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Long-range percolation on the hierarchical lattice
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Abstract

We study long-range percolation on the hierarchical lattice of order N , where any
edge of length k is present with probability pk = 1 − exp(−β−kα), independently of
all other edges. For fixed β, we show that αc(β) (the infimum of those α for which an
infinite cluster exists a.s.) is non-trivial if and only if N < β < N2. Furthermore, we
show uniqueness of the infinite component and continuity of the percolation prob-
ability and of αc(β) as a function of β. This means that the phase diagram of this
model is well understood
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1 Introduction and main results

The study of long-range percolation on Zd goes back to [23] and led to a series
of interesting problems and results [2, 22, 4, 5, 24]; see [6, Section 2] for an extensive
overview. In [11] asymptotic long-range percolation is studied on the hierarchical lattice
ΩN (to be defined below) for N → ∞. The contact process on ΩN for fixed N has been
studied in [3].

In this paper we study the case of finite N . Long range percolation on the hierarchi-
cal lattice is quite different from the usual lattice: classical methods break down and
results are different.

We note that independently of the present paper, Dawson and Gorostiza [10] also
studied long range percolation on ΩN for fixed N and obtained partly overlapping re-
sults, using different methods.

The research of this paper is inspired by questions from epidemiology. For refer-
ences to the use of (long-range) percolation theory in epidemiology see [9, 24]. In the
most basic epidemiological models, all individuals are interacting in the same way, and
every pair of individuals make contacts, which may lead to transmission of infectious
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Figure 1: Hierarchical lattice (the “leaves”) of order 2 with the metric generating tree
attached.

diseases, at the same intensity [13]. To analyse those models, branching process ap-
proximations are often used [20].

Clearly the assumptions for this model are unrealistic. We want to investigate how
a hierarchical structure in the population, governing the contacts between individuals,
influences the spread of an epidemic. In particular we focus on the phase diagram
of the epidemic through considering the corresponding phase diagram in a percolation
model, and note that the probability that a given vertex is in an infinite percolation clus-
ter, corresponds with the probability of a large outbreak in the population under con-
sideration. Obviously this model is also unrealistic as the most basic epidemic model.
However, studying this “other extreme” will provide insight in the behaviour of epi-
demics in more realistic populations. Furthermore, the model is very interesting in its
own right from a probabilistic perspective.

The hierarchical lattice is defined as follows. For an integer N ≥ 2, we define the
set

ΩN := {x = (x1, x2, . . .) : xi ∈ {0, 1, . . . , N − 1},
∑
i

xi <∞},

and define a metric on it by

d(x,y) =

{
0 if x = y,

max{i : xi 6= yi} if x 6= y.

The pair (ΩN , d) is called the hierarchical lattice of order N .

One can think of the vertices in the hierarchical lattice as the leaves of a regular tree
without a root, see Figure 1. The metric d can then be interpreted as the number of
generations (levels) till the “most recent common ancestor” of two vertices. Let N be
the non-negative integers, including 0 and N+ := N \ {0}. The set ΩN is countable, and
we can introduce a natural labeling of its vertices via the map f : ΩN → N given by

f : (x1, x2, . . .) =

∞∑
i=1

xiN
i−1. (1.1)
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We will sometimes abuse notation and write n for f−1(n) ∈ ΩN .
The metric space (ΩN , d) satisfies the strengthened version of the triangle inequality

d(x, y) ≤ max(d(x, z), d(z, y))

for any triple x, y, z ∈ ΩN . Such spaces are called ultrametric (or non-Archimedean)
[25]. For x ∈ ΩN , define Br(x) to be the ball of radius r around x. Several important
geometrical properties follow from the definition of the space (ΩN , d) and its ultra-
metricity:

1. Br(x) contains Nr vertices for any x;

2. for every x ∈ ΩN there are (N − 1)Nk−1 vertices at distance k from it;

3. if y ∈ Br(x) then Br(x) = Br(y);

4. as a consequence of the previous property, for all x, y ∈ ΩN and for all r ≥ 0 we
either have Br(x) = Br(y) or Br(x) ∩ Br(y) = ∅.

Now consider long-range percolation on ΩN . Every pair of vertices (x, y) ∈ ΩN ×ΩN
is (independently of all other edges) connected by a single edge with probability

pk = 1− exp

(
− α

βk

)
,

where k = d(x, y) and where 0 ≤ α < ∞ and 0 < β < ∞ are the parameters of the
model. The edges are not directed. The vertices x ∈ ΩN and y ∈ ΩN are in the same
connected component if there exists a path from x to y, that is, if there exists a finite
sequence x = x0, x1, . . . , xn = y of vertices such that every pair (xi−1, xi) of points with
1 ≤ i ≤ n shares an edge.

We denote the size of a set S of vertices by |S|. The connected component (also
called “cluster”) containing the vertex x is denoted by C(x). Since there is, for every
vertex x ∈ ΩN , an automorphism on ΩN which projects x to 0, the |C(x)| have the same
distribution for every x ∈ ΩN we may study |C(0)| instead of |C(x)|.

Let Pα,β be the probability measure governing this percolation process (on the ap-
propriate probability space and sigma-algebra) and Eα,β the corresponding expectation
operator. When no confusion is possible, we omit the subscripts α and β. Denote

θ(α, β) := Pα,β (|C(0)| =∞) . (1.2)

It follows from a standard coupling argument that θ(α, β) is non-decreasing in α for any
given β. Therefore, it is reasonable to define

αc(β) := inf{α ≥ 0 : θ(α, β) > 0}.

Note that also θ(α, β) is non-increasing in β, for any given α.
Throughout the paper we use the following notation. For a set S of vertices, let

S := ΩN \ S denote its complement. The set Cn(x) is the cluster of vertices that are
connected to the origin by a path that uses only vertices inside Bn(x). For disjoint sets
S1, S2 ⊂ ΩN , the event that at least one edge connects a vertex in S1 with a vertex in S2

is denoted by S1 ↔ S2. The notation S1 6↔ S2 denotes the event that such an edge does
not exist. Let Cmn (x) be the largest cluster in Bn(x); if more such clusters exist, Cmn (x)

is defined to be one of them, chosen uniformly among all possible candidates. In any
case,

|Cmn (x)| = max
y∈Bn(x)

|Cn(y)|.

EJP 17 (2012), paper 57.
Page 3/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1977
http://ejp.ejpecp.org/


Long-range percolation on the hierarchical lattice

Theorem 1.1. ((non)-triviality of the phase transition)

(a) αc(β) = 0 for β ≤ N ,

(b) 0 < αc(β) <∞ for N < β < N2,

(c) αc(β) =∞ for β ≥ N2.

Theorem 1.2. (uniqueness of the infinite cluster) There is a.s. at most one infinite
cluster, for any value of α and β.

Theorem 1.3. (continuity of θ) The percolation function θ(α, β) is continuous whenever
α > 0.

Theorem 1.4. (continuity of αc(β)) The critical value αc(β) is continuous for β ∈ (0, N2)

and strictly increasing for β ∈ [N,N2). Finally, αc(β)↗∞ for β ↗ N2.

In order to prove Theorems 1.3 and 1.4, we need the following result, which is
interesting in its own right.

Theorem 1.5. (size of the large components) If α and β are such that θ := θ(α, β) > 0,
then for every ε > 0,

lim
k→∞

Pα,β
(
|Cmk (0)| > (θ − ε)Nk

)
= 1. (1.3)

In the next two sections we prove Theorem 1.1 and Theorem 1.2 respectively. Af-
ter that we prove the remaining results, and we end with a discussion about possible
generalisations.

While we were working on this paper, we learned that Dawson and Gorostiza [10]
also studied long-range percolation on ΩN and focused on whether or not an infinite
cluster exists with positive probability for given edge probabilities. They provide an
independent proof of our Theorem 1. Furthermore they study some deviations of the
model around β = N2, where α is replaced by a function of k. In particular, they analyze
the model for which pk is decreasing in k and

pkn = min

(
1,
C + a log nN b logn

N2kn

)
,

where kn = bKn log nc and C ≥ 0, a > 0, b ≥ 0 and K ≥ 1. (Here and throughout
the paper dxe := inf{n ∈ Z;n ≥ x} is the ceiling of x and bxc := sup{n ∈ Z;n ≤ x} is
the floor of x.) They prove that it is possible to chose C, a and b such that percolation
occurs.

2 Proof of Theorem 1.1

Proof of (a). Denote by Ek the event that the origin shares an edge with at least one
vertex at distance k. Then

P(Ek) = 1− exp

(
− α

βk
(N − 1)Nk−1

)
and the events (Ek)k≥1 are independent. It is easy to see that if β ≤ N then

∑∞
k=1P(Ek)

diverges for any α > 0. Therefore, by the second Borel-Cantelli lemma, infinitely many
of the events Ek occur with probability 1, so the origin has infinite degree with proba-
bility 1 and θ(α, β) = 1, for any α > 0 and 0 < β ≤ N . This implies that αc(β) = 0 for
0 < β ≤ N .

EJP 17 (2012), paper 57.
Page 4/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1977
http://ejp.ejpecp.org/


Long-range percolation on the hierarchical lattice

Proof of (c). By monotonicity it suffices to prove that αc(N2) = ∞, so we now take
β = N2. Let n0 = 0 and ni+1 = inf{n ≥ ni : Bni(0) 6↔ Bn(0)}. Since

{C(0) =∞} ⊂ {B0(0)↔ B0(0)} ∩
∞⋂
i=1

{
(
Bni(0) \ Bni−1(0)

)
↔ Bni(0)},

it is enough to prove that there a.s. exists i such that
(
Bni(0) \ Bni−1

(0)
)
6↔ Bni(0), that

is, ni+1 = ni.
Writing j = ni, we compute

P(ni+1 6= ni|ni 6= ni−1) = P(
(
Bni(0) \ Bni−1(0)

)
↔ Bni(0))

≤ P(Bj(0)↔ Bj(0))

= 1− exp

(
−αN j (N − 1)

N2

∞∑
k=1

N j+k−1

N2(j+k−1)

)
= 1− exp

(
− α
N

)
.

This upper bound is strictly less than 1, and independent of ni and ni−1. The result now
follows by the second Borel-Cantelli lemma.

Proof of (b). The strict positivity of αc(β) follows from the fact that

∞∑
k=1

(N − 1)Nk−1pk =

∞∑
k=1

(N − 1)Nk−1

(
1− exp(− α

βk
)

)
≤

≤ α(N − 1)

N

∞∑
k=1

(
N

β

)k
= α(N − 1)

1

β −N
,

which can be made strictly smaller than 1 by choosing α small enough. Hence the
expected number of edges from a given vertex is strictly smaller than 1, and by cou-
pling with a subcritical branching process (cf. [24]), the almost sure finiteness of the
percolation cluster follows.

The second inequality is more involved, and we start by explaining the idea of the
proof.

Fix an integer K and a large enough number η, such that√
β < η ≤

(
NK − 1

)1/K
; (2.1)

this is possible since
√
β < N . (The reason for precisely this conditions will become

clear in the proof.) We define

εn := exp

(
− α

βK

(
η2

β

)nK)
(2.2)

and
sn = P

(
|CmnK(0)| ≥ ηnK

)
. (2.3)

Note that s0 = 1. We use renormalisation techniques to deduce that

sn+1 ≥ P
(
Bin

(
NK , sn(1− εn)

)
≥ NK − 1

)
, (2.4)

whereBin(n, p) denotes a random variable with a binomial distribution with parameters
n and p.

Observe that equation (2.4) is close to the usual iteration formula in fractal percola-
tion [12]. In fractal percolation, one studies, for some given m to be fixed, the map

π(p) = P(Bin(m, p) ≥ m− 1).

EJP 17 (2012), paper 57.
Page 5/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1977
http://ejp.ejpecp.org/


Long-range percolation on the hierarchical lattice

Define u0 = 1 and, for n ∈ N
un+1 = π(pun).

Writing Gp(·) for π(p·) we then obtain

un+1 = Gp(un). (2.5)

In [12] it is shown that the limit u = limn→∞ un always exists and is positive if and only
if p is so large that the equation Gp(x) = x has a positive solution.

Now observe that (2.4) can be rewritten as

sn+1 ≥ G1−εn(sn). (2.6)

This is very similar to (2.5), the only difference being that the subscript of the iteration
function depends on n now. However, we show that for α large enough, εn goes down
exponentially fast at any given rate. From this we derive below that for every γ ∈ (0, 1/2)

and α = α(γ) large enough, the probability that the size of the largest cluster restricted
to a ball of radius nK is at least ηnK with probability bounded below by 1− γn+1.

Using α and γ as above, we show that conditioned on the event that the cluster of
the origin restricted to the ball of radius nK has at least size ηnK , the probability that
the cluster of the origin restricted to the ball of radius (n+1)K has at least size η(n+1)K

is bounded below by 1− γn+2. This implies that for all n ∈ N

tn := P
(
|CnK(0)| ≥ ηnK

)
> 1−

∞∑
k=0

γk+1 > 0

and therefore limn→∞ tn > 0, which proves the theorem.
Next we turn to the formal proof. Choose an integer K and a real number η such

that (2.1) is satisfied. We say that a ball of radius nK, BnK(x) is good if its largest
connected component has size at least ηnK , i.e., if |CmnK(x)| ≥ ηnK . That is sn as defined
in (2.3) is the probability that a ball of radius nK is good. By convention, we set s0 = 1.

Consider the ball of radius (n + 1)K, B(n+1)K(y) and the set of largest clusters
restricted to balls of radius nK within B(n+1)K(y), i.e., we consider the NK clusters
{CmnK(x)}x∈B(n+1)K(y) and denote these clusters by C(n, y; 1), C(n, y; 2), · · · , C(n, y;NK).
The order of the clusters is not important.

We say that a ball of radius nK, BnK(x) ⊂ B(n+1)K(y) is very good if

1. it is good,

2. CmnK(x) = C(n, y; J) or there is an edge connecting a vertex in CmnK(x) with a vertex
in C(n, y; J), where J = min{i; |C(n, y; i)| ≥ ηnK}.

Note that according to this definition, the first good sub-ball of diameter nK in a ball of
radius (n+ 1)K is automatically very good.

Since (NK − 1) ≥ ηK , B(n+1)K(y) will certainly be good if

(a) it contains NK − 1 good sub-balls of radius nK, and

(b) all these good sub-balls are very good.

We next estimate the probability of the events in (a) and (b).
Clearly, the number of good balls of radius nK in B(n+1)K(y) has a binomial distri-

bution with parameters NK and sn. Furthermore, given the collection of good balls
of radius nK, the probability that the first such good ball is very good is equal to 1
by definition, and the probability for any of the other good balls of radius nK to be
very good is at least 1 − εn, where εn is defined as in (2.2), since the distance between
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two vertices in a ball of radius (n + 1)K is at most (n + 1)K and the largest compo-
nent of a good ball of radius nK contains at least ηnK vertices. We conclude that the
number of very good balls of radius nK is stochastically larger than a random variable
having a binomial distribution with parameters NK and sn(1 − εn). Inequality (2.4):

sn+1 ≥ P
(
Bin

(
NK , sn(1− εn)

)
≥ NK − 1

)
, now follows.

We also have

P(Bin(k, p) ≥ k − 1) ≥ 1−
(
k

2

)
(1− p)2,

and writing C =
(
NK

2

)
we arrive at the inequality

sn+1 ≥ 1− C(1− sn + snεn)2 ≥ 1− C(1− sn + εn)2. (2.7)

Writing ξn = 1− sn this gives

ξn+1 ≤ C(ξn + εn)2. (2.8)

Choose first γ so small that 4C ≤ γ−1 and then α so large that both εn ≤ γn and
ξ1 = P

(
|CmK (0)| < ηK

)
≤ γ2. This is possible because 1/x > e−x for all x > 0, and

therefore we have

εn =

(
exp

(
−
(
η2

β

)nK)) α

βK

≤

((
β

η2

)αKβ−K)n
.

In an inductive fashion, if ξn ≤ γn+1 then

ξn+1 ≤ C(ξn + εn)2 ≤ 4C(γn+1)2 ≤ γ2n+1 ≤ γn+2, (2.9)

which implies that ξn ≤ γn+1 for all n. Hence, for α large enough, sn converges to 1
exponentially fast.

As written in the outline of this proof, the exponential convergence of sn to 1 is
not quite enough for our purposes. Indeed, sn represents the probability that a ball
of radius nK contains a component of size at least ηnK , but this component does not
necessarily contain the origin. Therefore, we have to make one extra step. Let

tn := P
(
|CnK(0)| ≥ ηnK

)
.

We claim that

tn+1 ≥ tn × P(Bin(NK − 1, sn(1− εn)) ≥ NK − 2). (2.10)

To see this, we argue as before. If |CnK(0)| ≥ ηnK , then BnK(0) will be the first good
sub-ball in the derivation above. If this component is connected to at least NK−2 other
large components in B(n+1)K(0) as above, then the component of the origin in B(n+1)K

is large enough, that is, has size at least η(n+1)K . From this, (2.10) follows. Since a
simple coupling gives that

P(Bin(NK − 1, sn(1− εn)) ≥ NK − 2) ≥ P(Bin(NK , sn(1− εn)) ≥ NK − 1),

and since the derivation above actually gives that the right hand side of this inequality
is bounded below by 1− γn+1, it follows that

θ(α, β) := lim
n→∞

tn > 1−
∑
i=1

γi > 0, (2.11)

which is enough to prove the result.
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Remarks (I) By the proof of the strict positivity of αc(β) for β > N , we also may deduce
that αc(β) is not differentiable at β = N . Indeed, αc(β) = 0 for β ≤ N and since

∞∑
k=1

(N − 1)Nk−1pk ≤ α(N − 1)
1

β −N

for β > N , we have αc(β) ≥ β−N
N−1 for all β > N . This in turn implies that for all β > N

we have
αc(β)− αc(N)

β −N
≥ 1

N − 1
> 0.

(II) Since we may choose γ arbitrary small in equation (2.9), we in fact have that for
every ε > 0, we can choose α so large, that tn > 1 − ε for all n. This implies that for
every β ∈ (N,N2), we can choose α so large such that by 2.11 we have θ(α, β) > 1− ε.

3 Proof of Theorem 1.2

We will use Theorem 0 from [16]:

Theorem 3.1. (Gandolfi et al. [16]) Consider long range percolation on Zd with the
properties

1. the model is translation-invariant, and

2. the model satisfies the positive finite energy condition.

Then there can be a.s. at most one infinite component.

Here the positive finite energy condition is that for every pair of vertices {v1, v2},
with v1, v2 ∈ Zd, the probability that v1 ↔ v2 given the configuration of all other possible
edges in Zd ×Zd is almost surely positive.

In order to be able to use this result, we will first embed the metric generating tree
into Z in a stationary (and ergodic) way. The embedding will be such that for each r,
we have

a. any ball of radius r will be represented by Nr consecutive integers,

b. the collection of balls of radius r partitions Z.

We first describe the construction rather loosely, and after that provide an explicit con-
struction. For ease of description, a collection of m consecutive integers is called an
interval of length m.

The ball of radius 1 containing 0, that is, B1(0) is chosen uniformly at random among
all N possible intervals of length N containing the origin of Z. Once we have chosen
this ball, all other balls of radius 1 are determined by requirements (a) and (b) above,
although it is not yet clear at this point to exactly which balls in ΩN they correspond.
To get an idea of this first step of the procedure, note that for N = 2 there are only two
possibilities, one of which is depicted here:

t t t t t t t t�@ �@ �@ �@

-3 -2 -1 0 1 2 3 4
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The other possibility is obtained by translating the edges over one unit to the right (or
to the left, for that matter).

Next, we determine B2(0). The ball B2(0) is a union of N balls of radius 1 and
contains B1(0). There are N possible ways to achieve this, keeping in mind that any ball
of radius 2 must - according to (a) above - be an interval of length N2. We now simply
choose one of the N possible ways to do this, with probability 1/N each. Once we have
chosen B2(0), all other balls of radius 2 are determined for the same reason as before.
The following picture illustrates a possible choice for B2(0) given the choice of B1(0)

made before.

t t t t t t t t�@
@
@

�
�
�

@ �@
@
@

�
�
�

@

-3 -2 -1 0 1 2 3 4

We can continue this procedure as long as we wish, and in doing so we obtain a
metric generating tree which is isomorphic to the tree depicted in Figure 1. This last
statement perhaps requires some reflection: one can see that this holds by first identi-
fying the two 0’s in both graphs, and then build up the balls Br(0), r = 1, 2, . . ., in that
order.

It is intuitively clear that this construction yields a stationary metric generating tree
in the sense that the distribution of the stochastic process which assigns to each pair
{z, z′} of points in Z the distance between them, is invariant under integer translations.
However, we would like to explicitly construct the tree on an appropriate probability
space in such a way that not only stationarity follows as an easy corollary, but we also
obtain that the embedding of the metric generating tree is in fact ergodic with respect
to translations.

A possible explicit construction is the following. Our probability space is the unit
interval [0, 1] endowed with Lebesgue measure on its Borel sigma field. For γ ∈ [0, 1],
let γ = 0.γ1γ2 · · · be its N -adic expansion, that is,

γ =

∞∑
n=1

γnN
−n,

where γi ∈ {0, 1, . . . , N −1} and we ignore those γ for which the expansion is not unique
- this is a set of Lebesgue measure zero anyway. In the construction above, we saw that
for each r, Br−1(0) can be seen as one of the balls of radius r−1 among the balls making
up Br(0). The metric generating tree corresponding to γ ∈ [0, 1] is obtained as follows.
We let Br(0) be such that Br−1(0) is the (γr + 1)-st ball in Br(0), counted from left to
right. For instance, in the preceding two figures with N = 2, we have that γ1 = 1 and
γ2 = 0. The map which assigns to each (apart from the exceptional null set discussed
before) γ a metric generating tree is denoted by φ. This map φ : [0, 1] → T , where T is
the set of metric generating trees, is invertible on a set of full Lebesgue measure.

One can write down explicitly the transformation S : [0, 1]→ [0, 1] which corresponds
to the left-shift T on the space of metric generating trees in the sense that φ ◦S = T ◦φ,
hence T = φSφ−1. Indeed, a little reflection shows that S can be described as follows:
if Y (γ) = min{n; γn 6= N − 1} then S(γ)k (that is, the k-th digit in S(γ)) is given by

S(γ)k =


0 if k < Y (γ),

γk + 1 if k = Y (γ),

γk if k > Y (γ).

This transformation has been studied in the literature and goes by the name Kakutani
- Von Neumann transformation, see e.g. [14] or [15]. It is easy to check that Lebesgue
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measure is invariant under the action of S, and this immediately proves that the con-
struction of our random metric generating tree is stationary on Z.

Proof of Theorem 1.2. The construction above shows that the metric generating tree
can be embedded into Z in a stationary way. We claim that this implies that the whole
long range percolation process on the hierarchical lattice can be realised as a stationary
percolation process on Z. To see this, we assign a uniformly-[0, 1] distributed random
variable Ue to each edge e in such a way that the collection is independent.

Given a realisation of the metric generating tree, we declare edge e to be open if
Ue ≤ 1 − exp(−α/β|e|), where |e| denotes the length of e with respect to the metric
generating tree. This gives a realisation of the percolation process with the correct
distribution, and shows that we have embedded the full percolation process on the
hierarchical tree in a stationary way. Since every pair of vertices shares an edge, with
positive probability, irrespective of the presence or absence of other edges, the positive
finite energy condition is met and the result follows.

With a little more work one can also see that the construction is in fact ergodic, that
is, any event which is invariant under the shift on Z has probability 0 or 1. To show
this, we first show that Lebesgue measure on [0, 1] is ergodic with respect to S. This
result is known (see e.g. [15] Theorem 1), but we give a simple (and new) proof for the
convenience of the reader.

Lemma 3.2. Lebesgue measure on [0, 1] is ergodic with respect to S.

Proof. Consider the first digit in each of γ, S(γ), S2(γ), . . .. From the construction
we immediately conclude that the first digit follows the periodic pattern 0, 1, . . . , N −
1, 0, 1, 2, . . . , N − 1, . . . starting at any number. Hence the first digit is just adding 1
modulo N . The second digit can only change when the first digit is an N −1, and then it
also changes according to adding 1 modulo N . In general the k-th digit can only change
when the (k − 1)-st digit is an N − 1, and then the change consists of adding 1 modulo
N . It follows from these observations that the orbit of γ under the action of S visits any
N -adic interval Im,k = [kN−m, (k + 1)N−m] with frequency N−m, that is,

lim
n→∞

1

n

n−1∑
k=0

1S(γ)∈Im,k = N−m, (3.1)

where 1A denotes the indicator function of A.
Now consider the collectionM of invariant probability measures for the transforma-

tion S. From the fact that Lebesgue measure preserves measure under S we see that
M is not empty. It is well known and easy to see that the setM is convex, and that the
ergodic measures are precisely the extremal points of M. Since M 6= ∅, this implies
that there is at least one ergodic measure with respect to S.

Let ν be any ergodic measure with respect to S. It follows from the ergodic theorem
and (3.1) that ν(Im,k) = N−m for any m and k = 0, . . . , Nm − 1. However, there is only
one measure that satisfies this condition, namely Lebesgue measure on [0, 1]. Hence ν
must be Lebesgue measure, which we already know is indeed invariant.

Theorem 3.3. The embedding of our long range percolation process on the hierarchi-
cal lattice into Z is ergodic.

Proof. From Lemma 3.2 it follows that the metric generating tree is embedded ergod-
ically. Adding the i.i.d. random variables Ue as before does not destroy ergodicity, and
the final configuration is a factor of this ergodic process and hence ergodic itself.
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4 Proof of Theorem 1.5

We provide the proof for β ≥ N . By monotonicity and the observation made in the
proof of Theorem 1.1(a) that θ(α,N) = 1 for α > 0, it follows that the result holds for all
β > 0. The proof consists of three steps:

1. For every constant K > 0 the indicator function of the event that both |C(0)| = ∞
and |Cn(0)| < K(β/N)n converges a.s. to 0 as n→∞.

2. The fraction of the vertices in Bn(0) which are in a cluster of size at leastK(β/N)n,
converges a.s. to θ as n→∞.

3. Use the previous two steps to prove the theorem.

Step 1. Observe that if β = N , then it follows from the a.s. infinite degree of the origin
that P(|Cn(0)| < K) → 0 as n → ∞ and therefore the claim follows. For β > N , we
compute

P

(
|C(0)| =∞

∣∣∣|{n ∈ N; |Cn(0)| ≤ K
(
β

N

)n
}| =∞

)
.

Note that the event conditioned on has positive probability, since |Cn(0)|might be finite.
Let n1 be the smallest n for which |Cn(0)| ≤ K(β/N)n.If Cni(0)↔ Bni(0), then ni+1 is the
smallest n > ni for which Cni(0) 6↔ Bn(0) and for which |Cn(0)| ≤ K(β/N)n.

Since |Cni(0)| ≤ K(β/N)ni , we have

P
(
Cni(0)↔ Bni(0)

)
≤ P

(
Cni(0)↔ Bni(0)

∣∣∣|Cni(0)| =
⌊
K
(
β
N

)ni⌋)
≤ 1− exp

−αK ( βN )ni ∞∑
j=ni+1

(N − 1)
N j−1

βj


= 1− exp

(
−αK N−1

β−N

)
.

(4.1)

The right hand side is strictly less than 1 and is independent of ni. So there will be an
ni for which {Cni(0) 6↔ Bni(0)}, and it follows that

P

(
|C(0)| =∞

∣∣∣|{n ∈ N; |Cn(0)| ≤ K
(
β

N

)n
}| =∞

)
= 0,

which implies

P

(
|C(0)| =∞∩ |{n ∈ N; |Cn(0)| ≤ K

(
β

N

)n
}| =∞

)
= 0.

Step 2. We use the random embedding of the hierarchical lattice in Z introduced in the

previous section. We start by considering all vertices between −Nn and Nn. After that,
we show how we can use that to study the vertices in Bn(0).

Consider

A(n) :=
1

2Nn + 1

Nn∑
x=−Nn

1

(
|Cn(x)| > K

(
β

N

)n)
.

First observe that for every k ∈ N ∩ [0, n]

A(n) ≤ 1

2Nn + 1

Nn∑
x=−Nn

1

(
|C(x)| > K

(
β

N

)n)

≤ 1

2Nn + 1

Nn∑
x=−Nn

1

(
|C(x)| > K

(
β

N

)k)
.
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By Theorem 3.3 and the ergodic theorem, we have that for every k ∈ N,

1

2Nn + 1

Nn∑
x=−Nn

1

(
|C(x)| > K

(
β

N

)k)
a.s.−−−−→
n→∞

P

(
|C(0)| > K

(
β

N

)k)
,

which decreases to θ, as β > N and k →∞, while forβ = N the right-hand side is equal
to 1. In particular, we have that for every ε > 0

1(A(n) < θ + ε)
a.s.−−−−→
n→∞

1. (4.2)

Then, use that for every k ∈ N ∩ [0, n],

A(n) ≥ 1

2Nn + 1

Nn∑
x=−Nn

1

 ∞⋂
j=k

{
|Cj(x)| > K

(
β

N

)j} .

By Theorem 3.3 and the ergodic theorem we have that for every k ∈ N

1

2Nn + 1

Nn∑
x=−Nn

1

 ∞⋂
j=k

{
|Cj(x)| > K

(
β

N

)j} a.s.−−−−→
n→∞

P

 ∞⋂
j=k

{
|Cj(0)| > K

(
β

N

)j} .

Since
⋂∞
j=k

{
|Cj(0)| > K

(
β
N

)j}
⊂ {|C(0)| =∞}, we have

P

 ∞⋂
j=k

{
|Cj(0)| > K

(
β

N

)j} ≤ θ.
Combined with Step 1 this implies that P

(⋂∞
j=k

{
|Cj(0)| > K

(
β
N

)j})
increases to θ,

as β ≥ N and k →∞. In particular, we have that for every ε > 0

1(A(n) > θ − ε) a.s.−−−−→
n→∞

1.

Together with (4.2) this implies A(n)
a.s.−−−−→
n→∞

θ.

Note that the collection of vertices {−Nn,−Nn + 1,−Nn + 2, . . . , Nn} contains the
image under the embedding of the ball Bn(0) and this image contains a fraction Nn

2Nn+1

of those vertices. Furthermore, the events |Cn(x)| > K(β/N)n are independent for
vertices x in different n-balls, so

A1(n) :=
1

2Nn + 1

∑
x∈Bn(0)

1

(
|Cn(x)| > K

(
β

N

)n)

and A2(n) := A(n)−A1(n) are independent. We have that

A1(n) +A2(n) = A(n)
a.s.−−−−→
n→∞

θ,

and we want to conclude that in fact A1(n)
a.s.−−−−→
n→∞

θ/2. Since A1(n) and A2(n) are

bounded above by 1 and have asymptotically the same mean θ/2, it is enough to show
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that A1(n) converges a.s. to some constant. By independence, the joint distribution of
A1(n) and A2(n) is a product measure µn say. Since the only product measures on [0, 1]

which concentrates on the line x + y = θ are point masses at a point on this line, it is
easy to see that the marginal distributions of µn must also converge to a point mass,
which proves that A1(n) also converges a.s. to a constant.

Step 3. The strategy is to split those components in Bn+1(0) which are at least of
size K(β/N)n into clusters roughly of size K(β/N)n. Then we use those clusters as
“meta-vertices” for an N -partite graph, in which meta-vertices in different n-balls are
connected if the clusters they represent are connected by an edge of length n + 1.
Meta-vertices in the same n-ball never share an edge. We show that if we choose K

and n large enough, then the largest component of the graph of meta-vertices contains
a fraction of the meta-vertices close to 1, which shows that for large n, the fraction of
vertices in the largest cluster of Bn+1(0) is close to θ. We will be more precise now.

By step 2 we know that for every K > 0, every ε > 0 and all large enough n, it holds
that

P

(∣∣∣∣{x ∈ Bn(0); |Cn(x)| > K

(
β

N

)n}∣∣∣∣ > (θ − ε)Nn

)
> 1− ε.

We now fix ε. The ball Bn(y) is said to be good if∣∣∣∣{x ∈ Bn(y); |Cn(x)| > K

(
β

N

)n}∣∣∣∣ > (θ − ε)Nn.

We condition on the event that all n-balls in Bn+1(0) are good. The probability of this
event is bounded below by (1− ε)N > 1−Nε.

Now, for every good ball Bn(y), y ∈ ΩN , we make a partition of the set{
x ∈ Bn(y); |Cn(x)| > K

(
β

N

)n}
in “meta-vertices”. For the moment we denote this set by B′n(y). For x ∈ B′n(y) we
make a partition of Cn(x) in b|Cn(x)|/(dK(β/N)ne)c sets, which all have size at least
dK(β/N)ne. The vertices that are not in such a cluster are ignored for the moment.
Denote the collection of meta-vertices that contain vertices in Bn+1(0) by Vn. We note
that if Bn(y) is good and K is large enough, then it contains at least

(θ − ε)Nn/d2K(β/N)ne ≥ (θ − ε)Nn/(3K(β/N)n)

meta-vertices.
We construct a new N -partite graph on Vn as follows. Let Vn be the vertex set

and let En be the set of edges between those vertices. This edge set is obtained as
follows. Choose dK(β/N)ne original vertices from every meta-vertex in Vn. Choosing
those vertices may be done in any way that is independent of the presence of edges of
length n + 1 or larger, e.g. by choosing the first dK(β/N)ne vertices in the vertex sets
in Vn according to the labeling generated by the function f as defined in (1.1). Denote
these new sets of meta-vertices by An. The meta-vertices x, y ∈ Vn share an edge in
En, if there is at least 1 edge in the original graph that is shared by vertices that make
up the sets in An corresponding to x and y, and if the original vertices that make up
x and y are at distance n + 1 of each other. Otherwise there is no edge between the
meta-vertices.

As observed before, the number of meta-vertices in Vn that consist of vertices from
a good ball Bn(x), is at least (θ − ε)Nn/(3K(β/N)n). Since β < N2, this quantity grows
to∞ as n→∞. The expected degree of a vertex in Vn exceeds

(N − 1)(θ − ε)Nn

3K(β/N)n

(
1− exp

(
−αβ−(n+1)(K)2

(
β

N

)2n
))

,
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which is larger than λ := (N − 1)(θ − ε)αK/(6β), for all large enough n. This holds for
every K > 0, and therefore the expected degree can be chosen to be arbitrary large.

This N -partite graph falls within the class of inhomogeneous random graphs of Bol-
lobás, Janson and Riordan [7]. The degree of every meta-vertex is asymptotically Pois-
son distributed, with mean bounded below by λ and we know [7, Thm. 3.1] that the
(unique) largest component of such an N -partite graph contains with high probability
(in the limit for n→∞) a fraction ρ of the meta-vertices, where ρ is the largest solution
of

1− ρ = e−λρ.

By tuning K, λ can be chosen arbitrary large and ρ can be taken such that ρ > 1 − ε.
So, for every ε > 0 and large enough n the graph (Vn, En) contains a unique giant
component, which contains a fraction 1 − ε of the vertices in Vn, with probability at
least 1− ε.

Since we have conditioned on the event that all n-balls in Bn+1(0) are good, the
fraction of vertices in Bn+1(0), that are part of vertices in Vn is bounded below by θ−2ε.
(The factor 2, is due to the fact that the sizes of different meta-vertices differ at most
a factor 2). Therefore, with the same conditioning, the largest cluster in Bn+1(0) is at
least of size

(ρ− ε)(θ − 2ε)Nn > (1− 2ε)(θ − 2ε)Nn

with probability exceeding 1 − ε. Now multiplying by the probability that all n-balls
in Bn+1(0) are good, gives that the probability that the largest cluster in Bn+1(0) is
at least of size (1 − 2ε)(θ − 2ε)Nn is bounded below by (1 − ε)(1 − Nε). By choosing
ε′ ∈ (0, ε/max(4, N + 1)), we obtain that P(|Cn(0)| > (θ− ε′)Nn) is at least 1− ε′ and this
finishes the proof.

Remark We realize that it is possible to prove the statement of Step 2 by using the
strong law of large numbers. If we do this, then it is only a small step from the proof of
Theorem 1.5 to a proof of Theorem 1.2. However, we think that the proof presented in
the previous section contains some valuable ideas and therefore should be included in
this paper.

5 Proof of Theorem 1.3

Continuity proofs of percolation functions typically split into separate proofs for left
and right continuity, one of which typically follows from standard arguments [17]. In
this case, continuity from the right in α and continuity from the left in β are the easy
parts:

Lemma 5.1. θ(α, β) is continuous from the right in α > 0 and continuous from the left
in β > 0.

Proof. We use that a decreasing limit of increasing (resp. decreasing) functions, which
are continuous from the right (resp. left) is continuous from the right (resp. left), and

apply this to the sequence Pα,β
(
Ci(0)↔ Bi(0)

)
, viewed as functions of α and β. Note

that
{Ci(0)↔ Bi(0)} ⊂ {Ci−1(0)↔ Bi−1(0)}

and

{|C(0)| =∞} =

∞⋂
i=0

{Ci(0)↔ Bi(0)}. (5.1)

Therefore, the sequence of probabilities has the appropriate limit. Furthermore, the

probability Pα,β
(
Ci(0)↔ Bi(0)

)
is increasing in α and decreasing in β.
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The only thing left to prove is that Pα,β
(
Ci(0)↔ Bi(0)

)
is continuous in α and β,

which is not entirely trivial since the event depends on infinitely many pairs of vertices.
For α > 0 and β ≤ N , θ(α, β) = 1, so the statement of the lemma holds in that

domain. A straightforward computation yields that for β > N ,

P
(
Ci(0)↔ Bi(0)

)
= E

(
1− exp

(
−α|Ci(0)|N − 1

β −N

(
N

β

)i))
. (5.2)

Since |Ci(0)| depends on the state of only finitely many edges, this expectation is con-

tinuous in α and β for α > 0 and β > N . Furthermore, P
(
Ci(0)↔ Bi(0)

)
→ 1 as β ↘ N ,

so continuity holds in the whole domain and the statement of the lemma follows.

In order to prove that θ(α, β) is continuous from the left in α > 0 and continuous
from the right in β > 0, we use a renormalisation argument. Fix α > 0 and N ≤ β < N2.
To get insight in the argument we first (falsely) assume that for given ε > 0 and large
enough finite k, there is a δ > 0 such that,

Pα−δ,β+δ(|Cmk (0)| > (θ(α, β)− ε)Nk) = 1.

(Although the assumption is false, we can get this probability arbitrary close to 1, by
choosing k large enough, δ small enough and using Theorem 1.5.)

Now we use renormalisation. The balls of radius k are considered as vertices of
ΩN which we call “meta-vertices". If two vertices in the original model have distance
k + l, then the meta-vertices in which they are contained are at distance l. Vertices in
the new model are connected if and only if the largest clusters in the original k-balls,
represented by these vertices, are connected by an edge. The new model is again a
percolation model on ΩN .

Let x and y be meta-vertices, at distance l of each other. Define, for δ > 0 small,

α′ := (α− δ)((θ(α, β)− ε))2 N2k

(β + δ)k
.

Given the states of all other edges, the (conditional) probability that x and y are con-
nected to each other is always bounded below by

1− exp(−(α− δ)((θ(α, β)− ε)Nk)2(β + δ)−(k+l))

and by the choice of α′, this is just

1− exp(−α′(β + δ)−l).

Hence, the renormalized model stochastically dominates the percolation model with
parameters α′ and β + δ.

Since N2/(β + δ) > 1, α′ can be chosen arbitrary large by choosing k large. In
particular it can be chosen such that θ(α′, β + δ) > 1 − ε, (by the second remark after
the proof of Theorem 1.1). It follows that for large enough k

Pα−δ,β+δ (|C| =∞) ≥ θ(α′, β + δ)Pα−δ,β+δ(0 ∈ Cmk (0))

≥ (1− ε)(θ(α, β)− ε)
≥ θ(α, β)− 2ε.

The only problem is that we have incorrectly assumed that

Pα−δ,β+δ

(
|Cmk (0)| > (θ(α, β)− ε)Nk

)
= 1,

EJP 17 (2012), paper 57.
Page 15/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1977
http://ejp.ejpecp.org/


Long-range percolation on the hierarchical lattice

and we will deal with this problem now. We need the notion of mixed percolation
(cf. [8]). Mixed percolation involves independently removing vertices, together with
all of its adjacent edges. Formally, the measure Pmixedα,β,γ is constructed as follows. A ver-
tex in ΩN is open with probability 1− γ, independently of the states (open or closed) of
the other vertices in ΩN . If x and y are both open vertices then they share an edge with
probability 1 − exp(−α/βd(x,y)). Conditioned on the states of the vertices the presence
or absence of edges are independent.

Lemma 5.2. Let β > N . For every ε > 0, there exists γ > 0, such that

Pα,β(|C(0)| =∞) ≤ Pmixedα(1+ε),β,γ(|C(0)| =∞).

Before giving the proof of this result, we show how it can be used to prove Theorem
1.3. The following lemma suffices.

Lemma 5.3. If θ(α, β) > 0, then for every ε ∈ (0, θ(α, β)), there exists δ > 0 such that
θ(α− δ, β + δ) > θ(α, β)− ε.

Proof. Fix α, β and ε > 0. Let α′ be such that

θ(α′, (N2 + β)/2) > 1− ε/3,

which is possible by Theorem 1.1(b) and the second remark after its proof. Further-
more, let γ ∈ (0, ε/3) be such that

θ(α′, (N2 + β)/2) ≤ Pmixed2α′,(N2+β)/2,γ(|C(0)| =∞),

which is possible by Lemma 5.2 and the monotonicity of the right-hand side in γ. Let K
be such that the following conditions are satisfied:

1. α(θ(α, β)− ε/2)2(N2/β)K > 3α′,

2. Pα,β(|CmK (0)| > (θ(α, β)− ε/3)NK) > 1− γ/2,

which are possible by respectively N2 > β and Theorem 1.5. Finally, let δ > 0 be such
that δ < min(α/3, (N2 − β)/2) and

Pα−δ,β+δ(|CmK (0)| > (θ(α, β)− ε/3)NK) > 1− γ, (5.3)

which is possible by the continuity of the probability in α and β for finite K.
We say that the ball BK(x) is good if the size of CmK (x) is at least (θ(α, β) − ε/3)NK .

Delete all vertices that are in a ball of diameter K which is not good and also all vertices
that are not in the largest cluster of good balls. As above, we interpret the remaining
components as the vertices of the hierarchical lattice of order N in which vertices are
independently deleted with probability at most γ, by (5.3). Remaining clusters in the
original graph, of which the vertices are at distance K+ l, are connected by at least one
edge with probability at least

1− exp(−(α− δ)(θ(α, β)− ε/3)2N2Kβ−(K+l)) > 1− exp(−2α′β−l),

irrespective of the existence or absence of other connections. Here we have used that
α− δ > 2α/3. Hence the rescaled process stochastically dominates a mixed percolation
process with parameters 2α′, β and γ.

Now note that by exchangeable

Pα−δ,β+δ(|CK(0)| ≥ (θ(α, β)− ε/3)NK)

≥ (θ(α, β)− ε/3)Pα−δ,β+δ(|CmK (0)| > (θ(α, β)− ε/3)NK)

≥ (θ(α, β)− ε/3)(1− γ).
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Furthermore, conditioned on 0 being in the largest cluster of a good ball, the probability
that 0 is in an infinite cluster if the parameters are α− δ and β+ δ is larger than 1− ε/3.
Combining these observations and γ < ε/3 gives

θ(α− δ, β + δ) > (θ(α, β)− ε/3)(1− ε/3)2 > θ(α, β)− ε.

It remains to prove Lemma 5.2. Before giving a proof of this lemma we define a directed
long-range percolation model and relate this to the undirected model. In the directed
version, vertices in ΩN are open with probability 1 − γ. If vertex x is open, then a
directed edge from x to y is present with probability 1− exp

(
−αβ−d(x,y)

)
. Conditioned

on the states of the vertices (open or closed) the presence or absence of an edge is
independent of the presence or absence of other edges. The corresponding measure
we denote by P̂mixedα,β,γ . The set of vertices which can be reached by a path from vertex

x is denoted by Ĉ(x). Note that in the directed model, the presence of a path from
x to y does not necessarily imply that there exists a path from y to x. We define the
directed version of the original (not mixed) measure, P̂α,β , in a similar way and note
that P̂α,β = P̂mixedα,β,0 . Standard arguments (see e.g. [9, 21]) can be used to show that

Pmixedα,β,γ (|C(0)| =∞) = P̂mixedα,β,γ (|Ĉ(0)| =∞).

Proof of Lemma 5.2. The directed mixed percolation graph with parameters α, β and γ
can be obtained as follows (the ordinary model can be obtained by taking γ = 0). We
assign i.i.d. random variables Xx to the vertices x ∈ ΩN , all Poisson distributed with
parameter α(N − 1)/(β − N). We construct a directed multi-graph (a graph in which
multiple edges between two vertices in the same direction are allowed). Vertices are
open with probability 1− γ, independently of each other. If x is open, then Xx directed
edges start at x. The endpoints of these edges are independently chosen from ΩN \ x,
and a vertex at distance r of x is chosen with probability (β − N)(N − 1)−1β−r. If x is
closed, then no edges start at x. We obtain the original directed graph by replacing the
collection of all edges from x to y (if there is at least one) by a single edge from x to y,
for all x, y ∈ ΩN .

Let Z1 be a Poisson distributed random variable with mean αN−1
β−N . Furthermore, let

Z2 = Y1Y2, where Y1 is equal to 1 with probability 1− γ and equal to 0 with probability
γ, and where the random variable Y2 is independent of Y1 and Poisson distributed with
parameter α(1 + ε)(N − 1)/(β −N). For the ordinary percolation model the number of
edges starting at x in the multigraph is distributed as Z1, while for the mixed percolation
model, the number of edges starting at x is distributed as Z2. It is now easy to check
that for ε > 0 there is a γ > 0, such that P(Z1 = 0) = P(Z2 = 0) and for this γ and all
k > 0 we have,

P(Z2 > k|Z2 > 0) = P(Y2 > k|Y2 > 0) > P(Z1 > k|Z1 > 0).

The statement of Lemma 5.2 now follows by a straightforward coupling argument.

Remark In [4, Theorem 1.5] percolation on the Euclidean lattice Zd, d ≥ 1 is studied
for pr = 1 − e−αr

−s
where α > 0 and d < s < 2d. Here r is the Euclidean distance

between two vertices. Berger shows that for given s, the percolation probability is
continuous in α. (For ease of exposition we have formulated this result slightly less
general than Berger did.) This result is strongly related to Theorem 1.3, but the proof
of Berger relies on translation invariance and independence of the presence or absence
of edges between different pairs of vertices. In our model we cannot have both of
these properties simultaneously, therefore we provided a detailed model specific proof
of Theorem 1.3 above.
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6 Proof of Theorem 1.4

The proof of Theorem 1.4 is split into separate proofs of continuity from the right
and from the left of αc(β).

Lemma 6.1. αc(β) is strictly increasing on β ∈ (N,N2) and continuous from the right
on β ∈ (0, N2).

Proof Theorem 1.3 implies that θ(αc(β), β) = 0 for β > N . By observing that for every
ε > 0, P(1+ε)α,(1+ε)β is stochastically dominated by Pα,β , we deduce that

αc(β(1 + ε)) ≥ (1 + ε)αc(β).

Since by Theorem 1.1, αc(β) > 0 for β ∈ (N,N2), this gives that αc(β) is strictly increas-
ing on (N,N2).

In order to prove continuity from the right, we note that for all δ > 0, θ(αc(β) + δ, β)

is strictly positive by definition. By the continuity of θ(α, β) we obtain that there exist
ε > 0, such that θ(αc(β) + δ, β+ ε) > 0 and therefore αc(β+ ε) < αc(β) + δ. This together
with αc(β + ε) > αc(β) completes the proof.

Lemma 6.2. αc(β) is continuous from the left for β ∈ (0, N2).

To prove this, we use [1]. In that paper it is shown that for long-range percolation
on Zd,

inf{α : θ(α, β) > 0} = sup{α : Eα,β(|C(0)|) <∞}. (6.1)

Inspection of the proof of this result yields that this proof also works on the hierarchical
lattice. Now use the following lemma.

Lemma 6.3. Let α > 0 and β > N . If Eα,β(|C(0)|) <∞, then there exist ε > 0 such that
Eα,β(1−ε)(|C(0)|) <∞.

Proof of Lemma 6.2 (given Lemma 6.3). For every ε > 0, we have that

Pαc(β),β(1−ε)(|C(0)| =∞) > 0,

by the strict increase of αc(β). This implies that Eαc(β),β(1−ε)(|C(0)|) = ∞, for every
ε > 0 and therefore Eαc(β),β(|C(0)|) =∞ by Lemma 6.3.

Furthermore, by equation (6.1) we know that Eαc(β)−δ,β(|C(0)|) <∞ for every δ > 0.
Therefore, there exist ε > 0 such that

E(αc(β)−δ),β(1−ε)(|C(0)|) <∞,

which in turn implies that for all δ > 0, there exists a strictly positive constant ε such
that αc(β(1 − ε)) > αc(β) − δ. This together with αc(β(1 − ε)) < αc(β) gives continuity
from the left of αc(β).

Proof of Lemma 6.3. Assign independent uniform (0, 1) random variables to all pairs of
vertices in ΩN . The random variable assigned to the pair (x, y) is denoted by U(x, y).
We say that the vertices x and y share an edge for the parameters α and β if U(x, y) <

1 − exp(−αβ−d(x,y)). This construction provides a coupling for long-range percolation
models with different values of α and β. Define C(x;α, β) as the cluster of vertices that
can be reached by paths from vertex x if the parameters are α and β.

Assume that a := Eα,β(|C(0)|) < ∞ and take ε > 0 small enough (we will see later
exactly how small). Define A0(0) := C(0;α, β). In an inductive fashion, let A′i+1(0) be
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the set of vertices not in ∪ij=0Aj(0) that can be reached from Ai(0) by crossing an edge
present for the parameters α and β(1− ε). Ai(0) is defined by

Ai(0) :=
(
∪x∈A′i(0)C(x;α, β)

)
\ ∪ij=0Aj(0)

Note that A′i(0) ⊂ Ai(0) by definition and that by construction we may conclude that
C(0;α, β(1 − ε)) = ∪∞i=1Ai(0). The next step in the proof is to bound E(|Ai(0)|). By
definition E(|A0(0)|) = a. Since the graph is transitive, for every x ∈ Ai(0) the expected
size of the set

{y ∈ ΩN \ ∪ij=0Aj(0);U(x, y) < 1− exp(−α((1− ε)β)−d(x,y))}

is bounded above by

b :=
∑
y∈ΩN

P
(
U(0, y) < 1− exp(−α((1− ε)β)−d(0,y))

∣∣∣U(0, y) > 1− exp[−αβ−d(0,y)]
)

=
∑
y∈ΩN

P(1− exp(−αβ−d(0,y)) < U(0, y) < 1− exp(−α((1− ε)β)−d(0,y))

P(1− exp(−αβ−d(0,y)) < U(0, y))

=

∞∑
i=1

(N − 1)N i−1 exp(−αβ−i)− exp(−αβ−i(1− ε)−i)
exp(−αβ−i)

=

∞∑
i=1

(N − 1)N i−1(1− exp(−αβ−i((1− ε)−i − 1)))

≤
∞∑
i=1

(N − 1)N i−1αβ−i[(1− ε)−i − 1]

= (N − 1)α
1

(1− ε)β −N
− (N − 1)α

1

β −N

=
αβε(N − 1)

(β(1− ε)−N)(β −N)
,

which converges to 0, if ε ↘ 0. Therefore, we can choose ε > 0 sufficiently small, such
that b < a−1. Note that E(|A′i+1(0)|) ≤ bE(|Ai(0)|), and because of the transitivity of the
graph, E(|Ai+1(0)|) ≤ aE(|A′i+1(0)|). So, we have

E(|Ai(0)|) ≤ (ab)iE(|A0(0)|).

Since C(0;α, β(1− ε)) = ∪∞i=1Ai(0) and ab < 1, we have

E(C(0;α, β(1− ε))) ≤
∞∑
i=0

a(ab)i =
a

1− ab
<∞.

Proof of Theorem 1.4. The only things left to prove is that αc(β) ↗ ∞ for β ↗ N2, but
this follows immediately from Lemma 6.3, equality (6.1) and observing that αc(N2) =∞.

7 Possible generalizations

Possible generalizations of the model considered in this paper include:

1. Randomness in the hierarchical lattice. The hierarchical lattice ΩN is generated
by a N -regular tree. An interesting question is how randomness in the underlying
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tree (or induced random metric) affects the percolation process on the resulting
lattice. One possibility is that the metric generating tree, is a Galton-Watson tree.
Analysis of long-range percolation on such random hierarchical structures is not
a trivial extension of the analysis in this paper, since in renormalisation schemes,
one has to take care of all kinds of dependencies of the sizes of balls of given
diameter.

2. More general connection function p(k). In this paper we focused on the connection

function pk = 1− exp
(
− α
βk

)
. What are necessary and sufficient conditions on g(k)

so that when pk = 1− exp (−αg(k)) we have 0 < αc <∞?

3. Random cluster models. We only consider independent percolation on the hierar-
chical lattice. We did not try to incorporate Random cluster (or Fortuin-Kasteleyn)
model [18] yet. Some work has already been done for the Ising model on the
hierarchical lattice [19].
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