> Vol. 16 (2011), Paper no. 68, pages 1880-1899.
> Journal URL
> http://www.math.washington.edu/~ejpecp/

A note on higher dimensional p-variation *

Peter Friz

Nicolas Victoir

Abstract

We discuss p-variation regularity of real-valued functions defined on $[0, T]^{2}$, based on rectangular increments. When $p>1$, there are two slightly different notions of p-variation; both of which are useful in the context of Gaussian roug paths. Unfortunately, these concepts were blurred in previous works [2,3]; the purpose of this note is to show that the afore-mentioned notions of p-variations are " ε-close". In particular, all arguments relevant for Gaussian rough paths go through with minor notational changes.

Key words: higher dimensional p-variation, Gaussian rough paths.
AMS 2010 Subject Classification: Primary 60H99.
Submitted to EJP on March 4, 2011, final version accepted July 6, 2011.

[^0]
1 Higher-dimensional p-variation

Let $T>0$ and $\Delta_{T}=\{(s, t): 0 \leq s \leq t \leq T\}$. We shall regard $((a, b),(c, d)) \in \Delta_{T} \times \Delta_{T}$ as (closed) rectangle $A \subset[0, T]^{2}$;

$$
A:=\binom{a, b}{c, d}:=[a, b] \times[c, d]
$$

if $a=b$ or $c=d$ we call A degenerate. Two rectangles are called essentially disjoint if their intersection is empty or degenerate. A partition Π of a rectangle $R \subset[0, T]^{2}$ is then a a finite set of essentially disjoint rectangles, whose union is R; the family of all such partitions is denoted by $\mathscr{P}(R)$. Recall that rectangular increments of a function $f:[0, T]^{2} \rightarrow \mathbb{R}$ are defined in terms of f evaluated at the four corner points of A,

$$
f(A):=f\binom{a, b}{c, d}:=f\binom{b}{d}-f\binom{a}{d}-f\binom{b}{c}+f\binom{a}{c} .
$$

Let us also say that a dissection D of an interval $[a, b] \subset[0, T]$ is of the form $D=$ ($a=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=b$); we write $\mathscr{D}([a, b])$ for the family of all such dissections.

Definition 1. Let $p \in[1, \infty)$. A function $f:[0, T]^{2} \rightarrow \mathbb{R}$ has finite p-variation if

$$
V_{p}(f ;[s, t] \times[u, v]):=\left(\sup _{\substack{D=\left(t_{i}\right) \in \mathscr{O}[[s, t]) \\ D^{\prime}=\left(t_{j}^{\prime}\right) \in \mathscr{D}[[u, v])}} \sum_{i, j}\left|f\binom{t_{i}, t_{i+1}}{t_{j}^{\prime}, t_{j+1}^{\prime}}\right|^{p}\right)^{\frac{1}{p}}<\infty ;
$$

it has finite controlled p-variation ${ }^{1}$ if

$$
|f|_{p-v a r ;[s, t] \times[u, v]}:=\sup _{\Pi \in \mathscr{P}([s, t] \times[u, v])}\left(\sum_{A \in \Pi}|f(A)|^{p}\right)^{1 / p}<\infty .
$$

The difference is that in the first definition (i.e. of V_{p}) the sup is taken over grid-like partitions,

$$
\left\{\binom{t_{i}, t_{i+1}}{t_{j}^{\prime}, t_{j+1}^{\prime}}: 1 \leq i \leq n, 1 \leq j \leq m\right\}
$$

based on D, D^{\prime} where $D=\left(t_{i}: 1 \leq i \leq n\right) \in \mathscr{D}([s, t])$ and $D^{\prime}=\left(t_{j}^{\prime}: 1 \leq j \leq m\right) \in \mathscr{D}([u, v])$. Clearly, not every partition is grid-like (consider e.g. [0, 2 $]^{2}=[0,1]^{2} \cup[1,2] \times[0,1] \cup[0,2] \times[1,2]$) hence

$$
V_{p}(f ; R) \leq|f|_{p-\mathrm{var} ; R}
$$

for every rectangle $R \subset[0, T]^{2}$.

[^1]Definition 2. A map $\omega: \Delta_{T} \times \Delta_{T} \rightarrow[0, \infty)$ is called $2 D$ control if it is continuous, zero on degenerate rectangles, and super-additive in the sense that, for all rectangles $R \subset[0, T]$,

$$
\sum_{i=1}^{n} \omega\left(R_{i}\right) \leq \omega(R) \text {, whenever }\left\{R_{i}: 1 \leq i \leq n\right\} \in \mathscr{P}(R)
$$

Our result is
Theorem 1. (i) For any function $f:[0, T]^{2} \rightarrow \mathbb{R}$ and any rectangle $R \subset[0, T]$,

$$
\begin{equation*}
|f|_{1-\text { var;R }}=V_{1}(f ; R) \tag{1.1}
\end{equation*}
$$

(ii) Let $p \in[1, \infty)$ and $\varepsilon>0$. There exists a constant $c=c(p, \varepsilon) \geq 1$ such that, for any function $f:[0, T]^{2} \rightarrow \mathbb{R}$ and any rectangle $R \subset[0, T]$,

$$
\begin{equation*}
\frac{1}{c(p, \varepsilon)}|f|_{(p+\varepsilon)-\text { var; } R} \leq V_{p}(f ; R) \leq|f|_{p-v a r ; R} \tag{1.2}
\end{equation*}
$$

(iii) If $f:[0, T]^{2} \rightarrow \mathbb{R}$ is of finite controlled p-variation, then $R \mapsto|f|_{p \text {-var; } R}^{p}$ is super-additive.
(iv) If $f:[0, T]^{2} \rightarrow \mathbb{R}$ is continuous and of finite controlled p-variation, then $R \mapsto|f|_{p-v a r ; R}^{p}$ is a $2 D$ control. Thus, in particular, there exists a $2 D$ control ω such that

$$
\forall \text { rectangles } R \subset[0, T]:|f(R)|^{p} \leq \omega(R)
$$

As will be seen explicitly in the following example, there exist functions f which are of finite p variation but of infinite controlled p-variation; that is,

$$
V_{p}\left(f ;[0, T]^{2}\right)<|f|_{p-\mathrm{var} ;[0, T]^{2}}=+\infty
$$

which also shows that one cannot take $\varepsilon=0$ in (1.2). In the same example we see that p-variation $R \mapsto V_{p}(f ; R)^{p}$ can fail to be super-additive ${ }^{2}$.
Example 1 (Finite ($1 / 2 H$)-variation of fBM covariance, $H \in(0,1 / 2]$.). Let β^{H} denote fractional Brownian motion with Hurst parameter H; its covariance is given by

$$
C^{H}(s, t):=\mathbb{E}\left(\beta_{s}^{H} \beta_{t}^{H}\right):=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right), s, t \in[0, T]^{2}, H \in(0,1 / 2] .
$$

We show that C^{H} has finite $1 /(2 H)$-variation in $2 D$ sens ϵ^{3} and more precisely,

$$
V_{1 /(2 H)}\left(C^{H} ;[s, t]^{2}\right) \leq c_{H}|t-s|^{2 H}, \quad \text { for every } s \leq t \text { in }[0, T] .
$$

[^2](By fractional scaling it would suffice to consider $[s, t]=[0,1]$ but this does not simplify the argument which follows). Consider $D=\left(t_{i}\right), D^{\prime}=\left(t_{j}^{\prime}\right) \in \mathscr{D}[s, t]$. Clearl y^{4},
\[

$$
\begin{align*}
3^{1-\frac{1}{2 H}} \sum_{j}\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{t_{j}^{\prime}, t_{j+1}^{\prime}}^{H}\right]\right|^{\frac{1}{2 H}} \leq & 3^{1-\frac{1}{2 H}}\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{\cdot}^{H}\right]\right|_{\frac{1}{2 H}-v a r ;[s, t]}^{\frac{1}{2 H}} \\
\leq & \left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta^{H}\right]\right|_{\frac{1}{2 H}-v a r ;\left[s, t_{i}\right]}^{\frac{1}{2 H}} \tag{1.3}\\
& +\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{\cdot}^{H}\right]\right|_{\frac{1}{2 H}-v a r ;\left[t_{i}, t_{i+1}\right]}^{\frac{1}{2 H}} \tag{1.4}\\
& +\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{\cdot}^{H}\right]\right|_{\frac{1}{2 H}-\operatorname{var} ;\left[t_{i+1}, t\right]}^{\frac{1}{2 H}} \tag{1.5}
\end{align*}
$$
\]

by super-additivity of (1D!) controls. The middle term (1.4) is estimated by

$$
\begin{aligned}
\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{\cdot}^{H}\right]\right|_{\frac{1}{2 H}-v a r ;\left[t_{i}, t_{i+1}\right]}^{\frac{1}{2 H}} & =\sup _{\left(s_{k}\right) \in \mathscr{Q}\left[t_{i}, t_{i+1}\right]} \sum_{k}\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{s_{k}, s_{k+1}}^{H}\right]\right|^{\frac{1}{2 H}} \\
& \leq c_{H}\left|t_{i+1}-t_{i}\right|,
\end{aligned}
$$

where we used that $\left[s_{k}, s_{k+1}\right] \subset\left[t_{i}, t_{i+1}\right]$ implies $\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{s_{k}, s_{k+1}}^{H}\right]\right| \leq c_{H}\left|s_{k+1}-s_{k}\right|^{2 H}$. The first term (1.3) and the last term (1.5) are estimated by exploiting the fact that disjoint increments of fractional Brownian motion have negative correlation when $H<1 / 2$ (resp. zero correlation in the Brownian case, $H=1 / 2$); that is, $E\left(\beta_{c, d}^{H} \beta_{a, b}^{H}\right) \leq 0$ whenever $a \leq b \leq c \leq d$. We can thus estimate (1.3) as follows;

$$
\begin{aligned}
\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta^{H}\right]\right|_{\frac{1}{2 H}-v a r ;\left[s, t_{i}\right]}^{\frac{1}{2 H}} & =\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{s, t_{i}}^{H}\right]\right|^{\frac{1}{2 H}} \\
& \leq 2^{\frac{1}{2 H}-1}\left(\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{s, t_{i}}^{H}\right]\right|^{\frac{1}{2 H}}+E\left[\left|\beta_{t_{i}, t_{i+1}}^{H}\right|^{2}\right]^{\frac{1}{2 H}}\right) .
\end{aligned}
$$

The covariance of fractional Brownian motion gives immediately $E\left[\left|\beta_{t_{i}, t_{i+1}}^{H}\right|^{2}\right]^{\frac{1}{2 H}}=c_{H}\left(t_{i+1}-t_{i}\right)$. On the other hand, $\left[t_{i}, t_{i+1}\right] \subset\left[s, t_{i+1}\right]$ implies $\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{s, t_{i}}^{H}\right]\right|^{\frac{1}{2 H}} \leq c_{H}\left|t_{i+1}-t_{i}\right|$; hence

$$
\left|E\left[\beta_{t_{i}, t_{i+1}}^{H} \beta_{.}^{H}\right]\right|_{\frac{1}{2 H}-v a r ;\left[s, t_{i}\right]}^{\frac{1}{2 H}} \leq c_{H}\left|t_{i+1}-t_{i}\right| .
$$

As already remarked, the last term is estimated similarly. It only remains to sum up and to take the supremum over all dissections D and D^{\prime}.
Example 2 (Failure of super-addivity of $(1 / 2 H)$-variation, infinite controlled $(1 / 2 H)$-variation of fBM covariance, $H \in(0,1 / 2)$.). We saw above that

$$
V_{1 /(2 H)}\left(C^{H} ;[0, T]^{2}\right)<\infty .
$$

[^3]When $H=1 / 2$ we deal with Brownian motion and see that its covariance has finite 1-variation, which, by (i),(iv) of Theorem 1] constitues a $2 D$ control for $C^{1 / 2}$. In contrast, we claim that, for $H<1 / 2$, there does not exist a $2 D$ control for the $1 /(2 H)$-variation of C^{H}. In fact, the sheer existence of a super-additive map ω (in the sense of definition [2) such that

$$
\forall \text { rectangles } R \subset[0, T]:\left|C^{H}(R)\right|^{1 /(2 H)} \leq \omega(R)
$$

leads to a contradiction as follows: assume that such a ω exists. By super-addivity,

$$
\bar{\omega}(R):=\left|C^{H}\right|_{1 /(2 H) \text {-var; } R}^{1 /(2 H)} \leq \omega(R)<\infty
$$

and $\bar{\omega}$ is super-additive (in fact, a $2 D$ control) thanks to part (iv) of the theorem. On the other hand, by fractional scaling there exists C such that

$$
\forall(s, t) \in \Delta_{T}: \bar{\omega}\left([s, t]^{2}\right)=C|t-s| .
$$

Let us consider the case $T=2$ and the partition

$$
[0,2]^{2}=[0,1]^{2} \cup[1,2]^{2} \cup R \cup R^{\prime}
$$

with $R=[0,1] \times[1,2], R^{\prime}=[1,2] \times[0,1]$. Super-addivitiy of $\bar{\omega}$ gives

$$
\begin{aligned}
\bar{\omega}\left([0,1]^{2}\right)+\bar{\omega}\left([1,2]^{2}\right)+\bar{\omega}(R)+\bar{\omega}\left(R^{\prime}\right) & \leq \bar{\omega}\left([0,2]^{2}\right), \\
C(1-0)+C(2-1)+\bar{\omega}(R)+\bar{\omega}\left(R^{\prime}\right) & \leq 2 C,
\end{aligned}
$$

hence $\bar{\omega}(R)=\bar{\omega}\left(R^{\prime}\right)=0$, and thus also

$$
C^{H}(R)=\mathbb{E}\left[\left(B_{1}^{H}-B_{0}^{H}\right)\left(B_{2}^{H}-B_{1}^{H}\right)\right]=0 ;
$$

which is false for $H \neq 1 / 2$ and hence the desired contradiction. En passant, we see that we must have

$$
\left|C^{H}\right|_{1 /(2 H)-\text { var } ;[0, T]^{2}}=+\infty ;
$$

for otherwise part (iv) of Theorem 1 would yield a 2D control for the $1 /(2 H)$-variation of C^{H}. This also shows that, with $f=C^{H}$ and $p=1 /(2 H)$ one has

$$
V_{p}\left(f ;[0, T]^{2}\right)<|f|_{p-v a r ;[0, T]^{2}}=+\infty .
$$

Remark 1. The previous examples clearly show the need for Theorem 1 variational regularity of C^{H} can be controlled upon considering $[(1 / 2 H)+\varepsilon]$-variation rather than $1 /(2 H)$-variation. In applications, this distinction never matters. Existence for Gaussian rough paths for instance, requires $1 /(2 H)<2$ and one can always insert a small enough ε. It should also be point out that, by fractional scaling,

$$
\left|C^{H}\right|_{[1 /(2 H)+\varepsilon]-v a r^{2}[s, t]^{2}} \propto|t-s|^{2 H} ;
$$

hence, even in estimates that involve directly that variational regularity of C^{H}, no ε loss is felt.
Remark 2. The previous examples dealt with $H \leq 1 / 2$ and reader may wonder about the case $H>1 / 2$. In this case $1 /(2 H)<1$ and clearly the (non-trivial) covariance function of $f B M$ with Hurst parameter H will not be of finite $1 /(2 H)$-variation. Indeed, any continuous function $f:[0, T]^{2} \rightarrow \mathbb{R}$, with $f(0, \cdot) \equiv f(\cdot, 0) \equiv 0$, and finite p-variation for $p \in(0,1)$, is necessarily constant (and then equal to zero).

Acknowledgement 1. The authors are indebted to Bruce Driver for pointing out, in the most constructive and gentle way, that $R \mapsto V_{p}(f ; R)^{p}$ is not, in general, super-additive. P. Friz received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 258237.

2 Proof of (i)

We claim the controlled 1 -variation is exactly equal to its 1 -variation. More precisely, for all rectangles $R \subset[0, T]^{2}$ we have

$$
|f|_{1-\mathrm{var} ; R}=V_{1}(f ; R) .
$$

Proof. Trivially $V_{1}(f ; R) \leq|f|_{1 \text {-var; } R}$. For the other inequality, assume Π is a partition of R. It is obvious that one can find a grid-like partition $\tilde{\Pi}$, based on $D \times D^{\prime}$, for sufficiently fine dissections D, D^{\prime}, which refines Π in the sense that every $A \in \Pi$ can be expressed as

$$
A=\cup_{i} A_{i} \text { (essentially disjoint), } A_{i} \in \tilde{\Pi} .
$$

From the very definition of rectangular increments, we have $f(A)=\sum_{i} f\left(A_{i}\right)$ and it follows that $|f(A)| \leq \sum_{i}\left|f\left(A_{i}\right)\right|$. (If $|\cdot|$ is replaced by $|\cdot|^{p}, p>1$, this estimate is false ${ }^{5}$. Hence

$$
\sum_{A \in \Pi}|f(A)| \leq \sum_{A \in \tilde{\Pi}}|f(A)| \leq|f|_{1-\mathrm{var} ; R} .
$$

It now suffices to take the supremum over all such Π to see that $|f|_{1 \text {-var;R }} \leq V_{1}(f ; R)$.

3 Proof of (ii)

The second inequality $V_{p}(f ; R) \leq|f|_{p \text {-var; }}$ is trivial. Furthermore, if $V_{p}(f ; R)=+\infty$ there is nothing to show so we may assume $V_{p}(f ; R)<+\infty$. We claim that, for all rectangle $R \subset[0, T]^{2}$,

$$
|f|_{p+\varepsilon-\mathrm{var} ; R} \leq c(p, \varepsilon) V_{p}(f ; R) .
$$

For the proof we note first that there is no loss in generality in taking $R=[0, T]^{2}$; an affine reparametrization of each axis will transform R into $[0, T]^{2}$, while leaving all rectangular increments invariant. The plan is to show, for an arbitrary partition $\left(Q_{k}\right) \in \mathscr{P}\left([0, T]^{2}\right)$, the estimate

$$
\left(\sum_{k}\left|f\left(Q_{k}\right)\right|^{p+\varepsilon}\right)^{\frac{1}{p+\varepsilon}} \leq c(p, \varepsilon) V_{p}\left(f ;[0, T]^{2}\right) .
$$

where c depends only on p, ε for any partition $\left(Q_{k}\right) \in \mathscr{P}\left([0, T]^{2}\right)$. The key observation is that for a suitable choice of $y, x, D=\left(t_{i}\right), D^{\prime}=\left(t_{j}^{\prime}\right)$ we have

$$
\begin{align*}
\sum_{k}\left|f\left(Q_{k}\right)\right|^{p+\varepsilon} & =\sum_{k}\left|f\left(Q_{k}\right)\right|^{p+\varepsilon-1} \operatorname{sgn}\left(f\left(Q_{k}\right)\right) f\left(Q_{k}\right) \tag{3.1}\\
& =\sum_{i} \sum_{j} y\binom{t_{i}}{t_{j}^{\prime}} x\binom{t_{i-1}, t_{i}}{t_{j-1}^{\prime}, t_{j}^{\prime}} \\
& =: \int_{D \times D^{\prime}} y d x .
\end{align*}
$$

[^4]Indeed, we may take (as in the proof of part (i)) sufficiently fine dissections $D=\left(t_{i}\right), D^{\prime}=\left(t_{j}^{\prime}\right) \in$ $\mathscr{D}[0, T]$ such that the grid-like partition based on $D \times D^{\prime}$ refines $\left(Q_{k}\right)$; followed by setting ${ }^{6}$

$$
\begin{aligned}
x & :=f \\
y & :=\sum_{k}\left|f\left(Q_{k}\right)\right|^{p-1+\varepsilon} \operatorname{sgn}\left(f\left(Q_{k}\right)\right) \mathbb{I}_{\hat{Q}_{k}}
\end{aligned}
$$

where \hat{Q}_{k} is the of the form $(a, b] \times(c, d]$ whenever $Q_{k}=[a, b] \times[c, d]$. Lemma 1 below, applied with $p+\varepsilon$ instead of p, says

$$
V_{q}\left(y ;[0, T]^{2}\right) \leq\left.\left. 4\left|\sum_{k}\right| x\left(Q_{k}\right)\right|^{p+\varepsilon}\right|^{\frac{1}{q}}
$$

where $q:=1 /(1-1 /(p+\varepsilon))$ denotes the Hölder conjugate of $p+\varepsilon$. Since

$$
\frac{1}{p}+\frac{1}{q}=1+\left(\frac{1}{p}-\frac{1}{p+\varepsilon}\right)>1
$$

noting also that $y(0, \cdot)=y(\cdot, 0)=0$, we can use Young-Towghi's maximal inequality [4, Thm 2.1.], included for the reader's convenience as Theorem 3 in the appendix, to obtain the estimate

$$
\begin{aligned}
\sum_{k}\left|f\left(Q_{k}\right)\right|^{p+\varepsilon} & \leq c(p, \varepsilon) V_{q}\left(y ;[0, T]^{2}\right) V_{p}\left(x ;[0, T]^{2}\right) \\
& \leq\left.\left. 4 c(p, \varepsilon)\left|\sum_{k}\right| x\left(Q_{k}\right)\right|^{p+\varepsilon}\right|^{\frac{1}{q}} V_{p}\left(x ;[0, T]^{2}\right)
\end{aligned}
$$

Since $1-\frac{1}{q}=\frac{1}{p+\varepsilon}$ and $x=f$ we see that

$$
\left(\sum_{k}\left|f\left(Q_{k}\right)\right|^{p+\varepsilon}\right)^{\frac{1}{p+\varepsilon}} \leq 4 c(p, \varepsilon) V_{p}\left(f ;[0, T]^{2}\right)
$$

and conclude by taking the supremum over all partitions $\left(Q_{k}\right) \in \mathscr{P}\left([0, T]^{2}\right)$.
Lemma 1. Fix $p \geq 1$ and write p^{\prime} for the Hölder conjugate i.e. $1 / p^{\prime}+1 / p=1$. Let $\left(Q_{j}\right) \in \mathscr{P}\left([0, T]^{2}\right)$ and $y=\sum_{j}\left|x\left(Q_{j}\right)\right|^{p-1} \operatorname{sgn}\left(x\left(Q_{j}\right)\right) \mathbb{I}_{\hat{Q}_{j}}$. Then

$$
V_{p^{\prime}}\left(y,[0, T]^{2}\right) \leq|y|_{p^{\prime}-v a r ;[0, T]^{2}} \leq 4\left(\sum_{i}\left|x\left(Q_{i}\right)\right|^{p}\right)^{1 / p^{\prime}} .
$$

[^5]Proof. Only the second inequality requires a proof. By definition, $\left(Q_{j}\right)$ forms a partition of $[0, T]^{2}$ into essentially disjoint rectangles and we note that $y(., 0)=y(0,)=$.0 . Consider now another partition $\left(R_{i}\right) \in \mathscr{P}\left([0, T]^{2}\right)$. The rectangular increments of y over R_{i} spells out as " +--+ sum" of y evaluated at the corner points of R_{i}. Recall that on each set \hat{Q}_{j} the function y takes the consant value

$$
c_{j}:=\left|x\left(Q_{j}\right)\right|^{p-1} \operatorname{sgn}\left(x\left(Q_{j}\right)\right) .
$$

Since the corner points of R_{i} are elements of $Q_{j_{1}} \cup Q_{j_{2}} \cup Q_{j_{3}} \cup Q_{j_{4}}$ for suitable (not necessarily distinct) indices j_{1}, \ldots, j_{4} we clearly have the (crude) estimate

$$
\begin{equation*}
\left|y\left(R_{i}\right)\right| \leq \sum_{j \in\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}}\left|c_{j}\right| \tag{3.2}
\end{equation*}
$$

and, trivially, any $j \notin\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}$ is not required in estimating $\left|y\left(R_{i}\right)\right|$. Let us distinguish a few cases where we can do better than in 3.2.
Case 1: There exists j such that all four corner points of R_{i} are elements of Q_{j} (equivalently: $\left.\exists j: R_{i} \subset \hat{Q}_{j}\right)$. In this case

$$
y\left(R_{i}\right)=c_{j}-c_{j}-c_{j}+c_{j}=0 .
$$

In particular, such an index j is not required to estimate $\left|y\left(R_{i}\right)\right|$.
Case 2: There exists j such that precisely two corner point $\7 of R_{i} are elements of Q_{j}. It follows that the corner points of R_{i} are elements of $Q_{j_{1}} \cup Q_{j_{2}} \cup Q_{j}$ for suitable (not necessarily distinct) indices j_{1}, j_{2}. Note however that $j \notin\left\{j_{1}, j_{2}\right\}$. In this case

$$
y\left(R_{i}\right)=c_{j_{1}}-c_{j_{2}}-c_{j}+c_{j}=c_{j_{1}}-c_{j_{2}} .
$$

In general, this quantity is non-zero (although it is zero when $j_{1}=j_{2}$, which is tantamount to say that $\left.R_{i} \subset Q_{j_{1}} \cup Q_{j}\right)$. Even so, we note that

$$
\left|y\left(R_{i}\right)\right| \leq\left|c_{j_{1}}\right|+\left|c_{j_{2}}\right|
$$

and again the index j is not required in order to estimate $\left|y\left(R_{i}\right)\right|$.
Case 3: There exists j such that precisely one corner point of R_{i} is an element of Q_{j}. In this case, for suitable (not necessarily distinct) indices j_{1}, j_{2}, j_{3} with $j \notin\left\{j_{1}, j_{2}, j_{3}\right\}$

$$
\left|y\left(R_{i}\right)\right|=\left|c_{j_{1}}-c_{j_{2}}-c_{j_{3}}+c_{j}\right| \leq\left|c_{j_{1}}-c_{j_{2}}-c_{j_{3}}\right|+\left|c_{j}\right| .
$$

In this case, the index j is required to estimate $\left|y\left(R_{i}\right)\right|$. (There is still the possibily for cancellation between the other terms. If $j_{2}=j_{3}$ for instance, then $\left|y\left(R_{i}\right)\right| \leq\left|c_{j_{1}}\right|+\left|c_{j}\right|$ and indices j_{2}, j_{3} are not required; this corresponds precisely to case 2 applied to $Q_{j_{2}}$. Another possiblility is that $\left\{j_{1}, j_{2}, j_{3}\right\}$ are all distinct in which case $\left|y\left(R_{i}\right)\right| \leq\left|c_{j_{1}}\right|+\left|c_{j_{2}}\right|+\left|c_{j_{3}}\right|+\left|c_{j}\right|$ is the best estimate and all four indices j_{1}, j_{2}, j_{3}, j are needed in the estimate.
The moral of this case-by-case consideration is that only those $j \in \phi(i)$ where

$$
\phi(i):=\left\{j: \text { precisely one corner point of } R_{i} \text { is an element of } Q_{j}\right\}
$$

[^6]are required in estimating $\left|y\left(R_{i}\right)\right|$; more precisely,
$$
\left|y\left(R_{i}\right)\right| \leq \sum_{j \in \phi(i)}\left|c_{j}\right| .
$$

Since rectangles (here: R_{i}) have four corner points it is clear that $\# \phi(i) \leq 4$ where \# denotes the cardinality of a set. Hence

$$
\left|y\left(R_{i}\right)\right|^{p^{\prime}} \leq 4^{p^{\prime}-1} \sum_{j \in \phi(i)}\left|c_{j}\right|^{p^{\prime}} \equiv 4^{p^{\prime}-1} \sum_{j} \phi_{i, j}\left|c_{j}\right|^{p^{\prime}}
$$

where we introdudced the matrix $\phi_{i, j}$ with value 1 if $j \in \phi(i)$ and zero else. This allows us to write

$$
\begin{aligned}
\sum_{i}\left|y\left(R_{i}\right)\right|^{p^{\prime}} & \leq 4^{p^{\prime}-1} \sum_{i} \sum_{j} \phi_{i, j}\left|c_{j}\right|^{p^{\prime}} \\
& =4^{p^{\prime}-1} \sum_{j}\left|c_{j}\right|^{p^{\prime}} \sum_{i} \phi_{i, j}
\end{aligned}
$$

Consider now, for fixed j, the number of rectangles R_{i} which have precisely one corner point inside Q_{j}. Obviously, there can be a most 4 rectangles with this property. Hence

$$
\sum_{i} \phi_{i, j}=\#\{i: j \in \phi(i)\} \leq 4 .
$$

It follows that

$$
\sum_{i}\left|y\left(R_{i}\right)\right|^{p^{\prime}} \leq 4^{p^{\prime}} \sum_{j}\left|c_{j}\right|^{p^{\prime}}=4^{p^{\prime}} \sum_{j}\left|x\left(Q_{j}\right)\right|^{(p-1) p^{\prime}}=4^{p^{\prime}} \sum_{j}\left|x\left(Q_{j}\right)\right|^{p}
$$

where we used that $(p-1) p^{\prime}=p$. Since $\left(R_{i}\right)$ was an arbitrary partition of $[0, T]^{2}$ we obtain

$$
|y|_{p^{\prime}-\operatorname{var} ;[0, T]^{2}}^{p^{\prime}} \leq 4^{p^{\prime}} \sum_{i}\left|x\left(Q_{i}\right)\right|^{p}
$$

as desired. The proof is finished.

4 Proof of (iii)

The claim is super-additivity of

$$
R \mapsto \sup _{\Pi \in \mathscr{P}(R)} \sum_{A \in \Pi}|f(A)|^{p}
$$

Assume $\left\{R_{i}: 1 \leq i \leq n\right\}$ constitutes a partition of R. Assume also that Π_{i} is a partition of R_{i} for every $1 \leq i \leq n$. Clearly, $\Pi:=\cup_{i=1}^{n} \Pi_{i}$ is a partition of R and hence

$$
\sum_{i=1}^{n} \sum_{A \in \Pi_{i}}|f(A)|^{p}=\sum_{A \in \Pi}|f(A)|^{p} \leq \omega(R)
$$

Now taking the supremum over each of the Π_{i} gives the desired result.

5 Proof of (iv)

The assumption is that $f:[0, T]^{2} \rightarrow \mathbb{R}$ is continuous and of finite controlled p-variation. From (iii),

$$
\omega(R):=|f|_{p-\mathrm{var} ; R}^{p}
$$

is super-additive as function of R. It is also clear that ω is zero on degenerate rectangles. It remains to be seen that $\omega: \Delta_{T} \times \Delta_{T} \rightarrow[0, \infty)$ is continuous.

Lemma 2. Consider the two (adjacent) rectangles $[a, b] \times[s, t]$ and $[a, b] \times[t, u]$ in $[0, T]^{2}$.Then,

$$
\begin{aligned}
\omega\binom{a, b}{s, u} \leq & \omega\binom{a, b}{s, t}+\omega\binom{a, b}{t, u} \\
& +p 2^{p-1} \omega\binom{a, b}{s, u}^{1-1 / p} \min \left\{\omega\binom{a, b}{t, u}, \omega\binom{a, b}{s, t}\right\}^{1 / p} .
\end{aligned}
$$

Proof. From the very definition of $\omega([a, b] \times[s, u])$, it follows that for every fixed $\varepsilon>0$, there exists a rectangular (not necessarily grid-like) partition of $[a, b] \times[s, u]$, say $\Pi \in \mathscr{P}([a, b] \times[s, u])$, such that

$$
\sum_{R \in \Pi}|f(R)|^{p}>\omega\binom{a, b}{s, u}-\varepsilon .
$$

Let us divide Π in $\Pi_{l} \cup \Pi_{m} \cup \Pi_{r}$ where Π_{l} contains all $R \in \Pi$ such that $R \subset[a, b] \times[s, t], \Pi_{r}$ contains all $R \in \Pi: R \subset[a, b] \times[t, u]$ and Π_{m} contains all remaining rectangles of Π (i.e. the one such that their interior intersect with the line $[a, b] \times[t, t]$. It follows that

$$
\sum_{R \in \Pi_{l}}|f(R)|^{p}+\sum_{R \in \Pi_{m}}|f(R)|^{p}+\sum_{R \in \Pi_{r}}|f(R)|^{p}>\omega\binom{a, b}{s, u}-\varepsilon
$$

Every $R \in \Pi_{m}$ can be split into (essentially disjoint) rectangles $R_{1} \subset[a, b] \times[s, t]$ and $R_{2} \subset[a, b] \times$ $[t, u]$. Set $\Pi_{m}^{1}=\left\{R_{1}: R_{1} \in \Pi_{m}\right\}$ and Π_{m}^{2} similarly. Note that $\Pi_{l} \cup \Pi_{m}^{1} \in \mathscr{P}([a, b] \times[s, t])$ and $\Pi_{m}^{2} \cup \Pi_{r} \in \mathscr{P}([a, b] \times[t, u])$. Then, with

$$
\Delta:=\sum_{R \in \Pi_{m}}\left[|f(R)|^{p}-\left|f\left(R_{1}\right)\right|^{p}-\left|f\left(R_{2}\right)\right|^{p}\right]
$$

we have

$$
\sum_{R \in \Pi_{l} \cup \Pi_{m}^{1}}|f(R)|^{p}+\sum_{R \in \Pi_{m}^{2} \cup \Pi_{r}}|f(R)|^{p}+\Delta>\omega([a, b] \times[s, u])-\varepsilon
$$

and hence, we have

$$
\omega\binom{a, b}{s, t}+\omega\binom{a, b}{t, u}+\Delta>\omega\binom{a, b}{s, u}-\varepsilon .
$$

We now bound Δ. As $f(R)=f\left(R_{1}\right)+f\left(R_{2}\right)$,

$$
\begin{aligned}
\Delta & =\sum_{R^{j} \in \Pi_{m}}\left|f\left(R_{1}^{j}\right)+f\left(R_{2}^{j}\right)\right|^{p}-\left|f\left(R_{1}^{j}\right)\right|^{p}-\left|f\left(R_{2}^{j}\right)\right|^{p} \\
& \leq \sum_{R \in \Pi_{m}}\left(\left|f\left(R_{1}^{j}\right)\right|+\left|f\left(R_{2}^{j}\right)\right|\right)^{p}-\left|f\left(R_{1}^{j}\right)\right|^{p}-\left|f\left(R_{2}^{j}\right)\right|^{p} . \\
& \leq \sum_{R \in \Pi_{m}}\left(\left|f\left(R_{1}^{j}\right)\right|+\left|f\left(R_{2}^{j}\right)\right|\right)^{p}-\left|f\left(R_{1}^{j}\right)\right|^{p}
\end{aligned}
$$

If $R^{j}=\left[\tau_{j}, \tau_{j+1}\right] \times[c, d]$, define $R_{3}^{j}=\left[\tau_{j}, \tau_{j+1}\right] \times[s, u]$. Then, quite obviously, we have $\left|f\left(R_{1}^{j}\right)\right|^{p} \leq$ $\omega\left(R_{3}^{j}\right)$ and $\left|f\left(R_{2}^{j}\right)\right|^{p} \leq \omega\left(R_{3}^{j}\right)$. By the mean value theorem, there exists $\theta \in[0,1]$ such that

$$
\begin{aligned}
& \left(\left|f\left(R_{1}^{j}\right)\right|+\left|f\left(R_{2}^{j}\right)\right|\right)^{p}-\left|f\left(R_{1}^{j}\right)\right|^{p} \\
= & p\left(\left|f\left(R_{1}^{j}\right)\right|+\theta\left|f\left(R_{2}^{j}\right)\right|\right)^{p-1}\left|f\left(R_{2}^{j}\right)\right| \\
\leq & p 2^{p-1} \omega\left(R_{3}^{j}\right)^{1-1 / p}\left|f\left(R_{2}^{j}\right)\right| \\
\leq & p 2^{p-1} \omega\binom{\tau_{j}, \tau_{j+1}}{s, u}^{1-1 / p} \omega\binom{\tau_{j}, \tau_{j+1}}{t, u}^{1 / p} .
\end{aligned}
$$

Hence, summing over j, and using Hölder inequality

$$
\begin{aligned}
\Delta & \leq p 2^{p-1} \sum_{j} \omega\binom{\tau_{j}, \tau_{j+1}}{s, u}^{p-1} \omega\binom{\tau_{j}, \tau_{j+1}}{t, u} \\
& \leq p 2^{p-1}\left(\sum_{j} \omega\binom{\tau_{j}, \tau_{j+1}}{s, u}\right)^{1-1 / p}\left(\sum_{j} \omega\binom{\tau_{j}, \tau_{j+1}}{t, u}\right)^{1 / p} \\
& \leq p 2^{p-1} \omega\binom{a, b}{s, u}^{1-1 / p} \omega\binom{a, b}{t, u}^{1 / p}
\end{aligned}
$$

Interchanging the roles of R_{1} and R_{2}, we also obtain that

$$
\Delta \leq p 2^{p-1} \omega\binom{a, b}{s, u}^{1-1 / p} \omega\binom{a, b}{t, u}^{1 / p}
$$

which concludes the proof.
Continuity: ω is a map from $\Delta_{T} \times \Delta_{T} \rightarrow[0, \infty)$; the identification of points $\left(\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right)\right) \in$ $\Delta_{T} \times \Delta_{T}$ with rectangles in $[0, T]^{2}$ of the form $A=\binom{a_{1}, a_{2}}{a_{3}, a_{4}}=\left[a_{1}, a_{2}\right] \times\left[a_{3}, a_{4}\right]$ is pure
convention. If A is non-degenerate (i.e. $a_{1}<a_{2}, a_{3}<a_{4}$) and $|h|=\max _{i=1}^{4}\left|h_{i}\right|$ sufficiently small then

$$
A^{h}:=\binom{\left(a_{1}+h_{1}\right) \vee 0,\left(a_{2}+h_{2}\right) \wedge T}{\left(a_{3}+h_{3}\right) \vee 0,\left(a_{4}+h_{4}\right) \wedge T}
$$

is again a non-degenerate rectangle in $[0, T]^{2}$. We can then set for $r>0$, sufficiently small,

$$
A^{\circ ; r}:=A^{(r,-r, r,-r)}, \bar{A}^{r}:=A^{(-r, r,-r, r)}
$$

and note that, whenever $|h|$ is small enough to have $A^{\circ} ;|h|$ well-defined,

$$
\begin{align*}
& A^{\circ ;|h|} \subset A \subset \bar{A}^{-|h|} \tag{5.1}\\
& A^{\circ ;|h|} \subset A^{h} \subset \bar{A}^{|h|} . \tag{5.2}
\end{align*}
$$

The above definition of A^{h} (and $A^{\circ ; r}, \bar{A}^{r}$) is easily extended to degenerate A, such that the inclusions (5.1), (5.2) remain valid: For instance, in the case $a_{1}=a_{2}$ we would replace the first line in the definition of A^{h} by

$$
\begin{gathered}
\left(a_{1}+h_{1}\right) \vee 0,\left(a_{2}+h_{2}\right) \wedge T \text { if } h_{1} \leq 0 \leq h_{2} \\
\left(a_{1}+h_{1}\right) \vee 0, a_{2} \text { if } h_{1}, h_{2} \leq 0 \\
a_{1},\left(a_{2}+h_{2}\right) \wedge T \text { if } h_{1}, h_{2} \geq 0 \\
a_{1}, a_{2} \text { if } h_{1} \geq 0 \geq h_{2}
\end{gathered}
$$

and similarly in the case $a_{3}=a_{4}$. We will prove that, for any rectangle $A \subset[0, T]^{2}$,

$$
\omega\left(A^{h}\right) \rightarrow \omega(A) \text { as }|h| \downarrow 0 .
$$

This end we can and will consider $|h|$ is small enough to have $A^{\circ} ;|h|$ (and thus $A^{h}, \bar{A}^{|h|}$) well-defined. By monotonicity of ω, it follows that

$$
\omega\left(A^{\circ ;|h|}\right) \leq \omega\left(A^{h}\right) \leq \omega\left(\bar{A}^{|h|}\right)
$$

and the limits,

$$
\begin{align*}
& \omega^{\circ}(A):=\lim _{r \downarrow 0} \omega\left(A^{\circ ; r}\right) \leq \omega(A), \tag{5.3}\\
& \bar{\omega}(A): \\
&=\lim _{r \downarrow 0} \omega\left(\bar{A}^{r}\right) \geq \omega(A),
\end{align*}
$$

exist since $\omega\left(A^{\circ ; r}\right)$ [resp. $\omega\left(\bar{A}^{r}\right)$] are bounded from above [resp. below] and increasing [resp. decreasing] as $r \downarrow 0$. It follows that

$$
\omega^{\circ}(A) \leq \varliminf_{|h| \downarrow 0} \omega\left(A^{h}\right) \leq \varlimsup_{|h| \mid \downarrow 0} \omega\left(A^{h}\right) \leq \bar{\omega}(A) .
$$

The goal is now to show that $\omega^{\circ}(A)=\omega(A)$ ("inner continuity") and $\bar{\omega}(A)=\omega(A)$ ("outer continuity") since this implies that $\lim \omega\left(A^{h}\right)=\varlimsup \overline{\lim } \omega\left(A^{h}\right)=\omega(A)$, which is what we want.
Inner continuity: We first show that ω° is super-additive in the sense of definition 2, To this end, consider $\left\{R_{i}\right\} \in \mathscr{P}(R)$, some rectangle $R \subset[0, T]^{2}$. For r small enough, the rectangles

$$
\left\{R_{i}^{0, r}\right\}
$$

are well-defined and essentially disjoint. They can be completed to a partition of $R^{0, r}$ and hence, by super-additivity of ω,

$$
\sum_{i} \omega\left(R_{i}^{0, r}\right) \leq \omega\left(R^{0, r}\right)
$$

sending $r \downarrow 0$ yields the desired super-addivity of ω°;

$$
\sum_{i} \omega^{\circ}\left(R_{i}\right) \leq \omega^{\circ}(R) .
$$

On the other hand, continuity of f on $[0, T]^{2}$ implies

$$
\begin{aligned}
|f(A)|^{p} & \leq\left|f\left(A^{\circ, r}\right)\right|^{p}+o(1) \\
& \leq \omega\left(A^{\circ, r}\right)+o(1) \text { as } r \downarrow 0
\end{aligned}
$$

and hence $|f(A)|^{p} \leq \omega^{\circ}(A)$, for any rectangle $A \subset[0, T]^{2}$. Using super-additivity of ω° immediately gives

$$
\omega(R) \stackrel{\text { by def. }}{=} \sup _{\Pi \in \mathscr{\mathcal { P }}(R)} \sum_{A \in \Pi}|f(A)|^{p} \leq \omega^{\circ}(R) ;
$$

together with 5.3) we thus have $\omega(R)=\omega^{\circ}(R)$. Since R was an arbitrary rectangle in $[0, T]^{2}$ inner continuity is proved.
Outer continuity: We assume $A \subset(0, T)^{2}$ (i.e. $\left.0<a_{1} \leq a_{2}<T, 0<a_{3} \leq a_{4}<T\right)$ and take $r>0$ small enough so that

$$
\bar{A}^{r}=\binom{a_{1}-r, a_{2}+r}{a_{3}-r, a_{4}+r} ;
$$

the general case $A \subset[0, T]^{2}$ is handled by a (trivial) adaption of the argument for the remaining cases (i.e. $a_{1}=0$ or $a_{2}=T$ or $a_{3}=0$ or $a_{4}=T$). We first note that

$$
\begin{aligned}
\omega\left(\bar{A}^{r}\right)-\omega(A)= & \omega\binom{a_{1}-r, a_{2}+r}{a_{3}-r, a_{4}+r}-\omega\binom{a_{1}, a_{2}}{a_{3}, a_{4}} \\
\leq & \left|\omega\binom{a_{1}-r, a_{2}+r}{a_{3}-r, a_{4}+r}-\omega\binom{a_{1}-r, a_{2}}{a_{3}-r, a_{4}+r}\right| \\
& +\left|\omega\binom{a_{1}-r, a_{2}}{a_{3}-r, a_{4}+r}-\omega\binom{a_{1}, a_{2}}{a_{3}-r, a_{4}+r}\right| \\
& +\left|\omega\binom{a_{1}, a_{2}}{a_{3}-r, a_{4}+r}-\omega\binom{a_{1}, a_{2}}{a_{3}, a_{4}+r}\right| \\
& +\left|\omega\binom{a_{1}, a_{2}}{a_{3}, a_{4}+r}-\omega\binom{a_{1}, a_{2}}{a_{3}, a_{4}}\right|
\end{aligned}
$$

Now we use lemma 2; with

$$
\Delta:=\left|\omega\binom{a_{1}-r, a_{2}+r}{a_{3}-r, a_{4}+r}-\omega\binom{a_{1}-r, a_{2}}{a_{3}-r, a_{4}+r}\right|
$$

we have

$$
\begin{aligned}
\Delta & \leq \omega\binom{a_{2}, a_{2}+r}{a_{3}-r, a_{4}+r}+c \omega\left([0, T]^{2}\right)^{1-1 / p} \omega\binom{a_{2}, a_{2}+r}{a_{3}-r, a_{4}+r}^{1 / p} \\
& \leq \omega\binom{a_{2}, a_{2}+r}{0, T}+c \omega\left([0, T]^{2}\right)^{1-1 / p} \omega\binom{a_{2}, a_{2}+r}{0, T}^{1 / p}
\end{aligned}
$$

and similar inequalities for the other three terms in our upper estimate on $\omega\left(\bar{A}^{r}\right)-\omega(A)$ above. So it only remains to prove that for $a \in(0, T)$

$$
\omega\binom{a, a+r}{0, T}, \omega\binom{a-r, a}{0, T}, \omega\binom{0, T}{a, a+r}, \text { and } \omega\binom{0, T}{a-r, a}
$$

converge to 0 when r tends to 0 .But this is easy; using super-addivity of ω and inner-continuity we see that

$$
\begin{aligned}
\omega\binom{a, a+r}{0, T} & \leq \omega\binom{a, T}{0, T}-\omega\binom{a+r, T}{0, T} \\
& \rightarrow 0 \text { as } r \downarrow 0 .
\end{aligned}
$$

Other expressions are handled similarly and our proof of outer continuity is finished.

6 Appendix

6.1 Young and Young-Towghi discrete inequalities

6.1.1 One dimensional case.

Consider a dissection $D=\left(0=t_{0}, \ldots, t_{n}=T\right) \in \mathscr{D}([0, T])$. We define the "discrete integral" between $x, y:[0, T] \rightarrow \mathbb{R}$ as

$$
I^{D}=\int_{D} y d x=\sum_{i=1}^{n} y_{t_{i}} x_{t_{i-1}, t_{i}} .
$$

Lemma 3. Let $p, q \geq 1$, assume that $\theta=1 / p+1 / q>1$. Assume $x, y:[0, T] \rightarrow \mathbb{R}$ are finite p - resp. q-variation. Then there exists $t_{i_{0}} \in D \backslash\{0, T\}$ (equivalently: $i_{0} \in\{1, \ldots, n-1\}$) such that

$$
\left|\int_{D} y d x-\int_{D \backslash\left\{t_{i_{0}}\right\}} y d x\right| \leq \frac{1}{(n-1)^{\theta}}|x|_{p-v a r,[0, T]}|y|_{q-\operatorname{var}[0, T]}
$$

Iterated removal of points in the dissection, using the above lemma, leads immediately to Young's maximal inequality which is the heart of the Young's integral construction.

Theorem 2 (Young's Maximal Inequality). Let $p, q \geq 1$, assume that $\theta=1 / p+1 / q>1$, and consider two paths x, y from $[0, T]$ into \mathbb{R} of finite p-variation and q-variation, with $y_{0}=0$. Then

$$
\left|\int_{D} y d x\right| \leq(1+\zeta(\theta))|x|_{p-\operatorname{var} ;[0, T]}|y|_{q-v a r ;[0, T]}
$$

and this estimate is uniform over all $D \in \mathscr{D}([0, T])$.
Proof. Iterative removal of " i_{0} " gives, thanks to lemma 3,

$$
\begin{aligned}
\left|\int_{D} y d x-\int_{\{0, T\}} y d x\right| & \leq \sum_{n \geq 2} \frac{1}{(n-1)^{\theta}}|x|_{p-\mathrm{var},[0, T]}|y|_{q-\mathrm{var},[0, T]} \\
& \leq \zeta(\theta)|x|_{p-\mathrm{var},[0, T]}|y|_{q-\mathrm{var},[0, T]}
\end{aligned}
$$

Finally, $\int_{\{0, T\}} y d x=y_{T} x_{0, T}=y_{0, T} x_{0, T}$ since $y_{0, T}=y_{T}-y_{0}$ and $y_{0}=0$ and hence

$$
\left|\int_{\{0, T\}} y d x\right|=\left|y_{0, T} x_{0, T}\right| \leq|x|_{p-\operatorname{var},[0, T]}|y|_{q-\text { var, }[0, T]}
$$

and we conclude with the triangle inequality.
Proof. (Lemma 3) Observe that, for any $t_{i} \in D \backslash\{0, T\}$ with $1 \leq i \leq n-1$

$$
I^{D}-I^{D \backslash\left\{t_{i}\right\}}=y_{t_{i}, t_{i+1}} x_{t_{i-1}, t_{i}}
$$

We pick $t_{i_{0}}$ to make this difference as small as possible:

$$
\left|I^{D}-I^{D \backslash\left\{t_{i_{0}}\right\}}\right| \leq\left|I^{D}-I^{D \backslash\left\{t_{i}\right\}}\right| \text { for all } i \in\{1, \ldots, n-1\}
$$

As an elementary consequence, we have

$$
\left|I^{D}-I^{D \backslash\left\{t_{i}\right\}}\right|^{\frac{1}{\theta}} \leq \frac{1}{n-1} \sum_{i=1}^{n-1}\left|I^{D}-I^{D \backslash\left\{t_{i}\right\}}\right|^{1 / \theta} .
$$

The plan is to get an estimate on $\sum_{i=1}^{n-1}\left|I^{D}-I^{D \backslash\left\{t_{i}\right\}}\right|^{1 / \theta}$ independent of n. In fact, we shall see that

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left|I^{D}-I^{D \backslash\left\{t_{i}\right\}}\right|^{1 / \theta} \leq|x|_{p-\mathrm{var},[0, T]}^{1 / \theta}|y|_{q-\mathrm{var},[0, T]}^{1 / \theta} \tag{6.1}
\end{equation*}
$$

and the desired estimate

$$
\left|I^{D}-I^{D \backslash\left\{t_{i_{0}}\right\}}\right| \leq\left(\frac{1}{n-1}\right)^{\theta}|x|_{p-\mathrm{var},[0, T]}|y|_{q-\mathrm{var},[0, T]}
$$

follows. It remains to establish 6.1); thanks to Hölder's inequality, using $1 /(q \theta)+1 /(p \theta)=1$,

$$
\begin{aligned}
\sum_{i=1}^{n-1}\left|I^{D}-I^{D \backslash\left\{t_{i}\right\}}\right|^{1 / \theta} & =\left(\sum_{i=1}^{n-1}\left|y_{t_{i}, t_{i+1}}\right|^{1 / \theta}\left|x_{t_{i-1}, t_{i}}\right|^{1 / \theta}\right)^{\theta} \\
& \leq\left(\sum_{i=1}^{m-1}\left|y_{t_{i}, t_{i+1}}\right|^{q}\right)^{\frac{1}{q \theta}}\left(\sum_{i=1}^{n-1}\left|x_{t_{i-1}, t_{i}}\right|^{p}\right)^{\frac{1}{p \theta}} \\
& \leq|x|_{p-\text { var, }[0, T]}^{1 / \theta}|y|_{q-\mathrm{var},[0, T]}^{1 / \theta} .
\end{aligned}
$$

and we are done.

6.1.2 Young-Towghi maximal inequality (2D)

We now consider the two-dimensional case. To this end, fix two dissections $D=\left(0=t_{0}, \ldots, t_{n}=T\right)$ and $D^{\prime}=\left(0=t_{0}^{\prime}, \ldots, t_{m}^{\prime}=T\right)$, and define the discrete integral between $x, y:[0, T]^{2} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
I^{D, D^{\prime}}=\int_{D \times D^{\prime}} y d x:=\sum_{i} \sum_{j} y\binom{t_{i}}{t_{j}^{\prime}} x\binom{t_{i-1}, t_{i}}{t_{j-1}^{\prime}, t_{j}^{\prime}} . \tag{6.2}
\end{equation*}
$$

Lemma 4. Let $p, q \geq 1$, assume that $\theta=1 / p+1 / q>1$. Assume $x, y:[0, T]^{2} \rightarrow \mathbb{R}$ are finite p resp. q-variation. Then there exists $t_{i_{0}} \in D \backslash\{0, T\}$ (equivalently: $i_{0} \in\{1, \ldots, n-1\}$ such that for every $\alpha \in(1, \theta)$,

$$
\left|\int_{D \times D^{\prime}} d x-\int_{D \backslash\left\{t_{i_{0}}\right\} \times D^{\prime}} y d x\right| \leq\left(\frac{1}{n-1}\right)^{\alpha}\left(1+\zeta\left(\frac{\theta}{\alpha}\right)\right)^{\alpha} V_{p}\left(x ;[0, T]^{2}\right) V_{q}\left(y ;[0, T]^{2}\right)
$$

Iterative removal of " i_{0} " leads to Young-Towghi's maximal inequality.
Theorem 3 (Young-Towghi Maximal Inequality). Let $p, q \geq 1$, assume that $\theta=1 / p+1 / q>1$, and consider $x, y:[0, T]^{2} \rightarrow \mathbb{R}$ of finite p-resp. q-variation and $y(0, \cdot)=y(\cdot, 0)=0$. Then, for every $\alpha \in(1, \theta)$,

$$
\left|\int_{D \times D^{\prime}} y d x\right| \leq\left[\left(1+\zeta\left(\frac{\theta}{\alpha}\right)\right)^{\alpha} \zeta(\alpha)+(1+\zeta(\theta))\right] V_{p}\left(x ;[0, T]^{2}\right) V_{q}\left(y ;[0, T]^{2}\right)
$$

and this estimate is uniform over all $D, D^{\prime} \in \mathscr{D}([0, T])$
Proof. Iterative removal of " i_{0} " gives

$$
\begin{aligned}
\left|\int_{D \times D^{\prime}} y d x-\int_{\{0, T\} \times D^{\prime}} y d x\right| & \leq \sum_{n \geq 2}\left(\frac{1}{n-1}\right)^{\alpha}\left(1+\zeta\left(\frac{\theta}{\alpha}\right)\right)^{\alpha} V_{p}\left(x ;[0, T]^{2}\right) V_{q}\left(y ;[0, T]^{2}\right) \\
& \leq \zeta(\alpha)\left(1+\zeta\left(\frac{\theta}{\alpha}\right)\right)^{\alpha} V_{p}\left(x ;[0, T]^{2}\right) V_{q}\left(y ;[0, T]^{2}\right) .
\end{aligned}
$$

It only remains to bound

$$
\int_{\{0, T\} \times D^{\prime}} y d x=\sum_{j} y\binom{T}{t_{j}^{\prime}} x\binom{0, T}{t_{j-1}^{\prime}, t_{j}^{\prime}}=\int_{D^{\prime}} y\binom{0, T}{\cdot} d x\binom{0, T}{\cdot}
$$

where we used $y\binom{0}{\cdot}=0$ in the last equality. From Young's 1D maximal inequality, we have

$$
\begin{aligned}
\left|\int_{\{0, T\} \times D^{\prime}} y d x\right| & \leq(1+\zeta(\theta))\left|y\binom{0, T}{0, .}\right|_{q-\mathrm{var},[0, T]}\left|x\binom{0, T}{0, .}\right|_{p-\operatorname{var},[0, T]} \\
& \leq(1+\zeta(\theta)) V_{p}\left(x ;[0, T]^{2}\right) V_{q}\left(y ;[0, T]^{2}\right)
\end{aligned}
$$

The triangle inequality allows us to conclude.
Proof. (Lemma 4) Observe that, for any $t_{i} \in D \backslash\{0, T\}$

$$
\begin{aligned}
I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime}} & =\int_{D^{\prime}} y\binom{t_{i}, t_{i+1}}{\cdot} x\binom{t_{i-1}, t_{i}}{\cdot} \\
& =\int_{D^{\prime}} y\binom{t_{i}, t_{i+1}}{0, \cdot} x\binom{t_{i-1}, t_{i}}{\cdot}
\end{aligned}
$$

where we used $y\binom{\cdot}{0}=0$. We pick $t_{i_{0}}$ to make this difference as small as possible:

$$
\left|I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i_{0}}\right\}, D^{\prime}}\right| \leq\left|I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime}}\right| \text { for all } i \in\{1, \ldots, n-1\}
$$

As an elementary consequence,

$$
\begin{equation*}
\left|I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i_{0}}\right\}, D^{\prime}}\right|^{1 / \alpha} \leq \frac{1}{n-1} \sum_{i=1}^{n-1}\left|I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime}}\right|^{1 / \alpha} \tag{6.3}
\end{equation*}
$$

The plan is to get an estimate on $\sum_{i=1}^{n-1}\left|I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime}}\right|^{1 / \alpha}$ independent of n and uniformly in $D^{\prime} \in \mathscr{D}([0, T])$; in fact, we shall see that

$$
\begin{equation*}
\Delta^{D, D^{\prime}}:=\sum_{i=1}^{n-1}\left|I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime}}\right|^{1 / \alpha} \leq c V_{p}\left(x ;[0, T]^{2}\right)^{1 / \alpha} V_{q}\left(y ;[0, T]^{2}\right)^{1 / \alpha} \tag{6.4}
\end{equation*}
$$

with $c=1+\zeta\left(\frac{\theta}{\alpha}\right)$ and the desired estimate

$$
\left|I^{D}-I^{D \backslash\left\{t_{i_{0}}\right\}}\right| \leq\left(\frac{c}{n-1}\right)^{\alpha} V_{p}\left(x ;[0, T]^{2}\right) V_{q}\left(y ;[0, T]^{2}\right)
$$

follows. It remains to establish 6.4 ; to this end we consider the removal of $t_{j}^{\prime} \in D^{\prime} \backslash\{0, T\}$ from D^{\prime} and note that

$$
\left(I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime}}\right)-\left(I^{D, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}}\right)=y\binom{t_{i}, t_{i+1}}{t_{j}^{\prime}, t_{j+1}^{\prime}} x\binom{t_{i-1}, t_{i}}{t_{j-1}^{\prime}, t_{j}^{\prime}}
$$

Using the elementary inequality $|a|^{1 / \alpha}-|b|^{1 / \alpha} \leq|a-b|^{1 / \alpha}$ valid for $a, b \in \mathbb{R}$ and $\alpha \geq 1$ we have

$$
\begin{aligned}
& \left|I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime}}\right|^{1 / \alpha}-\left|I^{D, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}}\right|^{1 / \alpha} \\
& \leq\left|\left(I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime}}\right)-\left(I^{D, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}}\right)\right|^{1 / \alpha} .
\end{aligned}
$$

Hence, summing over i, we get

$$
\begin{align*}
& \Delta^{D, D^{\prime}}-\Delta^{D, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}} \\
\leq & \sum_{i=1}^{n-1}\left|\left(I^{D, D^{\prime}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime}}\right)-\left(I^{D, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}}-I^{D \backslash\left\{t_{i}\right\}, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}}\right)\right|^{1 / \alpha} \\
= & \sum_{i=1}^{n-1}\left|y\binom{t_{i}, t_{i+1}}{t_{j}^{\prime}, t_{j+1}^{\prime}}\right|^{1 / \alpha}\left|x\binom{t_{i-1}, t_{i}}{t_{j-1}^{\prime}, t_{j}^{\prime}}\right|^{1 / \alpha} \tag{6.5}\\
\leq & \left(\sum_{i=1}^{n-1}\left|y\binom{t_{i}, t_{i+1}}{t_{j}^{\prime}, t_{j+1}^{\prime}}\right|^{\theta q / \alpha}\right)^{\frac{1}{\theta_{q}}}\left(\sum_{i=1}^{n-1}\left|x\binom{t_{i-1}, t_{i}}{t_{j-1}^{\prime}, t_{j}^{\prime}}\right|^{\theta p / \alpha}\right)^{\frac{1}{\theta_{p}}} \\
\leq & \left(\sum_{i=1}^{n-1}\left|y\binom{t_{i}, t_{i+1}}{t_{j}^{\prime}, t_{j+1}^{\prime}}\right|^{q}\right)^{\frac{1}{\alpha q}}\left(\sum_{i=1}^{n-1}\left|x\binom{t_{i-1}, t_{i}}{t_{j-1}^{\prime}, t_{j}^{\prime}}\right|^{p}\right)^{\frac{1}{\alpha_{p}}} ;
\end{align*}
$$

in the last step we used that the $\ell^{\theta p / \alpha}$ norm on \mathbb{R}^{n-1} is dominated by the ℓ^{p} norm (because $\theta p / \alpha>$ p). It follows that

$$
\begin{equation*}
\Delta^{D, D^{\prime}}-\Delta^{D, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}} \leq Y_{j}^{1 / \alpha} X_{j}^{1 / \alpha} \tag{6.6}
\end{equation*}
$$

where

$$
Y_{j}:=\left(\sum_{i=1}^{n-1}\left|y\binom{t_{i}, t_{i+1}}{t_{j}^{\prime}, t_{j+1}^{\prime}}\right|^{q}\right)^{\frac{1}{q}}, X_{j}:=\left(\sum_{i=1}^{n-1}\left|x\binom{t_{i-1}, t_{i}}{t_{j-1}^{\prime}, t_{j}^{\prime}}\right|^{p}\right)^{\frac{1}{p}}
$$

We pick $t_{j_{0}}^{\prime} \in D^{\prime} \backslash\{0, T\}$ (i.e. $1 \leq j_{0} \leq m-1$) to make this difference as small as possible,

$$
\Delta^{D, D^{\prime}}-\Delta^{D, D^{\prime} \backslash\left\{t_{j_{0}^{\prime}}^{\prime}\right\}} \leq \Delta^{D, D^{\prime}}-\Delta^{D, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}} \text { for all } j \in\{1, \ldots, m-1\} ;
$$

we shall see below that

$$
\begin{equation*}
\left|\Delta^{D, D^{\prime}}-\Delta^{D, D^{\prime} \backslash\left\{t_{j_{0}}^{\prime}\right\}}\right| \leq\left(\frac{1}{m-1}\right)^{\frac{\theta}{\alpha}} V_{p}\left(x ;[0, T]^{2}\right)^{1 / \alpha} V_{q}\left(y ;[0, T]^{2}\right)^{1 / \alpha} \tag{6.7}
\end{equation*}
$$

iterated removal of " j_{0} " yields

$$
\Delta^{D, D^{\prime}} \leq \Delta^{D,\{0, T\}}+\zeta\left(\frac{\theta}{\alpha}\right) V_{p}\left(x,[0, T]^{2}\right)^{1 / \alpha} V_{q}\left(y,[0, T]^{2}\right)^{1 / \alpha}
$$

as in (6.5) we estimate

$$
\Delta^{D,\{0, T\}}=\sum_{i=1}^{n-1}\left|y\binom{t_{i}, t_{i+1}}{0, T} x\binom{t_{i-1}, t_{i}}{0, T}\right|^{1 / \alpha} \leq \cdots \leq V_{p}\left(x,[0, T]^{2}\right)^{1 / \alpha} V_{q}\left(y,[0, T]^{2}\right)^{1 / \alpha}
$$

and (6.4) follows, as desired. The only thing left is to establish (6.7). Using (6.6) we can write

$$
\begin{aligned}
\Delta^{D, D^{\prime}}-\Delta^{D, D^{\prime} \backslash\left\{t_{j_{0}}^{\prime}\right\}} & \leq\left(\prod_{j=1}^{m-1} \Delta^{D, D^{\prime}}-\Delta^{D, D^{\prime} \backslash\left\{t_{j}^{\prime}\right\}}\right)^{\frac{1}{m-1}} \\
& \leq\left(\prod_{j=1}^{m-1} X_{j}^{1 / \alpha} Y_{j}^{1 / \alpha}\right)^{\frac{1}{m-1}} \\
& =\left(\prod_{j=1}^{m-1} X_{j}^{p}\right)^{\frac{1}{m-1} \frac{1}{\alpha p}}\left(\prod_{j=1}^{m-1} Y_{j}^{q}\right)^{\frac{1}{m-1} \frac{1}{\alpha q}} .
\end{aligned}
$$

Using the geometric/arithmetic inequality, we obtain

$$
\begin{aligned}
\left(\prod_{j=1}^{m-1} X_{j}^{p}\right)^{\frac{1}{m-1} \frac{1}{\alpha p}} & \leq\left(\frac{1}{m-1} \sum_{j=1}^{m-1} X_{j}^{p}\right)^{\frac{1}{\alpha p}} \\
& \leq\left(\frac{1}{m-1}\right)^{\frac{1}{\alpha p}}\left(\sum_{j=1}^{m-1} \sum_{i=1}^{n-1}\left|x\binom{t_{i-1}, t_{i}}{t_{j-1}^{\prime}, t_{j}^{\prime}}\right|^{p}\right)^{\frac{1}{\alpha p}} \\
& \leq\left(\frac{1}{m-1}\right)^{\frac{1}{\alpha p}} V_{p}\left(x,[0, T]^{2}\right)^{1 / \alpha}
\end{aligned}
$$

and, similarly,

$$
\left(\prod_{j=1}^{m-1} Y_{j}^{q}\right)^{\frac{1}{m-1} \frac{1}{\alpha q}} \leq\left(\frac{1}{m-1}\right)^{\frac{1}{\alpha q}} V_{q}\left(y,[0, T]^{2}\right)^{1 / \alpha}
$$

Using $\frac{1}{\alpha p}+\frac{1}{\alpha q}=\frac{\theta}{\alpha}$, we thus arrive at

$$
\Delta^{D, D^{\prime}}-\Delta^{D, D^{\prime} \backslash\left\{t_{j_{0}^{\prime}}\right\}} \leq\left(\frac{1}{m-1}\right)^{\frac{\theta}{\alpha}} V_{p}\left(x,[0, T]^{2}\right)^{1 / \alpha} V_{q}\left(y,[0, T]^{2}\right)^{1 / \alpha}
$$

which is precisely the claimed estimate (6.7).

References

[1] Coutin, L., Qian, Z. : Stochastic analysis, rough path analysis and fractional Brownian motion, Probab. Theory Related Fields 122 (2002), 108-140 MR1883719
[2] Friz, P., Victoir, N.: Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 2, 369-41 MR2667703
[3] Friz, P., Victoir, N.: Multidimensional stochastic processes as rough paths. Theory and applications. Cambridge University Press, Cambridge, 2010. (Errata available via CUP's webpages.) MR2604669
[4] Towghi: Multidimensional extension of L.C.Young's Inequality, J. of Inequalities in Pure and Applied Mathematics, Vol 3, 2-22, 2002 MR1906391

[^0]: *The first author has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 258237

[^1]: ${ }^{1}$ Our main theorem below will justify this terminology.

[^2]: ${ }^{2} \ldots$ in contrast to controlled p-variation $R \mapsto|f|_{p-\mathrm{var} ; R}^{p}$ which yields a 2D control, cf part (iv) of the theorem.
 ${ }^{3}$ This is a minor modification of the argument in [3] where it was assumed that $D=D^{\prime}$.

[^3]: ${ }^{4}$ We write $\beta_{a, b}^{H} \equiv \beta_{b}^{H}-\beta_{a}^{H}$.

[^4]: ${ }^{5}$ One has $\left|\sum_{i=1}^{m} a_{i}\right|^{p} \leq\left|\sum_{i=1}^{m}\right| a_{i}| |^{p} \leq m^{p-1}\left(\sum_{i=1}^{m}\left|a_{i}\right|^{p}\right)$ and this is sharp as seen by taking $a_{i} \equiv 1$.

[^5]: ${ }^{6}$ The "right-closed" form of \hat{Q}_{k} in the definition of y is tied to our definition of $\int_{D \times D^{\prime}} y d x$ which imposes "right-end-point-evaluation" of y. Recall also that Q_{k} is really a point in $((a, b),(c, d)) \in \Delta_{T} \times \Delta_{T}$; viewing it as closed rectangle is pure convention.

[^6]: ${ }^{7}$ The case that three corner points of R_{i} are elements of Q_{j} already implies (rectangles!) that all four corner points of R_{i} are elements of Q_{j}. This is covered by Case 1.

