn(s−)Df(Xn(s−))f(Xn(s−))dYn(s)

+

∫ t

0

Zn(s−)Df(Xn(s−))f(Xn(s−))dZn(s) +

∫ t

0

Zn(s−)dRn(s)

=

∫ t

0

Zn(s−)Df(Xn(s−))f(Xn(s−))dYn(s)

+

∫ t

0

˜Df(Xn(s−))f(Xn(s−)) dHn(s) +

∫ t

0

Zn(s−) dRn(s),

where Hn(s) =
∫ t
0
Zn(s−) ⊗ dZn(s), and the equality of the middle terms in the above

two lines follows by (4.1). Next by Lemma 4.5

[[f(Xn), Zn]]t =

∫ t

0

˜Df(Xn(s−))f(Xn(s−)) d[Zn, Yn]⊗s

+

∫ t

0

˜Df(Xn(s−))f(Xn(s−)) d[Zn, Zn]⊗s + [[Rn, Zn]]t.

EJP 18 (2013), paper 31.
Page 20/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2650
http://ejp.ejpecp.org/


Wong-Zakai type convergence in infinite dimensions

Putting things together, we see that∫ t

0

f(Xn(s−)) dZn(s) = Vn(t)−
∫ t

0

˜Df(Xn(s−))f(Xn(s−)) d(Hn(s)+Kn(s)+[Zn, Zn]⊗(s),

where

Vn(t) = f(Xn(s))(Zn(s))−
∫ t

0

Zn(s−)Df(Xn(s−))f(Xn(s−)) dYn(s)

−
∫ t

0

Zn(s−) dRn(s)− [[Zn, Rn]]t.

From the hypothesis, we get V n ⇒ 0. Plugging things back in the original equation, we
have,

Xn(t) = Xn(0) + Vn(t) +

∫ t

0

f(Xn(s−)) dYn(s)

−
∫ t

0

˜Df(Xn(s−))f(Xn(s−)) d(Hn(s) +Kn(s) + [Zn, Zn]⊗(s))

Take the indexing space Y = (H,H⊗̂HSH) with the norm as ‖(h, u)‖Y = ‖h‖H + ‖u‖HS .
Consider Yn as an Y#-semimartingale by defining

Yn((h, u), ·) ≡ Yn(h, ·).

SimilarlyHn,Kn and [Zn, Zn] can be considered asY#-semimartingales. Since {Yn}, {Hn}, {Kn}
and {[Zn, Zn]⊗} are UT, the desired result now follows from Theorem 3.6.

Example 5.5. Let U be an adapted semimartingale taking values in a Hilbert space H.
Let {Gn} be a sequence of adapted H-valued semimartingales with Gn ⇒ U . Suppose
that Gn = Mn+An is a decomposition of the semimartingale Gn into its local martingale
and finite variation parts and that {Mn} and {An} satisfy the assumptions of Theorem
4.6. Note that this implies {Gn} is UT. In many examples Gn ≡ U . As a first example,
consider the stochastic differential equation

Xn(t) = Xn(0) +

∫ t

0

σ(s,Xn(s), Un(s))dUn(s), (5.4)

where σ : R×R×H −→ H is twice continuously differentiable and

Un(t) = Gn(
k

n
) + n(t− k

n
)

(
Gn(

k + 1

n
)−Gn(

k

n
)

)
,

k

n
≤ t < k + 1

n
.

Notice that the Xn are real-valued processes. Let ∂iσ denote the partial derivative of σ
with respect to the i-th component. Notice that ∂1σ, ∂2σ ∈ H and ∂3σ ∈ L(H,H). Assume
that ∂3σ ∈ HS(H,H).

As discussed, U,Gn and Un can be considered as H#-semimartingales. It is easy to see
that {Un} is not UT. Let Un = Yn + Zn, where Yn(t) = Gn( [nt]+1

n ) and Zn = Un − Yn. We

claim that {Yn} is UT. To see this, write Yn(t) ≡Mn(t)+An(t) ≡Mn( [nt]+1
n )+An( [nt]+1

n ).
Note that {Mn} is a sequence of martingales with respect to the filtration Fnt ≡ F[nt]+1,
with E[Mn,Mn]t ≤ E[Mn,Mn]t+1. Also, Tt(An) ≤ Tt+1(An). The assertion now follows
by Theorem 4.6 and the assumptions on {Mn} and {An} .
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Next note that
∫ t
0
Zn(s−)⊗dZn(s)→ −[U,U ]⊗t /2. To see this, note that since Zn(s−) = 0,

at the discontinuity points of Yn∫ t

0

Zn(s−)⊗ dZn(s) =

∫ t

0

Zn(s−)⊗ dUn(s)−
∑
s≤t

Zn(s−)⊗∆Yn(s) =

∫ t

0

Zn(s−)⊗ dUn(s)

=
∑
k

n

∫ (k+1)/n

k/n

(
n (s− k/n)

(
Gn(

k + 1

n
)−Gn(

k

n
)

)
+ Gn(

k

n
)−Gn(

k + 1

n
)

)
⊗
(
Gn(

k + 1

n
)−Gn(

k

n
)

)
ds

= n
∑
k

(Gn ((k + 1)/n)−Gn(k/n))⊗ (Gn ((k + 1)/n)−Gn(k/n))

∫ (k+1)/n

k/n

n(s− k/n)− 1 ds

= −1

2

∑
k

(Gn ((k + 1)/n)−Gn(k/n))⊗ (Gn ((k + 1)/n)−Gn(k/n))

⇒ − [U,U ]⊗t
2

, since {Gn} is UT.

Also since,

[Zn, Zn]⊗ = Zn(t)⊗ Zn(t)−
∫ t

0

Zn(s−)⊗ dZn(s)−
∫ t

0

dZn(s−)⊗ Zn(s),

it follows that
[Yn, Zn]⊗ = −[Yn, Yn]⊗ = −[Zn, Zn]⊗ ⇒ [U,U ]⊗

Moreover, Tt(
∫
Zn−⊗ dZn) ≤ n

∑
k ‖ (Gn ((k + 1)/n)−Gn(k/n)) ‖2

∫ (k+1)/n

k/n
|n(s− k/n)−

1| ds → t [U,U ]t/2. It follows that for each t > 0, {Tt(
∫
Zn− ⊗ dZn)} is tight, and hence

the sequence {
∫
Zn− ⊗ dZn} is UT.

We next derive the limiting stochastic differential equation for (5.4). Define

X̃n(t) = (t,Xn(t), Un(t))T , Ũn(t) = (t, Un(t), Un(t))T , Ũ(t) = (t, U(t), U(t))T

and F : R×R×H→ L(R×H×H,R×R×H) by

F (t, x, h) =

1 0 0

0 σ(t, x, h) 0

0 0 1


In other words, the operator F (t, x, h) is defined as

F (t, x, h)y = (y1, 〈σ(t, x, h), y2〉H, y3)T ∈ R×R×H, y = (y1, y2, y3)T ∈ R×H×H.
(5.5)

Note that (5.4) implies

X̃n(t) = X̃n(0) + F (X̃n) · Ũn(t) = X̃n(0) + F (X̃n) · Ỹn(t) + F (X̃n) · Z̃n(t), (5.6)

where Ỹn(t) = (t, Yn(t), Yn(t)) and Z̃n(t) = (0, Zn(t), Zn(t)). Now the previous discussion
tells that the sequences ofR×H×H-valued processes {Ỹn} andHS(R×H×H,R×H×H)-
valued processes {

∫
Z̃n ⊗ dZ̃n} are UT, and

Ỹn ⇒ Ũ ,

∫
Z̃n ⊗ dZ̃n ⇒ −

[Ũ , Ũ ]⊗t
2

≡ −1

2

0 0 0

0 [U,U ]⊗ [U,U ]⊗

0 [U,U ]⊗ [U,U ]⊗

 ∈ HS(R×H×H,R×H×H)
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and

[Ỹn, Z̃n]⊗ = −[Ỹn, Ỹn]⊗ = −[Z̃n, Z̃n]⊗ ⇒ −

0 0 0

0 [U,U ]⊗ [U,U ]⊗

0 [U,U ]⊗ [U,U ]⊗

 .

Here, the elements ofHS(R×H×H,R×H×H) are represented by matrix like structures
of the form:

Ξ =

 β h12 h13
h21 ξ22 ξ23
h31 ξ32 ξ33

 , β ∈ R, hij ∈ H, ξij ∈ H⊗̂HSH.

In other words, the Hilbert-Schmidt operator Ξ ∈ HS(R×H×H,R×H×H) is defined
as

Ξ(y) = (βy1 + 〈h12, y2〉H + 〈h13, y3〉H, y1h21 + ξ22(y2) + ξ23(y3), y1h31 + ξ32(y2) + ξ33(y3))

Observe that the derivative operator, DF (t, x, h) ∈ L(R×R×H, L(R×H×H,R×R×H))

is given by

DF (t, x, h)(b) =

0 0 0

0 b1∂1σ + b2∂2σ + ∂3σb3 0

0 0 0

 , b ∈ R×R×H. (5.7)

Now an application of Theorem 5.4 to (5.6) gives the limiting stochastic differential
equation as

X̃(t) = X̃(0) +

∫ t

0

F (X̃(s−)) dŨ(s) +
1

2

∫ t

0

˜
DF (X̃(s−))F (X̃(s−)) d[Ũ , Ũ ]⊗t , (5.8)

where the mapping ˜ was defined in Lemma 4.2. Observe that in the present example
(see Section A.4 for a proof),

˜DF (x̃)F (x̃)(Ξ) = (0, 〈∂1σ, h21〉H + 〈∂2σ ⊗ σ, ξ22〉H⊗̂HSH
+ 〈∂3σ, ξ23〉H⊗̂HSH

, 0)T . (5.9)

Therefore, considering the middle component of (5.8), it follows that Xn ⇒ X where X
satisfies

X(t) = X(0) +

∫ t

0

σdU(s) +
1

2

∫ t

0

(∂3σ + ∂2σ ⊗ σ)d[U,U ]⊗s

Remark 5.6. Example 5.5 is a generalization of the results obtained by Nakao and Yam-
ato [17] (see Theorem 1.1) and Konecny [10] to stochastic differential equations driven
by infinite-dimensional semimartingales. One important example of U in Example 5.5
is an H-valued Brownian motion W with covariance operator Q, where Q is nuclear
(see [5]). In other words, for h1, h2 ∈ H, [W (h1, ·),W (h2, ·)]t = 〈Qh1, h2〉Ht. The tensor
quadratic variation of the process W is given by [W,W ]⊗t = tQ.

Remark 5.7. Using the same technique, Example 5.5 can easily be extended to the
case where the solutions Xn are also infinite-dimensional. Also, the approximation of
the semimartingale U by linear interpolation is just chosen for illustrative purpose. It
can be easily extended to more general approximation techniques.

Example 5.8. As a second example, we consider a space-time Gaussian white noise
and its mollified version as its approximation. More precisely, let W be an {Ft}-adapted
space-time Gaussian white noise and Br(x) ⊂ Rd denote the ball of radius r, centered
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at x. Let ρ : Rd → [0,∞) and η : R → [0,∞) be smooth functions with supp(ρ) ⊂ B1(0),
supp(η) ⊂ (−1, 0), and

∫
Rd ρ(x) dx = 1,

∫∞
−∞ η(s) ds = 1.

Define ρn(x) = ndη(nx), and ηn(s) = nη(nx). Notice that ρn is supported on B1/n(0) ⊂
Rd, and ηn is supported on [−1/n, 0], and

∫
B1/n(0)

ρn(x) dx = 1,
∫
[−1/n,0] ηn(s) = 1.

Define

Ẇn(x, t) =

∫
Rd×[0,∞)

ρn(x− y)ηn(s− t)W (dy × ds). (5.10)

For h ∈ L2(Rd), let

Wn(h, t) =

∫
Rd×[0,∞)

h(x)Ẇn(x, s)dx ds, (5.11)

Notice that {Wn} is a sequence of {Ft}-adapted H#-semimartingales, for H = L2(Rd),

and Wn
P→W in the sense that, for any finite h1, . . . , hm ∈ L2(Rd)

(Wn(h1, ·), . . . ,Wn(hm, ·))
P→ (W (h1, ·), . . . ,Wn(h, ·)).

Consider the following SDE

Xn(t) = Xn(0) +

∫
Rd×[0,t)

g(Xn(s), x)Ẇn(x, s)dx ds.

Assume that

• |g(·, x)| ≤ κ(x) for some κ ∈ L1 so that the integration in the right side is defined;

• g(y, x) = Sf(y, ·)(x), where S is a Hilbert-Schmidt operator on L2(Rd). For exam-
ple, if

∫
Rd×Rd γ

2(x, u)dx du <∞, then S could be defined as

Sh(x) =

∫
Rd

h(u)γ(x, u) du; (5.12)

(In other words, if S is defined by (5.12), then g(y, x) =
∫
Rd f(y, u)γ(x, u) du.)

• supu
∫
Rd |f(u, x)|2 dx <∞, supu

∫
Rd |∂1f(u, x)|2 dx <∞ and supu

∫
Rd |∂21f(u, x)|2 dx <

∞, where ∂1f and ∂21f denote the first and second order partial derivative of f with
respect to the first co-ordinate.

The above assumptions imply that the mapping

u ∈ Rd → f(u, ·) ∈ L2(Rd)

is bounded in L2(Rd) with bounded first and second-order (Frechet) derivative.
Thus Xn satisfies

Xn(t) = Xn(0) + Sf(Xn(·), ·) ·Wn(t), (5.13)

that is

Xn(t) = Xn(0) +

∫
Rd×[0,t)

Sf(Xn(s), ·)(x)Ẇn(x, s)dx ds.

Observe that {Wn} is not a UT sequence, as∫ t

0

Wn(h, s)dWn(h, s) =
1

2
Wn(h, t)2 ;

∫ t

0

W (h, s)dW (h, s) =
1

2
(W (h, t)2 − ‖h‖2t).
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We apply Theorem 5.1 to find the limit of {Xn}.
First, notice that the SDE (5.13) could be written as

Xn(t) = Xn(0) + f(Xn(·), ·) · Wn(t), (5.14)

whereWn is defined as

Wn(h, t) =

∫
Rd×[0,t)

(Sh)(x)Ẇn(x, s)dx ds, (5.15)

It is easy to check that
E[sup

s≤t
|Wn(h, s)−W (Sh, s)|2]→ 0.

Observe that

Wn(h, t) =

∫
Rd×[0,t)

(Sh)(x)(

∫
Rd×[0,∞)

ρn(x− y)ηn(r − s)W (dy × dr))dx ds

=

∫
Rd×[0,t)

(

∫
Rd×[0,t)

(Sh)(x)ρn(x− y)ηn(r − s)dx ds)W (dy × dr)

=

∫
Rd×[0,t)

(SnSh)(y)(

∫ t

0

(ηn(r − s) ds)W (dy × dr) (5.16)

where the operator Sn is defined as

Snh(x) =

∫
Rd

h(y)ρn(x− y) dy.

Note that ‖Sn‖op ≤ 1. Write

Wn(h, t) = Yn(h, t) + Zn(h, t).

where Yn(h, t) ≡W (SnSh, t). Define

W̃n(t) =
∑
j

Wn(ej , t)ej

Notice that the infinite sum above converges, as from (5.16)

sup
s≤t

E(‖
M∑
j=K

Wn(ej , t)ej‖22 = sup
s≤t

M∑
j=K

E(Wn(ej , s)
2)

≤
M∑
j=K

‖SnSej‖22 t

≤
M∑
j=K

‖Sej‖22 t, as ‖Sn‖op ≤ 1

→ 0, as K,M →∞, since S is Hilbert-Schmidt.

It follows that W̃n ∈ DL2(Rd)[0,∞). Similarly,

Ỹn ≡
∑
j

Yn(ej , ·)ej ∈ DL2(Rd)[0,∞).

Thus, W̃n and Ỹn are versions of Wn and Yn taking values in L2(Rd) and it is easily
checked that H · Wn = H · W̃n and H · Yn = H · Ỹn. With a slight abuse of notation,
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we will continue to use Yn andWn instead of Ỹn and W̃n, and consider them as L2(Rd)-
valued semimartingales.

Put Kn ≡ [Yn, Zn]⊗ = −[Zn, Zn]⊗ = −[Yn, Yn]⊗, and notice that

[Yn, Yn]⊗t =
∑
j,k

[Yn(ej , ·), Yn(ej , ·)]tej ⊗ ek

= t
∑
j,k

〈SnSej , SnSek〉ej ⊗ ek = t(SnS)∗(SnS).

Here 〈·, ·〉 denotes the inner product in L2(Rd). Recall that Kn is an H⊗̂HSH-valued
(hence a standard (H⊗̂HSH)# ) semimartingale. We verifyKn(t) ≡ [Yn, Zn]⊗t = −t(SnS)∗(SnS)

converges to −tS∗S in the sense of convergence of (H⊗̂HSH)#-semimartingale, that is
we need to verify for u =

∑I
i=1 xi ⊗ yi, 〈u, tKn〉 → 〈u, tI〉. This follows because

〈u, tKn〉 =
∑
i

〈xi, tKnyi〉 = −t
∑
i

〈xi, (SnS)∗(SnS)yi〉

= −t
∑
i

〈SnSxi, SnSyi〉 −→ −t
∑
i

〈Sxi, Syi〉.

The last equality is because SnS → S in the strong operator topology.
Similarly, Hn(t) ≡

∫ t
0
Zn(s)⊗ dZn(s)→ − t

2S
∗S.

Next, observe that {Yn} is a uniformly tight sequence, and Yn
P→ W in the sense

that, for any finite h1, . . . , hm ∈ L2(Rd)

(Yn(h1, ·), . . . , Yn(hm, ·))
P→ (W(h1, ·), . . . ,W(h, ·)),

whereW(h, t) = W (Sh, t), that is,W is a space-time Gaussian white noise with

[W(h, ·),W(g, ·)]t = t〈Sh, Sg〉.

To apply Theorem 5.1, we only need to prove that the sequence {Hn ≡
∫ t
0
Zn(s−) ⊗

dZn(s)} is uniformly tight. For this purpose, we first compute E‖Zn(t)‖22. Notice that
‖Zn(t)‖22 =

∑
j ‖Yn(ej , t)−Wn(ej , t)‖2. For any h ∈ L2(Rd), we have using (5.16)

Wn(h, t)− Yn(h, t) =

∫
Rd×[0,t)

(SnSh)(y)(

∫ t

0

(ηn(r − s) ds)W (dy × dr)

−
∫
Rd×[0,t)

(SnSh)(y)W (dy × dr)

=

∫
Rd×[0,t)

(SnSh)(y)(

∫ t

0

ηn(r − s) ds− 1)W (dy × dr)

=

∫
Rd×[0,t−1/n)

(SnSh)(y)(

∫ t

0

ηn(r − s) ds− 1)W (dy × dr)

+

∫
Rd×[t−1/n,t)

(SnSh)(y)(

∫ t

0

ηn(r − s) ds− 1)W (dy × dr)

=

∫
Rd×[t−1/n,t)

(SnSh)(y)(−
∫ r+1/n

t

ηn(r − s) ds)W (dy × dr).

The last equality is because
∫ t
0
ηn(r − s) ds = 1, if t ≥ r + 1/n. Thus,

E(Wn(h, t)− Yn(h, t))2 =

∫
Rd×[t−1/n,t)

|SnSh(y)|2dy dr ≤ 1

n
‖SnSh‖22
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It follows that

E‖Zn(t)‖22 ≤
1

n

∑
j

‖SnSej‖22 =
1

n
‖SnS‖HS ≤

1

n
‖S‖HS . (5.17)

Take G to be an {Fnt }-adapted (H⊗̂HSH)-valued cadlag process, and ‖G(s)‖HS ≤ 1.

Notice that by Theorem 2.24

Gn ·Hn(t) =

∫ t

0

G(s−)(Zn(s−)) dZn(s)

=

∫ t

0

G(s−)(Zn(s−)) dYn(s)−
∫ t

0

G(s−)(Zn(s−)) dWn(s)

= A+B.

We have,

E(B2) =

∫ t

0

‖SnS[G(s)(Zn(s))]‖22 ds

≤
∫ t

0

‖SnS‖op‖G(s)‖op‖Zn(s)‖22 ds ≤
∫ t

0

‖SnS‖op‖G(s)‖HS‖Zn(s)‖22 ds

≤ ‖S‖op
∫ t

0

‖Zn(s)‖2 ds ≤ 1

n
‖S‖HS‖S‖opt

and

A =

∫ t

0

G(s−)(Zn(s−))dWn(s)

=

∫ t

0

SG(s−)(Zn(s−))(x)

∫
Rd×[0,∞)

ρn(x− y)ηn(r − s)W (dy × dr)dxds

=

∫ t

0

∫
Rd×[0,∞)

SnSG(s−)(Zn(s−))(y)ηn(r − s)W (dy × dr)ds.

Thus,

E(A2) ≤
∫ t

0

E[

∫
Rd×[0,∞)

SnSG(s−)(Zn(s−))(y)ηn(r − s)W (dy × dr)]2ds

=

∫ t

0

(

∫
Rd×[0,∞)

E|SnSG(s−)(Zn(s−))(y)|2|ηn(r − s)|2 dy dr) ds

≤ Cn
∫ t

0

(

∫
Rd

E|SnSG(s−)(Zn(s−))(y)|2dy) ds, C =

∫ ∞
−∞

η2(r) dr

= Cn

∫ t

0

E‖SnSG(s−)Zn(s−)‖22 ds

≤ Cn‖S‖op
∫ t

0

E‖Zn(s−)‖22 ds

≤ Ct‖S‖op‖S‖HS , using (5.17).

It follows that {Hn} is uniformly tight.

Now if Xn(0)
P−→ X(0), then applying Theorem 5.1, we conclude Xn

P→ X, where X

satisfies

X(t) = X(0) +

∫
Rd×[0,t)

Sf(X(s), ·)(x)W (dx× ds)

+

∫ t

0

Df(Xs−)⊗ f(Xs−) d(−s
2
SS∗ + sS∗S).
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If S = S∗, which will be the case if S is defined by (5.12), then the above SDE could be
written as

X(t) = X(0) +

∫
Rd×[0,t)

Sf(X(s), ·)(x)W (dx× ds)

+
1

2

∫
Rd×[0,t)

Sf(X(s), ·)(x)∂1Sf(X(s), ·)(x) dx ds.

Example 5.9. Let {ξn} be a φ-irreducible Markov chain taking values in a separable
metric space U . Let P denote the transition kernel of {ξn}. Assume that the chain is
ergodic with unique stationary distribution π. Let H = L2(U, π). Let {W̃n}, {Ỹn} and
{Z̃n} be H#-semimartingales defined by

W̃n(h, t) ≡ 1√
n

[nt]∑
k=1

(Ph(ξk)− h(ξk))

=
1√
n

[nt]∑
k=1

(Ph(ξk−1)− h(ξk)) +
1√
n

(
Ph(ξ[nt])− h(ξ0)

)
≡ Ỹn(h, t) + Z̃n(h, t).

Let S be a Hilbert-Schmidt operator from H to H. Define Yn(h, t) ≡ Ỹn(Sh, t) and
Zn(h, t) ≡ Z̃n(Sh, t). Let {ek} be an orthonormal basis of H. With a slight abuse of
notation, define

Yn(t) =
∑
k

Yn(ek, t)ek, Zn(t) =
∑
k

Zn(ek, t)ek

Then Yn and Zn are H-valued processes. To see this, first note that

sup
t≤T

E[‖
M∑
j=K

Yn(ej , t)ej‖22] = sup
t≤T

M∑
j=K

E[‖Yn(ej , t)‖22]. (5.18)

Now observe that for any h ∈ H,

E[‖Yn(h, t)‖22] =
1

n

[nt]∑
j=1

E[PSh(ξk−1)− Sh(ξk)]2 ≤ 2
[nt]

n
(‖PSh‖22 + ‖Sh‖22) ≤ 4

[nt]

n
‖Sh‖22.

It follows from (5.18) that

sup
t≤T

E[‖
M∑
j=K

Yn(ej , t)ej‖22] ≤ 4
[nT ]

n

M∑
j=K

‖Sej‖22

→ 0, as K,M →∞, since S is Hilbert-Schmidt.

Similarly, Zn is an H-valued process.
Consider a sequence of SDEs of the form (5.2) driven by {Yn} and {Zn}. We show that
{Yn} and {Zn} satisfy the assumptions of Theorem 5.4.

For each n, Yn is a martingale, and by the martingale central limit theorem it follows
that for any collection of h1, . . . , hm ∈ H

(Yn(h1, ·), . . . , Yn(hm·))⇒W,
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where W is an m-dimensional Gaussian process with covariance matrix, tC, and C is
given by

Ci,j = lim
n→∞

1

n

n∑
k=1

(PShi(ξk−1)− Shi(ξk))(PShj(ξk−1)− Shj(ξk))

=

∫
π(dx)

∫
P (x, dy)(PShi(x)− Shi(y))(PShj(x)− Shj(y)).

Next, we prove that {Yn} is UT. By Theorem 4.6, it is enough to show that supn E[Yn, Yn]t <

∞. To see this, observe that

[Yn, Yn]t = trace([Yn, Yn]⊗t ) =
∑
k

[Yn(ek, ·), Yn(ek, ·)]t,

where {ek} is an orthonormal basis of H.

Note that [Yn(h, ·), Yn(g, ·)]t = 1
n

∑[nt]
k=1(PSh(ξk−1) − Sh(ξk))(PSg(ξk−1) − Sg(ξk)) and

therefore,

E[Yn, Yn]t =
[nt]

n

∑
k

∫
π(dx)

∫
P (x, dy)(PSek(x)− Sek(y))2

≤ 4
[nt]

n

∑
k

‖Sek‖22.

Since S is Hilbert-Schmidt, it follows that supn E[Yn, Yn]t <∞.
Also, it is immediate that Zn ⇒ 0, in the sense that for any collection of h1, . . . , hm ∈

H (Zn(h1, ·), . . . , Zn(hm·)) ⇒ 0. Next, note that since Zn(h, t) = 1√
n

∑[nt]
k=1(PSh(ξk) −

PSh(ξk−1)

[Zn(g, ·), Zn(h, ·)]t =
1

n

[nt]∑
k=1

(PSg(ξk)− PSg(ξk−1)(PSh(ξk)− PSh(ξk−1)

⇒ t

∫
π(dx)

∫
P (x, dy)(PSg(y)− PSg(x))(PSh(y)− PSh(x)).

It follows that for any g1, h1, . . . , gm, hm ∈ H,

([Zn, Zn]⊗t (g1 ⊗ h1), . . . , [Zn, Zn]⊗t (gm ⊗ hm)) = ([Zn(g1, ·), Zn(h1, ·)]t, . . . , [Zn(gm, ·), Zn(hm, ·)]t)
⇒ tρ,

where ρ = (ρi)
m
i=1 and ρi =

∫
π(dx)

∫
P (x, dy)(PSgi(y)− PSgi(x))(PShi(y)− PShi(x)).

Also,

[Zn(g, ·), Yn(h, ·)]t =
1

n

[nt]∑
k=1

(PSg(ξk)− PSg(ξk−1)(PSh(ξk−1)− Sh(ξk)

⇒ t

∫
π(dx)

∫
P (x, dy)(PSg(y)− PSg(x))(PSh(x)− Sh(y)).

Therefore,

([Zn, Yn]⊗t (g1 ⊗ h1), . . . , [Zn, Yn]⊗t (gm ⊗ hm))⇒ tρ′,

where ρ′ = (ρ′i)
m
i=1 and ρ′i =

∫
π(dx)

∫
P (x, dy)(PSgi(y)− PSgi(x))(PShi(x)− Shi(y)).

Similarly,

(

∫ t

0

Zn(s−)⊗ dZn(s)(g1 ⊗ h1), . . . ,

∫ t

0

Zn(s−)⊗ dZn(s)⊗(gm ⊗ hm))⇒ tρ′′,
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where ρ′′ = (ρ′′i )mi=1 and ρ′′i =
∫
π(dx)

∫
P (x, dy)PSgi(x)(PShi(y) − Shi(x)). Finally, we

need to prove that {
∫
Zn(s−)⊗ dZn(s)} is UT. By Theorem 4.6, it is enough to show that

for every t > 0, {Tt(
∫
Zn(s−) ⊗ dZn(s))} is tight. Call Hn =

∫
Zn(s−) ⊗ dZn(s). Recall

that if {ek} is an orthonormal basis of H, then {ek ⊗ el} forms an orthonormal basis of
H⊗̂HSH. Hence,

Tt(

∫
Zn(s−)⊗ dZn(s)) = sup

{ti}

∑
i

√∑
k

|Hn(ek ⊗ el, ti)−Hn(ek ⊗ el, ti−1)|2

=
1

n

[nt]∑
j=1

√∑
k,l

|PSek(ξj−1)|2|PSel(ξj)− PSel(ξj−1)|2

≤

√√√√∑
k

1

n

[nt]∑
j=1

|PSek(ξj−1)|2

√√√√∑
l

1

n

[nt]∑
j=1

|PSel(ξj)− PSel(ξj−1)|2

⇒
√∑

k

‖PSek‖2
√∑

l

∫
π(dx)

∫
P (x, dy)|PSel(x)− PSel(y)|2 <∞.

It follows that {Tt(
∫
Zn(s−)⊗ dZn(s))} is tight.

Appendix

A.1 Tensor product

All the results in this section are from Ryan [19]. Let X, Y be two Banach spaces.
Let B(X×Y,Z) be the space of all bounded bilinear forms from X×Y → Z, that is set
of all bilinear forms A such that

‖A(x, y)‖Z ≤ γ‖x‖X‖y‖Y, for some γ > 0.

The smallest such constant γ is the norm of A, and will be denoted by ‖A‖. If Z = R,
then we will denote B(X×Y,Z) by B(X×Y).

For a vector space V , let V # denote the algebracic dual of V . The tensor product
X⊗Y will be constructed as B(X×Y)#, by defining the action of x⊗ y on B(X×Y)#

as
x⊗ y(A) = A(x, y), x ∈ X, y ∈ Y.

Thus, a typical tensor u ∈ X⊗Y, has the form

u =

I∑
i=1

xi ⊗ yi. (A.1)

Notice that by definition u = 0, if

I∑
i=1

A(xi, yi) = 0, for all A ∈ B(X×Y).

The following theorem gives an easy criterion to check if u = 0.

Theorem A.1. Let u be a tensor of the form (A.1). Then u = 0 if and only if

I∑
i=1

φ(xi)ψ(yi) = 0, for all φ ∈ X∗, ψ ∈ Y∗.

So far we have introduced tensor product X⊗Y as a vector space. Many choices of
norm exist to complete the space X⊗Y, e.g the projective norm, the nuclear norm etc.
Here however, we focus on the case when X and Y are separable Hilbert spaces and
the norm considered on X⊗Y is Hilbert-Schmidt.
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A.2 Hilbert-Schmidt operator and tensor product

Let X and Y be two separable Hilbert spaces. Let {ej} be a complete orthonormal
system of X. S ∈ L(X,Y) is a Hilbert-Schmidt operator if

∑
j

‖Sej‖2K <∞.

The quantity in the left side does not depend on the orthonormal system {ej}, and its
square root is defined as the Hilbert-Schmidt norm ‖S‖HS . The space of all Hilbert-
Schmidt operators is denoted by HS(X,Y). HS(X,Y) is a separable Hilbert space.

Let h, h′ ∈ X and k, k′ ∈ Y. Define an inner product 〈·, ·〉HS on X⊗Y by

〈h⊗ k, h′ ⊗ k′〉HS = 〈h, h′〉X 〈k, k, 〉Y.

Let X⊗̂HSY denote the completion of the space with respect to the inner product
〈·, ·〉HS . Then X⊗̂HSY is isometrically isomorphic to HS(Y,X) and also HS(X,Y).
If {ej} and {fj} are complete orthonormal systems of X and Y, then {ej⊗fk}j,k forms a
complete orthonormal system of X⊗̂HSY. If T ∈ HS(X,Y), then T can be represented
as

T =
∑
j,k

〈Tej , fk〉ej ⊗ fk.

A.3 Infinite-dimensional Itô’s lemma

Theorem A.2. [15, Theorem 27.2] Let X and Y be two separable Hilbert spaces, Z an
adapted X-valued semimartingale and φ : X→ Y be a twice continuously differentiable
function with first and second-order derivatives denoted by Dφ and D2φ respectively.
Assume that for each x ∈ X, D2φ(x) is an element of L(X⊗̂HSX,Y) and the mapping
x→ D2φ(x) is uniformly continuous on any bounded subset of X. Then

φ(Zt) = φ(Z0) +

∫ t

0

Dφ(Z(s−)) dZ(s) +
1

2

∫ t

0

D2φ(Z(s−)) d[Z,Z]⊗(s)

+
∑
s≤t

(
φ(Z(s))− φ(Z(s−))−Dφ(Z(s−))∆Z(s)− 1

2
D2φ(Z(s−))∆Z(s)⊗∆Z(s)

)

= φ(Z0) +

∫ t

0

Dφ(Z(s−)) dZ(s) +
1

2

∫ t

0

D2φ(Z(s−)) d[Z,Z]c,⊗s

+
∑
s≤t

(φ(Z(s))− φ(Z(s−))−Dφ(Z(s−))∆Z(s))

where [Z,Z]c,⊗t = [Z,Z]⊗t −
∑
s≤t ∆Z(s)⊗∆Z(s).

A.4 Proof of (5.9)

Let {γk} be an orthonormal basis of the Hilbert space H. Then a basis for R×H×H
is given by {e1 = (1, 0, 0)T , e2i = (0, γi, 0)T , e3i = (0, 0, γi)

T : i = 1, 2, . . .}. Consequently, a
basis for HS(R×H×H,R×H×H) is given by {e1⊗ eki , eki ⊗ e1, eki ⊗ elj : k, l = 2, 3, i, j =
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1, 2, . . .}. Now an expansion of Ξ ∈ HS(R×H×H,R×H×H) gives

Ξ = βe1 ⊗ e1 +
∑
i

〈h12, γi〉He1 ⊗ e2i +
∑
i

〈h13, γi〉He1 ⊗ e3i

+
∑
i

〈h21, γi〉He2i ⊗ e1 +
∑
i,j

〈ξ22, γi ⊗ γj〉H⊗̂HSH
e2i ⊗ e2j +

∑
i,j

〈ξ23, γi ⊗ γj〉H⊗̂HSH
e2i ⊗ e3j

+
∑
i

〈h31, γi〉He3i ⊗ e1 +
∑
i,j

〈ξ32, γi ⊗ γj〉H⊗̂HSH
e3i ⊗ e2j +

∑
i,j

〈ξ33, γi ⊗ γj〉H⊗̂HSH
e3i ⊗ e3j .

(A.2)

Observe that

F (x̃)(e1) = (1, 0, 0)T , F (x̃)(e2i ) = (0, 〈σ, γi〉H, 0), F (x̃)(e3i ) = (0, 0, γi)

By the definition of the mapping ˜ in Lemma 4.2, and using (5.5) and (5.7)

˜DF (x̃)F (x̃)(e2i ⊗ e2j ) =
(

˜DF (x̃)F (x̃)(e2j )
)

(e2i ) =

0 0 0

0 〈σ, γj〉H∂2σ 0

0 0 0

 e2i

= (0, 〈σ, γj〉H〈∂2σ, γi〉H, 0) = (0, 〈∂2σ ⊗ σ, γi ⊗ γj〉H⊗̂HSH
, 0).

Similarly,

˜DF (x̃)F (x̃)(e2i ⊗ e3j ) =
(

˜DF (x̃)F (x̃)(e3j )
)

(e2i ) =

0 0 0

0 ∂3σγj 0

0 0 0

 e2i

= (0, 〈∂3σγj , γi〉H, 0)T = (0, 〈∂3σ, γi ⊗ γj〉H⊗̂HSH
, 0)T .

and

˜DF (x̃)F (x̃)(e2i ⊗ e1) =
(

˜DF (x̃)F (x̃)(e1)
)

(e2i ) = (0, 〈∂1σ, γi〉H, 0)T .

It can easily be checked that other terms are (0, 0, 0)T . (5.9) now follows from the
expansion (A.2).
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