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Abstract

By using coupling arguments, Harnack type inequalities are established for a class
of stochastic (functional) differential equations with multiplicative noises and non-
Lipschitzian coefficients. To construct the required couplings, two results on exis-
tence and uniqueness of solutions on an open domain are presented.
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1 Introduction

Consider the following stochastic differential equation (SDE):

dX(t) = σ(t,X(t))dB(t) + b(t,X(t))dt, (1.1)

where (B(t))t≥0 is the d-dimensional Brownian motion on a complete filtered probability
space (Ω, (Ft)t≥0,F ,P), σ : [0,∞) × Rd → Rd ⊗ Rd and b : [0,∞) × Rd → Rd are
measurable, locally bounded in the first variable and continuous in the second variable.
This time-dependent stochastic differential equation has intrinsic links to non-linear
PDEs (cf. [20]) as well as geometry with time-dependent metric (cf. [8]). When the
equation has a unique solution for any initial data x, we denote the solution by Xx(t).
In this paper we aim to investigate Harnack inequalities for the associated family of
Markov operators (P (t))t≥0:

P (t)f(x) := Ef(Xx(t)), t ≥ 0, x ∈ Rd, f ∈ Bb(R
d),
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Harnack inequalities for SDEs and SFDEs with non-Lipschitz coefficients

where Bb(R
d) is the set of all bounded measurable functions on Rd.

In the recent work [24] the second named author established some Harnack-type
inequalities for P (t) under certain ellipticity and semi-Lipschitz conditions. Precisely, if
there exists an increasing function K : [0,∞)→ R such that

‖σ(t, x)− σ(t, y)‖2HS + 2〈b(t, x)− b(t, y), x− y〉 ≤ K(t)|x− y|2, x, y ∈ Rd, t ≥ 0,

and there exists a decreasing function λ : [0,∞)→ (0,∞) such that

‖σ(t, x)ξ‖ ≥ λ(t)|ξ|, t ≥ 0, ξ, x ∈ Rd,

then for each T > 0, the log-Harnack inequality

P (T ) log f(y) ≤ logP (T )f(x) +
K(T )|x− y|2

2λ(T )2(1− e−K(T )T )
, x, y ∈ Rd (1.2)

holds for all strictly positive f ∈ Bb(R
d). If, in addition, there exists an increasing

function δ : [0,∞)→ (0,∞) such that almost surely∣∣(σ(t, x)− σ(t, y)
)∗

(x− y)
∣∣ ≤ δ(t)|x− y|, x, y ∈ Rd, t ≥ 0,

then for p > (1 + δ(T )
λ(T ) )

2 there exists a positive constant C(T ) (see [24, Theorem 1.1(2)]
for expression of this constant) such that the following Harnack inequality with power
p holds: (

P (T )f(y)
)p ≤ (P (T )fp(x)

)
eC(T )|x−y|2 , x, y ∈ Rd, f ∈ Bb(R

d). (1.3)

This type Harnack inequality is first introduced in [21] for diffusions on Riemannian
manifolds, while the log-Harnack inequality is firstly studied in [15, 23] for semi-linear
SPDEs and reflecting diffusion process on Riemannian manifolds respectively. Both
inequalities have been extended and applied in the study of various finite- and infinite-
dimensional models, see [1, 2, 4, 5, 7, 12, 14, 22, 24] and references within. In particu-
lar, these inequalities have been studied in [25] for the stochastic functional differential
equations (SFDE)

dX(t) =
{
Z(t,X(t)) + a(t,Xt)

}
dt+ σ(t,X(t))dB(t), X0 ∈ C , (1.4)

where C = C([−r0, 0];Rd) for a fixed constant r0 > 0 is equipped with the uniform norm
‖ · ‖∞; Xt ∈ C is given by Xt(u) = X(t + u), u ∈ [−r0, 0]; σ : [0,∞) × Rd → Rd ⊗ Rd,
Z : [0,∞) × Rd → Rd, and a : [0,∞) × C → Rd are measurable, locally bounded in
the first variable and continuous in the second variable. Let Xφ

t be the solution to this
equation with X0 = φ ∈ C . In [25] the log-Harnack inequality of type (1.2) and the
Harnack inequality of type (1.3) were established for

PtF (φ) := EF (Xφ
t ), t > 0, F ∈ Bb(C )

provided σ is invertible and for any T > 0 there exist constants K1,K2 ≥ 0,K3 > 0 and
K4 ∈ R such that

(1)
∣∣σ(t, η(0))−1{a(t, ξ)− a(t, η)}

∣∣ ≤ K1‖ξ − η‖∞, t ∈ [0, T ], ξ, η ∈ C ;

(2)
∣∣(σ(t, x)− σ(t, y))

∣∣ ≤ K2(1 ∧ |x− y|), t ∈ [0, T ], x, y ∈ Rd;
(3)

∣∣σ(t, x)−1
∣∣ ≤ K3, t ≥ 0, x ∈ Rd;

(4) ‖|σ(t, x)− σ(t, y)‖2HS + 2〈x− y, Z(t, x)− Z(t, y)〉 ≤ K4|x− y|2, t ∈ [0, T ], x, y ∈ Rd.
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The aim of this paper is to extend the above mentioned results to SDEs and SFDEs
with less regular coefficients as considered in Fang and Zhang [6] (see also [11]), where
the existence and uniqueness of solutions were investigated. In section 2, we consider
the SDE case; and in section 3, we consider the SFDE case. Finally, in section 4 we
present two results for the existence and uniqueness of solutions on open domains of
SDEs and SFDEs with non-Lipschitz coefficients, which are crucial for constructions of
couplings in the proof of Harnack-type inequalities.

2 SDE with non-Lipschitzian coefficients

To characterize the non-Lipschitz regularity of coefficients, we introduce the class

U :=

{
u ∈ C1((0,∞); [1,∞)) :

∫ 1

0

ds

su(s)
=∞, lim inf

r↓0

{
u(r) + ru′(r)

}
> 0

}
. (2.1)

Here, the restriction that u ≥ 1 is more technical than essential, since in applications
one may usually replace u by u ∨ 1 (see condition (H1) below).

To ensure the existence and uniqueness of the solution and to establish the log-
Harnack inequality, we shall need the following assumptions:

(H1) There exist u, ũ ∈ U with u′ ≤ 0 and increasing functions K, K̃ ∈ C([0,∞); (0,∞))

such that for all t ≥ 0 and x, y ∈ Rd,

〈b(t, x)− b(t, y), x− y〉+
1

2
‖σ(t, x)− σ(t, y)‖2HS ≤ K(t)|x− y|2u(|x− y|2)

‖σ(t, x)− σ(t, y)‖2HS ≤ K̃(t)|x− y|2ũ(|x− y|2).

(H2) There exists a decreasing function λ ∈ C([0,∞); (0,∞)) such that

|σ(t, x)y| ≥ λ(t)|y|, t ≥ 0, x, y ∈ Rd.

The log-Harnack inequality we are establishing depends only on functions u,K and
λ, K̃ and ũ will be only used to ensure the existence of coupling constructed in the
proof. As in [24], in order to derive the Harnack inequality with a power, we need the
following additional assumption:

(H3) There exists an increasing function δ ∈ C([0,∞); [0,∞)) such that

|(σ(t, x)− σ(t, y))∗(x− y)| ≤ δ(t)|x− y|, x, y ∈ Rd, t > 0.

Theorem 2.1. Assume that (H1) holds.

(1) For any initial data X(0), the equation (1.1) has a unique solution, and the solution
is non-explosive.

(2) If moreover (H2) holds and

ϕ(s) :=

∫ s

0

u(r)dr ≤ γsu(s)2, s > 0 (2.2)

for some constant γ > 0, then for each T > 0 and strictly positive f ∈ Bb(R
d),

P (T ) log f(y) ≤ logP (T )f(x) +
K(T )ϕ(|x− y|2)

λ(T )(1− exp[−2K(T )T/γ])
, f ≥ 1, x, y ∈ Rd.
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(3) If, additional to conditions in (2), (H3) holds, then

(
P (T )f(y)

)q ≤ P (T )fq(x)·exp

[
K(T )

√
q(
√
q − 1)ϕ(|x− y|2)

2δ(T )
(
(
√
q − 1)λ(T )− δ(T )

)(
1− exp[−2K(T )T/γ]

)]

holds for T > 0, for q > 1 +
δ(T )+2λ(T )

√
δ(T )

λ(T )2 , x, y ∈ Rd, and f ∈ B+
b (Rd), the set of

all non-negative elements in Bb(R
d).

Typical examples for u ∈ U satisfying u′ ≤ 0 and (2.2) contain u(s) = log(e ∨
s−1), u(s) = {log(e ∨ s−1)} log log(ee ∨ s−1), · · · .

Although the main idea of the proof is based on [24], due to the non-Lipschitzian
coefficients we have to overcome additional difficulties for the construction of coupling.
In fact, to show that the coupling we are going to construct is well defined, a new result
concerning existence and uniqueness of solutions to SDEs on a domain is addressed in
section 4.

2.1 Construction of the coupling and some estimates

It is easy to see from Theorem 4.1 that the equation (1.1) has a unique strong solu-
tion which is non-explosive (see the beginning of the next subsection). To establish the
desired log-Harnack inequality, we modify the coupling constructed in [24]. For fixed
T > 0 and θ ∈ (0, 2), let

ξ(t) =
2− θ

2K(T )

[
1− e

2K(T )
γ (t−T )

]
, t ∈ [0, T ],

then ξ is a smooth and strictly positive function on [0, T ) so that

2− 2K(T )ξ(t) + γξ′(t) = θ, t ∈ [0, T ). (2.3)

For any x, y ∈ Rd, we construct the coupling processes (X(t), Y (t))t≥0 as follows:
dX(t)=σ(t,X(t))dB(t) + b(t,X(t))dt, X0 = x,

dY (t)=σ(t, Y (t))dB(t)+b(t, Y (t))dt

+ 1
ξ(t)σ(t, Y (t))σ(t,X(t))−1(X(t)−Y (t))u(|X(t)−Y (t)|2)dt, Y0 = y.

(2.4)

We intend to show that the Y (t) (hence, the coupling process) is well defined up to time
τ and τ ≤ T , where

τ := inf{t ≥ 0 : X(t) = Y (t)}

is the coupling time. To this end, we apply Theorem 4.1 to

D = {(x′, y′) ∈ Rd ×Rd : x′ 6= y′}.

It is easy to verify (4.2) from (H1). Then Y (t) is well defined up to time ζ ∧ τ , where

ζ := lim
n→∞

ζn, and ζn := inf{t ∈ [0, T ); |Y (t)| ≥ n}.

Here and in what follows, we set inf ∅ =∞.
As in [24], to derive Harnack-type inequalities, we need to prove that the coupling

is successful before ζ ∧ T under the weighted probability Q := R(T∧τ∧ζ)P, where

R(s) :=exp

[
−
∫ s

0

1

ξ(t)

〈
σ(t,X(t))−1(X(t)− Y (t))u(|X(t)− Y (t)|2),dB(t)

〉
− 1

2

∫ s

0

1

ξ(t)2
|σ(t,X(t))−1(X(t)− Y (t))|2u2(|X(t)− Y (t)|2)dt

]
,

(2.5)
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for s ∈ [0, T∧ζ∧τ). To ensure the existence of the density R(T∧τ∧ζ) , letting

τn = inf{t ∈ [0, ζ) : |X(t)− Y (t)| ≥ n−1}, n ≥ 1,

we verify that (R(s∧ζn∧τn))s∈[0,T ),n≥1 is uniformly integrable, so that

R(T ∧ τ ∧ ζ) := lim
n→∞

R((T − n−1) ∧ τn ∧ ζn)

is a well defined probability density due to the martingale convergence theorem. Then
we prove that ζ ∧ T ≥ τ a.s.-Q, so that Q = R(τ)P. Both assertions are ensured by the
following lemma.

Lemma 2.2. Assume that the conditions (H1) and (H2) hold for some u satisfying
(2.2). Then

(1) For any s ∈ [0, T ) and n ≥ 1,

E[R(s ∧ τn ∧ ζn) logR(s ∧ τn ∧ ζn)] ≤ K(T )ϕ(|x− y|2)

λ(T )2 θ(2− θ)(1− exp[−2K(T )T/γ])
.

Consequently, R(T ∧ ζ ∧ τ) := limn→∞R((T − n−1) ∧ τn ∧ ζn) exists as a probabil-
ity density function of P, and

E
{
R(T ∧ ζ ∧ τ) logR(T ∧ ζ ∧ τ)

}
≤ K(T )ϕ(|x− y|2)

λ(T )2 θ(2− θ)(1− exp[−2K(T )T/γ])
.

(2) Let Q = R(T ∧ ζ ∧ τ)P, then Q(ζ ∧ T ≥ τ) = 1. Thus, Q = R(τ)P and

E
{
R(τ) logR(τ)

}
≤ K(T )ϕ(|x− y|2)

λ(T )2 θ(2− θ)(1− exp[−2K(T )T/γ])
.

Proof. (1) Let

B̃(t) = B(t)+

∫ t

0

1

ξ(s)
σ(s,X(s))−1(X(s)−Y (s))u(|X(s)−Y (s)|2)ds, t < T ∧ τ ∧ ζ. (2.6)

Then, before time T ∧ τ ∧ ζ, (2.4) can be reformulated as{
dX(t) = σ(t,X(t))dB̃(t) + b(t,X(t))dt− X(t)−Y (t)

ξ(t) u(|X(t)−Y (t)|2)dt, X0 = x,

dY (t) = σ(t, Y (t))dB̃(t) + b(t, Y (t))dt, Y0 = y.
(2.7)

For fixed s ∈ [0, T ) and n ≥ 1, let ϑn,s = s ∧ τn ∧ ζn and Qn,s = R(ϑn,s)P. Then
by the Girsanov theorem, (B̃(t))t∈[0,ϑn,s] is a d-dimensional Brownian motion under the
probability measure Qn,s. Let Z(t) = X(t) − Y (t). By the Itô formula and condition
(H1), we obtain

d|Z(t)|2 = 2
〈
Z(t), b(t,X(t))−b(t, Y (t))−Z(t)u(|Z(t)|2)

ξ(t)

〉
dt+‖σ(t,X(t))−σ(t, Y (t))‖2HSdt

+ 2
〈
Z(t), (σ(t,X(t))−σ(t, Y (t)))dB̃(t)

〉
≤ 2
(
K(T )− 1

ξ(t)

)
|Z(t)|2u(|Z(t)|2)dt

+ 2
〈
Z(t), (σ(t,X(t))−σ(t, Y (t)))dB̃(t)

〉
, t ≤ ϑn,s.

Applying the Itô formula to ϕ(|Z(t)|2) and noting that ϕ′′ = u′ ≤ 0, we derive

dϕ(|Z(t)|2) ≤ dM(t) + 2
(
K(T )− 1

ξ(t)

)
|Z(t)|2u2(|Z(t)|2)dt, t ≤ ϑn,s,
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where

M(t) :=

∫ t

0

2u(|Zs|2)〈Z(s), (σ(s,X(s))− σ(s, Y (s)))dB̃(s)〉, t ≤ ϑn,s

is a Qn,s-martingale. Thus, by (2.2) and (2.3),

d
ϕ(|Z(t)|2)

ξ(t)
≤ 1

ξ(t)
dM(t) +

2K(T )ξ(t)− 2

ξ(t)2
|Z(t)|2u2(|Z(t)|2)dt− ξ′(t)

ξ(t)2
ϕ(|Z(t)|2)dt

≤ 1

ξ(t)
dM(t) +

|Z(t)|2u2(|Z(t)|2)

ξ(t)2
(−2 + 2K(T )ξ(t)− γξ′(t))dt

=
1

ξ(t)
dM(t)− θ |Z(t)|2u2(|Z(t)|2)

ξ(t)2
dt, t ≤ ϑn,s.

(2.8)

Taking the expectation w.r.t. the probability measure Qn,s and noting (B̃(t))t∈[0,ϑn,s] is a
Brownian motion under Qn,s, we get

EQn,s

[ ∫ ϑn,s

0

|Z(t)|2u2(|Z(t)|2)

ξ(t)2
dt

]
≤ ϕ(|x− y|2)

θ ξ(0)
. (2.9)

On the other hand, it follows from (H2) that

logR(ϑn,s)=−
∫ ϑn,s

0

1

ξ(t)
〈σ(t,X(t))−1Z(t)u(|Z(t)|2),dB̃(t)〉

+
1

2

∫ ϑn,s

0

∣∣σ(t,X(t))−1Z(t)
∣∣2u2(|Z(t)|2)

ξ(t)2
dt

≤−
∫ ϑn,s

0

1

ξ(t)
〈σ(t,X(t))−1Z(t)u(|Z(t)|2),dB̃(t)〉

+
1

2λ(T )2

∫ ϑn,s

0

|Z(t)|2u2(|Z(t)|2)

ξ(t)2
dt.

Combining with (2.9), we arrive at

E
[
R(ϑn,s) logR(ϑn,s)

]
= EQn,s

[
logR(ϑn,s)

]
≤ ϕ(|x− y|2)

2λ(T )2θ ξ(0)
, s ∈ [0, T ), n ≥ 1. (2.10)

This implies the desired inequality in (1), and the consequence then follows from the
martingale convergence theorem.

(2) Let ζXn = inf{t ≥ 0; |X(t)| ≥ n}. Since X(t) is non-explosive as mentioned above,
ζXn ↑ ∞ P-a.s. and hence, also Q-a.s. For n > m > 1, it follows from (2.8) that

Q(ζXm > s ∧ τm > ζn)

ξ(0)

∫ (n−m)2

0

u(s)ds ≤ EQ
[
ϕ(|Z(ϑn,s)|2)

ξϑn,s

]
≤ ϕ(|x− y|2)

ξ(0)
. (2.11)

Letting first n→∞, then m→∞, and noting that u ≥ 1, we obtain Q(ζ < s ∧ τ) = 0 for
all s ∈ [0, T ). Therefore, Q(ζ ≥ T ∧ τ) = 1. So, it remains to show that Q(τ ≤ T ) = 1 and
according to (1) and (2.9),

EQ

∫ T∧τ

0

|Z(t)|2u(|Z(t)|2)2

ξ(t)2
dt ≤ K(T )ϕ(|x− y|2)

λ(T )2 θ(2− θ)(1− exp[−2K(T )T/γ])
.

Since
∫ T
0

1
ξ(t)2 dt =∞, τ > T implies that

inf
t∈[0,T )

|Z(t ∧ τ)|2u(|Z(t ∧ τ)|2)2 > 0,
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which yields that

Q(T < τ) ≤ Q
(∫ T∧τ

0

|Z(t)|2u(|Z(t)|2)2

ξ(t)2
dt =∞

)
= 0.

Combining this with Q(ζ ≥ T ∧ τ) = 1, we prove (2).

If moreover (H3) holds, then we have the following moment estimate on R(τ), which
will be used to prove the Harnack inequality with power.

Lemma 2.3. Assume (H1), (H2) and (H3) hold. Then for p := c2θ2

4δ(T )2+4θλ(T )δ(T ) > 0,

ER(τ)1+p ≤ exp

[
(2δ(T ) + λ(T )θ)θϕ(|x− y|2)

4δ(T )ξ(0)(2δ(T ) + 2λ(T )θ)

]
. (2.12)

Proof. By (2.8) and (H3), for any r > 0 we have

EQn,s exp

[
r

∫ ϑn,s

0

|Z(t)|2u2(|Z(t)|2)

ξ(t)2
dt

]
≤ exp

[
rϕ(|x− y|2)

θ ξ(0)

]
EQn,s exp

[
2r

θ

∫ s∧τn

0

u(|Z(t)|2)

ξ(t)
〈Z(t),

(
σ(t,X(t))− σ(t, Y (t))

)
dB̃(t)〉

]
≤ exp

[
rϕ(|x− y|2)

θ ξ(0)

](
EQn,s exp

[
8δ(T )2r2

θ2

∫ ϑn,s

0

|Z(t)|2u2(|Z(t)|2)

ξ(t)2
dt

])1/2

,

where in the last step we use the inequality

EeM(t) ≤
(
Ee2〈M〉(t))1/2,

for a continuous exponentially integrable martingale M(t), and 〈M〉(t) denotes the

quadratic variational process corresponding to M(t). Putting r =
θ2

8δ(T )2
such that

r =
8r2δ(T )2

θ2
, we get

EQn,s exp

[
θ2

8δ(T )2

∫ ϑn,s

0

|Z(t)|2u2(|Z(t)|2)

ξ(t)2
dt

]
≤ exp

[
θϕ(|x− y|2)

4δ(T )2ξ(0)

]
.

Due to Lemma 2.2, we have τ ≤ T ∧ ζ,Q-a.s. By taking s = T − n−1 and letting n → ∞
in the above inequality, we arrive at

EQ exp

[
θ2

8δ(T )2

∫ τ

0

|Z(t)|2u2(|Z(t)|2)

ξ(t)2
dt

]
≤ exp

[
θϕ(|x− y|2)

4δ(T )2ξ(0)

]
. (2.13)

Since for any continuous Q-martingale M(t)

EQ exp

[
pM(t) +

p

2
〈M〉(t)

]
≤
(
EQ exp

[
pqM(t)− p2q2〈M〉(t)/2

])1/q(
EQ exp

[
pq(pq + 1)

2(q − 1)
〈M〉(t)

])(q−1)/q

≤
(
EQ exp

[
pq(pq + 1)

2(q − 1)
〈M〉(t)

])(q−1)/q

, q > 1,
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we obtain from (H2) that

ER(τ)1+p = EQ exp

[
− p

∫ τ

0

1

ξ(t)
〈σ(t,X(t))−1Z(t)u(|Z(t)|2),dB̃(t)〉

+
p

2

∫ τ

0

1

ξ(t)2
∣∣σ(t,X(t))−1Z(t)u(|Z(t)|2)

∣∣2dt

]
≤
(
EQ exp

[
pq(pq + 1)

2λ(T )2(q − 1)

∫ τ

0

|Z(t)|2u2(|Z(t)|2)

ξ(t)2
dt

])(q−1)/q

.

Taking q = 1 +
√

1 + p−1 which minimizes q(pq + 1)/(q − 1), and using the definition of
p, we have

pq(pq + 1)

2λ(T )2(q − 1)
=

(p+
√
p2 + p)2

2λ(T )2
=

θ2

8δ(T )2
,
q − 1

q
=

2δ(T ) + λ(T )θ

2δ(T ) + 2λ(T )θ
.

Combining this with (2.13), we complete the proof.

2.2 Proof of Theorem 2.1

According to Theorem 4.1 below for D = Rd, (H1) implies that (1.1) has a unique
solution. Since u is decreasing, the first inequality in (H1) with y = 0 implies that for
|x| ≥ 1,

2〈b(t, x), x〉+‖σ(t, x)‖2HS ≤ 2〈b(t, 0), x〉+‖σ(t, 0)‖2HS+2‖σ(t, 0)‖HS‖σ(t, x)‖HS+K(t)|x|2u(1). (2.14)

Moreover, the second inequality in (H1) with y = 0 implies that for |x| ≥ 1,

‖σ(t, x)‖HS ≤ ‖σ(t, 0)‖HS +

[|x|]∑
k=1

∥∥∥∥σ(t, kx[|x|]

)
− σ

(
t,

(k − 1)x

[|x|]

)∥∥∥∥
HS

≤ ‖σ(t, 0)‖HS + 2|x|
√
K̃(t)

√
u(1)

where [|x|] stands for the integer part of |x|. Combining this with (2.14) we may find a
function h ∈ C([0,∞); (0,∞)) such that

2〈b(t, x), x〉+ ‖σ(t, x)‖2HS ≤ h(t)(1 + |x|2),

which implies the non-explosion of X(t) as is well known. Thus, the proof of (1) is
finished.

Next, by Lemma 2.2 and the Girsanov theorem,

B̃(t) := B(t) +

∫ t∧τ

0

σ(s,X(s))−1(X(s)− Y (s))

ξ(s)
u(|X(s)− Y (s)|2)ds, t ≥ 0

is a d-dimensional Brownian motion under the probability measure Q. Then, according
to Theorem 2.1(1), the equation

dY (t) = σ(t, Y (t))dB̃(t) + b(t, Y (t))dt, Y (0) = y (2.15)

has a unique solution for all t ≥ 0. Moreover, it is easy to see that (X(t))t≥0 solves the
equation

dX(t) = σ(t,X(t))dB̃(t) + b(t,X(t))dt− X(t)− Y (t)

ξ(t)
1{t<τ}dt, X(0) = x. (2.16)

Thus, we have extended equation (2.7) to all t ≥ 0, which has a global solution (X(t), Y (t))t≥0
under the probability measure Q, and

τ := inf{t ≥ 0 : X(t) = Y (t)} ≤ T, Q-a.s.

EJP 17 (2012), paper 100.
Page 8/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2140
http://ejp.ejpecp.org/


Harnack inequalities for SDEs and SFDEs with non-Lipschitz coefficients

Moreover, since the equations (2.15) and (2.16) coincide for t ≥ τ , by the uniqueness of
the solution and X(τ) = Y (τ), we conclude that X(T ) = Y (T ),Q-a.s.

Now, by Lemma 2.2 and the Young inequality we obtain

P (T ) log f(y) = EQ
[

log f(Y (T ))
]

= E
[
R(τ) log f(Y (T ))

]
≤ logE[f(X(T ))] + E

[
R(τ) logR(τ)

]
≤ logP (T )f(x) +

K(T )ϕ(|x− y|2)

λ(T )θ(2− θ)
(
1− exp[−2K(T )T/γ]

) .
Taking θ = 1, we derive the desired log-Harnack inequality.

Moreover, by the Hölder inequality, for any q > 1 we have(
P (T )f(y)

)q
=
(
EQ
[
f(Y (T ))

])q
=
(
E
[
Rτf(X(T ))

])q ≤ (P (T )fq(x)
)(
E
[
Rq/(q−1)τ

])q−1
.

Setting q = 1 +
4δ(T )2 + 4θλ(T )δ(T )

λ(T )2θ2
such that

q

q − 1
= 1 + p = 1 +

λ(T )2θ2

4δ(T )2 + 4θλ(T )δ(T )
, (2.17)

it then follows from Lemma 2.3 that(
P (T )f(y)

)q ≤ P (T )fq(x) · exp

[
2δ(T ) + λ(T )θ

2λ(T )2δ(T )θ ξ(0)
ϕ(|x− y|2)

]
.

It is easy to see that for any q > 1 + δ(T )2+2λ(T )δ(T )
λ(T )2 , (2.17) holds for θ =

2δ(T )

λ(T )(
√
q − 1)

.

Therefore, the desired Harnack inequality with power q follows.

3 SFDEs with non-Lipschitzian coefficients

For a fixed r0 > 0, let C := C([−r0, 0];Rd) denote all continuous functions from
[−r0, 0] to Rd endowed with the uniform norm, i.e.

‖φ‖∞ := max
−r0≤s≤0

|φ(s)|, for φ ∈ C .

Let T > r0 be fixed, for any h ∈ C([−r0, T ];Rd) and t ≥ 0, let ht ∈ C such that

ht(s) := h(t+ s), s ∈ [−r0, 0].

Consider the following type of stochastic functional differential equation

dX(t) = {b(t,X(t)) + a(t,Xt)}dt+ σ̄(t,Xt)dB(t), X0 ∈ C , (3.1)

where a : [0,∞)×C → Rd, σ̄ : [0,∞)×C → Rd⊗Rd and b : [0,∞)→ Rd are measurable,
locally bounded in the first variable and continuous in the second variable.

According to the proof of Theorem 4.2 below, we introduce the following class of
functions to characterize the non-Lipschitz regularity of the coefficients:

Ū :=

{
u ∈ C1((0,∞), [1,∞)) :

∫ 1

0

ds

su(s)
=∞, s 7→ su(s) is increasing and concave

}
.

According to Theorem 4.2 with D = Rd, the equation (3.1) has a unique strong solution
provided there exist a locally bounded function K : [0,∞)→ (0,∞) and u ∈ Ū such that

2〈b(t, φ(0))− b(t, ψ(0)) + a(t, φ)− a(t, ψ), φ(0)− ψ(0)〉+ ‖σ̄(t, φ)− σ̄(t, ψ)‖2HS

≤ K(t)‖φ− ψ‖2∞u(‖φ− ψ‖2∞),

‖σ̄(t, φ)− σ̄(t, ψ)‖2HS ≤ K(t)‖φ− ψ‖2∞u(‖φ− ψ‖2∞)

(3.2)
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holds for all t ≥ 0 and φ, ψ ∈ C . Since su(s) is increasing and concave in s, we have
su(s) ≤ c(1 + s) for some constant c > 0. Therefore, it is easy to see that the above
conditions also imply the non-explosion of the solution.

Let Xφ
t be the segment solution to (3.1) for X0 = φ. We aim to establish the Harnack

inequality for the associated Markov operators (Pt)t≥0:

Ptf(φ) := Ef(Xφ
t ), f ∈ Bb(C ), φ ∈ C .

As already known in [5, 25], to establish a Harnack inequality using coupling method,
one has to assume that σ̄(·, φ) depends only on φ(0); that is, σ̄(t, φ) = σ(t, φ(0)) holds for
some σ : [0,∞)×Rd → Rd ⊗Rd. Therefore, below we will consider the equation

dX(t) = {b(t,X(t))}+ a(t,Xt)}dt+ σ(t,X(t))dB(t), X0 ∈ C , (3.3)

where a : [0,∞)× C → Rd, σ : [0,∞)×Rd → Rd ⊗Rd are measurable, locally bounded
in the first variable and continuous in the second variable. We shall make use of the
following assumption, which is weaker than (1)-(4) introduced in the end of Section 1
since u might be unbounded.

(A) There exist u ∈ Ū and increasing function K,K1,K2,K3,K4 ∈ C([0,∞); (0,∞))

such that for all t ≥ 0,

(i) 〈b(t, x)− b(t, y), x− y〉+ 1
2‖σ(t, x)− σ(t, y)‖2HS ≤ K1(t)|x− y|2u(|x− y|2), x, y ∈ Rd;

(ii) ‖σ(t, x)− σ(t, y)‖2HS ≤ K(t)|x− y|2u(|x− y|2), x, y ∈ Rd;
(iii) |a(t, φ)− a(t, ψ)|2 ≤ K2(t)‖φ− ψ‖2∞u(‖φ− ψ‖2∞), φ, ψ ∈ C ;

(iv) ‖(σ(t, x)− σ(t, y))σ(t, y)−1‖2 ≤ K3(t), ‖σ(t, x)−1‖2 ≤ K4(t), x, y ∈ Rd.

Obviously, (A) implies (3.2) so that the equation (3.3) has a unique strong solution
and the solution is non-explosive. Let G(s) =

∫ s
1

1
ru(r)dr, s > 0. It is easy to see that G is

strictly increasing with full range R. Let

C(T, r) = G−1
(
G(2r2) +G

(
4{K1(T ) + 2K2(T )K3(T ) + 32K(T )}

))
,

Φ(T, r) = C(T, r)u(C(T, r)), T > 0.

Since G(0) := lims↓0G(s) = −∞, we have C(T, 0) = 0 for any T > 0. So, if lims↓0 su(s) =

0 then Φ(T, 0) = 0. The main result in this section is the following.

Theorem 3.1. Assume (A). If (2.2) holds for some constant γ > 0, then for T > 0

PT+r0 log f(ψ)− logPT+r0f(φ)

≤ K4(T )
(2γϕ(|φ(0)−ψ(0)|2)

T
+ T

{
8K1(T )2+8K2(T )K3(T )+K2(T )

}
Φ(T, ‖φ−ψ‖∞)

)
,

holds for all strictly positive f ∈ Bb(C ) and φ, ψ ∈ C .

The proof is modified from Section 2. But in the present setting we are not able
to derive the Harnack inequality with power as in Theorem 2.1(3). The reason is that
according to the proof of Lemma 3.3 below, to estimate ER(τ̃)q for q > 0 one needs
upper bounds of the exponential moments of ‖Zt‖2∞u(‖Zt‖2∞), which is however not
available.
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Let T > 0 and φ, ψ ∈ C be fixed. Combining the construction of coupling in Section
2 for the SDE case with non-Lipschitz coefficients and that in [25] for the SFDE case
with Lipschitz coefficients, we construct the coupling process (X(t), Y (t)) as follows:

dX(t) = {b(t,X(t)) + a(t,Xt)}dt+ σ(t,X(t))dB(t), X0 = φ,

dY (t) = {b(t, Y (t)) + a(t,Xt)}dt+ σ(t, Y (t))dB(t)

+σ(t,Y (t))σ(t,X(t))−1(X(t)−Y (t))

ξ̃(t)
1[0,T )(t)u(|X(t)− Y (t)|2)dt, Y0 = ψ,

(3.4)

where

ξ̃(t) =
T − t

2γ
, t ∈ [0, T ].

As explained in Subsection 2.1 for the existence of solution to (2.4) using Theorem
4.1, due to Theorem 4.2 and (i) in (A), the equation (3.4) has a unique solution up to
the time T ∧ ζ̃ ∧ τ̃ , where

τ̃ := inf{t > 0 : X(t) = Y (t)}, ζ̃ := lim
n→∞

ζ̃n; ζ̃n := inf{t ∈ [0, T̃ ) : |Y (t)| ≥ n}.

From (A) it is easy to see that ζ̃ ≥ T. If τ̃ ≤ T , we set Y (t) = X(t) for t ≥ τ̃ so that
(X(t), Y (t)) solves (3.4) for all t ≥ 0 (this is not true if σ(t, Y (t)) is replaced by σ̄(t, Yt)

depending on Y (t + s), s ∈ [−r0, 0]). In particular, τ̃ ≤ T implies that XT+r0 = XT+r0 .

To show that τ̃ ≤ T , we make use of the Girsanov theorem as in Section 2. Let Z(t) =

X(t)− Y (t) and

Λ(t) :=
u(|Z(t)|2)σ(t,X(t))−1Z(t)

ξ̃(t)
+σ(t, Y (t))−1

(
a(t,Xt)−a(t, Yt)

)
.

We intend to show that

R(s) := exp

[
−
∫ s

0

〈Λ(t),dB(t)〉 − 1

2

∫ s

0

|Λ(t)|2dt

]
(3.5)

is a uniformly integrable martingale for s ∈ [0, T ∧ τ̃), so that due to the Girsanov
theorem,

B̃(s) := B(s) +

∫ s

0

Λ(t)dt, t < T ∧ τ̃ (3.6)

is a d-dimensional Brownian motion under the probability Q := R(τ̃ ∧ ζ̃ ∧ T )P. To this
end, we make use of the approximation argument as in Section 2.

Define
τ̃n = inf{t ∈ [0, T̃ ); |X(t)− Y (t)| ≥ n−1}, n ≥ 1.

By the Girsanov theorem, for any s ∈ (0, T ) and n ≥ 1, {R(t)}t∈[0,s∧τ̃n∧ζ̃n] is a martingale

and {B̃(t)}t∈[0,s∧τ̃n∧ζ̃n] is a d-dimensional Brownian motion under the probability Qs,n :=

R(s∧ζ̃n∧τ̃n)P.

For t < T ∧ ζ̃n ∧ τ̃n, rewrite (3.4) as
dX(t) = {b(t,X(t)) + a(t,Xt)}dt+ σ(t,X(t))dB̃(t)− Z(t)

ξ̃(t)
u(|Z(t)|2)dt

−σ(t,X(t))σ(t, Y (t))−1
(
a(t,Xt)− a(t, Yt)

)
dt, X0 = φ,

dY (t) = {b(t, Y (t)) + a(t, Yt)}dt+ σ(t, Y (t))dB̃(t), Y0 = ψ.

We have Z0 = φ− ψ and

dZ(t) =
(
σ(t,X(t))−σ(t, Y (t))

)
dB̃(t)+

(
b(t,X(t))−b(t, Y (t))− u(|Z(t)|2)Z(t)

ξ̃(t)

)
dt

+
{
σ(t, Y (t))− σ(t,X(t))

}
σ(t, Y (t))−1(a(t,Xt)− a(t, Yt))dt

(3.7)

for t < T ∧ τ̃n ∧ ζ̃n.
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Lemma 3.2. Assume (i), (ii) and (iii) in (A). Let Es,n stands for taking the expectation
w.r.t. the probability measure Qs,n := R(s∧ζ̃n∧τ̃n)P. Then

sup
n≥1,s∈[0,T )

Es,n

(
sup

−r0≤t≤s∧ζ̃n∧̃τ̃n
|Z(t)|2

)
≤ C(T, ‖Z0‖∞).

Proof. Let `n(t) = sup−r0≤r≤t∧τ̃n∧ζ̃n |Z(r)|2. By the first inequality (i) and (iii) in (A),
(3.7) and using the Itô formula, we get

d|Z(t)|2 ≤2
〈
Z(t), (σ(t,X(t))−σ(t, Y (t)))dB̃(t)

〉
+ 2
(
K1(t)|Z(t)|2u(|Z(t)|2) + |Z(t)|

√
K2(t)K3(t)‖Zt‖2∞u(‖Zt‖2∞)

)
dt

(3.8)

for t ≤ s ∧ τ̃n ∧ ζ̃n. Moreover, according to the Burkholder-Davis-Gundy inequality, for
any continuous martingale M(t) one has

E sup
s∈[0,t]

M(s) ≤ 2
√

2E
√
〈M〉(t), t ≥ 0.

Combining this with (3.8) and (ii) in (A), and noting that su(s) is increasing in s so that

|Z(t)|2u(|Z(t)|2) ≤ ‖Zt‖2∞u(||Zt‖2∞) ≤ `n(t)u(`n(t)), t ≤ s ∧ τ̃n ∧ ζ̃n,

we obtain

Es,n`n(t) ≤ ‖Z0‖2∞ + 8Es,n
√
K(T )

(∫ t

0

`n(r)2u(`n(r))dr

)1/2

+
1

4
Es,n`n(t)

+ {2K1(T ) + 4K2(T )K3(T )}
∫ t

0

Es,n`n(r)u(`n(r))dr

≤ ‖Z0‖2∞+
1

2
Es,n`n(t)+2{K1(T )+2K2(T )K3(T ) + 32K(T )}

∫ t

0

Es,n
[
`n(r)u(`n(r))

]
dr.

Since su(s) is concave in s so that Es,n[`n(r)u(`n(r))] ≤ Es,n`n(r)u(Es,n`n(r)), this im-
plies that

Es,n`n(t) ≤ 2‖Z0‖2∞+4{K1(T )+2K2(T )K3(T )+32K(T )}
∫ t

0

Es,n`n(r)u(Es,n`n(r))dr, t ≤ s.

Therefore, the desired estimate follows from the Bihari’s inequality (see, for example,
[13, Theorem 1.8.2]).

Lemma 3.3. Assume (A). If (2.2) holds for some constant γ > 0, then

sup
s∈[0,T̃ ),n≥1

E
[
R(s∧ζ̃n∧τ̃n) logR(s∧ζ̃n∧τ̃n)

]
≤ K4(T )

(2ϕ(|Z(0)|2)

T
+ T

{
8K1(T )2 + 8K2(T )K3(T ) +K2(T )

}
Φ(T, ‖Z0‖∞)

)
Proof. By the first inequality in (A2), (3.7) and using the Itô formula, we obtain

d|Z(t)|2 ≤2
〈
Z(t), (σ(t,X(t))−σ(t, Y (t)))dB̃(t)

〉
− 2|Z(t)|2u(|Z(t)|2)

ξ̃(t)
dt

+ 2
(
K1(t)|Z(t)|2u(|Z(t)|2) + |Z(t)|

√
K2(t)K3(t)‖Zt‖2∞u(‖Zt‖2∞)

)
dt
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for t ≤ s∧ τ̃n ∧ ζ̃n. So, as in the proof of Lemma 2.2, there exists a Qs,n-martingale M(t)

such that for t ≤ s ∧ τ̃n ∧ ζ̃n,

d
ϕ(|Z(t)|2)

ξ̃(t)
≤dM(t)− |Z(t)|2u2(|Z(t)|2)

ξ̃(t)2

(
2 + γξ′(t)

)
dt

+
2

ξ̃(t)

(
K1(t)|Z(t)|2u(|(Z(t)|2))+|Z(t)|

√
K2(t)K3(t)‖Zt‖2∞u(‖Zt‖2∞)

)
dt

≤dM(t)+

(
4{K1(t)2+K2(t)K3(t)}‖Zt‖2∞u(‖Zt‖2∞)dt− |Z(t)|2u2(|Z(t)|2)

2ξ̃(t)2

)
dt,

where in the last step we have used u ≥ 1 and ξ̃′(t) = − 1
2γ . Therefore,

Es,n

∫ s∧τ̃n∧ζ̃n

0

|Z(t)|2u2(|Z(t)|2)

ξ̃(t)2
dt

≤ 2ϕ(|Z(0)|2)

ξ̃(0)
+ 8T{K1(T )2 +K2(T )K3(T )}Es,n`n(T )u(`n(T )).

(3.9)

Since by Lemma 3.2 and the concavity of r 7→ ru(r)

Es,n`n(T )u(`n(T )) ≤ C(T, ‖Z0‖∞)u(C(T, ‖Z0‖∞)) = Φ(T, ‖Z0‖∞),

combining (3.9) with Lemma 3.2 and (iv) in (A) we arrive at that

E
[
R(s ∧ τ̃n ∧ ζ̃n) logR(s ∧ τ̃n ∧ ζ̃n)

]
=

1

2
Es,n

∫ s∧τ̃n∧ζ̃n

0

|Λ(t)|2dt

= K4(T )Es,n

∫ s∧τ̃n∧ζ̃n

0

( |Z(t)|2u2(|Z(t)|2)

ξ̃(t)2
+K2(T )‖Zt‖2∞u(‖Zt‖2∞)

)
dt

≤ K4(T )
(2γϕ(|Z(0)|2)

T
+ T

{
8K1(T )2 + 8K2(T )K3(T ) +K2(T )

}
Φ(T, ‖Z0‖∞)

)
.

Proof of Theorem 3.1. As discussed in Section 2 that Lemma 3.3 and (3.9) imply that
τ̃ ≤ T ∧ ζ̃ Q-a.s., where Q := R(τ̃ ∧ T ∧ ζ̃)P = R(τ̃)P. Since by the construction we have
X(t) = Y (t) for t ≥ τ̃ , this implies that XT+r0 = YT+r0 . Applying the Young inequality
and Lemma 3.3, we obtain

PT+r0 log f(ψ)− logPT+r0f(φ) = EQ
[

log f(YT+r0)
]
− logPT+r0f(φ)

= E
[
R(τ̃) log f(XT+r0)

]
− logE

[
f(XT+r0)

]
≤ E

[
R(τ̃) logR(τ̃)

]
≤ K4(T )

(2γϕ(|Z(0)|2)

T
+T
{

8K1(T )2+8K2(T )K3(T )+K2(T )
}

Φ(T, ‖Z0‖∞)
)
.

4 Existence and uniqueness of solutions

There is a lot of literature on the existence and uniqueness of SDEs and SFDEs
under non-Lipschitz condition, see e.g. Taniguchi [18, 19] and references therein. In
the following two subsections, for the construction of couplings given in the previous
sections, we present below two results in this direction for SDEs and SFDEs on open
domains respectively.
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4.1 Stochastic differential equations

Let D be a non-empty open domain in Rd, and let T > 0 be fixed. Consider the
following SDE:

dX(t) = σ(t,X(t))dB(t) + b(t,X(t))dt, (4.1)

where (B(t))t≥0 is the m-dimensional Brownian motion on a complete filtered proba-
bility space (Ω, (Ft)t≥0,F ,P), σ : [0, T ) × D → Rd ⊗ Rm and b : [0, T ) × D → Rd are
measurable, locally bounded in the first variable and continuous in the second variable.

Theorem 4.1. If there exist u ∈ U , a sequence of compact sets Kn ↑ D and functions
{Θn}n≥1 ∈ C([0, T ); (0,∞)) such that for every n ≥ 1,

2〈b(t, x)− b(t, y), x− y〉+ ‖σ(t, x)− σ(t, y)‖2HS

≤ Θn(t)|x− y|2u(|x− y|2), |x− y| ≤ 1, x, y ∈ Kn, t ∈ [0, T ).
(4.2)

Then for any initial data X(0) ∈ D, the equation (4.1) has a unique solution X(t) up to
life time

ζ := T ∧ lim
n→∞

inf
{
t ∈ [0, T ) : X(t) /∈ Kn

}
,

where inf ∅ :=∞.

Proof. For each n ≥ 1, we may find hn ∈ C∞(Rd) with compact support contained in D
such that hn|Kn

= 1. Let

bn(t, x) = hn(x)b(t, x), σn(t, x) = hn(x)σ(t, x).

Then for any n ≥ 1, bn and σn are bounded on [0, nTn+1 ] × Rd and continuous in the
second variable. According to the Skorokhod theorem [16] (see also [9, Theorem 0.1]),
the equation

dXn(t) = σn(t,Xn(t))dB(t) + bn(t,Xn(t))dt, Xn(0) = X0 (4.3)

has a weak solution for t ∈ [0, nTn+1 ]. So, by Yamada-Watanabe principle [26], to prove the
existence and uniqueness of the (strong) solution, we only need to verify the pathwise
uniqueness.

Let Xn(t), X̃n(t) be two solutions to (4.3) for t ∈ [0, nTn+1 ]. Since the support of hn is
a compact subset of D and since Km ↑ D, there exists m > n such that Km ⊃ supphn.
Then (4.2) yields that

2〈bn(t, x)− bn(t, y), x− y〉+ ‖σn(t, x)− σn(t, y)‖2HS ≤ Cn|x− y|2u(|x− y|2)

holds for some constant Cn > 0, all t ∈ [0, nTn+1 ] and x, y ∈ Rd with |x− y| ≤ 1. By the Itô
formula, this implies

d|Xn(t)− X̃n(t)|2 ≤ Cn|Xn(t)− X̃n(t)|2u(|Xn(t)− X̃n(t)|2)dt

+ 2〈Xn(t)− X̃n(t), {σn(t,Xn(t))− σn(t, X̃n(t))}dB(t)〉
(4.4)

for t ∈ [0, nTn+1 ]. On the other hand, u ∈ U implies that

u(r) + ru′(r) ≥ λ, r ∈ [0, ρ0]

holds for some constants λ, ρ0 > 0. Let

Ψε(r) = exp

[
λ

∫ r

1

ds

ε+ su(s)

]
, r, ε ≥ 0.
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Then, for any ε > 0, we have Ψε ∈ C2([0,∞)) and

ru(r)Ψ′ε(r) =
λru(r)

ε+ ru(r)
Ψε(r) ≤ λΨε(r),

Ψ′′ε (r) =
λ2 − λ{u(r) + ru′(r)}

(ε+ ru(r))2
≤ 0, r ∈ [0, ρ0].

Therefore, letting

τ0 = inf
{
t ∈
[
0,

nT

n+ 1

]
: |Xn(t)− X̃n(t)|2 ≥ ρ0

}
,

it follows from (4.4) and the Itô formula that

dΨε(|Xn(t)− X̃n(t)|2) ≤ λCnΨε(|Xn(t)− X̃n(t)|2)dt

+ 2Ψ′ε(|Xn(t)− X̃n(t)|2)〈Xn(t)− X̃n(t), {σn(t,Xn(t))− σn(t, X̃n(t))}dB(t)〉

holds for t ≤ τ0 ∧ nT
n+1 . Hence,

EΨε(|Xn(t ∧ τ0)− X̃n(t ∧ τ0)|2) ≤ eλCntΨε(0), t ≤ nT

n+ 1
.

Letting ε ↓ 0 and noting that Ψ0(0) = 0, we arrive at

EΨ0(|Xn(t ∧ τ0)− X̃n(t ∧ τ0)|2) = 0.

Thus, Xn(t∧τ0)−X̃n(t∧τ0) holds for all t ∈ [0, nTn+1 ]. Therefore, τ0 =∞ andXn(t) = X̃n(t)

holds for all t ∈ [0, nTn+1 ]. In conclusion, for every n ≥ 1, the equation (4.3) has a unique

solution up to time nT
n+1 .

Since hn = 1 on Kn so that (4.3) coincides with (4.1) before the solution leaves Kn,
the equation (4.1) has a unique solution X(t) up to the time

ζn :=
nT

n+ 1
∧ inf{t ≥ 0 : X(t) /∈ Kn}.

Therefore, (4.1) has a unique solution up to the life time ζ = T ∧ limn→∞ ζn.

4.2 Stochastic functional differential equations

Let C := C ([−r0, 0];Rd) for a fixed number r0 > 0, and for any set A ⊂ Rd let
AC = {φ ∈ C : φ([−r0, 0]) ⊂ A}. For fixed T > 0 and a non-empty open domain D in Rd,
we consider the SFDE

dX(t) = b̄(t,Xt)dt+ σ̄(t,Xt)dB(t), X0 ∈ DC , (4.5)

where B(t) is the m-dimensional Brownian motion, b̄ : [0, T )×DC → Rd and σ̄ : [0, T )×
DC → Rd ⊗ Rm are measurable, bounded on [0, t] ×KC for t ∈ [0, T ) and compact set
K ⊂ D, and continuous in the second variable.

Theorem 4.2. Assume that there exists a sequence of compact sets Kn ↑ D such that
for every n ≥ 1,

2〈b̄(t, φ)− b̄(t, ψ), φ(0)− ψ(0)〉+ ‖σ̄(t, φ)− σ̄(t, ψ)‖2HS ≤ ‖φ− ψ‖2∞un(‖φ− ψ‖2∞) (4.6)

and
‖σ̄(t, φ)− σ̄(t, ψ)‖2HS ≤ ‖φ− ψ‖2∞un(‖φ− ψ‖2∞) (4.7)

hold for some un ∈ Ū and all φ, ψ ∈ KC
n , t ≤ nT

n+1 . Then for any initial data X0 ∈ DC , the
equation (4.5) has a unique solution X(t) up to life time

ζ := T ∧ lim
n→∞

inf
{
t ∈ [0, T ) : X(t) /∈ Kn

}
.
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Proof. Using the approximation argument in the proof of Theorem 4.1, we may and do
assume that D = Rd and b̄ and σ̄ are bounded and continuous in the second variable
and prove the existence and uniqueness of solution up to any time T ′ < T . According to
the Yamada-Watanabe principle, we shall verify below the existence of a weak solution
and the pathwise uniqueness of the strong solution respectively.

(1) The proof of the existence of a weak solution is standard up to an approximation
argument. Let B(s) = B(r0 +1+s), s ∈ [−r0, 0], where B(s) is a d-dimensional Brownian
motion. Define

σ̄n(t, φ) = Eσ̄(t, φ+ n−1B), b̄n(t, φ) = Eb̄(t, φ+ n−1B), n ≥ 1.

Applying [3, Corollary 1.3] for σ = 1
nId×d,m = 0, Z = b = 0 and T = 1 + r0, we see that

for every n 6= 1, σ̄n and b̄n are Lipschitz continuous in the second variable uniformly in
the first variable. Therefore, the equation

dX(n)(t) = b̄n(t,X
(n)
t )dt+ σ̄n(t,X

(n)
t )dB(t), X

(n)
0 = X0

has a unique strong solution up to time T ′: X(n) ∈ C([0, T ′];Rd). To see that X(n)

converges weakly as n→∞, we take the reference function

gε(h) := sup
t∈[0,T )

sup
s∈(0,(T−t)∧1)

|h(t+ s))− h(t)|
sε

for a fixed number ε ∈ (0, 12 ). It is well known that gε is a compact function on C([0, T ′];Rd),
i.e. {gε ≤ r} is compact under the uniform norm for any r > 0. Since b̄n and σ̄n are uni-
formly bounded and ε ∈ (0, 12 ), we have

sup
n≥1

Egε(X
(n)) <∞.

Let P(n) be the distribution of X(n). Then the family {P(n)}n≥1 is tight, and hence (up
to a sub-sequence) converges weakly to a probability measure P on Ω := C([0, T ; ];Rd).
Let Ft = σ(ω 7→ ω(s) : s ≤ t) for t ∈ [0, T ′]. Then the coordinate process

X(t)(ω) := ω(t), t ∈ [0, T ′], ω ∈ Ω

is Ft-adapted. Since P(n) is the distribution of X(n), we see that

M (n)(t) := X(t)−
∫ t

0

b̄n(s,Xs)ds, t ∈ [0, T ′]

is a P(n)-martingale with

〈M (n)
i ,M

(n)
j 〉(t) =

m∑
k=1

∫ t

0

{
(σ̄n)ik(σ̄n)jk

}
(s,Xs)ds, 1 ≤ i, j ≤ d.

Since σ̄n → σ̄ and b̄n → b̄ uniformly and P(n) → P weakly, by letting n→∞ we conclude
that

M(t) := X(t)−
∫ t

0

b̄(s,Xs)ds, s ∈ [0, T ′]

is a P-martingale with

〈Mi,Mj〉(t) =

m∑
k=1

∫ t

0

{
σ̄ikσ̄jk

}
(s,Xs)ds, 1 ≤ i, j ≤ d.
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According to [10, Theorem II.7.1′], this implies

M(t) =

∫ t

0

σ̄(s,Xs)dB(s), t ∈ [0, T ′]

for some m-dimensional Brownian motion B on the filtered probability space (Ω,Ft,P).

Therefore, the equation has a weak solution up to time T ′.
(2) The pathwise uniqueness. Let X(t) and Y (t) for t ∈ [0, T ′] be two strong solutions

with X0 = Y0. Let Z = X − Y and

τn = T ′ ∧ inf
{
t ∈ [0, T ) : |X(t)|+ |Y (t)| ≥ n

}
.

By the Itô formula and (4.6), we have

d|Z(t)|2 ≤ 2〈(σ̄(t,Xt)− σ̄(t, Yt))dB(t), Zt〉+ ‖Zt‖2∞un(‖Zt‖2∞), t ≤ τn. (4.8)

Let
`n(t) := sup

s≤t∧τn
|Zs|2, t ≥ 0.

Noting that sun(s) is increasing in s, we have

‖Zt‖2∞un(‖Zt‖2∞) ≤ `n(t)un(`n(t)), t ≥ 0.

So, by (4.7), (4.8) and using the Burkholder-Davis-Gundy inequality, there exist con-
stants C1, C2 > 0 such that

E`n(t) ≤
∫ t

0

E`n(s)un(`n(s))ds+ C1E

(
`n(t)

∫ t

0

`n(s)un(`n(s))ds

)1/2

≤ 1

2
E`n(t) + C2

∫ t

0

E`n(s)un(`n(s))ds.

Since s 7→ sun(s) is concave, due to Jensen’s inequality this implies that

E`n(t) ≤ 2C2

∫ t

0

E`n(s)un
(
E`n(s)

)
ds.

LetG(s) =
∫ s
1

1
sun(s)

ds, s > 0, and letG−1 be the inverse ofG. Since
∫ 1

0
1

sun(s)
ds =∞, we

have [−∞, 0] ⊂ Dom(G−1) with G−1(−∞) = 0. Then, by Bihari’s inequality, we obtain

E`n(t) ≤ G−1
(
G(0) +G(2C2t)

)
= G−1(−∞) = 0.

This implies that X(t) = Y (t) for t ≤ τn for any n ≥ 1. Since b̄ and σ̄ are bounded, we
have τn ↑ T ′. Therefore, X(t) = Y (t) for t ∈ [0, T ′].
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