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Mixing time bounds for overlapping cycles shuffles

Johan Jonasson∗†‡

Abstract

Consider a deck of n cards. Let p1, p2, . . . , pn be a probability vector and consider the mixing time
of the card shuffle which at each step of time picks a position according to the pi ’s and move
the card in that position to the top. This setup was introduced in [5], where a few special cases
were studied. In particular the case pn−k = pn = 1/2, k = Θ(n), turned out to be challenging
and only a few lower bounds were produced. These were improved in [1] where it was shown
that the relaxation time for the motion of a single card is Θ(n2) when k/n approaches a rational
number.
In this paper we give the first upper bounds. We focus on the case m := n− k = bn/2c. It is
shown that for the additive symmetrization as well as the lazy version of the shuffle, the mixing
time is O(n3 log n). We then consider two other modifications of the shuffle. The first one is the
case pn−k = pn−k+1 = 1/4 and pn = 1/2. Using the entropy technique developed by Morris [7],
we show that mixing time is O(n2 log3 n) for the shuffle itself as well as for the symmetrization.
The second modification is a variant of the first, where the moves are made in pairs so that if the
first move involves position n, then the second move must be taken from positions m or m+ 1
and vice versa. Interestingly, this shuffle is much slower; the mixing time is at least of order
n3 log n and at most of order n3 log3 n.
It is also observed that results of [1] can be modified to improve lower bounds for some k = o(n)
.
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1 Introduction

How many times does one need to shuffle a deck of n cards to properly randomize it? This intu-
itively attracting question has turned out to provide one of the most important playgrounds for the
development of the more general field of mixing times for Markov chains. The topic dates back to
the early 20th century, and has been very lively for the last thirty years or so.

Recent important developments, relevant here, are Wilson’s [9] technique for lower bounds and the
entropy technique of Morris [7]. Wilson’s technique uses test functions based on combinations of
eigenvalues and eigenvectors for the motion of a single card, or some other simple Markov chain
embedded in the full state space. Often this makes it possible to add the log n factor that was missing
for previous lower bounds. The technique was developed in various directions in [10], [6] and [5].
Morris’ entropy technique on the other hand, can in some situations be used to provide good upper
bounds where earlier techniques were completely inadequate. In [7], this technique produced upper
bounds of log4 n for the Thorp shuffle and (n ∨ n3

L3 ) log3 n for Durrett’s L-reversal shuffle (see [4]).
These are the by far best bounds to date (but presumably still off by a few log n-factors; this seems
in general to be the price to pay with this technique).

In [5], we introduced the class of “GR-shuffles” as a generalization of the (inverse) Rudvalis shuffle,
for which at each step of time, either the bottom or the second bottom card is moved to the top,
each with probability 1/2. For a GR-shuffle, we have a probability vector p1, p2, . . . , pn, and at each
step, we pick position i with probability pi and move the card at that position to the top. In this
general form, the problem turns out to be very difficult to to analyze, so the focus in [5] was on
two special cases. The first of these was the case pn−k+1 = . . . = pn =

1
k
, for some k = k(n), the

“bottom-to-top shuffle”. Here it was shown, via coupling on one hand and a variant of Wilson’s
technique on the other, that the mixing time is Θ( n3

k2 log n). The second special case, the topic of
this paper, was pn−k = pn = 1/2, k = k(n) (and k odd to avoid parity problems). An application of
Wilson’s technique gave a lower bound of order n3

k2 log n, the same as for the bottom-to-top shuffle.
This bound, however, is not tight, at least not for k of large order. Indeed, it was observed that for
k = n/2, the mixing time for single card motion is Ω(n2). Angel, Peres and Wilson [1] developed this
observation via a careful analysis of the spectrum of the single card chain. The authors observed how
the eigenvalues form two cycles close to the boundary of the unit disc in the complex plane, This,
combined with the structure of the shuffle itself, inspired them to propose the name “overlapping
cycles shuffle” for this shuffle. In particular, they found that for any rational α ∈ (0, 1) and k = bαne,
the relaxation time (i.e. the inverse spectral gap) is Θ(n2). Perhaps surprisingly, they also showed
that for a.e. α, the relaxation time is in fact of a different order, namely Θ(n3/2). Neither [5] nor
[1] gave any upper bounds on the mixing time.

Here we will make progress of various sorts. First, after the necessary preliminaries in Section 2,
it will be observed in Section 3 that the results of Angel, Peres and Wilson generalize to give a
relaxation time of Θ(nk) when k|n − k for a single card. When k = o(n), this can then be used
together with Wilson’s technique (which does not seem to add any extra information for k = Θ(n))
to give a lower bound of order nk log(n/k), an improvement over [5] for k = Ω(n2/3).

From Section 4 and on, we will focus solely on the case k = bn/2e and variants on this shuffle, even
though most of the results can be obviously generalized to k = bαne, α rational. The variant we
shall mainly focus on is the one with pm = pm+1 = 1/4 and pn = 1/2, n = 2m; let us here call
this the “triple shuffle”. A variant of the triple shuffle will also be considered. For this variant the
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shuffles are made in pairs, and if the first shuffle in the pair takes the card in position n to the top,
then the next move must pick a card from positions m or m + 1 vice versa. This shuffle will be
called the “equalized shuffle”. Due to the more deterministic motion of the cards on the lower half
of the deck, the equalized shuffle turns out to be slower and more amenable to analysis than the
original shuffle. In Section 4 we show that mixing time is Ω(n3 log n). (Note that if one equalizes the
original overlapping cycles shuffle in the same way, the resulting shuffle will not mix due to parity
problems.)

From Section 5, we turn to upper bounds. The short fifth section is concerned with upper bounds
in L2. These are derived via a standard application of the comparison technique of Diaconis and
Saloff-Coste [2]. This, combined with a simple path-counting argument, yields upper bounds in L2

of O(n3 log n) for the additive symmetrization and the lazy version of the original overlapping cycles
shuffle as well as the triple shuffle, and O(n5 log n) for the symmetrized or lazy equalized shuffle.

In Section 6, we turn back to upper bounds in total variation. For the triple shuffle and the equalized
shuffle the results of Section 5 are improved, using Morris’ entropy technique. The equalized shuffle
is shown to have mixing time O(n3 log3 n) whereas the triple shuffle mixes in time O(n2 log3 n). We
also show this bound is valid also for the symmetrized triple shuffle.

2 Preliminaries

2.1 Basics

Let S be a finite set and let π be a probability measure on S. For a signed measure ν on S with
ν(S) = 0 and p ∈ [1,∞), the Lp-norm of ν with respect to π is given by

‖ν‖p = ‖ν‖Lp(π) :=
�
∑

i∈S

�

�

�

ν(i)
π(i)

�

�

�

p
π(i)

�1/p
.

The total variation norm of ν is given by

‖ν‖T V :=
1

2

∑

i∈S

|ν(i)|=max
A⊆S

ν(A).

Obviously ‖ν‖1 = 2‖ν‖T V . By Cauchy-Schwarz, ‖ν‖p ≤ ‖ν‖q whenever p ≤ q.

Let {X t}∞t=0 be an aperiodic irreducible Markov chain on S with stationary distribution π. It is
common to measure the distance between the distribution of X t and the stationary distribution by
some Lp-norm or, most commonly, the total variation norm of their difference. The mixing time of
the chain is defined as

τmix :=min{t : ‖P(X t ∈ ·)−π‖T V ≤
1

4
}.

The convergence time in L2 is given by

τ̂ :=min{t : ‖P(X t ∈ ·)−π‖2 ≤
1

2
}.

By the above, τmix ≤ τ̂. The relaxation time is defined as

τ2 =max
λ 6=1

1

1− |λ|
,
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where the maximum is taken over eigenvalues of the transition matrix. In this presentation, the
state space will always be the symmetric group on n cards: S = Sn, and the Markov chains will be
random walks on this group, so π will be uniform. Hence

‖P(X t ∈ ·)−π‖22 = n!
∑

i∈Sn

�

P(X t = i)−
1

n!

�2

and

‖P(X t ∈ ·)−π‖T V =
1

2

∑

i∈Sn

�

�

�P(X t = i)−
1

n!

�

�

�.

2.2 Wilson’s technique

Let P be the transition matrix of {X t} and let ((1− γ)eiθ ,φ) be an eigenvalue/eigenvector pair for
P and suppose that γ≤ 1/2. Let

R :=max
i∈S

E
h

|e−iθφ(X t+1)−φ(X t)|2
�

�

�X t = i
i

and let

T :=
1

− log(1− γ))

�

log |φ(X0)| −
1

2
log

8R

γ

�

.

Then (one variant of) Wilson’s technique states that:

Lemma 2.1. With the above setup, τmix ≥ T.

The technique was introduced in [9]. A proof for this particular version is found in [5]. The idea of
the proof is to use the eigenvalue property E[Φ(X t+1)|X t] = λφ(X t) and R to bound the variance
of φ(XT ). Then Chebyshev’s inequality is used to see that XT with high probability has a value far
from what it should have, had it been stationary.

Note that when γ= o(1), then − log(1− γ) = (1+ o(1))γ and Wilson’s technique thus states that

τmix ≥ γ−1(log |φ(X0)| −
1

2
log(8Rγ−1)).

3 Relaxation times and lower bounds for k = o(n)

Let P1 be the transition matrix for the motion of a single card. The eigenvalue/eigenvector equation
λξ= P1ξ, setting ξ(1) = 1 leads to

ξ( j) = λ j−1, j = 1, . . . , n− k,

ξ(n− k+ j) = (2λ− 1) j−1(2λn−k − 1), j = 1, . . . , k

and the characteristic equation

f (λ) := (2λ− 1)k(2λn−k − 1)− 1= 0.
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Assume that k|n− k and let

λ0 :=
�

1−
2π2

nk

�

e2πi/k.

Some algebraic manipulation shows that f (λ0) = O(k−2). Since, as is readily seen, f ′(λ0) = Θ(n),
there is a zero of f within distance O(n−1k−2) of λ0. This follows e.g. from Theorem 4.2 of [5].
Hence there is an eigenvalue of the form

λ= (1− γ)eiθ ,

where γ= (1+ o(1))2π2/(nk) and θ = (1+ o(1))2π/k.

If k is also such that 2k|n− k, then this can be strengthened a bit further, since one can then take
γ= (1+ o(1))π2/(2nk) with θ = (1+ o(1))π/k. In summary:

Theorem 3.1. Let τ1
2 be the relaxation time for single card movement. Then, if k|n− k,

τ1
2 ≥

nk

2π2 .

Moreover, if 2k|n− k, then

τ1
2 ≥

2nk

π2 .

Minor adjustments of the above proof also lead to

Theorem 3.2. For the triple shuffle, i.e. pn−k = pn−k+1 = 1/4 and pn = 1/2, with k|n− k we have

τ1
2 = Ω(nk).

Next we plug this into Wilson’s technique under the assumption k = o(n). This will lead to the
following result.

Theorem 3.3. Consider the overlapping cycles shuffle with k = o(n) and k|n− k. For this shuffle,

τmix ≥
1

4π2 nk log
n

k
.

Moreover, if 2k|n− k, then

τmix ≥
1

π2 nk log
n

k
.

Proof. Let Y i
t be the position of card i at time t and

φ(X t) =
∑

i

ξ(Y i
t ),

where the sum is over those i for which ℜξ(i) ≥ 0. Then |φ(X0)| = Θ(n). To bound R, use the
triangle inequality to write

|e−iθφ(X t+1)−φ(X t)| ≤
∑

i

|e−iθξ(X t+1)− ξ(X t)|.

The top n− k cards move deterministically one step ahead, so their corresponding terms are each
bounded by O((nk)−1). For the card that is moved to the top, the corresponding term is O(1). For
the remaining k − 1 cards, the terms are bounded by O(θ) = O(k−1). Summing up, we get that
R= O(1). Plugging this into Lemma 2.1 finishes the proof.

We note that Theorems 3.1 and 3.3 improve over [5] when k is of larger order than n2/3.
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4 Lower bound for the equalized shuffle

Recall that for the equalized shuffle, the moves are made in pairs, and that the second move in each
pair takes the card in position n to the top if and only if the first move does not. To be more precise,
counting each pair of moves in this sense as one step, the equalized shuffle is the random walk on
Sn generated by the step distribution that gives probability 1/4 to each of the permutations

(1 2 . . . m)(1 2 . . . n),

(1 2 . . . m+ 1)(1 2 . . . n),

(1 2 . . . n)(1 2 . . . m),

(1 2 . . . n)(1 2 . . . m+ 1).

Recall also that n= 2m.

Remark. We use the convention that when π1 and π2 are two permutations, we write π1π2 for
π2 ◦π1. Also, when we use a permutation π to represent the order of a deck of cards, then π(i) is
the position of card i, so that π−1(k) is the label of the card in position k.

Unlike the unequalized case, the cards on the lower half of deck also move in a mainly determin-
istic manner. We shall see that this makes the single card chain considerably slower and Wilson’s
technique to work smoothly.

Let, as in the previous section, P1 be the transition matrix for a single card. Then spelling out
P1ξ= λξ gives

λξ(1) = ξ(3)

λξ(2) = ξ(4)
...

λξ(m− 2) = ξ(m)

λξ(m− 1) =
1

4
ξ(1) +

3

4
ξ(m+ 1)

λξ(m) =
1

4
ξ(1) +

1

4
ξ(2) +

1

4
ξ(m+ 1) +

1

4
ξ(m+ 2)

λξ(m+ 1) =
1

4
ξ(2) +

3

4
ξ(m+ 2)

λξ(m+ 2) = ξ(m+ 3)

λξ(m+ 3) = ξ(m+ 4)
...

λξ(n− 1) = ξ(n)

λξ(n) =
1

2
ξ(1) +

1

2
ξ(2).

Let us assume that m is even. (The analysis will take on a slightly different form when m is odd.
We leave this easy modification to the reader.) Let r := (m− 2)/2 and set ξ(n) := 1. Then solving
backwards equations n− 1, . . . , m+ 2 gives ξ(n− j) = λ− j , j = 1, 2, . . . , m− 1, in particular

ξ(m+ 2) = λ−2r .
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Solving forward the first m − 2 equations gives ξ(2 j + 1) = λ jξ(1) and ξ(2 j) = λ j−1ξ(2), j =
1,2, . . . , r, in particular

ξ(m− 1) = λrξ(1)

and
ξ(m) = λrξ(2).

Equation n gives ξ(2) = 2λ − ξ(1) and equation m − 1 gives xm+1 = (4λr+1 − 1)ξ(1)/3. Now
equations m and m+ 1 give, after some algebra,

ξ(1) =
24λ3r+2− 6λ2r+1− 3

λ2r(16λr+1− 1)
=

6λ2r+1+ 9

λ2r(16λr+1− 4λ+ 3)
.

After some cleaning up, we have the characteristic equation

g(λ) := 32λ4r+2− 8λ3r+2− 40λ3r+1+ 2λ2r+1−λ2r − 16λr + 1= 0.

Rewrite this, letting s := r − 1/3, to get

g(λ) := 32λ4s+10/3− 8λ3s+3− 40λ3s+2+ 2λ2s+5/3−λ2s+2/3− 16λs+1/3+ 1= 0.

Let w := 2π/s and λ0 := (1− cw2/s)eiw . Then some algebra using Taylor’s formula quickly reveals
that ℑg(λ0) = O(n−3) and

ℜg(λ0) = O(n−3) + 32(1− 4cw2−
50

3
w2)− 8(1− 3cw2−

9

2
w2)− 40(1− 3cw2− 2w2)

+2(1− 2cw2−
25

18
w2)− (1− 2cw2−

2

9
w2)− 16(1− cw2−

1

18
w2) + 1

which also becomes O(n−3) on taking c = 571/270. Since g ′(λ0) = Θ(n), this means, by [5]
Theorem 4.2, that there is an eigenvalue within distance O(n−4) of λ0.

Summing up, we have shown that there is an eigenvalue of the form λ = (1− γ)eiθ , where θ =
(1+ o(1))8π/n and γ= (1+ o(1))18272π2

135n3 .

Next let
φ(X t) :=

∑

i

ξ(Y i
t )

where, as in the previous section, Y i
t is the position of card i at time t and the sum is over i for

which ℜξ(i) > 0. We want to apply Wilson’s technique, so let us estimate R. Cards in positions
1, . . . , m − 2 and m + 1, . . . , n − 1 move deterministically to a position whose contribution to φ
differs by a factor λ from the previous contribution. Hence each such card contributes to a change
in |e−θφ(X t+1) − φ(X t)| by γ = O(n−3) and hence together at most O(n−2). From the above
relations between the ξ( j)’s it is easily seen that the remaining cards contribute to a change in
|e−θφ(X t+1)−φ(X t)| which is limited to O(n−1). Hence R= O(n−2). Lemma 2.1 now gives a lower
bound of 135

36544π2 n3 log n.

We summarize the results of the present section in the following theorem.

Theorem 4.1. For the equalized shuffle we have

τ1
2 ≥

135

18272π2 n3

and

τmix ≥
135

36544π2 n3 log n.
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5 Upper bounds in L2

In this section we will utilize the comparison technique of Diaconis and Saloff-Coste [2]. Let {X t}
and {Yt} be two random walks on Sn generated by the symmetric probability measures µ and ν
respectively. Write E and F for the supports of µ and ν respectively. For each element y ∈ F , choose
a representation y = x1 x2 . . . xk where x j ∈ E and k is odd. Write |y|= k. Let

A∗ :=
�

max
x∈E

1

µ(x)
�

∑

y∈F

|y|2ν(y).

Then it is shown in [2] that A∗ is an upper bound for the ratio of the Dirichlet forms of ν and µ. For
our purposes it suffices to know the following consequence.

Lemma 5.1. ‖P(X t ∈ ·)−π‖22 ≤ n!e−bt/A∗c+ ‖P(Ybt/(2A∗)c ∈ ·)−π‖
2
2.

Lemma 5.1 is a special case of Lemma 5 of [2].

Since the comparison technique is restricted to symmetric random walks, we also need a result
from Saloff-Coste [8] (Theorem 10.2), which states that if H := µ(id) is significant, then a random
walk generated by µ cannot be much slower than its symmetrized version. (Recall that the additive
symmetrization of the walk generated by µ is defined as the walk generated by (µ+ µ∗)/2 where
µ∗(i) := µ(i−1), i ∈ Sn.)

Lemma 5.2. Let {X s
t} be the additive symmetrization of {X t}. Then

‖P(X t ∈ ·)−π‖22 ≤ n!e−Ht/2+ ‖P(X s
bHt/4c ∈ ·)−π‖

2
2.

In particular, Lemma 5.2 states that for the lazy shuffle, i.e. the shuffle which at each step with
probability 1/2 makes a move according to µ and with probability 1/2 stays put,

‖P(X t ∈ ·)−π‖22 ≤ n!e−t/4+ ‖P(X s
bt/8c ∈ ·)−π‖

2
2.

The most common benchmark walk, {Yt}, to use for comparison is the random transpositions shuffle,
i.e. the random walk generated by ν(id) = 1/n and ν(i j) = 2/n2, 1 ≤ i < j ≤ n. The random
transpositions shuffle is very well understood. In particular the next result, due to Diaconis and
Shashahani [3], will be of use here.

Lemma 5.3. Let {Yt}∞t=0 be the random transpositions shuffle. There exists a constant C such that for
t = b(1/2)n(log n+ c)c,

‖P(Yt ∈ ·)−π‖22 ≤ Ce−2c .

We are now ready to prove the main result of this section.

Theorem 5.1. For the original overlapping cycles shuffle with pm = pn = 1/2, m odd and n = 2m
and the triple shuffle with pm = pm+1 = 1/4, pn = 1/2, the lazy versions as well as the additive
symmetrizations satisfy

τ̂= O(n3 log n).

For the equalized shuffle, the lazy version as well as the additive symmetrization of the lazy version,
satisfy

τ̂= O(n5 log n).
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Proof. Let {X t} be the overlapping cycles shuffle and {X s
t} its additive symmetrization. Let {Lt} be

the lazy version of {X t} and let {Ls
t} be the additive symmetrization of {Lt} (or, equivalently, the

lazy version of {X s
t}). Let {Yt} be the random transpositions shuffle.

In order to use the comparison technique, we want to bound |y| for any transposition y = (i j),
i < j or y = id. Write un := (1 2 . . . n), um := (1 2 . . . m), dn := u−1

n and dm := u−1
m denote the

generators of {X s
t}. For y = id, we can take the odd-length representation y = um

m. Assume now that
y = (i j). The permutation taking card n− 1 to position 1 can be written as x := dm−1

n umum−1
n um.

Note that |x |= n and that (1 n) = dn x . Hence, if j ≤ m, we can write

y = v(dn x)v−1

where v := um− j+1
m dnu j−i+1

m . Note that this representation of y has odd length. Since |v| = m+ 2,
we have |y| = 2n+ 5. If j > m, we add a prefix to v making the necessary moves to take both i
and j to the upper half of the deck. This takes at most a prefix of length m+ 1. Hence in general
|v| ≤ 2m+ 3 and so |y| is still odd and |y| ≤ 3m+ 7≤ 4n.

Now apply Lemma 5.1. For {X s
t} we get A∗ = 64n2, so Lemma 5.1 and Lemma 5.3 give

‖P(X s
128n3 log n ∈ ·)−π‖

2
2 ≤ n!e−2n log n+ ‖P(Yn log n ∈ ·)−π‖22
= o(1).

For {Ls
t}, A∗ = 128n2 and we get analogously

‖P(Ls
256n3 log n ∈ ·)−π‖

2
2 = o(1).

Finally Lemma 5.2 entails
‖P(L1024n3 log n ∈ ·)−π‖22 = o(1).

Since the same bounds on |y| hold for the triple shuffle, the exact same argument goes through with
only an adjustment of time by a factor 2.

Next we turn to the equalized shuffles. This is very similar to the above so we will be a bit sketchy.
Consider the lazy additive symmetrization of the equalized shuffle. It is an easy exercise to show that
a transposition of positions m− 1 and m can be made in two moves. A transposition of positions m
and m+1 can be brought about in four moves. Now fix two positions i < j. Unless j = i+1, a round
of n moves can always be made to bring the two cards one step closer together. From this it is easily
seen that n2 moves suffice to bring cards i and j to positions m− 1 and m or m and m+ 1, where
they can be transposed whereupon the moves bringing them together can be reversed. To make
the number of moves odd, add an extra lazy move. Hence |(i, j)| = O(n2) and so in Lemma 5.1,
A∗ = O(n4). Now an argument analogous to the above gives τ̂ = O(n5 log n). Finally an application
of Lemma 5.2 takes care of the non-symmetrized case.

6 Upper bounds in total variation

We will use the main theorem of Morris [7]. First we extract what we need from [7]. Let µ and ν
be two probability measures on S. The relative entropy of µ with respect to ν is given by

ENT(µ‖ν) :=
∑

s∈S

µ(s) log
µ(s)
ν(s)

.
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An equivalent expression is ENT(µ‖ν) = Eµ[log(µ(X )/ν(X ))]. By Jensen’s inequality it follows that
ENT(µ‖ν)≥ 0 with equality if and only if µ= ν .

When the measure ν is suppressed from the notation, it will be understood that ν is uniform. In this
case we will simply speak of the relative entropy of µ. We note that

ENT(µ) =
∑

s∈S

µ(s) log(|S|µ(s)) = log |S| −H(µ)

where H(µ) is the usual absolute entropy of µ. Relative entropy relates to total variation norm in
the following way.

Lemma 6.1. Let π be the uniform probability measure on S. Then

‖µ−π‖T V ≤

r

1

2
ENT(µ).

Proof. By Cauchy-Schwarz’ inequality,

‖µ−π‖T V =
∑

s

1

2

�

�

�µ(s)−
1

|S|

�

�

�≤

È

1

4
|S|
∑

s

�

�

�µ(s)−
1

|S|

�

�

�

2
.

Hence it suffices to show that

1

2
|S|
∑

s

�

�

�µ(s)−
1

|S|

�

�

�

2
−
∑

s
µ(s) log(|S|µ(s))≤ 0.

This is a standard optimization problem over the µ(s)’s.

When X is a random variable, write for simplicity ENT(X ) for ENT(L (X )). For two random variables
X and Y , ENT(X |Y = y) and the random variable ENT(X |Y ) then have the obvious interpretations.

From now on we take S = Sn. Let Z be a random permutation. Some algebraic manipulation and
induction leads to the well-known chain rule for entropies.

Lemma 6.2. Let F j = σ(Z−1( j), Z−1( j+ 1), . . . , Z−1(n)). Then for any 1≤ i ≤ n,

ENT(Z) = E[ENT(Z |Fi)] +
n
∑

k=i

E[ENT(Z−1(k)|Fk+1)].

In particular, with i = 1 and Ek := E[ENT(Z−1(k)|Fk+1], we have

ENT(X ) =
n
∑

k=1

Ek.

Let c(i, j) denote the random permutation that equals id with probability 1/2 and (i j) with proba-
bility 1/2. A permutation of this kind will be called a collision of the positions i and j. Assume that
a random permutation Y is expressed on the form

Y = Y0c(a1, b1)c(a2, b2) . . . c(ar , br)
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where the a j ’s and b j ’s are distinct and the collisions are independent given Y0, (but where the
number of collisions and the identity of a j and b j may depend on Y0). Fix a positive integer t, let
Y 1, Y 2, . . . , Y t be iid copies of Y and let

Xs = Y 1Y 2 . . . Y s,

s = 1, . . . , t. Say that the cards x and y collide at time s if there are positions i and j such that
X−1

s (i) = x , X−1
s ( j) = y and Y s contains the collision c(i, j). Let T ≤ t be a (possibly) random time,

independent of the Y s ’s and let, for each card x , B(x) be the first card in the time interval [T, t]
that x collides with (with B(x) = x if no such card exists). Let M(x) = B(x) if B(B(x)) = x and
M(x) = x otherwise. The following is the key result of [7].

Lemma 6.3. For each k ∈ [n], let Ak := min1≤i<kP(M(k) = i) and let Z be a random permutation
independent of the Y s ’s. Then there exists a constant C independent of n, t, T , X0 and the Y s ’s such
that

ENT(ZXs)≤ ENT(Z)−
C

log n

n
∑

k=1

kAkEk,

where the Ek ’s refer to Z.

Next we apply this to the triple shuffle. Write one step, Y , of the triple shuffle on the above form by
first letting Y0 be a step of the original overlapping cycles shuffle pm = pn = 1/2, and then

Y :=

¨

Y0c(1, m+ 1), Y0 = (1 2 . . . m)
Y0, Y0 = (1 2 . . . n)

Lemma 6.4. Consider the triple shuffle. Fix k ∈ [n] and let l := 2blog2 kc. Let T1 = 2(l ∨ n1/2)2,
let t = 10T1 and let T be a uniform random variable on {1, . . . , T1}. Then there exists a constant a
independent of n, k and i such that

P(M(k) = i)≥
a

k ∨ n1/2

for all i < k.

Proof. Note that k/2 ≤ l ≤ k so in particular k and l are of the same order. Assume first that
k = O(n1/2). Fix i < k. Up until time m− k, cards i and k move deterministically one step down the
deck for each step of the shuffle. Then the steps m− k, m− k+1 and m− i may move card k to the
bottom half of the deck and card i to the top half, this happens with probability at least 9/16 · 1/4
(with equality unless k = i + 1). Given this, the steps m− k+ 2, . . . , m− i − 1 and the m− 1 steps
after step m− i, change the position of card k relative to card i by a binomial(m+ k − i − 2,1/2)
random variable and if step 2m− i again moves card i to the top (which happens with probability
1/4 independently of everything else) then this is repeated independently for another m− 1 steps
unless card k hits position n earlier. However, by the local CLT, there is a conditional probability of
order 1/n1/2 that card k hits position n at exactly the same time as card i hits position m. Given that
this happens, then there is a conditional probability at least 1/2 · 1/4 · 1/2 · 1/2 that the next two
moves bring i and k to positions 1 and 2 and that {M(k) = i} occurs after another m steps.

Now suppose k is of larger order than n1/2. Let the times τ0,τ1,τ2, . . . be defined recursively by
τ0 = 0 and τ j the first time t after τ j−1 such that i is in position 1 at time t and i and k have spent
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at least n steps on different halves of the deck after τ j−1 and before t. Let I j be the indicator that k

is in position 2 at time τ j and let N =
∑k2/10n

j=1 . It is easy to see, as above, that there are constants

0< c < C <∞ such that c/
p

jn< EI j ≤ C/
p

jn. Hence EN =Θ(k/n) and it is easy to see, also as
above, that E[N2] =

∑

j1

∑

j2
E[I j1 I j2] = Θ(k/n). Therefore P(N > 0) ≥ E[N]2/E[N2] = Θ(k/n).

Now {M(k) = i} occurs if T ∈ [τ j ,τ j+1] for a j for which I j = 1, (provided that τ j ≤ T1 − m,
which holds with probability 1 − o(e−n)). Since this happens with probability Θ(n/k2), we have
P(M(k) = i) = Θ(1/k).

Theorem 6.1. The triple shuffle has a mixing time of O(n2 log3 n).

Proof. Let X t be t steps of the triple shuffle. We want to apply Lemma 6.3. By the chain rule we
have

ENT(Z) =
n
∑

k=1

Ek.

Partition the indexes k into blocks I0, I1, . . . , Idlog2 ne where I j := [n]∩ {2 j , . . . , 2 j+1− 1}. Then, since
there are no more than log2 n+ 2< 2 log n blocks,

ENT(Z) =
n
∑

k=1

Ek ≤ 2 log n
∑

k∈I j∗

Ek

where j∗ is the index j that maximizes the sum
∑

k∈I j
Ek. Write k∗ =max I j∗ . By Lemma 6.4 applied

to k ∈ I j∗ and T as in the lemma,

∑

k∈I j∗
kAkEk ≥

ak∗

2(k∗ ∨ n1/2)

∑

k∈I j∗

Ek.

Taken together with Lemma 6.3 with the same T , the last two observations give

ENT(ZX t)≤
�

1−
C ′k∗

(k∗ ∨ n1/2) log2 n

�

ENT(Z),

where t ≤ 20(k∗ ∨ n1/2)2 and C ′ = aC/4. Using this inductively yields for r = 1, 2, . . .,

ENT(ZX r t)≤
�

1−
C ′k∗

(k∗ ∨ n1/2) log2 n

�r
ENT(Z).

Taking Z = id, noting that ENT(id) = log(n!) < n log n, and r = 2((k∗ ∨ n1/2)/k∗)n1/2 log3 n then
gives

ENT(ZX40((k∗∨n1/2)3/k∗) log3 n)≤
C ′ log n

n
.

Since (k∗ ∨ n1/2)3/k∗ ≤ n2, the result now follows from Lemma 6.1.

Next we turn to the symmetrized shuffle. The following analog of Lemma 6.4 turns out to be neater
in its formulation, but a bit trickier to prove.
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Lemma 6.5. Fix k ∈ [n], let l := 2blog2 kc, T = 10l2 and t = 100n2. Then there is a constant a,
independent of n, k and i such that

P(M(k) = i)≥
a

k
for all i < k.

Proof. The intuition behind this is simple: with high probability cards k and i will spend a significant
proportion of the time up to T on different halves of the deck. During this time they will diffuse
with respect to each other a distance which is typically of order k. This will therefore cancel their
starting distance with probability of order 1/k. Doing this properly however, takes some work.

Fix i < k. Let E := {1, m, m+1, 2m}. Let Fs be the difference of the number of bottom-to-top moves
and the number of top-to-bottom moves up to time s. Let Ls be the difference of the number of
moves taking the bottom card to the top position and the number of moves taking the top card to
the bottom position and let Ds := Fs − Ls.

Let Us and Vs be the positions at time s of cards k and i respectively. Regard {Us} and {Vs} as random
walks on Zm, where positions in E are identified with 0 ∈Zm and j+1 and m+1+ j are identified
with j ∈ Zm. When card k is in {2, . . . , m− 1}, Us behaves like ordinary SRW and when card k is in
{m+ 2, . . . , 2m− 1}, it behaves like SRW with holding probability of 1/2; indeed in the former case
Us moves according to Fs and in the latter it moves along with Ls. When at 0, i.e. when card k is in
E, the random walk behaves differently. Let B be the event that none of the walks spends more than
time C

p
T up to time T at 0. Then P(B) is at least, say, 9/10, once C is properly chosen.

Whenever card k enters E, it will exit E in the upper half of the deck with a probability depending
on where it hits E. This probability is readily computed to be 192/253 from 0, 200/253 from m,
12/23 from m+ 1 and 96/253 from 2m. The particular numbers are not so important, we just note
that they are all in the interval [1/5,4/5]. In short, each time Us hits 0, it may change state, from
going along with Fs to following Ls or vice versa, and a change takes place with probability at least
1/5. Of course, all this goes for Vt too.

Taken together, Ut and Vt make the exact same moves, except when the cards k and i are on different
halves of the deck, in which case the walk corresponding to the card in the lower half, only makes
the move with probability 1/2 and instead holds with probability 1/2. We also note that if cards i
and k are in E at the same time, the conditional probability that i goes to the upper/lower half of
the deck given that k goes to the upper/lower half is at least 1/5.

Now consider for a while conditioning on the set of points in time at which one of the cards k and i
hit E and the position in which this happens. For each such time point, s j , let A j be the event that the
card in question exits on a different half than the other card and that an independent coin flip results
in heads. We let this coin be biased in such a way that A j happens with probability 1/5. Let A(p)
be the event that the proportion of time off 0 between s1 and some stopping time, that A j occurred
for the latest s j , is at least p. Then, regardless of the structure of the set of s j ’s, the conditional
probability of A(1/5) is at least 1/5. Let A be A(1/5) intersected with an extra independent coin flip
biased in such a way that the conditional probability of A is exactly 1/5.

The point of the extra coin flips is that A carries no information on the structure of the s j ’s, and since
Fs and Ls are independent of which half i and k are on, conditioning on A leaves no information on
{Ds}.
Now P(s1 < T/3) = 1− o(1). On {s1 < T/3} ∩A∩ B, which has probability at least (1− o(1))1/10,
let X be the sum of the Ds ’s for the first T/15 time points s for which Us and Vs are in different states.
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Note that s ≤ 2T/3+ C
p

T for all s counted in X . Let Y be the distance, modulo m in the above
sense, at time T between cards k and i caused by k− i, the rest of the Ds ’s and moves when one of
the cards is in E. Since P(|Y | ≤ 10k2) is bounded away from 0 and X is independent of Y , A, B and
{s1 > T/3}, the local CLT implies that there exists a constant b > 0 such that P(Y − X = 1) ≥ b/k.
Also, given this, there is clearly a probability bounded away from 0 that either i or k hit 0 in the
time interval [2T/3] and at the last time before T this happened, i and k both went to the the upper
half of the deck. If this happens, then we note that at time T , cards k and i are next to each other
on the upper half of the deck with k on top of i.

Finally, given all this, there is a probability at least 1/16 that m(k) = i; this happens e.g. if the two
first moves following the first time after T that card i hits position m are favorable. This completes
the proof.

Theorem 6.2. The additive symmetrization of the triple shuffle has mixing time O(n2 log3 n).

Proof. Copying the proof of Theorem 6.1 word for word, but using t = 100n2 and Lemma 6.5
instead of Lemma 6.4 shows that mixing time is bounded by 200n2 log3 n.

Some further small adjustments also lead to the following upper bound for the equalized shuffle,
only a factor log2 n off from the lower bound in Section 3.

Theorem 6.3. The mixing time of the equalized shuffle with n= 2m is O(n3 log3 n).

Proof. An analogous result to Lemma 6.5 goes through, but with t = 3n3 and T = 2nl2. The proof
is a copy of the proof of Lemma 6.4 with the difference (and simplification) that cards i and k move
non-deterministically with respect to each other only when one of them is at position m, m+1 or n.

Mimicking the proof of Theorem 6.1 once again, now gives a mixing time O(n3 log3 n).
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bring down the power of n from 5/2 to 2 in Theorem 6.1.
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