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Brownian web in the scaling limit of supercritical
oriented percolation in dimension 1 + 1
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Abstract

We prove that, after centering and diffusively rescaling space and time, the collection
of rightmost infinite open paths in a supercritical oriented percolation configuration
on the space-time lattice Z2

even := {(x, i) ∈ Z2 : x + i is even} converges in distribu-
tion to the Brownian web. This proves a conjecture of Wu and Zhang [26]. Our key
observation is that each rightmost infinite open path can be approximated by a per-
colation exploration cluster, and different exploration clusters evolve independently
before they intersect.
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1 Introduction

1.1 Model and Description of Main Result

Let Z2
even := {(x, i) ∈ Z2 : x + i is even} be a space-time lattice, with oriented edges

leading from (x, i) to (x±1, i+1) for all (x, i) ∈ Z2
even. Oriented percolation on Z2

even with
parameter p ∈ [0, 1] is a random edge configuration on Z2

even, where independently each
oriented edge is open with probability p, and closed with probability 1 − p. We use Pp
and Ep to denote respectively probability and expectation for this product probability
measure on edge configurations with parameter p.

By convention, if there is an open path of oriented edges leading from z1 = (x1, i1)

to z2 = (x2, i2) in Z2
even, then we say that z2 can be reached from z1 and denote it by

z1 → z2. For any z ∈ Z2
even, the open cluster at z is then defined by

Cz := {w ∈ Z2
even : z → w}.

When |Cz|, the cardinality of Cz, is infinite, we call z a percolation point. The set of
percolation points will be denoted by K. It is well known (see e.g. [11, 5]) that there
exists a critical pc ∈ (0, 1) such that

θ(p) := Pp(|C(0,0)| =∞)

{
= 0 if p ∈ [0, pc],

> 0 if p ∈ (pc, 1].
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Brownian web in oriented percolation
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Figure 1: An oriented percolation configuration with a rightmost infinite open path γz
drawn in solid green arrows. Closed edges are drawn in dashed lines.

The three regimes p ∈ [0, pc), p = pc, and p ∈ (pc, 1] are called respectively the sub-
critcial, critical, and super-critical regimes of oriented percolation. For a survey of
classical results on oriented percolation on Z2

even, see [11].
From now on and for the rest of the paper, we restrict our attention to a fixed p ∈

(pc, 1) and suppress p in Pp and Ep to simplify notation. In the supercritical regime, the
set of percolation points K is a.s. infinite by ergodicity. For each z = (x, i) ∈ K, there is
a well-defined rightmost infinite open path starting from z, which we denote by γz (see
Figure 1). More precisely, γz can be taken as a mapping from {i, i + 1, · · · } to Z such
that γz(i) = x, (γz(j), j)→ (γz(j+1), j+1) for all j ≥ i, and if π is any other infinite open
path starting from z, then γz(j) ≥ π(j) for all j ≥ i. We are interested in the collection of
all rightmost infinite open paths in the supercritical oriented percolation configuration:

Γ := {γz : z ∈ K}.

Conditional on o := (0, 0) ∈ K, results of Durrett [11] imply that there exists a
speed α := α(p) > 0 for p > pc, such that limn→∞ γo(n)/n = α almost surely. Later, a
central limit theorem was established by Kuczek [18], which implies that there exists
σ := σ(p) > 0 for p ∈ (pc, 1), such that γo(n)−αn

σ
√
n

converges in distribution to a standard
normal random variable. As we will show later, Kuczek’s argument further implies
that (γo(nt)−αnt

σ
√
n

)t≥0 converges in distribution to a standard Brownian motion. A natural
question then arises: If a linear drift α is removed from each path in Γ, space is rescaled
by σ
√
n and time rescaled by n, what is the scaling limit of the whole collection Γ?

Wu and Zhang [26] conjectured that the scaling limit of Γ should be the so-called
Brownian web, which loosely speaking is a collection of coalescing Brownian motions
starting from every point in the space-time plane R×R. In [26], the authors made the
first step towards this conjecture by proving that every pair of paths in Γ must coalesce
in finite time. Our goal in this paper is to give a proof of this conjecture.

At first sight, it may look surprising that Γ (after centering and scaling) should con-
verge to the Brownian web, because of the seemingly complex dependency between
paths in Γ and the fact that each path depends on the infinite future. However, we
make the following key observation which untangles the dependency in a simple way:
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Brownian web in oriented percolation

Each path in Γ can be approximated by a percolation exploration cluster which evolves
in a Markovian way, and different exploration clusters evolve independently before they
intersect, and “coalesce” after they intersect. In the diffusive scaling limit, the width of
each cluster tends to 0, while the evolving clusters themselves converge to Brownian
motion paths. This justifies heuristically the convergence of Γ to the Brownian web. As
a byproduct of our approach, we recover the main result in [26], that any two paths
in Γ must coalesce a.s. in finite time. We remark that although the heuristic above is
simple and natural, some careful analysis is required due to the non-trivial coalescent
interaction between exploration clusters after they intersect.

In the remaining subsections of this introduction, we first recall the characterization
of the Brownian web and the relevant topology, and then formulate rigorously our main
convergence result. We then recall the convergence criteria for the Brownian web
which we need to verify, and then end with a discussion on related results and an
outline of the rest of the paper.

1.2 Brownian Web: Characterization

The Brownian web, denoted by W, originated from the work of Arratia [1, 2] on
the scaling limit of the voter model on Z. It arises naturally as the diffusive scaling
limit of the dual system of one-dimensional coalescing random walk paths starting from
every point on the space-time lattice. We can thus think of the Brownian web as a
collection of one-dimensional coalescing Brownian motions starting from every point in
the space-time plane R2, although there is some technical difficulty involved in dealing
with an uncountable number of coalescing Brownian motions. Detailed analysis of the
Brownian web has been carried out by Tóth and Werner in [25]. Later, Fontes, Isopi,
Newman and Ravishankar [13] introduced a framework in which the Brownian web
is realized as a random variable taking values in the space of compact sets of paths,
which is Polish when equipped with a suitable topology. Under this setup, the object
initially proposed by Arratia [2] takes on the name the Brownian web, and we can apply
standard theory of weak convergence to prove convergence of various one-dimensional
coalescing systems to the Brownian web.

We now recall from [13] the space of compact sets of paths in which the Brownian
web W takes its value. Let R2

c denote the completion of the space-time plane R2 w.r.t.
the metric

ρ
(
(x1, t1), (x2, t2)

)
= |tanh(t1)− tanh(t2)| ∨

∣∣∣∣ tanh(x1)

1 + |t1|
− tanh(x2)

1 + |t2|

∣∣∣∣ . (1.1)

As a topological space, R2
c can be identified with the continuous image of [−∞,∞]2

under a map that identifies the line [−∞,∞] × {∞} with a single point (∗,∞), and the
line [−∞,∞]× {−∞} with the point (∗,−∞), see Figure 2.

A path π in R2
c , whose starting time we denote by σπ ∈ [−∞,∞], is a mapping

π : [σπ,∞]→ [−∞,∞] ∪ {∗} such that π(∞) = ∗, π(σπ) = ∗ if σπ = −∞, and t→ (π(t), t)

is a continuous map from [σπ,∞] to (R2
c , ρ). We then define Π to be the space of all paths

in R2
c with all possible starting times in [−∞,∞]. Endowed with the metric

d(π1, π2) =
∣∣∣tanh(σπ1

)− tanh(σπ2
)
∣∣∣ ∨ sup

t≥σπ1∧σπ2

∣∣∣∣ tanh(π1(t ∨ σπ1
))

1 + |t|
− tanh(π2(t ∨ σπ2

))

1 + |t|

∣∣∣∣ ,
(1.2)

(Π, d) is a complete separable metric space. Note that convergence in the metric d

can be desrcibed as locally uniform convergence of paths plus convergence of starting
times. (The metric d differs slightly from the original choice in [13], which is somewhat
less natural as explained in the appendix of [23].)
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Figure 2: The compactification R2
c of R2.

We can now define H, the space of compact subsets of (Π, d), equipped with the
Hausdorff metric

dH(K1,K2) = sup
π1∈K1

inf
π2∈K2

d(π1, π2) ∨ sup
π2∈K2

inf
π1∈K1

d(π1, π2). (1.3)

The space (H, dH) is also a complete separable metric space. Let BH be the Borel σ-
algebra associated with dH. The Brownian webW is an (H,BH)-valued random variable.

Following convention, for K ∈ H and A ⊂ R2
c , we let K(A) denote the set of paths

in K with starting points in A. When A = {z} for z ∈ R2
c , we also write K(z) instead of

K({z}).
We now recall from [13, Theorem 2.1] the following characterization of the Brownian

webW.

Theorem 1.1 (Characterization of the Brownian web). There exists an (H,BH)-valued
random variable W, called the standard Brownian web, whose distribution is uniquely
determined by the following properties:

(a) For each deterministic z ∈ R2, almost surely there is a unique path πz ∈ W(z).

(b) The collection (πz1 , . . . , πzk) is distributed as coalescing Brownian motions for any
finite deterministic set of points z1, . . . , zk ∈ R2,

(c) For any deterministic countable dense subset D ⊂ R2, almost surely, W is the
closure of {πz : z ∈ D} in (Π, d).

Theorem 1.1 shows that the Brownian web is in some sense separable: even though
there are uncountably many coalescing Brownian motions in the Brownian web, the
whole collection is a.s. determined uniquely by a countable skeletal subset of paths.

1.3 Formulation of Main Result

We formulate in this subsection the convergence of Γ, the collection of rightmost
infinite open paths, to the Brownian webW after suitable centering and scaling.

Given a fixed p ∈ (pc, 1), let α := α(p) > 0 and σ := σ(p) > 0 be as introduced
in Section 1.1, such that conditional on o := (0, 0) being a percolation point, γo(n)−αn

σ
√
n

converges in distribution to a standard normal. We will formulate this convergence
precisely in Lemma 2.3, where we recall Kuczek’s proof of the central limit theorem
and extend it for our purposes.
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Brownian web in oriented percolation

For each percolation point z = (x, i) ∈ K, we first extend the definition of the right-
most infinite open path γz from the domain {i, i+1, . . .} to [i,∞] such that γz interpolates
linearly between consecutive integer times and γz(∞) = ∗. With this extended defini-
tion of γz, which we still denote by γz for convenience, it becomes a path in the space
(Π, d) introduced in Section 1.2. We will then let Γ := {γz : z ∈ K} denote the set of
extended rightmost infinite open paths in the percolation configuration. Since paths in
Γ are a.s. equicontinuous, Γ, the closure of Γ in (Π, d), is a.s. compact and hence Γ is a
random variable taking values in (H,BH), the space of compact subsets of (Π, d). Note
that Γ\Γ only contains paths of the form π : [σπ,∞]→ [−∞,∞] ∪ {∗} with either σπ ∈ R
and π(t) ≡ ±∞ for all t ≥ σπ; or σπ = ∞; or σπ = −∞, in which case for any t > −∞,
there exists some γ ∈ Γ such that π = γ on [t,∞]. In other words, taking the closure of Γ

in (Π, d) does not alter the configuration of paths in Γ restricted to any finite space-time
region. Therefore it suffices to study properties of Γ instead of Γ in our analysis.

To remove a common drift from all paths in Γ and perform diffusive scaling of space
and time, we define for any a ∈ R, b, ε > 0, a shearing and scaling map Sa,b,ε : R2

c → R2
c

with

Sa,b,ε(x, t) :=


(√ε
b (x− at), εt

)
if (x, t) ∈ R2,

(±∞, εt) if (x, t) = (±∞, t) with t ∈ R,
(∗,±∞) if (x, t) = (∗,±∞),

(1.4)

where a is the drift that is being removed by a shearing of R2
c , ε is the diffusive scaling

parameter, and b determines the diffusion coefficient in the diffusive scaling. When t is
understood to be a time, we will define

Sa,b,εt := εt. (1.5)

Note that Sa,b,ε can be obtained by first applying the shearing map Sa,1,1 and then the
diffusive scaling map S0,b,ε. By identifying a path π ∈ Π with its graph in R2

c , we can
also define Sa,b,ε : (Π, d) → (Π, d) by applying Sa,b,ε to each point on the graph of π.
Similarly, if K ⊂ Π, then Sa,b,εK := {Sa,b,επ : π ∈ K}. If K ∈ H, then it is clear that also
Sa,b,εK ∈ H. Therefore Sα,σ,εΓ is also an (H,BH)-valued random variable.

We can now formulate the main result of this paper.

Theorem 1.2 (Convergence to the Brownian web). Let p ∈ (pc, 1) and let Γ be defined
as above. There exist α, σ > 0 such that as ε ↓ 0, the sequence of (H,BH)-valued random
variables Sα,σ,εΓ converges in distribution to the standard Brownian webW.

1.4 Brownian Web: Convergence Criteria

We will prove Theorem 1.2 by verifying the convergence criteria for the Brownian
web proposed in [13], which we now recall.

For a compact set of paths K ∈ H, and for t > 0 and t0, a, b ∈ R with a < b, let

ηK(t0, t; a, b) :=
∣∣{π(t0 + t) : π ∈ K with σπ ≤ t0 and π(t0) ∈ [a, b]}

∣∣, (1.6)

which counts the number of distinct points on R × {t0 + t} touched by some path in K

which also touches [a, b]× {t0}.
An (H,BH)-valued random variable X is said to have non-crossing paths if a.s. there

exist no π, π̃ ∈ X such that (π(t) − π̃(t))(π(s) − π̃(s)) < 0 for some s, t ≥ σπ ∨ σπ̃. Note
that Γ has non-crossing path. For (H,BH)-valued random variables with non-crossing
paths, the following convergence criteria was formulated in [13, Theorem 2.2].

Theorem 1.3 (Convergence criteria). Let (Xn)n∈N be a sequence of (H,BH)-valued
random variables with non-crossing paths. If the following conditions are satisfied,
then Xn converges in distribution to the standard Brownian webW.
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Brownian web in oriented percolation

(I) Let D be a deterministic countable dense subset of R2. Then there exist πyn ∈ Xn
for y ∈ D such that, for each finite collection y1, y2, . . . , yk ∈ D, (πy1n , . . . , π

yk
n )

converge in distribution as n→∞ to a collection of coalescing Brownian motions
starting at (y1, . . . , yk).

(B1) For all t > 0, lim supn→∞ sup(a,t0)∈R2 P(ηXn(t0, t; a, a+ ε) ≥ 2)→ 0 as ε ↓ 0.

(B2) For all t > 0, ε−1 lim supn→∞ sup(a,t0)∈R2 P(ηXn(t0, t; a, a+ ε) ≥ 3)→ 0 as ε ↓ 0.

As shown in [13, Prop. B.2], condition (I) and the non-crossing property imply that
(Xn)n∈N is a tight sequence of (H,BH)-valued random variables. Condition (I) also
guarantees that any subsequential weak limit of (Xn)n∈N contains as many paths as,
possibly more than, the Brownian webW. Conditions (B1) and (B2) are density bounds
which rule out the presence of extra paths other than the Brownian web paths in any
subsequential weak limit.

As alluded to at the end of Section 1.1, we will verify condition (I) by approximating
each path in Γ by a percolation exploration cluster which enjoys Markov and indepen-
dence properties. The verification of (B1) is closely related to that of (I). The verification
of condition (B2) typically relies on FKG inequalities for the law of each individual path
in Xn (see e.g. [13, Theorem 6.1], [12, Lemma 2.6], and [8, Section 2.1]). Although
we will be replacing each path in Γ by an exploration cluster, it turns out that we can
still apply FKG for the underlying percolation edge configuration to deduce (B2). We
remark that there is an alternative convergence criterion formulated in [20, Theorem
1.4], which is often easier to verify than (B2) when FKG inequalities are not applicable.
In fact we first proved Theorem 1.2 by verifying the convergence criteria in [20, Theo-
rem 1.4] without using FKG (see [24]). The argument is lengthier and more involved,
but in a sense more robust.

1.5 Discussion and Outline

The Brownian web arises as the diffusive scaling limit of many one-dimensional co-
alescing systems. The prime example is the collection of coalescing simple random
walks on Z, for which the convergence to the Brownian web was established in [13,
Theorem 6.1]. This result was extended to general coalescing random walks with cross-
ing paths in [20] under a finite 5-th moment assumption on the random walk increment,
which was later improved in [6] to an essentially optimal assumption of finite (3 + ε)-th
moment for any ε > 0.

Other one-dimensional coalescing systems (all with non-crossing paths) which have
been shown to converge to the Brownian web include: two-dimensional Poisson trees,
which was introduced in [15] and shown to converge to the Brownian web in [12]; a
two-dimensional drainage network model which was introduced in [17] and shown to
converge to the Brownian web in [8], as well as an extension studied more recently
in [9]. Interestingly, the Brownian web, or rather, the coalescing flow generated by it
known as the Arratia flow, also arises in the scaling limit of a planar aggregation model,
see [21, 22], where convergence was established using a different topology tailored
more specifically for the study of stochastic flows.

Another one-dimensional coalescing system conjectured to converge to the Brown-
ian web is the directed spanning forest, which was introduced in [4] and shown recently
to be a.s. a tree in [10]. As one might expect, the difficulty in establishing convergence
to the Brownian web lies in the specific form of dependence in that model.

Instead of considering the collection of rightmost infinite open paths in a supercriti-
cal oriented percolation configuration, one may also fix a realization of the percolation
configuration and consider the set of directed coalescing random walk paths on the in-
finite clusters. Namely, from each percolation point z = (x, t) ∈ K, a random walk starts
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from z and jumps to a site in {(x + 1, t + 1), (x − 1, t + 1)} ∩ K with uniform probabil-
ity, and different random walks coalesce when they meet. Naturally one expects such
a collection of coalescing random walk paths to converge to the Brownian web under
diffusive scaling, both for the quenched measure of the random walks under a typical
realization of the percolation configuration, and for the averaged (or annealed) measure
where the law of the percolation configuration is integrated out. The percolation explo-
ration procedure we devise in this paper can also be used to study this model. Kuczek’s
proof of the central limit theorem [18] for a single path in Γ, say γo, is based on the
identification of so-called break points along γ0, which gives a renewal decomposition
of γ0. Our exploration procedure (which always explores the two outgoing edges from
each z = (x, t) ∈ Z2

even from right to left) provides a systematic way of discovering these
break points. If we instead explore the two outgoing edges from each z ∈ Z2

even with
a random order, then we obtain exactly a directed random walk on the supercritical
oriented percolation clusters, with a renewal decomposition of the random walk path
under the averaged measure. The exploration procedure ensures that different random
walk paths evolve independently (under the averaged measure) before their associated
exploration clusters intersect. We learned recently from Matthias Birkner that the ex-
tension of Kuczek’s idea of break points to a directed random walk on supercritical
oriented percolation clusters in fact dates back to Neuhauser [19]. This idea was used
recently by Birkner et al [7] to prove averaged and quenched invariance principles for
a directed random walk on supercritical oriented percolation clusters.

Our result sheds some light on the scaling limit of super-critical oriented perco-
lation in dimension 1+1. We expect the same result to hold for the one-dimensional
contact process. However, a most interesting and challenging direction of extension
will be to investigate what kind of structures appear in the scaling limit of critical ori-
ented percolation, or near-critical oriented percolation where p ↓ pc in tandem with the
scaling of the lattice. For two-dimensional unoriented percolation, the critical scaling
limit has been constructed and studied using Schramm-Löwner Evolutions, while the
near-critical scaling limit is currently under construction (see [16] and the references
therein). However for oriented percolation, there is still no conjecture on how to char-
acterize the critical and near-critical scaling limits, or if such limits exist at all.

The rest of the paper is organized as follows. In Section 2, we define and establish
some basic properties for the exploration clusters which approximate the rightmost in-
finite open paths. We will also recall Kuczek’s proof [18] of the central limit theorem
for a rightmost infinite open path and extend it to establish an invariance principle. In
Section 3, we will prove the convergence of multiple exploration clusters to coalesc-
ing Brownian motions, which implies condition (I). Lastly in Section 4, we will verify
conditions (B1) and (B2), which completes the proof of Theorem 1.2.

2 Exploration Clusters

In this section, we introduce the key objects in our analysis, the percolation explo-
ration clusters. We will establish some basic properties for these exploration clusters.
We then show that each path in Γ can be approximated by an associated exploration
cluster, in the sense that both converge to the same Brownian motion after suitable
centering and scaling.

2.1 Construction of exploration clusters

So far the rightmost infinite open paths γz are only defined for z ∈ K, the set of
percolation points. We first extend this definition to all z = (x, i) ∈ Z2

even by defining

γz := γz′ , where z′ = (y, i) with y = max{u ≤ x : (u, i) ∈ K}, (2.1)
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Figure 3: The exploration cluster process Co(n) for n = 1, 2, . . . , 6.

which is the rightmost infinite open path starting from (−∞, x] × {i}, and it exists a.s.
because we assumed that p > pc. Note that Γ = {γz : z ∈ K} = {γz : z ∈ Z2

even}.
Without loss of generality, let z = o be the origin. In a nutshell, the exploration

cluster Co(n) we use to approximate γo up to time n, consists of the minimal set of open
and closed edges, denoted respectively by Eo

o(n) and Ec
o(n), that need to be explored in

order to find the rightmost open path connecting (−∞, 0]× {0} to Z× {n}.
To construct Co(n) := (Eo

o(n), Ec
o(n)), we start by exploring the open cluster at the

origin in the following way (see Figure 3). Let e+
o and e−o denote respectively the up-

right and up-left edge starting from o, and let w+ and w− denote respectively the up-
right and up-left neighbor of o. We first explore the status of e+

o . If e+
o is closed, then we

move on to explore e−o . If e+
o is open, then we explore next the open cluster at w+ by the

same procedure and stop when either the first open path reaching Z×{n} is discovered,
or the exploration of the open cluster at w+ is finished without discovering an open path
to Z × {n}, in which case we move on to explore e−o . When it comes to exploring e−o ,
if it is closed, then the exploration of the open cluster at o is finished; otherwise we
explore next the open cluster at w− by the same procedure until either the first open
path reaching Z × {n} is discovered, or the exploration of the open cluster at w− is
finished without discovering an open path to Z × {n}, in which case the exploration of
the open cluster at o is again finished. We explore the open clusters at o = (0, 0), (−2, 0),
(−4, 0), . . . in this order, until a first open path connecting (−∞, 0] × {0} and Z × {n}
is discovered, at which time we stop the exploration. The sets Eo

o(n) and Ec
o(n) are the

sets of open and respectively closed edges that have been explored up to the time the
exploration process is stopped.

By construction, there is a unique open path using edges in Eo
o(n) which connects

(−∞, 0] × {0} to Z × {n}, and it is also the rightmost open path among all open paths
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Brownian web in oriented percolation

connecting (−∞, 0] × {0} to Z × {n}. We denote this path by lno : {0, 1, . . . , n} → Z. Let
Vo(n) denote the set of vertices at which at least one of the two outgoing edges have
been explored. The path lno serves as both the left vertex boundary and the left edge
boundary of Co(n) in the senese that all vertices in Vo(n) and all edges in Eo

o(n)∪Ec
o(n)

must lie on or to the right of lno . We can similarly define the right vertex boundary of
Co(n) by the path

rno (j) := max{x ∈ Z : (−∞, 0]× {0} → (x, j)}, j = 0, 1, . . . , n. (2.2)

Note that lno (n) = rno (n) for all n ≥ 0. We will call (lno , r
n
o ) the left and right boundaries

associated with the exploration cluster Co(n). The time-evolution of (lno , r
n
o )n≥0 will be

called the left and right boundary processes associated with the exploration cluster
process Co := (Co(n))n≥0. For a general z = (x, i) ∈ Z2

even, the exploration cluster pro-
cess Cz := (Cz(n))n≥i and its left and right boundary processes (lnz , r

n
z )n≥i are defined

similarly.
Note that the exploration process in the construction of Co(n), n ≥ 0, discovers the

percolation configuration on Z2
even in a Markovian way: conditional on the status of the

edges that have been explored, the next edge to be explored is determined uniquely,
and it is conditionally open with probability p and closed with probability 1 − p. In
particular, (Co(n))n≥0 is Markov. Furthermore, different exploration cluster processes
evolve independently as long as the sets of explored edges do not intersect.

2.2 Approximation by an exploration cluster

We now show that for each z = (x, i) ∈ Z2
even, γz ∈ Γ can be approximated on the

diffusive scale by the exploration cluster process Cz := (Cz(n))n≥i, or rather, by the
associated boundary processes (lnz , r

n
z )n≥i. First we collect some basic properties of γz

and (lnz , r
n
z )n≥i. Without loss of generality, assume z = o. All the discussions and results

that will follow and the notation we will introduce adapt straightforwardly to a general
z ∈ Z2

even.
First, we identify rno : {0, 1, . . . , n} → Z with its extended definition on [0,∞] by

setting rno (s) := rno (n) for all s ∈ [n,∞), rno (∞) = ∗, and linearly interpolating between
consecutive integer times. The same applies to lno .

In the construction of the exploration cluster process Co := (Co(n))n≥0, we observed
that lno is the rightmost open path connecting (−∞, 0] × {0} to Z × {n}, and rno (j), for
each 0 ≤ j ≤ n, is the rightmost position at time j that can be reached by any open path
starting from (−∞, 0] × {0}, while γo is the rightmost infinite open path starting from
(−∞, 0]× {0}. These facts readily imply

Lemma 2.1. Let γo be defined as in (2.1), and let Co be the associated exploration
cluster process with left and right boundaries (lno , r

n
o )n≥0. Then

(i) There exists ro : [0,∞]→ Z ∪ {∗} such that for all n ≥ 0, rno (·) = ro(·) on [0, n], and

ro(n) = max{y ∈ Z : (−∞, 0]× {0} → (y, n)}.

(ii) For all n ≥ 0, we have γo(·) ≤ lno (·) ≤ ro(·) on [0, n].

(iii) For all n ≥ 0, we have lno (n) = rno (n).

(iv) For all m ≥ n ≥ 0, we have lmo (·) ≤ lno (·) on [0, n].

The time-consistency of (rno )n≥0 established in Lemma 2.1 (i) allows us to replace
(rno )n≥0 by a single path ro. The left-boundary process (lno )n≥0 does not share this time-
consistency property, as illustrated in Figure 3. We also note that γo and (lno )n≥0 are
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nearest-neighbor paths, while ro may have jumps of size more than 1 to the left, but
jumps to the right are always nearest-neighbor.

By the ordering relation in Lemma 2.1 (ii), to show that γo can be approximated by
(Co(n))n≥0, which converges to a Brownian motion after proper centering and scaling,
it suffices to show that

Proposition 2.2 (Invariance Principle). Let p ∈ (pc, 1). There exist α := α(p) > 0 and
σ := σ(p) > 0, such that as ε ↓ 0, Sα,σ,ε(γo, ro) converges in distribution as a sequence of
Π× Π-valued random variables to (B,B) for a standard Brownian motion B := (Bt)t≥0,
where Sα,σ,ε is the shearing and diffusive scaling map defined in (1.4).

In [11, Section 3], Durrett considered the very same process (ro(n))n≥0 and used the
sub-additive ergodic theorem to show that a.s.

lim
n→∞

ro(n)

n
=: α = inf

n≥1
E
[ro(n)

n

]
> 0 if p > pc.

Kuczek [18] later established a central limit theorem for a variant of ro(n). When the
cluster at the origin dies out at time n, instead of exploring next the cluster at (−2, 0)

as in our construction of ro, Kuczek explores next the cluster at (n, n) and iterates this
process. Since we are interested in an invariance principle for ro and γo, as well as a
bound on the difference between ro and γo which we will need later, we recall below
Kuczek’s argument and adapt it to prove Proposition 2.2.

A key tool in Kuczek’s argument is the use of break points, which are analogous to
regeneration times in the study of random walks in random environments. For ro, they
are the successive percolation points in the sequence (ro(n), n)n≥0, which we denote by
(ro(Ti), Ti)i∈N. The break points are exactly the points at which γo and ro coincide, and
it is easy to see that for each i ∈ N, lno (·) = γo(·) on [0, Ti] for all n ≥ Ti. Let

τ1 := T1, τi := Ti − Ti−1 for i ≥ 2;

X1 := ro(T1), Xi := ro(Ti)− ro(Ti−1) for i ≥ 2.
(2.3)

Note that when o is a percolation point, X1 = τ1 = 0. Kuczek proved in [18] that

Lemma 2.3 (Conditional CLT). Conditional on the event o ∈ K, (Xi, τi)i≥2 are i.i.d.
with all moments finite, and (ro(n)−αn)/σ

√
n converges in distribution to the standard

Normal random variable as n→∞, where1

α =
E[X2]

E[τ2]
and σ2 =

E
[
(X2E[τ2]− τ2E[X2])2

]
E[τ2]3

> 0. (2.4)

Kuczek’s proof of Lemma 2.3 is based on the key observation that conditional on
z = (x, i) being a break point along ro, the percolation configurations before and after
time i are independent.

Kuczek’s arguments can be extended to prove an invariance principle.

Lemma 2.4 (Conditional Invariance Principle). Conditional on the event o ∈ K, Sα,σ,εro
converges in distribution as a sequence of Π-valued random variables to a standard
Brownian motion B := (Bt)t≥0, where α and σ are as in (2.4).

Proof. First we replace (ro(t))t≥0 by a path (r̃o(t))t≥0, where r̃o(Ti) := ro(Ti) for all
i ∈ N, and for t ∈ (Ti, Ti+1), r̃o(t) is defined by linearly interpolating between ro(Ti) and
ro(Ti+1). Then

Sα,σ,εro = Sα,σ,εr̃o + S0,σ,ε(ro − r̃o),
1There was a typo in [18] after Lemma 2, and in [26, Prop. 2.1], where the factor E[τ2]−3 was missing in

the formulae for σ2.
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and it suffices to show that S0,σ,ε(ro − r̃o) converges in distribution to the zero function,
while Sα,σ,εr̃o converges in distribution to B.

If we let ~Xi := (ro(Ti−1 + j) − ro(Ti−1))0≤j≤τi ∈ ∪n≥1Z
n for i ≥ 2, then Kuczek’s

observation on break points also implies that ( ~Xi, τi)i≥2 are i.i.d. conditional on o ∈ K.
In particular,

sup
t∈[Ti−1,Ti]

|ro(t)− r̃o(t)|, i ≥ 2,

are also i.i.d. conditional on o ∈ K. Furthermore, the facts that ro(Ti−1) = γo(Ti−1) for
each i ≥ 2, γo ≤ ro, γo is a nearest-neighbor path, while jumps of ro to the right are
always nearest-neighbor, together imply that

sup
t∈[Ti−1,Ti]

|ro(t)− r̃o(t)| ≤ 2(Ti − Ti−1) = 2τi, i ≥ 2,

which has all moments finite. It is then an easy exercise to verify, which we leave to the
reader, that S0,σ,ε(ro − r̃o) converges in distribution to the zero function as ε ↓ 0.

Since Sα,σ,εr̃0 = S0,σ,εSα,0,0r̃o, we first apply the shearing map and note that Sα,0,0r̃o
is the path obtained by linearly interpolating between the sequence of space-time points
(
∑n
i=1 X̃i,

∑n
i=1 τi), n ≥ 1, where X̃i = Xi − ατi. We can therefore regard Sα,0,0r̃o

as a time change of the random walk W (n) =
∑n
i=1 X̃i, with the time change given by

T (n) :=
∑n
i=1 τi, andW (t) and T (t) for non-integer t are defined by linearly interpolating

between consecutive integer times. More precisely, (Sα,0,0r̃o)(t) = W (T−1(t)). Note that
(X̃i)i≥2 are i.i.d. with E[X̃i] = 0 and E[X̃2

i ] = E[τi]σ
2. Therefore S0,σ,εW converges in

distribution to
√
E[τ2]B for a standard Brownian motion B. On the other hand, we note

that (εT (t/ε))t≥0 satisfies a law of large numbers and converges in distribution to the
linear function g(t) = E[τ2]t, t ≥ 0, with the topology of local uniform convergence.
Therefore (εT−1(t/ε))t≥0 converges in distribution to g−1(t) = E[τ2]−1t, t ≥ 0. It is then
a standard exercise, which we again leave to the reader, to show that

S0,σ,εSα,0,0r̃o = S0,σ,εW (T−1(t)) =
(√εW (ε−1 εT−1(t/ε)

)
σ

)
t≥0

converges weakly to
√
E[τ2]B(t/E[τ2])

d
= B. Therefore Sα,σ,εro also converges weakly to

B.

We now deduce Proposition 2.2 from Lemma 2.4.

Proof of Proposition 2.2. As in (2.3), let (ro(Ti), Ti)i≥1 be the successive break points
along (ro(n))n≥0. Note that γo(Ti) = ro(Ti) for all i ≥ 1. By the independence of (γo, ro)

before and after a break point conditional on the break point, we observe again that
conditional on the first break point (γo(T1), T1) = (ro(T1), T1),

(γo(Ti−1 + j)− γo(Ti−1), ro(Ti−1 + j)− ro(Ti−1))0≤j≤τi , i ≥ 2,

are i.i.d. and independent of (γo(j), ro(j))0≤j≤τ1 . Suppose that T1 <∞ a.s. Then by con-
ditioning on (ro(T1), T1), Lemma 2.4 implies that Sα,σ,εro converges weakly to a standard
Brownian motion B since Sα,σ,ε(supt∈[0,T1] ro(t)) → 0 and Sα,σ,εT1 → 0 in probability as
ε ↓ 0. To conclude that Sα,σ,εγo and Sα,σ,εro converge to the same Brownian motion, it
suffices to note that

max
Ti−1≤j≤Ti

(ro(j)− γo(j)) ≤ 2τi, i ≥ 2, (2.5)

are i.i.d. with all moments finite, since ro (resp. γo) can increase (resp. decrease) by at
most 1 each step, and τi has all moments finite by Lemma 2.3.
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Now we show that T1 < ∞ a.s. We decompose the probability space by the value of
γo(0) = 2x for x ≤ 0. On the event γo(0) = 2x (i.e., 2x ∈ K and 2i 6∈ K for x+ 1 ≤ i ≤ 0),
we note that (ro(T1), T1) is simply the first break point along the right boundary r(2x,0)

of the exploration cluster C(2x,0) after the finite open clusters at (2i, 0), x + 1 ≤ i ≤ 0,
have all died out. Therefore on the event γo(0) = 2x, T1 <∞ a.s. by Lemma 2.3.

We conclude this section with an error bound on the approximation of γo by ro.

Lemma 2.5 (Approximation error). For each L > 0 and 0 < δ < 1, there exists C > 0

such that for all ε ∈ (0, 1], we have

P
(

sup
t∈[0,ε−1L]

|ro(t)− γo(t)| ≥ ε−δ
)
≤ Cε1/δ, (2.6)

and
P
(
ro(s) 6= γo(s) ∀ s ∈ [t, t+ ε−δ] for some t ∈ [0, ε−1L]

)
≤ Cε1/δ. (2.7)

Proof. As noted in the proof of Proposition 2.2, conditional on the first break point
(ro(T1), T1) along ro, (ro(j) − γo(j))0≤j≤T1 and ro(Ti−1 + j) − γo(Ti−1 + j))0≤j≤τi , i ≥ 2,
are independent, with the latter forming an i.i.d. sequence.

Since (τi)i≥2 are i.i.d. and non-negative, 1
n

∑n+1
i=2 τi satisfies a lower large deviation

bound. In particular, for any c > E[τ2]−1, there exist C1, C2 > 0 depending on c and L

such that for all ε ∈ (0, 1],

P(Tdcε−1Le+1 ≤ ε−1L) ≤ P
( 1

dcε−1Le

dcε−1Le+1∑
i=2

τi ≤
ε−1L

dcε−1Le

)
≤ C1e

−C2ε
−1L, (2.8)

which decays faster than any power of ε as ε ↓ 0. Therefore to prove (2.6), it suffices to
show

P
(

sup
t∈[0,Tdcε−1Le+1]

|ro(t)− γo(t)| ≥ ε−δ
)
≤ Cε1/δ. (2.9)

We bound the supremum of |ro(t)− γo(t)| on [0, T1] and [T1, Tdcε−1Le+1] separately.
Firstly,

P
(

sup
t∈[T1,Tdcε−1Le+1]

|ro(t)− γo(t)| ≥ ε−δ
)

≤
dcε−1Le+1∑

i=2

P
(

sup
0≤s≤τi

|ro(Ti−1 + s)− γo(Ti−1 + s)| ≥ ε−δ
)

= dcε−1LeP
(

sup
0≤s≤τ2

|ro(T1 + s)− γo(T1 + s)| ≥ ε−δ
)

≤ dcε−1Leεkδ E
[

sup
0≤s≤τ2

|ro(T1 + s)− γo(T1 + s)|k
]

≤ Cε1/δ

for some C > 0 depending on c and L, where we have applied the Markov inequality,
chosen k to be sufficiently large, and used the fact that sup0≤s≤τ2 |ro(T1 +s)−γo(T1 +s)|
has all moments finite as noted in (2.5).

Secondly, we note that by the same reasoning as for (2.5),

sup
t∈[0,T1]

|ro(t)− γo(t)| ≤ |γo(0)|+ 2T1.

Therefore to prove
P
(

sup
t∈[0,T1]

|ro(t)− γo(t)| ≥ ε−δ
)
≤ Cε1/δ
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and thus deduce (2.9), it suffices to show that |γo(0)| and T1 have all moments finite.

Let Hi be the time when the open cluster at (−2i, 0) dies out. Then for any k ≥ 1,

P(|γo(0)| ≥ 2k) = P(Hi <∞ for all 0 ≤ i < k) ≤ C3e
−C4k (2.10)

for some C3, C4 > 0 by results in [11, Section 10]. Therefore |γo(0)| has all moments
finite.

On the other hand, given γo(0) = −2x for some x ≥ 0, T1 is the first break point
along r(−2x,0) after the open clusters at (−2i, 0), 0 ≤ i ≤ x − 1, have all died out. If
we let (r(−2x,0)(T̄i), T̄i), i ∈ N, denote the successive break points along r(−2x,0), with
τ̄i = T̄i − T̄i−1, then we have

P(T1 ≥ 2k) =

∞∑
x=0

P(γo(0) = −2x, T1 ≥ 2k)

≤
∞∑
x=0

P(γo(0) = −2x, T1 ≥ 2k, k ≤ max
0≤i≤x−1

Hi <∞)

+

∞∑
x=0

P(γo(0) = −2x, T1≥ 2k, max
0≤i≤x−1

Hi <k)

≤
∞∑
x=0

x−1∑
i=0

P(γ0 = −2x, k ≤ Hi <∞)

+

∞∑
x=0

P(γo(0) = −2x, (−2x, 0) ∈ K, max
2≤i≤k

τ̄i ≥ k)

≤
∞∑
x=0

xP(γo(0) = −2x)
1
2P(k ≤ H0 <∞)

1
2

+

∞∑
x=0

P(γo(0) = −2x)
1
2P((−2x, 0) ∈ K, max

2≤i≤k
τ̄i ≥k)

1
2

≤C5P(k ≤ H0 <∞)
1
2 + C6P( max

2≤i≤k
τi ≥ k|o ∈ K)

1
2 , (2.11)

where we have applied Cauchy-Schwartz inequality and used (2.10) to bound P(γo(0) =

−2x). The first term in (2.11) decays exponentially in k, because

P(k ≤ H0 <∞) ≤ C7e
−C8k

for some C7, C8 > 0 by results in [11, Section 12]. The second term in (2.11) decays
faster than any power of k, because conditional on o ∈ K, (τi)i≥2 are i.i.d. with all
moments finite by Lemma 2.3. Therefore T1 also has all moments finite. This concludes
the proof of (2.9) and hence also (2.6).

To prove (2.7), we note that γo(Ti) = ro(Ti) for all i ∈ N. Therefore the event in (2.7)
is contained in the event that there exists some i ∈ N with [Ti−1, Ti] ⊂ [0, ε−1L+ε−δ] and
τi ≥ ε−δ. By the same large deviation bound as in (2.8), we may restrict to the event
ε−1L+ ε−δ ≤ Tdcε−1Le+1. Then the probability in (2.7) can be bounded by

P(T1 ≥ ε−δ) +

dcε−1Le+1∑
i=2

P(τi ≥ ε−δ) = P(T1 ≥ ε−δ) + dcε−1LeP(τ2 ≥ ε−δ) ≤ Cε1/δ,

again because T1 and τ2 have all moments finite.
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3 Convergence to Coalescing Brownian Motions

In this section, we show that different exploration clusters evolve independently
before they intersect, and when two exploration clusters intersect, they coalesce in
most cases. As a consequence, we prove that after applying the shearing and diffusive
scaling map Sα,σ,ε, a finite number of exploration clusters Czi , 1 ≤ i ≤ k, converge in
distribution to coalescing Brownian motions, which implies the convergence criterion
(I) for (Sα,σ,εΓ)ε∈(0,1).

3.1 Convergence of a pair of exploration clusters

By construction, two exploration clusters evolve independently until the first time
they intersect, i.e., when they share a common explored edge. We first show that two
exploration clusters starting at the same time must coalesce when they intersect. Com-
plications arise when the two clusters start at different times. See Figure 4.

Lemma 3.1 (Coalescence of exploration clusters). Let z1 = (x1, 0), z2 = (x2, 0) ∈ Z2
even

with x1 < x2. Let Czi and (lnzi , r
n
zi)n≥0, i = 1, 2, be the respective exploration cluster

processes and their associated boundary processes. Let (rzi(n))n≥0, i = 1, 2, be the
infinite right boundaries defined as in Lemma 2.1. Define

κrl := min{n ≥ 0 : lnz2(i) ≤ rz1(i) for some 0 ≤ i ≤ n},
κrr := min{n ≥ 0 : rz2(n) ≤ rz1(n)},
κγγ := min{n ≥ 0 : γz2(n) ≤ γz1(n)}.

Then

(i) κrr = κrl and rz1(n) = rz2(n) for all n ≥ κrr.
(ii) lnz1(·) = lnz2(·) on [κrr, n] for all n ≥ κrr.

(iii) κγγ = min{n ≥ 0 : γz2(n) ≤ rz1(n)}, κγγ ≤ κrr, and γz1(n) = γz2(n) for all n ≥ κγγ .

If z2 = (x2, i2) ∈ Z2
even with i2 6= 0, then the above statements hold on the event rz1(0 ∨

i2) ≤ γz2(0 ∨ i2), with 0 replaced by 0 ∨ i2 in the definition of κrl, κrr and κγγ . By
symmetry, analogous statements hold on the event rz2(0 ∨ i2) ≤ γz1(0 ∨ i2).

Remark 3.2. Lemma 3.1 shows that if z1 = (x1, i1) and z2 = (x2, i2) satisfy i1 = i2,
or rz1(i1 ∨ i2) ≤ γz2(i1 ∨ i2), or rz2(i1 ∨ i2) ≤ γz1(i1 ∨ i2), then the time when Cz1(·)
and Cz2(·) first intersect is also the time when rz1 and rz2 coalesce, and rz1 and rz2
cannot intersect or cross each other without coalescing. This picture may fail when the
above conditions are violated: one such scenario is illustrated in Figure 4 (b) where
lnz2(0) < lnz1(0) = rz1(0) < rz2(0).

Proof of Lemma 3.1. For (i)–(ii): Since lnz2(·) ≤ rz2(·) on [0, n] for all n ∈ N, clearly
rz1(·) < rz2(·) on [0, κrl − 1] and hence κrr ≥ κrl. Now let n ≥ κrl.

If lnz2(0) < x1, then because lnzi , i = 1, 2, is the rightmost open path connecting
(−∞, xi]× {0} to Z× {n}, we must have lnz1 = lnz2 , which by Lemma 2.1 (iii) implies that
rz1(n) = rz2(n).

Now suppose that x1 ≤ lnz2(0). By the definition of κrl and Lemma 2.1 (iv) that
lnz2(·) decreases in n, we must have lnz2(i) ≤ rz1(i) for some 0 ≤ i ≤ κrl. Since rz1
can only increase by at most one at each step while lnz2 is a nearest-neighbor path, lnz2
and rz1 must coincide at some time in {0, 1, · · · , κrl}. Let j be the first such time. By
the definition of rz1 , the rightmost open path π connecting (−∞, x1] × {0} to Z × {j}
satisfies π(j) = rz1(j) = lnz2(j). By concatenating first π and then lnz2 at time j, we
obtain an open path connecting (−∞, x1]×{0} to Z×{n}, which coincides with lnz2(·) on
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Figure 4: When two exploration clusters first intersect.
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[j, n] ⊃ [κrl, n], lies on the right of lnz1(·) on [0, j] by our choice of π, and lies on the left of
lnz1(·) on [0, n] by the definition of lnz1 . Therefore lnz2(·) ≤ lnz1(·) on [j, n] and lnz1(j) = lnz2(j).
We must also have lnz1(·) ≤ lnz2(·) on [j, n], because concatenating first lnz2 and then lnz1
at time j produces an open path connecting (−∞, x2] × {0} to Z × {n} and lnz2 is the
rightmost such open path. Therefore lnz1(·) = lnz2(·) on [j, n] ⊃ [κrl, n], which further
implies rz1(n) = rz2(n) by Lemma 2.1 (iii). Combining the conclusions above then gives
(i) and (ii).

For (iii), the argument is the same. We distinguish between the cases γz2(0) < x1

and x1 ≤ γz2(0). In the first case we deduce γz1 = γz2 from their definition. In the
second case, we find the first time j when rz1 and γz2 coincide. By concatenating paths
as done above and using the definitions of γz1 and γz2 , we deduce that γz1(·) and γz2(·)
must coincide on [j,∞). Since γz1 ≤ rz1 , γz1 and γz2 cannot intersect earlier. Therefore
j = κγγ . Since γz2 ≤ rz2 , we have κγγ ≤ κrr.

In the proof above, the fact that z1 and z2 are at the same time is used when we
tried to prove lnz1 = lnz2 in the scenario lnz2(0) < x1 = rz1(0) for some n ≥ κrl. When z1

and z2 are at different times, lnz1 and lnz2 are in general not comparable and the same
reasoning does not apply. However, the condition rz1(0∨i2) ≤ γz2(0∨i2) rules out such a
scenario and guarantees that rz1(0∨ i2) ≤ lnz2(0∨ i2) for all n ≥ 0∨ i2. The concatenation
arguments we had for i2 = 0 then applies without change.

We now formulate the convergence of a pair of exploration clusters to coalescing
Brownian motions, which extends Proposition 2.2 for a single exploration cluster.

Proposition 3.3 (Convergence of a pair of exploration clusters). Let α and σ be as in
(2.4). For i = 1, 2, let zεi = (xεi , n

ε
i) ∈ Z2

even be such that Sα,σ,εzεi → zi = (xi, ti) ∈ R2 as
ε ↓ 0. Let

κεrr := min{n ∈ Z : rzε1(m) = rzε2(m) ∀m ≥ n}
κεγγ := min{n ∈ Z : γzε1(n) = γzε2(n) ∀m ≥ n}.

(3.1)

Let B1 and B2 be two coalescing Brownian motions starting at respectively z1 and z2,
and let

κ := inf{t ∈ R : B1(t) = B2(t)}. (3.2)

Then as ε ↓ 0,

Sα,σ,ε(γzε1 , rzε1 , γzε2 , rzε2 , κ
ε
γγ , κ

ε
rr)

dist
=⇒ (B1, B1, B2, B2, κ, κ) (3.3)

as random variables taking values in the product space Π4 × [−∞,∞]2.

Proof. Our proof strategy is similar to the proof that two coalescing random walks con-
verge in distribution to two coalescing Brownian motions. We first recall the argument
in that context to serve as a guide. Start with two independent random walks, which
converge in distribution to two independent Brownian motions by Donsker’s invariance
principle. Using Skorohod’s representation theorem for weak convergence [3, Theorem
6.7], we can use coupling to turn such a convergence into almost sure convergence in
path space. Next we observe that coalescing random walk paths can be constructed
almost surely from two independent random walk paths by forcing the second walk to
follow the first walk from the moment they meet, and the same deterministic operation
applied to two independent Brownian motions gives a construction of two coalescing
Brownian motions. It is not difficult to show that under the coupling given by Skoro-
hod’s representation theorem, almost surely the time the two independent walks meet
converges to the time the two independent Brownian motions meet, which then implies
that the two coalescing random walks constructed above also converge almost surely
to the two coalescing Brownian motions.
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To apply the above argument to our context, we first construct the two exploration
clusters (Czε1 , Czε2) from two independent percolation exploration clusters C [1]

zε1
and C [2]

zε2
,

equally distributed with Czε1 and Czε2 respectively. More precisely, let

Ωε[i] := {ωε,±[i],u : u ∈ Z2
even}, i = 1, 2, (3.4)

be two independent percolation configurations, where ωε,±[i],u are i.i.d. Bernoulli random

variables with parameter p, and ωε,+[i],u, resp. ωε,−[i],u, equals 1 if the up-right, resp. up-left,

edge from u is open in the i-th percolation configuration and equals 0 otherwise. Let C [i]
zεi

be the exploration cluster starting at zεi constructed from the percolation configuration

Ωε[i], and let γ[i]
zεi

, (l
[i],n
zεi

)n≥nεi and r
[i]
zεi

be the associated rightmost infinite open path and

left and right exploration cluster boundaries. Clearly C [1]
zε1

and C [2]
zε2

are independent, and
equally distributed with Czε1 and Czε2 respectively.

Next we show how to construct Czε1 and Czε2 almost surely from C
[1]
zε1

and C
[2]
zε2

(more
precisely, from the underlying percolation configurations Ωε[1] and Ωε[2]), akin to the al-
most sure construction of two coalescing random walk paths from two independent
random walk paths. First we set Czε1 := C

[1]
zε1

so that Czε1 is constructed by exploring
the status of edges in Ωε[1]. Next we construct Czε2 by exploring the status of edges in
Ωε[2] one by one until we first encounter an edge whose status in Ωε[1] has already been
explored in the construction of Czε1 . From this step onward, we continue the explo-
ration construction of Czε2 by using the status of edges which have either already been
explored so far in the construction of Czε1 and Czε2 , or if a previously unexplored edge
is encountered, we just look up its status in Ωε[1]. Because the status of edges are dis-
covered in a Markovian way, (Czε1 , Czε2) constructed this way has the right distribution.

Note that Czε1 = C
[1]
zε1

, and Czε2(·) = C
[2]
zε2

(·) on [nε2, ι
[12],ε− 1], where ι[12],ε is the first time n

when C
[2]
zε2

(n) encounters an edge which has already been explored in the construction

of Czε1 = C
[1]
zε1

. In particular,

rzε1 = r
[1]
zε1
, and rzε2(·) = r

[2]
zε2

(·) on [nε2, ι
[12],ε − 1]. (3.5)

If rzε1 and rzε2 coalesce at time ι[12],ε, then the analogy with the proof of convergence
of coalescing random walks to coalescing Brownian motions will be complete. How-
ever this is not always true, and one such case has been explained in the remark after
Lemma 3.1 and illustrated in Figure 4 (b). Fortunately, such events are rare and can be
controlled using Lemma 2.5, which we show next.

Note that {Sα,σ,ε(γzε1 , rzε1 , γzε2 , rzε2 , κ
ε
γγ , κ

ε
rr)}ε>0 is a tight family of Π4 × [−∞,∞]2-

valued random variables because Sα,σ,ε(γzεi , rzεi )
dist
=⇒ (Bi, Bi), i = 1, 2, by Proposition 2.2.

Therefore it suffices to verify (3.3) along any weakly convergent subsequence. By
Lemma 2.5, for each L ∈ N and 0 < δ < 1, there exists Cδ,L such that

max
i=1,2

P
(

sup
t∈[εnεi ,L]

|Sα,σ,εrzεi (t)− Sα,σ,εγzεi (t)| ≥ ε
1
2−δ
)
≤ Cδ,Lε1/δ,

max
i=1,2

P
(
rzεi (s/ε) 6= γzεi (s/ε) ∀ s ∈ [t, t+ ε1−δ] for some t ∈ [εnεi , L]

)
≤ Cδ,Lε1/δ.

Let δ = 1
4 . By going to a further subsequence if necessary, it suffices to verify (3.3)

along any weakly convergent subsequence indexed by (εm)m∈N with εm ↓ 0, such that
for all L ∈ N,

∞∑
m=1

max
i=1,2

P
(

sup
t∈[εmn

εm
i ,L]

|Sα,σ,εmrzεmi (t)− Sα,σ,εmγzεmi (t)| ≥ ε1/4m

)
<∞, (3.6)
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∞∑
m=1

max
i=1,2

P
(
rzεmi (s/εm) 6= γzεmi (s/εm) ∀ s ∈ [t, t+ ε3/4m ] for some t ∈ [εmn

εm
i , L]

)
<∞.

(3.7)
By Borel-Cantelli, almost surely, the events in (3.6) and (3.7) happen only a finite num-
ber of times regardless of how the percolation configurations (Ωεm[1] ,Ω

εm
[2] )m∈N are cou-

pled. In words, (3.6) implies that Sα,σ,εmrzεmi and Sα,σ,εmγzεmi are almost surely close
as m→∞, while (3.7) implies that the maximum gap between successive regeneration
times along Sα,σ,εmrzεmi and Sα,σ,εmγzεmi almost surely tends to 0 as m → ∞. We will
need both properties later. From now on we work with such a sequence of (εm)m∈N.

By Proposition 2.2, as m→∞,

Sα,σ,εm(γ
[1]

zεm1
, r

[1]

zεm1
, γ

[2]

zεm2
, r

[2]

zεm2
) −→ (B

[1]
1 , B

[1]
1 , B

[2]
2 , B

[2]
2 ) (3.8)

in distribution for two independent Brownian motions B[1]
1 and B

[2]
2 , starting respec-

tively at z1 and z2. By Skorohod’s representation theorem, we can couple the sequence
of random variables {Sα,σ,εm(γ

[1]

zεm1
, r

[1]

zεm1
, γ

[2]

zεm2
, r

[2]

zεm2
)}m∈N and (B

[1]
1 , B[2]

2 ) on the same

probability space such that the convergence in (3.8) becomes almost sure. Further-
more such a coupling can be extended to a coupling of the underlying sequence of per-
colation configurations (Ωεm[1] ,Ω

εm
[2] )m∈N by sampling (Ωεm[1] ,Ω

εm
[2] ), m ∈ N, independently

conditional on the realization of (γ
[1]

zεm1
, r

[1]

zεm1
, γ

[2]

zεm2
, r

[2]

zεm2
), m ∈ N. Let us assume such a

coupling from now on. We will show that the convergence in (3.3) in fact takes place
almost surely, similar in spirit to the proof that two coalescing random walks converge
to two coalescing Brownian motions almost surely, once the independent random walks
and Brownian motions used to construct the coalescing systems are coupled properly.

Let
κ[12] := inf{t ∈ R : B

[1]
1 (t) = B

[2]
2 (t)}.

Define B1 := B
[1]
1 , and B2(·) := B

[2]
2 (·) on [t2, κ

[12]] and B2(·) = B
[1]
1 (·) on [κ[12],∞]. Then

(B1, B2) is distributed as a pair of coalescing Brownian motions starting respectively

at z1 and z2, and κ[12] = κ as defined in (3.2). Let Czεmi , γzεmi , (l
[i],n

zεmi
)n≥nεmi and rzεmi ,

i = 1, 2, be constructed from the percolation configurations (Ωεm[1] ,Ω
εm
[2] ) as before. By

construction, (γzεm1 , rzεm1 ) = (γ
[1]

zεm1
, r

[1]

zεm1
). Therefore by (3.8) and our coupling,

Sα,σ,εm(γ
[1]

zεm1
, r

[1]

zεm1
)→ (B1, B1) a.s.

Assume first z1 6= z2. Then a.s. either (1) y1 := B1(t1 ∨ t2) < y2 := B2(t1 ∨ t2), or (2)
y2 < y1.

In case (1), define

κ[12],εm
rγ := min{n ≥ nεm1 ∨ n

εm
2 : γ

[2]

zεm2
(n) ≤ r[1]

zεm1
(n)},

κ[12],εm
rr := min{n ≥ nεm1 ∨ n

εm
2 : r

[2]

zεm2
(n) ≤ r[1]

zεm1
(n)}.

Because the left boundary of the exploration cluster C [2]

zεm2
(n) is bounded between γ

[2]

zεm2

and r
[2]

zεm2
, for m sufficiently large, the time ι[12],εm when C

[2]

zεm2
(n) first intersects Czε1 =

C
[1]

zεm1
satisfies

κ[12],εm
rγ ≤ ι[12],εm ≤ κ[12],εm

rr .

Since the a. s. convergence in (3.8) induced by our coupling implies that (εmκ
[12],εm
rγ ,

εmκ
[12],εm
rr ) → (κ, κ), we must have εmι[12],εm → κ as well. By (3.5), rzεm2 (·) = r

[2]

zεm2
(·) on
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[nεm2 , ι[12],εm − 1], and hence by (3.8), Sα,σ,εmrzεm2 → B2 uniformly on [t2, κ]. To draw the
same conclusion for Sα,σ,εmγzεm2 , we can no longer appeal to (3.8) because there is no

analogue of (3.5) that reduces γzεm2 to γ[2]

zεm2
. Instead we can use (3.6) and Borel-Cantelli

to conclude that Sα,σ,εmγzεm2 → B2 uniformly on [t2, κ]. It then follows that for all m
sufficiently large,

rzεm1 (nεm1 ∨ n
εm
2 ) < γzεm2 (nεm1 ∨ n

εm
2 ),

which allows us to apply Lemma 3.1 (note that ι[12],εm here is exactly κrl in Lemma 3.1)
to conclude that rzεm2 (·) = rzεm1 (·) on [ι[12],εm ,∞) and κεmrr = ι[12],εm . Therefore Sα,σ,εmrzεm2
→ B2 and εκεmrr → κ. Again by (3.6) and Borel-Cantelli, we also have Sα,σ,εmγzεm2 → B2.
Since κεmγγ ≤ κεmrr by Lemma 3.1 and Sα,σ,εm(γzεm1 , γzεm2 ) → (B1, B2), we must also have
εκεmγγ → κ. This proves (3.3) with a.s. convergence under our coupling in case (1).

In case (2), define

κ[12],εm
rγ := min{n ≥ nεm1 ∨ n

εm
2 : γ

[1]

zεm1
(n) ≤ r[2]

zεm2
(n)}.

By (3.8), εmκ
[12],εm
rγ → κ. Note that for all m sufficiently large, we have

γ
[1]

zεm1
(κ[12],εm
rγ ) = r

[2]

zεm2
(κ[12],εm
rγ ) and ι[12],εm − 1 = κ[12],εm

rγ .

These facts imply that rzεm2 (·) = r
[2]

zεm2
(·) on [nεm2 , κ

[12],εm
rγ ]. Furthermore, we have that,

(rzεm2 (κ
[12],εm
rγ ), κ

[12],εm
rγ ) is a break point along rzεm2 , and hence κ[12],εm

rγ = κεmγγ and εmκεmγγ →
κ. On [κεmγγ ,∞), rzεm2 (·) is bounded between γzεm1 and rzεm1 . Therefore by (3.8), Sα,σ,εmrzεm2
→ B2. Applying (3.6) again with Borel-Cantelli gives Sα,σ,εmγzεm2 → B2. Finally we note
that κεmrr is bounded between κεmγγ and the first time after κεmγγ when rzεm1 (·) = γzεm1 (·).
Then by (3.7) and Borel-Cantelli, we must have εmκ

εm
rr → κ as well. This proves (3.3)

with a.s. convergence under our coupling in case (2), and completes the proof of (3.3)
for z1 6= z2.

Lastly we treat the case z1 = z2, which we may assume to be o without loss of
generality. For each m ≥ 3, let zεm ∈ Z2

even be such that Sα,σ,εzεm → zm = (1/m, 0) as
ε ↓ 0. For 1 ≤ i < j, let κε,ijrr and κε,ijγγ be defined for Czεi and Czεj in the same way as in
(3.1). Then

{Sα,σ,ε
(
(rzεi , γzεi )i∈N, (κ

ε,ij
rr , κ

ε,ij
γγ )1≤i<j

)
}ε∈(0,1)

is a tight family of random variables taking values in ΠN × [−∞,∞]N under the product
topology. By (3.3) proved earlier for z1 6= z2, any weak limit must be of the form

((Wi,Wi)i∈N, (κ
12
rr, κ

12
γγ), (κij , κij)1≤i<j, j≥3)

where for each (i, j) with 1 ≤ i < j and j ≥ 3, (Wi,Wj , κ
ij) is distributed as a pair of

coalescing Brownian motions starting respectively at zi and zj , and κij = inf{t ≥ 0 :

Wi(t) = Wj(t)}. Note that

κε,12
rr ≤ max{κε,1mrr , κε,2mrr } and κε,12

γγ ≤ max{κε,1mγγ , κε,2mγγ }

for all m ≥ 3, and κ1m dist
= κ2m converges in distribution to 0 as m → ∞. Therefore we

must have κ12
rr = κ12

γγ = 0 a.s. It then follows that W1 = W2 a.s. This concludes the proof
of (3.3) for z1 = z2.

Remark 3.4. Prop. 2.2, Lemma 3.1, and the construction of two exploration clusters
from two independent copies in the proof of Prop. 3.3 show that two exploration clusters
starting at the same time must coalesce a.s. in finite time. The same is true if two
exploration clusters start at different times, since each vertex can only reach a finite
number of vertices by open path at any later time. This recovers the main result in [26],
that any two paths in Γ must coalesce a.s. in finite time.

EJP 18 (2013), paper 21.
Page 19/23

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2019
http://ejp.ejpecp.org/


Brownian web in oriented percolation

3.2 Convergence of multiple exploration clusters

We now extend Proposition 3.3 by establishing the convergence of a finite number
of exploration clusters to coalescing Brownian motions, which implies that the conver-
gence criterion (I) in Theorem 1.3 holds for Sα,σ,εΓ as ε ↓ 0.

Proposition 3.5 (Convergence of multiple exploration clusters). Let k ∈ N. For 1 ≤
i ≤ k, let zεi = (xεi , n

ε
i) ∈ Z2

even be such that Sα,σ,εzεi → zi = (xi, ti) ∈ R2 as ε ↓ 0. For
1 ≤ i < j ≤ k, let κε,ijrr and κε,ijγγ be defined for the exploration clusters Czεi and Czεj
as in (3.1). Let (B1, · · · , Bk) be coalescing Brownian motions starting respectively at
(z1, · · · , zk), and let κij be the time when Bj and Bj coalesce. Then as ε ↓ 0,

Sα,σ,ε
(
(γzεi , rzεi )1≤i≤k, (κ

ε,ij
γγ , κ

ε,ij
rr )1≤i<j≤k

) dist
=⇒

(
(Bi, Bi)1≤i≤k, (κ

ij , κij)1≤i<j≤k
)

(3.9)

as random variables taking values in the product space Π2k × [−∞,∞]k(k−1).

Proof. The proof is essentially the same as that for Proposition 3.3. We proceed by
induction. Suppose that (3.9) holds for a given k ≥ 2. Let zεk+1 ∈ Z2

even be such that
Sα,σ,εz

ε
k+1 → zk+1 for some zk+1 = (xk+1, tk+1) ∈ R2. If zk+1 = zi for some 1 ≤ i ≤ k,

then (3.9) for k + 1 follows from the induction assumption and Proposition 3.3 applied
to Czεi and Czεk+1

. Therefore we assume from now on zk+1 6= zi for all 1 ≤ i ≤ k.
As in the proof of Proposition 3.3, we construct (Czεi )1≤i≤k and Czεk+1

from two in-

dependent percolation configurations Ωε[1] and Ωε[2]. First we construct (C
[1]
zεi

)1≤i≤k and

C
[2]
zεk+1

respectively from Ωε[1] and Ωε[2], and then set (Czεi )1≤i≤k := (C
[1]
zεi

)1≤i≤k. Next we

construct Czεk+1
by successively exploring the status of edges in Ωε[2] until the first time

we encounter an edge whose status in Ωε[1] has already been explored in the construction

of (C
[1]
zεi

)1≤i≤k, from which step onward, the exploration construction of Czεk+1
will only

use the status of edges that have already been explored, or if an edge is unexplored,
then look up its status in Ωε[1]. Let ι[12],ε be the first time n when Czεk+1

(n) intersects

(Czεi )1≤i≤k, then Czεk+1
(·) = C

[2]
zεk+1

(·) and rzεk+1
(·) = r

[2]
zεk+1

(·) on [nεk+1, ι
[12],ε − 1].

As in the proof of Proposition 3.3, it suffices to go to a weakly convergent subse-
quence of Sα,σ,ε

(
(γzεi , rzεi )1≤i≤k+1, (κ

ε,ij
γγ , κ

ε,ij
rr )1≤i<j≤k+1

)
indexed by (εm)m∈N such that

(3.6) and (3.7) hold with maxi=1,2 therein replaced by max1≤i≤k+1. For such a sequence
of (εm)m∈N, we then apply Skorohod’s representation theorem to couple the sequence
of percolation configurations (Ωεm[1] ,Ω

εm
[2] )m∈N, such that

Sα,σ,εm
(
(γ

[1]

zεmi
, r

[1]

zεmi
)1≤i≤k, (κ

[1],εm,ij
γγ , κ[1],εm,ij

rr )1≤i<j≤k, (γ
[2]

zεmk+1
, r

[2]

zεmk+1
)
)

−→ ((B
[1]
i , B

[1]
i )1≤i≤k, (κ

[1],ij)1≤i<j≤k, (B
[2]
k+1, B

[2]
k+1)) a.s.,

(3.10)

where (B
[1]
i )1≤i≤k is a collection of coalescing Brownian motions starting at (zi)1≤i≤k

with pairwise coalescence time κ[1],ij , and B
[2]
k+1 is an independent Brownian motion

starting at zk+1, all defined on the same probability space as (Ωεm[1] ,Ω
εm
[2] )m∈N. Let

κ[12] := inf{t ∈ R : B
[2]
k+1(t) = B

[1]
i (t) for some 1 ≤ i ≤ k},

and assume that B[2]
k+1(κ[12]) = B

[1]
i0

(κ[12]) for some 1 ≤ i0 ≤ k. Then setting (Bi)1≤i≤k :=

(B
[1]
i )1≤i≤k, Bk+1(·) := B

[2]
k+1(·) on [tk+1, κ

[12]] and Bk+1(·) := B
[1]
i0

(·) on [κ[12],∞) pro-
duces a collection of coalescing Brownian motions (Bi)1≤i≤k+1 starting respectively at
(zi)1≤i≤k+1. With (Czεmi )1≤i≤k+1 constructed from (Ωεm[1] ,Ω

εm
[2] ) as before and the coupling

we have, all it remains is to prove that the convergence in (3.9) takes place a.s. along
the sequence indexed by εm. By (3.10), it suffices to verify the a.s. convergence of

Sα,σ,εm
(
γzεmk+1

, rzεmk+1
, (κεm,i(k+1)

γγ , κεm,i(k+1)
rr )1≤i≤k

)
−→ (Bk+1, Bk+1, (κ

i(k+1), κi(k+1))1≤i≤k).
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By the a.s. convergence of coalescence times, (γzεmi , rzεmi )1≤i≤k = (γ
[1]

zεmi
, r

[1]

zεmi
)1≤i≤k in

(3.10), the above a.s. convergence may be reduced further to showing the a.s. conver-
gence of

Sα,σ,εm
(
γzεmk+1

, rzεmk+1
, κεm,i0(k+1)
γγ , κεm,i0(k+1)

rr ) −→ (Bk+1, Bk+1, κ
i0(k+1), κi0(k+1)),

which concerns only the pair of exploration clusters Czεmi0
and Czεmk+1

. As in the proof of

Proposition 3.3, a.s. either yi0 := Bi0(ti0 ∨ tk+1) < yk+1 := Bk+1(ti0 ∨ tk+1) or yk+1 < yi0 .
Treating the two cases separately, the rest of the argument is then exactly the same as
in the proof of Proposition 3.3.

4 Verification of (B1) and (B2)

In this section, we conclude the proof of Theorem 1.2 by verifying conditions (B1)
and (B2) in Theorem 1.3 for Xε := Sα,σ,εΓ as ε ↓ 0.

Verification of (B1). In our setting, condition (B1) amounts to showing that for all t > 0,

lim sup
ε↓0

sup
(a,t0)∈R2

P(ηXε(t0, t; a, a+ δ) ≥ 2)→ 0 as δ ↓ 0. (4.1)

Note that, if we denote aε := αt0ε
−1 + aσε−1/2 and δε := δσε−1/2, then

ηXε(t0, t; a, a+ δ) = ηΓ(t0ε
−1, tε−1; aε, aε + δε) ≤ ηΓ(bt0ε−1c, btε−1c; baεc, baεc+ dδεe+ 1),

where we used the fact that paths in Γ are nearest-neighbor paths and coalesce when
they intersect. Therefore by translation invariance of Γ under shifts by vectors in Z2

even,
uniformly in (a, t0) ∈ R2, we have

P(ηXε(t0, t; a, a+ δ) ≥ 2) ≤ P(ηΓ(bt0ε−1c, btε−1c; baεc, baεc+ dδεe+ 1) ≥ 2)

≤ P(ηΓ(0, btε−1c; 0, dδεe+ 2) ≥ 2)

≤ P(ηR(0, btε−1c; 0, dδεe+ 2) ≥ 2),

(4.2)

where R := {r(x,0) : (x, 0) ∈ Z2
even}, and in the last inequality we applied Lemma 3.1.

Assume that xε := dδεe + 2 is even, otherwise replace the constant 2 by 3. Note that
ηR(0, btε−1c; 0, xε) ≥ 2 if and only if ro and r(xε,0) do not coalesce before or at time
btε−1c. Since Sα,σ,ε(xε, 0) → (δ, 0) as ε ↓ 0, Prop. 3.3 implies that εκεrr, where κεrr is the
time of coalescence of ro and r(xε,0), converges in distribution to the time of coalescence
κ(δ) of two coalescing Brownian motions starting respectively at (0, 0) and (δ, 0). Since
εbtε−1c → t > 0, we have

lim
ε↓0
P(ηR(0, btε−1c; 0, xε) ≥ 2) = P(κ(δ) ≥ t), (4.3)

which tends to 0 linearly in δ as δ ↓ 0; (4.1) then follows.

Verification of (B2). The key observation here is that, by replacing paths in Γ by the
associated exploration clusters, we end up with increasing and decreasing events of the
underlying percolation configuration, for which we can then apply the FKG inequality.
The details are as follows.

Condition (B2) in Theorem 1.3 amounts to showing that for all t > 0,

δ−1 lim sup
ε↓0

sup
(a,t0)∈R2

P(ηXε(t0, t; a, a+ δ) ≥ 3)→ 0 as δ ↓ 0. (4.4)

Let aε, δε, xε and R be as in the verification of (B1). Then similar to (4.2), we have

P(ηXε(t0, t; a, a+ δ) ≥ 3) ≤ P(ηR(0, btε−1c; 0, xε) ≥ 3)
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uniformly in (a, t0) ∈ R2. By (4.3), to prove (4.4), it then suffices to show that for all
n ∈ N and x ∈ N,

P(ηR(0, n; 0, 2x) ≥ 3) ≤ P(ηR(0, n; 0, 2x) ≥ 2)2. (4.5)

To simplify notation, let Ci := C(2i,0), l
n
i := ln(2i,0), and ri := r(2i,0) denote respectively

the exploration cluster at (2i, 0) and its left and right boundaries. Since paths in R are
ordered by Lemma 3.1, we can write

P(ηR(0, n; 0, 2x) ≥ 3) =

x−1∑
k=1

P(r0(n) = rk−1(n) < rk(n) < rx(n)).

For each 1 ≤ k ≤ x − 1, the event {r0(n) = rk−1(n) < rk(n) < rx(n)} is the same as the
event that the exploration clusters C0 and Ck−1 intersect before or at time n, but Ck−1,
Ck and Cx are mutually disjoint up to time n. Since different exploration clusters evolve
independently before they intersect, we can write

P(r0(n) = rk−1(n) < rk(n) < rx(n))

= P(r0(n) = rk−1(n), rk−1(·) < lnk (·) and rk(·) < lnx(·) on [0, n])

= P(r
[1]
0 (n) = r

[1]
k−1(n), r

[1]
k−1(·) < l

[2],n
k (·) and r[2]

k (·) < l[3],n
x (·) on [0, n]), (4.6)

where (C
[1]
0 , C

[1]
k−1), C [2]

k and C [3]
x and their boundaries are constructed on three indepen-

dent percolation edge configurations Ω[1],Ω[2] and Ω[3], defined as in (3.4). Conditional
on the realization of Ω[1] and Ω[3], and hence the realization of r[1]

0 , r
[1]
k−1 and l[3],n

x , we ob-

serve that the event {r[1]
k−1(·) < l

[2],n
k (·) on [0, n]} is increasing in the edge configuration

Ω[2], while the event {r[2]
k (·) < l

[3],n
x (·) on [0, n]} is decreasing in Ω[2]. Indeed, as more

edges are switched from closed to open in Ω[2], both l
[2],n
k and r

[2]
k can only increase.

Therefore by the FKG inequality applied to the i.i.d. Bernoulli random variables in Ω[2],
and using the independence of Ω[1] and Ω[3], we have

P(r
[1]
0 (n) = r

[1]
k−1(n), r

[1]
k−1(·) < l

[2],n
k (·) and r[2]

k (·) < l[3],n
x (·) on [0, n])

≤ E
[
1{r[1]0 (n)=r

[1]
k−1(n)}P

(
r

[1]
k−1(·) < l

[2],n
k (·) on [0, n]

∣∣Ω[1]
)
P
(
r

[2]
k (·) < l[3],n

x (·) on [0, n]
∣∣Ω[3]

)]
= P

(
r

[1]
0 (n) = r

[1]
k−1(n), and r[1]

k−1(·) < l
[2],n
k (·) on [0, n]

)
P
(
r

[2]
k (·) < l[3],n

x (·) on [0, n]
)

= P
(
r0(n) = rk−1(n), and rk−1(·) < lnk (·) on [0, n]

)
P
(
rk(·) < lnx(·) on [0, n]

)
= P(r0(n) = rk−1(n) < rk(n))P(rk(n) < rx(n))

≤ P(r0(n) = rk−1(n) < rk(n))P(r0(n) < rx(n)).

Summing the above inequality over 1 ≤ k ≤ x− 1 then gives (4.5), and hence (4.4).
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