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Abstract

For subordinators X t with positive drift we extend recent results on the structure of the potential
measures

U (q)(d x) = E

�
∫ ∞

0

e−qt1{X t∈d x} d t

�

and the renewal densities u(q). Applying Fourier analysis a new representation of the potential
densities is derived from which we deduce asymptotic results and show how the atoms of the
Lévy measure Π translate into points of (non)smoothness of u(q).
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1 Introduction

Let X = (X t)t≥0 be a Lévy process, i.e. a real-valued stochastic process with stationary and indepen-
dent increments which possesses almost surely right-continuous sample paths and starts from zero.
If X has almost surely non-decreasing paths it is called a subordinator and can be thought of as an
extension of the renewal process which accommodates for infinitely many jumps on a finite time
horizon. In fact any such process can be written as

X t = δt +
∑

s≤t

∆s,

where ∆. are random, positive jumps drawn from a Poisson random measure. The non-negative
coefficient δ is referred to as drift of the subordinator. The jumps∆· are described by a deterministic
intensity measure Π(d x), usually referred to as Lévy measure, that is concentrated on the non-
negative reals and satisfies the integrability condition

∫ ∞

0

(1∧ x)Π(d x)<∞. (1.1)

The main object of our study are the q-potential measures, q ≥ 0,

U (q)(d x) = E

�
∫ ∞

0

e−qt1{X t∈d x} d t

�

(1.2)

of X whose distribution function will be denoted by U (q)(x) = U (q)([0, x]). The slight abuse of
notation will always become clear from the context. Being the central object of the potential theory
for subordinators, U (q) is a well-studied object. For more information we refer the reader to Chapter
3 of [B96]. Whenever δ > 0 each point x > 0 is visited by X with positive probability and it is
known that in this case the measure U (q) admits a bounded and continuous density u(q) = (U (q))′

with respect to the Lebesgue measure.

Our main objective is to study the regularity of the q-potential densities u(q) in more depth. Under
mild restrictions on the Lévy measure the main results concern differentiability properties of u(q)

when Π has atoms that may accumulate at zero. We characterize the set of values where differentia-
bility of u(q) fails as well as the order of derivatives where smoothness breaks down for each point
of this set. More precisely, if G denotes the set of atoms of Π(d x) then the nth derivative of u(q)

exists precisely outside of Gn, where Gn contains all numbers that can be represented as a sum of at
most n elements of G. Also we provide asymptotic results for u(q)(x) as x goes to zero and infinity.
For the results at infinity we need to restrict to renewal densities for which from now on we use the
conventions u= u(0) and U = U (0).

The paper is organized as follows: Motivation and further background of our research is presented
in Section 2. An example for the simplest Lévy measure Π = δ1 is included for which direct compu-
tations can be performed to present our abstract results in a simple setting. In Section 3 the main
results are presented and are proved in Section 4.
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2 Motivation and Background

2.1 Background

The q-potential measures U (q) are the fundamental quantities in potential theory and underly the
study of Markov Processes in general and Lévy processes in particular. As subordinators appear
naturally in the study of Markov processes (see Chapter IV in [B96]) and are in some sense the
simplest Lévy processes, it is not surprising that important information about its potential measures
has already appeared in the literature. For our special case when we study a subordinator with
positive drift, it is known that with Tx = inf{t ≥ 0 : X t > x}

u(x) =
1

δ
P[XTx

= x], (2.1)

i.e. u(x) has the clear probabilistic interpretation as creeping probability of X at level x . From this
it follows from a renewal argument that u solves the renewal type equation

δu(x) +

∫ x

0

u(x − y)Π̄(y) d y = 1

which will be the starting point for our analysis. This simple renewal structure motivates the alter-
native naming of u as renewal density. Here and in the following

Π̄(y) = Π
�

[y,∞)
�

=

∫ ∞

y

Π(d x)

denotes the tail of the Lévy measure. In fact, similar renewal type equations for u(q) are derived
below allowing for a study for all q ≥ 0.

The functions u(q) are rarely known explicitly but can be described using the universal representation
of the Laplace transform of U (q)(d x). On page 74 of [B96] it is shown that

∫ ∞

0

e−λx U(d x) =
1

ψ(λ)
, λ > 0, (2.2)

where ψ(λ) is the the Laplace exponent

ψ(λ) = δλ+

∫ ∞

0

(1− e−λx)Π(d x).

In few exceptional cases such as stable subordinators without drift, i.e. Π(d x) = cx−1−αd x for some
α ∈ (1, 2), this formula sufficiently simplifies and allows for an explicit Laplace inversion.

Smoothness issues for the particular case q = 0 have attracted some attention in special cases
motivated by applications; we shall only highlight two recent results:
First, it is known that u is completely monotone and henceforth infinitely differentiable for the
class of so-called special subordinators whose Laplace exponent is a special Bernstein function (see
[SV06]). This, as we will show below, is not true for general subordinators. Furthermore, for special
subordinators, u is a decreasing function. Monotonicity fails in general but we show that a similar
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structural property holds: For all q ≥ 0, u(q) is of bounded variation and hence a difference of two
increasing functions.
Secondly, when the Lévy measure Π(d x) has no atoms and δ > 0 it has been shown in [CKS10] that
u is continuously differentiable. This result can also be recovered by Kingmann’s study of p-functions
(see Chapter 3 of [K72]) or by our representation (3.4) below.

We note that the renewal density u is in fact the Kingmann’s p-function which is naturally associated
to a regenerative event, see [K69] and Chapter 3 in [K72]. Using this link one could recover some
of our results below for the special case q = 0. However these results are preliminary in our study
and we focus on finer properties of the functions u(q) for q ≥ 0.

A further topic of interest are the asymptotics of u and its derivatives. The asymptotic at zero and
infinity are classically deduced from the renewal theorem. The relation

u(x)→
1

δ
, as x → 0, (2.3)

is stated in Theorem 5 in [B96], whereas

u(x)→
1

E[X1]
, as x →∞, (2.4)

seems to have been obtained first in [HS01]. We apply two representations developed in the present
paper to understand the asymptotic behaviour of u(q) and (u(q))′ in more detail. It turns out that
different representations are of very different use: A series representation can be used to deduce the
asymptotic properties at zero, whereas a Fourier inversion representation is useful to understand
the more delicate asymptotic at infinity. The use of the Riemann-Lebesque theorem for the Fourier
inversion representation forces us to assume q = 0 so that those results are restricted to renewal
densities.

2.2 Applications

The motivation for our work is mostly theoretical but we outline below some applications. Our
theoretical motivation stems from the mere importance of potential measures in the study of Lévy
processes. As such those appear in various one-sided and double-sided exit problems and especially
the probability of hitting a boundary point of an interval at first exit out of it is represented in terms
of u or if the Lévy process is killed at an independent exponential time in terms of u(q) (see Theorem
19 of Chapter VI in [B96]).

Potential densities appear equally in other theoretical studies; For example, representation (3.4)
below was used to guess the necessary and sufficient analytic condition for existence of right-inverses
of Lévy processes which then, in [DS10], have been proved via subsequent discoveries.

Our results should be applicable for simulations of subordinators as detailed knowledge of the
set of non-smoothness of u(q) could significantly speed up the numerics behind the simula-
tion/computations of potential densities. This has been noticed in relation with scale functions
by Kuznetsov, Kyprianou and Rivero (private communication) caused by the celebrated identity
W ′(x) = u(x) between scale functions of a spectrally negative Lévy process and the down-going lad-
der height subordinator (for more information see Chapter 7 of [B96]). The same holds for potential
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measures of subordinators. Recall that the scale function is positive and increasing, and is involved
in computing double exit probabilities for spectrally negative Lévy processes X , i.e. processes that
can jump only downwards. More precisely, with T[−a,b] = inf{t ≥ 0 : X t > b or X t <−a}

P
�

XT[−y,x] > x
�

=
W (y)

W (x + y)
, for all x > 0 and y > 0.

Finally, let us point out a possible extension. For atomic Lévy measures our main results, Theorem
2 and Theorem 3, link the atoms of Π to points of non-differentiability of u(q). It seems possible to
extend this to higher order singularities of Π̄(x). Such a generalization would be extremely useful
for numerical computations of the scale function which is a basic quantity in insurance mathemat-
ics as it allows for estimation and calculation the double exit probabilities which in the actuarial
mathematics context are ruin probabilities. For more background see [CY05] and [AKP04].

2.3 Example

To motivate our findings, here is an illustrative example for which the renewal density u can be
calculated explicitly and some non-trivial connections between the atom of Π and differentiability
of u can be observed.

Example 1. Suppose δ = 1 and Π consists of just one atom at 1 with mass 1, i.e. Π = δ1, implying
that Π̄ = 1[0,1]. For x < 1 one immediately obtains

u(x) = P[XTx
= x] = P[no jump before x] = e−xΠ̄(0) = e−x .

For x ∈ [n, n+ 1) we exploit the structure of the process more carefully. Since x < n+ 1, on the event
of creeping at x there can be at most n jumps of height one before exceeding x. If precisely i ≤ n jumps
occur, they need to appear before x − i as otherwise the drift would have pushed X above level x before
the final jump implying

P[XTx
= x] =

n
∑

i=0

P[exactly i jumps before x − i].

As the number of jumps before x − i is Poissonian with parameter x − i we obtain

u(x) =

(

e−x : x < 1,

e−x +
∑n

i=1
(x−i)i

i!
e−(x−i) : x ∈ [n, n+ 1).

The graphs of u and it’s derivative are plotted in Figure 1. This first representation already sheds
some light on the possible behavior of u for atomic Lévy measures: in general u is not monotone, is
asymptotically linear at zero, and possibly non-differentiable.
Let us consider the issue of differentiability in more detail. Apparently u is infinitely differentiable in the
open intervals (n, n+ 1), n= 0,1, ..., with

u′(x) =

(

−e−x : x < 1,

−e−x +
∑n

i=1
(x−i)i−1

(i−1)! e−(x−i)−
∑n

i=1
(x−i)i

i!
e−(x−i) : x ∈ (n, n+ 1).
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Figure 1: u (solid curve), u′ (dashed curve) for δ = 1 and Π = δ1

The only problematic points are the integers at which the piecewise defined function u′ gets the additional
summands

(

e−(x−1)− (x − 1)e−(x−1) : n= 1,
(x−n)n−1

(n−1)! e−(x−n)− (x−n)n

n!
e−(x−n) : n> 1,

when going from x < n to x > n. This sheds some light on differentiability as for x = 1 the right deriva-
tive is 1 and the left derivative 0 whereas for n > 1 the remainder summand vanishes. In particular,
this implies that u is differentiable everywhere except at 1 with

u′(x+)− u′(x−) = Π({x}).

Taking higher order derivatives, the same reasoning shows that at {n}, u is (n−1)-times but not n-times
differentiable.

The example reveals three properties which we aim to understand for general subordinators: higher
order differentiability of u depends crucially on the atoms of Π, u is generally not monotone and u′

vanishes at infinity and is asymptotically linear at zero.

3 Results

Our Fourier analytic approach forces us to control the small jumps. To this end we recall the
Blumenthal-Getoor index β(Π) for subordinators:

β(Π) = inf
n

γ > 0 :

∫ 1

0

xγΠ(d x)<∞
o

.

Some of our main results are formulated under the following assumption.

Assumption (A). Assume that β(Π)< 1.

Note that property (1.1) implies that β(Π) ≤ 1 so that the assumption only rules out boundary
cases and in particular any stable subordinator with drift is included. More direct computations for
particular examples of interest show that our results will be still valid for Blumenthal-Getoor index
1.
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3.1 Series and Integral Representations

The main objective are the potential densities. Our results are motivated by the following extension
of the renewal type equation for u.

Lemma 1. The q-potential measure U (q)(d x) has a density u(q) satisfying the renewal type equation

δu(q)(x) = 1−
∫ x

0

u(q)(x − y)(Π̄(y) + q)d y. (3.1)

Iterating the renewal type equation (3.1), one heuristically obtains a series representation for the
potential density u(q). Making this a rigorous statement is slightly involved as Π̄ might have a
singularity at zero. The problems caused by the singularity can be circumvented taking into account
only the local integrability of Π̄ at zero which is a direct consequence of the property (1.1). In
[CKS10] a proof for the following proposition was carried out for non-atomic Lévy measures. In
fact this proposition can be recovered from Chapter 3 in [K72] where it is disguised in terms of
p-functions. For completeness we sketch a proof below.

Proposition 1 (Series Representation for u(q)). The series representation

u(q)(x) =
∞
∑

n=0

(−1)n

δn+1

�

1 ∗
�

Π̄ + q
�∗n�(x) (3.2)

holds for the potential densities u(q). Here, 1 denotes the Heavyside function.

At this point we should note that for q = 0, Equation (3.2) appears in a slightly different form
in [CKS10]. This is due to a different definition of convolutions. In this paper we define the
convolution of two real functions f and g by

f ∗ g(x) =

∫ x

0

f (x − y)g(y) d y,

(and 1 ∗ f ∗0(x) = 1) whereas in [CKS10] the convolution was defined by f ∗ g(x) =
∫ x

0
f (x −

y)g ′(y) d y . In any case, with F(x) =
∫ x

0
f (t)d t and G(x) =

∫ x

0
g(t)d t, we have F ∗ G = 1 ∗ f ∗ g,

where the second convolution is in the sense of the present paper.

Unfortunately, deriving properties of u(q) from (3.2) is a delicate matter as one has to deal with an
infinite alternating sum of iterated convolutions. Nevertheless, one particular property that follows
from (3.2) is that u(q) is of bounded variation.

Corollary 1. There are increasing functions u(q)1 and u(q)2 such that

u(q) = u(q)1 − u(q)2 .

In particular, u(q) is a function of bounded variation.
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To obtain a deeper understanding, we introduce a more carefull representation for u(q) based on
Fourier analysis. In the following we denote by

L f (s) =

∫ ∞

−∞
e−sx f (x)d x

the bilateral Laplace transform for complex numbers s = λ+ iθ . As Π̄(x) is only defined for x > 0,
we put Π̄(x) = 0 for x ≤ 0.

Proposition 2 (Laplace Inversion Representation of u(q)). Under Assumption (A), for arbitrary integer
N larger than 0 and any fixed λ > 0,

gN ,q(λ+ iθ) =

�

−L (Π̄ + q)(λ+ iθ)
�N

(λ+ iθ)δN+1�1+ 1
δ
L (Π̄ + q)(λ+ iθ)

�

is a well defined absolutely integrable function in θ and

u(q)(x) =
N−1
∑

n=0

(−1)n

δn+1 1 ∗
�

Π̄ + q
�∗n(x) + eλx 1

2π

∫ ∞

−∞
eiθ x gN ,q(λ+ iθ) dθ . (3.3)

There is a good reason to not only consider the simplest case N = 1. Larger N makes the integrand
decay faster which is needed to derive higher order differentiability via interchanging differentiation
and integration. For N > 1 it is still easy to work with representation (3.3) as the finite sum can be
tackled termwise and for the integral classical convergence results can be applied.

As a first application of Proposition 2 we derive a representation for the first derivative of the po-
tential densities. In contrast to Proposition 2 we are not free to choose N = 1; the minimal N now
depends on the Blumenthal-Getoor index.

Corollary 2. The right and left derivatives of u(q) exist and are given by

�

u(q)
�′(x+) =−

Π̄(x+)+ q

δ2 +
∞
∑

n=2

(−1)n

δn+1

�

Π̄ + q
�∗n(x), (3.4)

�

u(q)
�′(x−) =−

Π̄(x−) + q

δ2 +
∞
∑

n=2

(−1)n

δn+1

�

Π̄ + q
�∗n(x). (3.5)

Moreover, under Assumption (A) the following representations hold for N >− 1
β(Π)−1

and λ > 0:

�

u(q)
�′(x+) =−

Π̄(x+)+ q

δ2 +
N−1
∑

n=2

(−1)n

δn+1

�

Π̄ + q
�∗n(x) + eλx 1

2π

∫ ∞

−∞
eiθ xhN ,q(λ+ iθ) dθ , (3.6)

�

u(q)
�′(x−) =−

Π̄(x−) + q

δ2 +
N−1
∑

n=2

(−1)n

δn+1

�

Π̄ + q
�∗n(x) + eλx 1

2π

∫ ∞

−∞
eiθ xhN ,q(λ+ iθ) dθ . (3.7)

For every λ > 0 the function

hN ,q(λ+ iθ) =

�

−L (Π̄ + q)(λ+ iθ)
�N

δN+1�1+ 1
δ
L (Π̄ + q)(λ+ iθ)

�

is absolutely integrable in θ .
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Remark 1. We should note that a refinement of the approach of [CKS10] for non-atomic Lévy measures
yields the series representation (3.4), (3.5) without assuming Blumenthal-Getoor index smaller than 1.
Indeed, the difference is that in our setting Π̄ can have jumps and therefore is outside of the scope of
[CKS10]. However, the jumps do not affect the study of the uniform and absolute convergence of the
series in (3.4) and (3.5), and it can be carried out as in [CKS10].
The arguments of [CKS10] are not repeated here; we only prove the more usefull Laplace inversion
representation under Assumption (A) and derive from this the series representation.

Remark 2. We do not know how to derive the asymptotics of u′ at infinity only from the series rep-
resentation (3.4), (3.5). It seems that a representation of the type (3.6), (3.7) is much more useful
for studying the properties of u′ and therefore it is an interesting problem to get such a representation
without Assumption (A).

3.2 Higher Order (Non)Differentiability for the Potential Densities

Having established that u(q) is of bounded variation in Corollary 1, u(q) must be differentiable away
from a Lebesgue null set. The null set can be identified as the set of atoms as a consequence of
either of the representations given in Corollary 2.

Corollary 3. The potential densities u(q) are differentiable at x if and only if x is not an atom of Π.
More precisely,

�

u(q)
�′(x+)−

�

u(q)
�′(x−) =

Π({x})
δ2 . (3.8)

It is interesting to see that the derivative of u(q) only jumps upwards and how the size of the jumps
is determined by the weight of the atoms and the drift. The reader might want to compare this with
Figure 1.

Unless explicitly mentioned, from now on we assume that Assumption (A) holds.

The remaining part of this section deals with higher order differentiability properties of the q-
potentials. The study focuses on subordinators whose Lévy measure has atoms which accumulate
at most at zero. To emphasise the effect of atomic Lévy measure on differentiability, the results are
divided into three theorems for non-atomic Lévy measure, purely atomic Lévy measure, and Lévy
measure with atomic and absolutely continuous parts.

The case of non-atomic Lévy measure already appeared in [CKS10]. For Blumenthal-Getoor index
smaller than 1 their results follow easily from the Laplace inversion representation. To present a
complete picture we state and reprove the following result of [CKS10] for smooth Lévy measures.

Theorem 1. If Π̄ is everywhere infinitely differentiable, then U (q) is everywhere infinitely differentiable.

More accurate effects of the atoms on differentiability are revealed in what follows. The explicit
calculation of Example 1 for Π = δ1 indeed suggests more interesting behavior for higher order
derivatives. In that particular case, u is (n− 1)-times differentiable but not n-times differentiable at
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n. The critical points n ∈N in the example have the property that they can be reached by precisely
n jumps of the size of the atom 1.
Denote by G the atoms of the Lévy measure Π. We say that x > 0 can be reached by n atomic jumps
if x =

∑n
i=1 gi with gi ∈ G. For k ≥ 1 we define the sets

Gk =

¨

x > 0 : x =
j
∑

i=1

gi , gi ∈ G, 1≤ j ≤ k

«

of points that can be reached by at most k atomic jumps. The next theorem shows how higher order
differentiability is connected to the sets Gk. As it is formulated for purely atomic Lévy measures it
can be seen as the counterpart of Theorem 1.

Theorem 2. If Π is purely atomic with a possible accumulation point of atoms only at zero, then, for
k ≥ 1,

U (q) is (k+ 1)-times differentiable at x ⇐⇒ x /∈ Gk.

In particular, if x cannot be reached by atomic jumps only, then U (q) is infinitely differentiable at x.

The following example shows that we can easily find examples with exotic differentiability proper-
ties.

Example 2. If Π has atoms on 1/k for k ≥ 1, then U (q) is infinitely differentiable at x if and only if
x /∈Q. For x = n/k, U (q) is at most n-times differentiable at x.

Finally, we show how Theorems 1 and 2 combine each other: the atoms prevent U (q) from being
twice differentiable and an additional absolutely continuous part does not change the behavior.

Theorem 3. If Π̄(x) = Π̄1(x) + Π̄2(x), where Π1 is purely atomic with possible accumulation point of
atoms only at zero and Π̄2 is infinitely differentiable, then, for k ≥ 1,

U (q) is (k+ 1)-times differentiable at x ⇐⇒ x /∈ Gk.

In particular, if x cannot be reached by atomic jumps only, then U (q) is infinitely differentiable at x.

Remark 3. In fact Theorem 3 is still true if Π̄2 possesses only finitely many derivatives. Then the
statement will be valid, for any k, such that Π̄2 is k-times differentiable.

Remark 4. Recalling the close connection of u and creeping probabilities given in (2.1), it would be
interesting to have a good probabilistic interpretation of non-existence of derivatives of certain order for
the creeping probabilities.

3.3 Asymptotic Properties of Potential Densities

Asymptotic properties at zero and infinity of U are classical results in potential theory of subordina-
tors (see for instance Proposition 1 of Chapter 3 in [B96]). Also the limiting behavior of the renewal
density u at zero and infinity are known (see (2.3) and (2.4)).

In what follows we aim at giving more refined convergence properties based on the representations
for u(q) and (u(q))′. Some results will be only valid for q = 0. Utilizing the series representation
of Section 3.1, we first strengthen the asymptotic at zero. In the following f ∼ g denotes strong
asymptotic equivalence, i.e. lim f

g
= 1.
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Theorem 4. For general subordinator with positive drift and n ≥ 0, the following strong asymptotic
equivalence holds:

�

�

�

�

�

n
∑

k=0

(−1)k

δk+1
1 ∗ (q+ Π̄)∗k(x)− u(q)(x)

�

�

�

�

�

∼
(−1)n

δn+2 1 ∗ (q+ Π̄)∗(n+1)(x), as x → 0.

The first order asymptotic of (2.3) appears in the theorem for n = 0 and reveals more precise
qualitative information:

Corollary 4. The potential density u(q) is asymptotically linear with slope −(Π(R) + q)/δ2 at zero iff
the Lévy measure is finite. If the Lévy measure is infinite, then u(q) decays faster than linearly.

A simple class of examples are stable subordinators with drift.

Example 3. If the Lévy measure has stable law with α ∈ (0, 1), the strong asymptotics at zero are given
by

1

δ
− u(x)∼

1

δ2 C

∫ x

0

1

yα
d y =

C

δ2(1−α)
x1−α.

Lévy measure putting mass precisely to one point provides an example of asymptotically linear
behavior.

Example 4. If the Lévy measure has only one atom at 1 and δ = 1, then the direct calculation in
Example 1 or Corollary 4 both lead to the linear asymptotics

1− u(x) = 1− e−x ∼ x , as x → 0.

As for absolutely continuous Lévy measures the existence of the derivative of the renewal density
was established quite recently, the asymptotics of u′ seem to be unknown. On first view one might
be tempted to differentiate the asymptotics of u to derive the asymptotics of u′. Due to lack of
knowledge on ultimate monotonicity of u and u′ we cannot apply the monotone density theorem
and instead work with the representations of Section 3.1.

Theorem 5. Assume condition (A), i.e. β(Π) < 1. Let Π̄(0+) =∞, then there exists n ≥ 1 such that
β(Π)≤ n

n+1
and then

�

u(q)
�′(x+) =−

Π̄(x+)
δ2 + ...+

(−1)nΠ̄∗n(x)
δn+1 + o(1), as x → 0,

�

u(q)
�′(x−) =−

Π̄(x−)
δ2 + ...+

(−1)nΠ̄∗n(x)
δn+1 + o(1), as x → 0.

If Π̄(0+)<∞ then, as x → 0,

�

u(q)
�′(x+) =

q+ Π̄(x+)
δ2 + o(1),

�

u(q)
�′(x−) =

q+ Π̄(x−)
δ2 + o(1).
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For a large class of processes this implies that the asymptotic of (u(q))′ are indeed given by the
derivative of the asymptotic of u(q):

Corollary 5. If Π has Blumenthal-Getoor index β < 1/2, then
�

u(q)
�′(x+) ∼ − q+Π̄(x+)

δ2 and
�

u(q)
�′(x−)∼− (q+Π̄)(x−)

δ2 at zero.

The hypothesis of the theorem is not necessary to have the asymptotic Π̄(x)/δ2 at zero as the next
example shows.

Example 5. If X is stable with index α ∈ (0,1) and drift δ > 0, then

Π̄∗2(x) = C1

∫ x

0

(x − y)−α y−α d y = C2 x−2α+1

and inductively Π̄∗n(x) = Cn x−nα+n−1. This, combined with Theorem 5, implies that

u′(x)∼−
Π̄(x)
δ2 =−

C1 x−α

δ2 , as x → 0.

Finally, we consider the asymptotics of u′ at infinity which is technically more involved as we could
not derive the asymptotics from the series representation (3.4), (3.5). Instead, the proof is based on
a refinement of the Laplace inversion representation.

Theorem 6. If E[X1]<∞, then

lim
x→∞

u′(x+) = lim
x→∞

u′(x−) = 0.

As our approach does not work for infinite mean subordinators, it remains open whether u′ vanishes
at infinity or not in this setting.

4 Proofs

4.1 Series and Integral Representations

Proof of Lemma 1. When q = 0 the statement was already mentioned in Section 2.1 and is due to
Kesten (see [K69]). Let us now fix q > 0. First note that for any random variable eq ∼ Ex p(q) which
is independent of X using the Markov property at time eq and integrating out the possible positions
of X eq

≤ x we get

U(x) = E
�

∫ eq

0

1{X t≤x}d t
�

+

∫ x

0

U(x − y)P(X eq
∈ d y) = U (q)(x) + qU ∗ u(q)(x),

since u(q) is continuous and bounded whenever the subordinator possesses a positive drift, see (iii)
in Theorem 16 in [B96]. Therefore, differentiation yields

u(x) = u(q)(x) + qu ∗ u(q)(x).
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Comparing the latest with

δu(x) = P(XTx
= x)

= P(XTx
= x; Tx ≤ eq) +

∫ x

0

P(XT (x−y) = x − y)P(X eq
∈ d y)

= P(XTx
= x; Tx ≤ eq) + qδ

∫ x

0

u(x − y)u(q)(y)d y,

we get the expected relation
P(XTx

= x; Tx ≤ eq) = δu(q)(x).

We use this final relation to write

P(Tx ≤ eq) = 1−P(X eq
≤ x) = δu(q)(x) +P(XTx

> x; Tx ≤ eq).

Next we have, using the compensation formula from Chapter 0 in [B96],

P(XTx
> x; Tx ≤ eq) = q

∫ ∞

0

e−qtE
�
∑

s≤t

1{Xs−≤x; Xs>x}

�

d t

= q

∫ ∞

0

e−qt

∫ t

0

∫ x

0

Π̄(x − y)P(Xs ∈ d y)ds

=

∫ x

0

Π̄(x − y)u(q)(y)d y.

This, combined with P(X eq
≤ x) = q

∫ x

0
u(q)(y)d y , proves the assertion.

Proof of Proposition 1: Since Π̄ may not be continuous, we cannot directly apply the general Theo-
rem 6 of [CKS10]. Nonetheless, the proof of Theorem 6 of [CKS10] can be adapted to this situation
by noting that in fact it is not crucial that g there is continuously differentiable but the fact that it
is almost everywhere differentiable with a negative derivative vanishing at infinity. The latter is due
to the fact that g ′ is used in convolutions. In this case, for completeness, we sketch a proof but we
refer to [CKS10] for details. First note that each summand of

φ(x) :=
∞
∑

n=0

(−1)n
1 ∗
�

Π̄ + q
�∗n(x)

δn+1 , (4.1)

is finite as for subordinators
∫ 1

0
xΠ(d x) is finite showing that Π̄ is not exploding too fast at zero. We

now show that the series is absolutely converging in particular showing that it is well defined and
can be rearranged. First, since 1 ∗

�

Π̄ + q
�∗(n−1)(x) is increasing we get iteratively

1 ∗
�

Π̄ + q
�∗n(x)≤

�

1 ∗
�

Π̄ + q
�

(x)
�n. (4.2)

As 1 ∗ (Π̄ + q)(x) is continuously increasing and 1 ∗ (Π̄ + q)(0) = 0 there is b > 0 such that for all
x ≤ b, 1∗ (Π̄+q)(x)< δ/2 and hence the series defining φ is absolutely and uniformly convergent.
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Now we use an iterative procedure to extend the absolute convergence to all x > 0: reasoning as
above we obtain

1 ∗
�

Π̄ + q
�∗n(2b)

δn+1 =

∫ b

0

1 ∗
�

Π̄ + q
�∗(n−1)(2b− y)
δn

(Π̄ + q)(y)
δ

d y

+

∫ 2b

b

1 ∗
�

Π̄ + q
�∗(n−1)(2b− y)
δn

(Π̄ + q)(y)
δ

d y

≤
1 ∗
�

Π̄ + q
�∗(n−1)(2b)
δn

1 ∗ (Π̄ + q)(b)
δ

+
1 ∗
�

Π̄ + q
�∗(n−1)(b)
δn

1 ∗ (Π̄ + q)(2b)
δ

≤ (n+ 1)

�

1 ∗ (Π̄ + q)(b)
δ

�(n−1)
1 ∗ (Π̄ + q)(2b)

δ
≤
(n+ 1)
2n−1

1 ∗ (Π̄ + q)(2b)
δ

.

Iterating this arguments as in the proof of Theorem 6 of [CKS10] shows locally uniform and absolute
convergence of the series for all x > 0. To verify that φ equals u we exploit Fubini’s theorem to
obtain

φ(x) =
1

δ
− (Π̄ + q) ∗

1

δ

∞
∑

n=1

(−1)n−1 1 ∗
�

Π̄ + q
�∗(n−1)(x)
δn =

1

δ
−

1

δ
(Π̄ + q) ∗φ(x),

implying that φ is a solution of Equation (3.1). Uniqueness of solutions for locally bounded func-
tions follows since for two solutions f and φ

| f −φ|(x)≤ |( f −φ) ∗ 1/δ(Π̄ + q)(x)|
= ...

= |( f −φ) ∗ 1/δk�Π̄ + q
�∗k(x)|

≤ sup
s≤x
| f −φ|(s)1/δk1 ∗ (Π̄ + q)∗k(x)

for all k. The right hand side converges to zero since δ−k1 ∗
�

Π̄ + q
�∗k(x) goes to zero for all x ≥ 0

as shown above since it is a member of uniformly convergent series.

Proof of Corollary 1. The proof follows directly from Proposition 1. To define the functions u(q)1 and

u(q)2 we separate the positive and negative parts as

u(q)(x) =
∞
∑

n=0

1 ∗
�

Π̄ + q
�∗2n(x)

δn+1 −
∞
∑

n=0

1 ∗
�

Π̄ + q
�∗(2n+1)(x)

δ(2n+1)
=: u(q)1 (x)− u(q)2 (x)

which is possible taking into account the absolute convergence of the series representation. Each
summand of the defining series for u(q)1 and u(q)2 is increasing, thus, u(q)1 and u(q)2 themselves are
increasing.

We are now going to derive the Laplace transform representation of Proposition 2. As mentioned
above, the main difficulty is that we need to deal with convolutions of possibly unbounded functions.
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Let us first motivate the approach. Taking into account the series representation we divide u(q) into
two parts:

u(q)(x) =
N−1
∑

n=0

(−1)n

δn+1 1 ∗
�

Π̄ + q
�∗n(x) +

∑

n≥N

(−1)n

δn+1 1 ∗
�

Π̄ + q
�∗n(x)

=:
N−1
∑

n=0

(−1)n

δn+1 1 ∗
�

Π̄ + q
�∗n(x) +φN ,q(x).

The goal of the following Fourier analysis is to derive a convenient integral representation for φN ,q.
For this sake first note that it follows as in the proof of Proposition 1 that φN ,q is the unique locally
bounded solution of the following renewal type equation:

φN ,q(x) =
(−1)N

δN+1 1 ∗
�

Π̄ + q
�∗N (x)−

1

δ
φN ,q(x) ∗ (Π̄ + q)(x). (4.3)

If we were allowed to turn convolution into multiplication in Laplace domain for Re(s)> 0, Equation
(4.3) transforms into

LφN ,q(s) =
(−1)N

δN+1 L1(s)L (Π̄ + q)(s)N −
1

δ
LφN ,q(s)L (Π̄ + q)(s). (4.4)

Solving (4.4) for LφN ,q, leads to

LφN ,q(s) =
(−1)NL1(s)(L (Π̄ + q)(s))N

δN+1(1+ 1
δ
L (Π̄ + q)(s))

=: gN ,q(s) (4.5)

whenever the quotient is well-defined. If furthermore we were able to verify integrability conditions
needed for Laplace inversion we obtain an integral representation for φN ,q. We are now going to
check what is needed to turn this formal approach into rigorous statements.

For the rest of this section we set δ = 1 in order to simplify the notation.

For the first step it is shown that indeed Equation (4.3) turns into Equation (4.4). A priori this is not
clear due to the possible singularity of Π̄ at zero.

Lemma 2. There is λ0 ≥ 0 such that LφN ,q solves (4.4) on {λ+ iθ : λ≥ λ0,θ ∈R}.

Proof. To show that the first transformation can be carried out we show for s = λ+ iθ , λ bounded
from below by some λ0, thatL (Π̄+q)(s) andLφN ,q(s) are well defined to deduceL (Π̄+q)∗n(s) =
L (Π̄+q)(s)n,L (Π̄+q)∗φN ,q(s) =L (Π̄+q)(s)LφN ,q(s), andL1∗(Π̄+q)(s) =L1(s)L (Π̄+q)(s).

To validate Laplace transformation of (Π̄+q)n for λ large enough, note that we may choose λ0 such
that

∫ ∞

0

e−λ0 x(Π̄ + q)(x) d x < 1 (4.6)
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which is possible as
∫ 1

0
Π̄(x) d x < ∞ and limx→∞ Π̄(x) = 0. It now follows directly from Fubini’s

theorem that iterated convolutions of Π̄ + q turn into multiplication under Laplace transforms. We
now show that φN ,q can be Laplace transformed for which we use the fact that

∞
∑

n=N

�

�L
�

Π̄ + q
�∗n(s)

�

�=
∞
∑

n=N

�

�L (Π̄ + q)(s)
�

�

n
<∞

to justify the change of summation and integration in the following:

LφN ,q(s) =

∫ ∞

0

e−sx
∞
∑

n=N

(−1)n
�

Π̄ + q
�∗n(x) d x =

∞
∑

n=N

(−1)n
∫ ∞

0

e−sx�Π̄ + q
�∗n(x) ds <∞. (4.7)

Now it is only left to showLφN ,q ∗(Π̄+q)(s) =LφN ,q(s)L (Π̄+q)(s) and furtherL1∗(Π̄+q)(s) =
L1(s)L (Π̄ + q)(s). As Π̄ + q and φN ,q can be Laplace transformed, we obtain from (4.6) and (4.7)
the bound

∫ ∞

0

∫ ∞

0

�

�

�e−stφN ,q(t − x)(Π̄ + q)(x)
�

�

� d td x

=

∫ ∞

0

∫ ∞

0

�

�

�e−λ(t−x)φN ,q(t − x)
�

�

�

�

�

�e−λx(Π̄ + q)(x)
�

�

� d td x <∞

enabling us to apply Fubini’s theorem once more to obtain LφN ,q ∗ (Π̄ + q)(s) = LφN ,q(s)L (Π̄ +
q)(s). The final identityL1∗(Π̄+q)(s) =L1(s)L (Π̄+q)(s) follows from similar arguments noting
that |L1(s)| ≤ 1

λ
.

The second step in our analysis consists of showing that the convolution Equation (4.4) can indeed
be solved in Laplace domain leading to Equation (4.5). The following lemma is stronger then the
previous as we can show that gN ,q(s) is well defined for any s = λ+ iθ with λ > 0 even though a
priori we do not know that gN ,q is the Laplace transform of φN ,q.

Lemma 3. Suppose that Π is non-trivial, then gN ,q(λ+ iθ) is well-defined for λ > 0.

Proof. To show that gN ,q(s) is well-defined at s ∈ C with positive real-part, it suffices to show that

L (Π̄ + q)(s) 6=−1.

Let us assume thatL (Π̄+q)(s0) =−1 for some s0 = λ0+ iθ0 with λ0 > 0. Without loss of generality
way may assume θ0 6= 0 as otherwise the contradiction follows trivally. The assumption necessarily
implies that

Im(L (Π̄ + q)(s0)) =

∫ ∞

0

e−λ0 x sin(θ0 x)(Π̄ + q)(x)d x = 0. (4.8)

As Π̄ is decreasing, we see that
∫ ∞

0

e−λ0 x(Π̄ + q)(x) d x <∞. (4.9)
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Dividing the integral of the absolutely integrable function e−λ0 x(Π̄ + q)(x) sin(θ0 x) into pieces of
the length of one period of the sine function and applying Fubini’s theorem, we obtain

0=

∫ ∞

0

e−λ0 x(Π̄ + q)(x) sin(θ0 x)d x

=

∫ ∞

2π/θ0

∞
∑

k=0

1[2kπ/θ0,2(k+1)π/θ0)(x)e
−λ0 x(Π̄ + q)(x) sin(θ0 x)d x

=
∞
∑

k=0

∫
2(k+1)π
θ0

2kπ
θ0

e−λ0 x(Π̄ + q)(x) sin(θ0 x)d x .

As e−λ0 x Π̄(x) is strictly decreasing, unless (Π̄ + q)(x) = 0 and (Π̄ + q)(x) is non-increasing each
summand

∫
2(k+1)π
θ0

2kπ
θ0

e−λ0 x(Π̄ + q)(x) sin(θ0 x) d x

must be non-negative and hence vanish as the total sum is zero. In particular, this implies that
Π̄(x)+q = 0 for all x > 0 so that for q > 0 a direct contradiction occurs. For q = 0 the contradiction
occurs as Π was assumed to be non-trivial. Thus g (s) is well-defined.

Remark 5. If furthermore E[X1] < ∞, then gN ,0 is well-defined also on the imaginary axis. This
follows from the same proof noting that in this case (4.9) holds as well for λ0 = 0. Indeed as each term
∫

2(k+1)π
θ0

2kπ
θ0

Π̄(x) sin(θ0 x) d x has to vanish we conclude that Π has to be concentrated on {2kπ/θ0}k≥1.

On the other hand, in this case, as

Re(L Π̄(s0)) =

∫ ∞

0

e−λ0 x cos(θ0 x)Π̄(x)d x

=
∑

k≥0

Π̄
�2kπ

θ0

�

∫
2(k+1)π
θ0

2kπ
θ0

cos(θ0 x)d x = 0,

we see that Re(L Π̄(s0)) 6=−1 and thus gN ,q(s) is well-defined.

The third step of our derivation of an integral representation for u(q) is an inversion approach for
gN ,q. We now briefly discuss the connection to Fourier transforms which is crucial for the inversion:
for integrable functions f define for x ∈R

F f (x) =

∫ ∞

−∞
e−i x t f (t) d t.

Apparently, the Fourier transform F appears when evaluating the Laplace transform on the imagi-
nary line only. Defining the auxiliary function

rλ(x) = e−λx(Π̄ + q)(x)
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the simple connection is

F rλ(θ) =L (Π̄ + q)(λ+ iθ).

Taking into account this close connection of Laplace and Fourier transforms, classical Fourier inver-
sion for λ > 0 gives the inversion formula (also known as Bromwich integral)

φN ,q(x) =
1

2π

∫ ∞

−∞
LφN ,q(λ+ iθ)e(λ+iθ)x dθ

=
1

2π
eλx

∫ ∞

−∞
gN ,q(λ+ iθ)eiθ x dθ

if gN ,q(λ+ iθ) is absolutely integrable with respect to θ . To prove the needed integrability we start
with a simple estimate.

Lemma 4. For any a > 0 and y ≤ a the estimate Π̄(y) ≤ C(a,ε)y−(β(Π)+ε) holds for all ε > 0 with
β(Π)+ ε < 1.

Proof. First note that by the definition of the Blumenthal-Getoor index
∫ 1

0
yβ(Π)+εΠ(d y) < ∞ for

any ε > 0. The claim follows from the simple observation that for any α > 0 there is δ > 0 such that
for any τ < δ

α≥
∫ δ

τ

yβ(Π)+εΠ(d y)≥ τβ(Π)+ε(Π̄(τ)− Π̄(δ))

as Π̄ is decreasing. Letting τ go to zero, we deduce limsupτ→0τ
β(Π)+εΠ̄(τ)≤ α.

The need for Assumption (A) comes from the following lemma and its consequences.

Lemma 5. For any λ > 0 and ε > 0 the following estimate holds:

|L Π̄(λ+ iθ)| ≤

(

C 1
λ

: |θ | ≤ 1,

C |θ |β(Π)+ε−1 : |θ |> 1,

where C = C(ε)> 0.

Proof. We estimate the imaginary and real part of L Π̄ separately. For the imaginary part we first
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estimate for θ > 0:
�

�Im(L Π̄(λ+ iθ))
�

�

= θ−1

�

�

�

�

�

∫ ∞

0

sin(y)rλ(y/θ)d y

�

�

�

�

�

= θ−1

�

�

�

�

�

∞
∑

k=0

∫ (2k+1)π

2kπ

(rλ(y/θ )− rλ((y +π)/θ)) sin(y)d y

�

�

�

�

�

≤ θ−1

�

�

�

�

�

π

∞
∑

k=1

rλ(2k/θ)− rλ((2k+ 2)/θ ) + θ−1

∫ π

0

(rλ(y/θ )− rλ((y +π)/θ ))d y

�

�

�

�

�

≤ θ−1

∫ π

0

rλ(y/θ )d y

≤ Cθβ(Π)+ε−1

∫ π

0

y−(β(Π)+ε)d y = Cθβ(Π)+ε−1,

where we have used Lemma 4 and that rλ is decreasing in the last inequality. Unfortunately, this uni-
form in λ upper bound is not suitable for all θ as the constant of Lemma 4 explodes as θ approaches
zero. To circumvent this problem we derive a different upper bound that works everywhere equally
well but is not uniform in λ:

�

�Im(L Π̄(λ+ iθ))
�

�

≤ θ−1

∫ ∞

0

rλ(y/θ)d y

= θ−1

∫ θ

0

rλ(y/θ)d y + θ−1

∫ ∞

θ

rλ(y/θ)d y

≤ θ−1

∫ θ

0

Π̄(y/θ)d y + θ−1Π̄(1)

∫ ∞

θ

e−(yλ/θ)d y

≤ θ−1C

∫ θ

0

(y/θ)−(β(Π)+ε)d y + θ−1Π̄(1)
θ

λ

= C + C
1

λ
,

where we again used Lemma 4 but now y/θ does not explode for small θ as we only integrate up
to θ . Having an estimate for positive θ we note that Im(L Π̄(λ+ iθ)) as a function of θ is odd to
deduce that

|Im(L Π̄(λ+ iθ))| ≤

(

C 1
λ

: |θ | ≤ 1,

C |θ |β(Π)+ε−1 : |θ |> 1.
(4.10)
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Similarly, we estimate the real part
�

�Re(L Π̄(λ+ iθ))
�

�

=

�

�

�

�

�

∫ ∞

0

cos(θ y)rλ(y)d y

�

�

�

�

�

=

�

�

�

�

�

�

∫
π
2

0

cos(y)rλ(yθ
−1)d y + θ−1

∞
∑

k=1

∫ (4k+3)π
2

(4k+1)π
2

(rλ(yθ
−1)− rλ((y +π)θ

−1)) cos(y)d y

�

�

�

�

�

�

≤
∫

π
2

0

rλ(yθ
−1)d y

≤ C |θ |β(Π)+ε−1

for large |θ | and precisely as above for small |θ |. This finishes the proof of the lemma.

The upper bound can now be used to derive the necessary integrability of gN ,q.

Lemma 6. For arbitrary integer N larger than 0 and any λ > 0 we have
∫ ∞

−∞

�

�gN ,q(λ+ iθ)
�

� dθ <∞ (4.11)

for gN ,q defined in (4.5).

Proof. As we have already found a good upper bound for L Π̄(s) in the previous lemma, it suffices
to show that the denominator

p(λ+ iθ) = 1+L (Π̄ + q)(λ+ iθ)

is bounded away from zero. In Lemma 3 we have shown that p(λ+ iθ) has no zeros for λ≥ 0 and,
hence, by continuity of p it suffices to show that as |θ | tends to infinity p(λ+ iθ) stays bounded
away from zero. To this end it suffices to note that from Lemma 5

lim
|θ |→∞

L (Π̄ + q)(λ+ iθ) = lim
|θ |→∞

�

L Π̄(λ+ iθ) +
q

λ+ iθ

�

= 0.

Using the fact |L1(λ+ iθ)| = |1/(λ+ iθ)| ≤min
� 1
λ

, 1
|θ |

	

for λ > 0, we employ Lemma 5 to obtain
the upper bound
�

�gN ,q(λ+ iθ)
�

�≤ C |L1(λ+ iθ)||L (Π̄ + q)(λ+ iθ)|N

= C

�

�

�

�

1

λ+ iθ

�

�

�

�

�

�

�

�

L Π̄(λ+ iθ) +
q

λ+ iθ

�

�

�

�

N

≤

(

C ′ 1
λN+1 : |θ | ≤ 1,

C ′|θ |N(β(Π)+ε−1)−1 : |θ |> 1.
(4.12)

The right hand side is integrable in θ as by assumption β(Π) < 1 and ε can be chosen sufficiently
small so that N(β(Π)+ ε− 1)< 0.

We are now in a position to derive the Laplace inversion representations for u(q).
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Proof of Proposition 2: For λ ≥ λ0, λ0 satisfying
∫∞

0
e−λ0 x(Π̄ + q)(x) d x < 1 we can directly follow

the strategy explained before Lemma 2. The proof then follows directly from the definition of φN ,q

and Laplace inversion justified by Lemmas 2, 3, and 6.
The proof of the proposition is complete if we can show that for arbitrary 0< λ < λ0

∫

Γ(λ)
esx gN ,q(s) ds =

∫

Γ(λ0)
esx gN ,q(s) ds,

where Γ(λ) = {λ+ iθ : θ ∈ R}. Laplace transforms are analytic (see for instance Theorem 75.2 of
[K88]) and gN ,q has no singularity for λ > 0 by Lemma 3, hence, Cauchy’s theorem applied to the
closed contour formed by the pieces

Γ(λ0)∩ {|θ | ≤ R},
Γ(λ)∩ {|θ | ≤ R},
Φ(R) =

�

s : s = r + iR, r ∈ [λ,λ0]
	

,

Φ̃(R) =
�

s : s = r − iR, r ∈ [λ,λ0]
	

,

taken with the right orientation implies the claim. Note that the integrals over the horizontal pieces
vanish as R tends to infinity:

lim
R→∞

�

�

�

∫

Φ(R)
esx gN ,q(s)ds

�

�

�≤ Ceλ0 x(λ0−λ) lim
R→∞

|R|N(β(Π)+ε−1)−1,

where we have used (4.12) for |θ | > 1 to estimate |gN ,q(s)| for R big enough. Choosing ε small
enough so that β(Π)+ ε− 1< 0, the right hand side tends to zero. The same argument shows that
the integral over Φ̃(R) vanishes.

Proof of Corollary 2: As remarked after the corollary, the arguments of [CKS10]will not be repeated.
Instead, under Assumption (A) we prove the Laplace inversion representation and deduce from this
the series representation of [CKS10].
We first show that the right and left derivatives of u(q) exist and are given by the representation of the
theorem. First, right and left derivatives of the finite sum in (3.3) exist by termwise differentiating
the finite sum and using that 1 ∗

�

Π̄ + q
�∗n(x) =

∫ x

0

�

Π̄ + q
�∗n(y) d y is differentiable from the left

and the right with derivative
�

Π̄ + q
�∗n(x−) (resp.

�

Π̄ + q
�∗n(x+)). As iterated convolutions are

continuous, only the first summand is not everywhere differentiable.
To see that the integral is differentiable at x and to deduce the integral representation of (u(q))′ note
that

d

d x
eλx 1

2π

∫ ∞

−∞
eiθ x gN ,q(λ+ iθ) dθ = eλx 1

2π

∫ ∞

−∞
(λ+ iθ)eiθ x gN ,q(λ+ iθ) dθ

= eλx 1

2π

∫ ∞

−∞
eiθ xhN ,q(λ+ iθ) dθ .

The differentiation under the integral is justified by dominated convergence and the upper bound
�

�

�

�

d

d x
eiθ x gN ,q(λ+ iθ)

�

�

�

�

=
�

�θ gN ,q(λ+ iθ)
�

�≤

(

C |θ | 1
λN+1 : |θ | ≤ 1,

C |θ |N(β(Π)+ε−1) : |θ |> 1,
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derived in (4.12) which is integrable in θ for sufficiently small ε by our choice of N .

As a second step we now derive the pointwise series representation from the Laplace transform
representation of (u(q))′. As for (4.12) we obtain the upper bound

�

�hN ,q(λ+ iθ)
�

�≤ C |L Π̄(λ+ iθ)|N ≤

(

C 1
λN : |θ | ≤ 1,

C |θ |N(β(Π)+ε−1) : |θ |> 1,
(4.13)

for arbitrary ε > 0. To prove the corollary it suffices to show that for N tending to infinity, the
Laplace inversion integral

eλx 1

2π

∫ ∞

−∞
eiθ xhN ,q(λ+ iθ) dθ

vanishes for fixed x > 0 and λ > 0. With our choice of ε, i.e. β(Π) + ε − 1 < 0, (4.13) implies
pointwise convergence eiθ xhN ,q(λ+ iθ)→ 0. We are done if we can justify the change of limit and
integration. This comes from the uniform (for N ≥ 2[(β(Π)+ ε− 1)−1] + 2 ) in θ integrable upper
bound

�

�eiθ xhN ,q(λ+ iθ)
�

�≤

(

C : |θ | ≤ 1,

C |θ |−2 : |θ |> 1,

and the dominated convergence theorem.

4.2 Higher Order (Non)Differentiability

In this section the results on differentiability are proved. In contrast to Corollary 3, which follows
either from differentiating the Laplace inversion representation or differentiating termwise the series
representation of u(q), the proofs for higher order derivatives are exclusively based on the more
elegant Laplace inversion approach. This forces us to assume β(Π) < 1 and we do not see how to
circumvent this (probably dispensable) restriction.
To reduce the proofs to (non)differentiability of iterated convolutions, differentiability of the Laplace
inversion integral is ensured in the next lemma if N is sufficiently large.

Lemma 7. For N >− k
β(Π)−1

, the Laplace inversion integral in (3.3) is everywhere k-times continuously
differentiable in x with

dk

d xk
eλx 1

2π

∫ ∞

−∞
eiθ x gN ,q(λ+ iθ) dθ =

1

2π

∫ ∞

−∞
e(λ+iθ)x(λ+ iθ)k gN ,q(λ+ iθ) dθ .

Proof. To check that we can differentiate

eλx 1

2π

∫ ∞

−∞
eiθ x gN ,q(λ+ iθ) dθ

k-times under the integral, by dominated convergence we need to find an integrable upper bound
for the derivative:

�

�

�

dk

d xk
eiθ x gN ,q(λ+ iθ)

�

�

�=
�

�

�θ k gN ,q(λ+ iθ)
�

�

�.
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Integrability follows directly from the choice of N and the integrable upper bound (4.12) for suffi-
ciently small ε.

Having understood differentiability of the remainder term, to prove higher order differentiability of
u(q) we choose N large enough to apply the previous lemma and then deal with the finite sum of
convolutions. Here is a lemma for smooth Lévy measures.

Lemma 8. If f : R → R+ with f (x) = 0 for x ≤ 0 is infinitely differentiable on R+ and locally
integrable at zero, then f ∗n is everywhere infinitely differentiable and integrable at zero for any n≥ 1.

Proof. The proof is easily conducted by induction with basis n = 1, i.e. f (x). Then the simple
identity

f ∗(n+1)(x) =

∫
x
2

0

f ∗n(x − y) f (y)d y +

∫
x
2

0

f ∗n(y) f (x − y)d y

and the induction hypothesis confirm the statement of the lemma with respect to differentiability.
The integrability follows similarly from the representation

∫ 1

0

f ∗(n+1)(x)d x =

∫ 1

0

f ∗n(y)

∫ 1−y

0

f (s)dsd y

and the integrability of f (x) at zero.

Combining the previous lemmas we can prove Theorem 1.

Proof of Theorem 1: As the potential measure U (q) is differentiable with derivative u(q), to differ-
entiate (k + 1)-times U (q) it suffices to differentiate k-times the potential density u(q). Applying
Proposition 2 with N >− k

β(Π)−1
yields

dk+1

d xk+1
U (q)(x) =

dk

d xk
u(q)(x)

=
dk

d xk

N−1
∑

n=1

(−1)n

δn+1 1 ∗ (Π̄ + q)∗n(x) +
dk

d xk
eλx 1

2π

∫ ∞

−∞
eiθ x gN ,q(λ+ iθ) dθ .

As N was assumed to be large enough, the integral is everywhere k-times differentiable by Lemma
7. For β(Π) close to 1 the sum might be arbitrarily large but is always finite. So we can differentiate
termwise the sum and use d

d x
1 ∗ (Π̄ + q)∗n(x) = (Π̄ + q)∗n(x) as Π̄ is continuous leading to

dk+1

d xk+1
U (q)(x) =

N−1
∑

n=1

(−1)n

δn+1

dk−1

d xk−1
(Π̄ + q)∗n(x) + eλx 1

2π

∫ ∞

−∞
eiθ x(λ+ iθ)k gN ,q(λ+ iθ) dθ .

(4.14)

Applying Lemma 8 to each summand of the finite sum concludes the proof.
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The proof revealed the full strength of the Laplace inversion approach compared to the series ap-
proach of [CKS10]. Their major technical problems consist of justifying differentiation under the
alternating infinite sum (3.2). As we split the infinite sum into a harmless finite sum and an integral
which can be dealt with easily, the main problems of [CKS10] have been circumvented.

Next we analyze the influence of atoms of Π on (non)differentiability for which we start with a
lemma on higher order convolutions for discrete Lévy measures.

Lemma 9. Suppose Π is purely atomic with possible accumulation point of atoms only at zero, then

(a) Π̄∗n is a polynomial of order at most n− 1 away from Gn for n≥ 1,

(b) Π̄∗n is everywhere (n−2)-times differentiable but not (n−1)-times differentiable at Gn\Gn−1 for
n≥ 2.

Proof. The proof is based on the simple observation

1[0,a] ∗ f (x) =

(
∫ x

x−a
f (y) d y : a < x ,

∫ x

0
f (y) d y : a ≥ x ,

(4.15)

for integrable f vanishing on the negative half-line. Hence, 1[0,a] ∗ f is continuous everywhere and
differentiable at x and x + a if and only if f is continuous at x . We will resort to the fact that as Π
is purely atomic, Π̄ = Π(x ,∞) is piecewise constant and can be represented as linear combination
of step functions, i.e.

Π̄(x) =
∑

a∈G

Π({a})1[0,a](x). (4.16)

To prove (a) we proceed by induction which we start with n = 1. Taking into account (4.16),
Π̄∗1 = Π̄ is a polynomial of order 0 away from G. Next, assume that Π̄∗n is a polynomial of order
at most n − 1 away from Gn. To prove the claim for Π̄∗(n+1), we fix an interval (d, b) such that
d ∈ Gn+1 ∪ {0}, b ∈ Gn+1 and (d, b)∩ Gn+1 = ;. Our aim is to show that for every x ∈ (d, b) there
is an open interval ∆(x) ⊂ (d, b) such that Π̄∗(n+1) is polynomial of order at most n on ∆(x). Fix
x ∈ (d, b) and choose a∗(x) =max

�

c ∈ G ∪ {0} : x − c > d
	

. As the atoms accumulate only at zero
there is a neighbourhood ∆(x) of x such that z − a∗(x) > d for every z ∈ ∆(x). Next, by Fubini’s
theorem we observe

Π̄∗(n+1)(x) =
∑

a∈G

Π({a})1[0,a] ∗ Π̄∗n(x). (4.17)

By the induction hypothesis and (4.15) all summands are locally polynomials of order at most n.
To show that Π̄∗(n+1) is a polynomial of order at most n, we split Π̄∗n according to the two cases of
(4.15):

Π̄∗(n+1)(x) =
∑

x≤a∈G

Π({a})1[0,a] ∗ Π̄∗n(x) +
∑

x>a∈G

Π({a})1[0,a] ∗ Π̄∗n(x)

=

∫ x

0

Π̄∗n(y) d y
∑

x≤a∈G

Π({a}) +
∑

x>a∈G

Π({a})
∫ x

x−a

Π̄∗n(y) d y.
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The first summand clearly is a polynomial of order at most n on ∆(x) by the induction hypothesis
using that

∑

a≥x Π({a}) is a constant on ∆(x). To show that the second summand is a polynomial
as well, we write for all z ∈∆(x):

∑

z>a∈G

Π({a})
∫ z

z−a

Π̄∗n(y) d y

=
∑

a∗(x)≥a∈G

Π({a})
∫ z

z−a

Π̄∗n(y) d y +
∑

a∗(x)<a<z,a∈G

Π({a})
∫ z

z−a

Π̄∗n(y) d y.

We clearly deduce by the induction hypothesis that the second sum, having finitely many summands
only, is a polynomial of order at most n on ∆(x). By the definition of a∗(x) and the induction
hypothesis, Π̄∗n is the same polynomial on (d, b). Also, since for z− a > d

∫ z

z−a

Π̄∗n(y) d y ≤ a sup
s∈(d,b)

|Π̄∗n(s)| ≤ Ca,

the first sum is clearly absolutely summable and henceforth it defines a polynomial of order at
most n. Thus we conclude that on ∆(x) we have that Π̄∗(n+1) is a polynomial of order at most n.
Representing (b, d) as a union of neighbourhoods ∆(x) shows that Π̄∗(n+1) is indeed a polynomial
of order at most n on (b, d).

In particular, (a) shows that Π̄∗n is infinitely differentiable away from Gn. To prove the claimed non-
differentiability in (b), a different approach is needed. We prove the assertion again by induction
in n. The first step is to show that Π̄∗2 is everywhere continuous and not differentiable at G2\G.
Continuity follows from the continuity of 1[0,a]∗Π̄(x) and the locally uniform convergence of (4.17)
which can, applying monotonicity of Π̄ and the properties of Π, be seen for ε small enough and N
large enough from

sup
x

 

∑

ε>a∈G

Π({a})1[0,a] ∗ Π̄(x) +
∑

N<a∈G

Π({a})1[0,a] ∗ Π̄(x)

!

= sup
x

 

∑

ε>a∈G

Π({a})
∫ x

x−a

Π̄(y) d y +
∑

N<a∈G

Π({a})
∫ x

0

Π̄(y) d y

!

≤ sup
x

 

∑

ε>a∈G

Π({a})aΠ̄(x − ε) +
∫ x

0

Π̄(y) d y
∑

N<a∈G

Π({a})

!

≤ sup
x

C(x)

 

∑

ε>a∈G

Π({a})a+
∑

N<a∈G

Π({a})

!

ε→0,N→∞
−→ 0,

where C(x) are locally bounded constants.
Now we show that Π̄∗2 is not differentiable at G2\G. Although we already know that Π̄∗2 is a
polynomial away from G2, we derive a second representation showing that for x /∈ G2 it can be
differentiated termwise. As the atoms are discrete, there is a largest atom c < x implying that
G ∩ (c, x] = ;. Taking into account (4.15), that Π̄ is constant in (x − c, x], and the definition of G2,
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we see that 1[0,a] ∗ Π̄ is infinitely differentiable away from G2. To show that the infinite sum (4.17)
can be differentiated termwise for n= 1, we derive a locally absolutely and uniformly summable in
x upper bound for the series of derivatives:

∑

a∈G

Π({a})
�

�

�

�

d

d x
1[0,a] ∗ Π̄(x)

�

�

�

�

=
∑

x≤a∈G

Π({a})Π̄(x) +
∑

x>a∈G

Π({a})
�

�Π̄(x)− Π̄(x − a)
�

� .

The first summand is bounded as Π̄ is locally constant. For the second, the sum only runs over
x − c < a as otherwise Π̄(x) − Π̄(x − a) = 0. There is no accumulation point of atoms at x , so
the second summand is bounded by CΠ([x − c, x]) < ∞ and, hence, Π̄∗2 can be differentiated
termwise.
With this in hand we can show non-differentiability at G2\G. Let b ∈ G2\G, then, since G has a
possible accumulation point only at 0, there is a neighbourhood A(b) of b such that [y, x]∩G2 = {b}
for y, x ∈ A(b). Since b ∈ G2\G we have Π̄(z) = Π̄(b) for all z ∈ A(b) so that

�

Π̄∗2
�′(b+)−

�

Π̄∗2
�′(b−)

= lim
x↓b, y↑b

�

�

Π̄∗2
�′(x)−

�

Π̄∗2
�′(y)

�

= lim
x↓b, y↑b

�
∑

b≤a∈G

Π({a})(Π̄(x)− Π̄(y)) +
∑

b>a∈G

Π({a})
�

Π̄(x)− Π̄(x − a)− Π̄(y) + Π̄(y − a)
�

�

= lim
x↓b, y↑b

∑

b>a∈G

Π({a})(Π̄(y − a)− Π̄(x − a))

=
∑

b>a∈G

Π({a})Π({b− a}).

Since b ∈ G2\G and G has a possible accumulation point only at zero, the last sum has a finite
number of summands and is strictly positive. The exchange of limit and summation is possible since
for all y and x sufficiently close to b and all a ∈ G, such that a < c, for some c > 0, y − a ∈ A(b)
and x − a ∈ A(b). The latter implies that Π̄(x − a) = Π̄(y − a) and the sum in the limit is a finite
sum. This proves (b) for n= 2.

Next, assume that Π̄∗n is everywhere (n− 2)-times differentiable and that for b ∈ Gn\Gn−1

0<
dn−1

d xn−1 Π̄
∗n(b+)−

dn−1

d xn−1 Π̄
∗n(b−)<∞.

To show that at the critical points Π̄∗(n+1) is everywhere (n− 1)-times differentiable we again verify
termwise the differentiability:

∑

a∈G

Π({a})

�

�

�

�

�

dn−1

d xn−1 1[0,a] ∗ Π̄∗n(x)

�

�

�

�

�

=
∑

x>a∈G

Π({a})

�

�

�

�

�

dn−2

d xn−2

�

Π̄∗n(x)− Π̄∗n(x − a)
�

�

�

�

�

�

+
∑

x≤a∈G

Π({a})

�

�

�

�

�

dn−2

d xn−2 Π̄
∗n(x)

�

�

�

�

�

.

As Π̄∗n is everywhere (n− 2)-times continuously differentiable, the second sum is locally bounded
by the property (1.1). Clearly for any x ∈ Gn\Gn−1 there is an interval (x − d, x) such that (x −
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d, x)∩ Gn = ; and d < x because G has a possible accumulation point only at zero. The latter also
implies that there are at most finitely many atoms a such that x > a ≥ d and therefore we need to
study only

∑

d>a∈G

Π({a})

�

�

�

�

�

dn−2

d xn−2

�

Π̄∗n(x)− Π̄∗n(x − a)
�

�

�

�

�

�

.

But from (a), Π̄∗n(y) is a polynomial of order at most n−1 for all y ∈ (x−d, x) so that by the mean
value theorem

�

�

�

�

�

dn−2

d xn−2 Π̄
∗n(x)−

dn−2

d xn−2 Π̄
∗n(x − a)

�

�

�

�

�

≤ Ca. (4.18)

As
∑

a<d aΠ({a}) < ∞ we can interchange differentiation and summation and then using the in-
duction hypothesis that Π̄∗n is (n − 2)-times continuously differentiable everywhere. In total we
conclude that Π̄∗(n+1) is (n− 1)-times continuously differentiable everywhere.

Finally our task is to show that for b ∈ Gn+1\Gn

0<
dn

d xn Π̄
∗(n+1)(b+)−

dn

d xn Π̄
∗(n+1)(b−)<∞.

As b ∈ Gn+1\Gn and there is a neighbourhood A(b) of b such that A(b)∩Gn+1 = {b}, the arguments
above imply that we can differentiate termwise n-times (4.17) on A(b)\b to get

dn

d xn Π̄
∗(n+1)(x) =

∑

x−a 6∈A(b),a∈G

Π({a})
dn

d xn 1[0,a] ∗ Π̄∗n(x) +
∑

x−a∈A(b),a∈G

Π({a})
dn

d xn 1[0,a] ∗ Π̄∗n(x).

Using (4.15) we rewrite the latter as

dn

d xn Π̄
∗(n+1)(x)

=
∑

x≤a∈G

Π({a})
dn−1

d xn−1 Π̄
∗n(x) +

∑

x>a∈G

Π({a})
�

dn−1

d xn−1 Π̄
∗n(x)−

dn−1

d xn−1 Π̄
∗n(x − a)

�

.

Now, as b ∈ Gn+1\Gn, Π̄∗n(x) is continuously differentiable on A(b), Π({b}) = 0 and on A(b)
dn−1

d xn−1 Π̄∗n(x) =
dn−1

d xn−1 Π̄∗n(y), because according to Lemma 9, Π̄∗n(x) is a polynomial of order at most
n− 1 on A(b), we obtain

dn

d xn Π̄
∗(n+1)(b+)−

dn

d xn Π̄
∗(n+1)(b−)

= lim
x↓b, y↑b

�

dn

d xn Π̄
∗(n+1)(x)−

dn

d xn Π̄
∗(n+1)(y)

�

= lim
x↓b, y↑b

∑

x>a∈G

�

dn−1

d xn−1 Π̄
∗n(x − a)−

dn−1

d xn−1 Π̄
∗n)(y − a)

�

=
∑

b>a∈G

Π({a})
�

dn−1

d xn−1 Π̄
∗n((b− a)+)−

dn−1

d xn−1 Π̄
∗n((b− a)−)

�

.
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Since b ∈ Gn+1\Gn we have that either b− a 6∈ Gn or b− a ∈ Gn\Gn−1, where the latter is possible
only for finitely many, but more than zero, a ∈ G. We mention that the interchange of limit and
summation is valid since for all x and y sufficiently close to b, there is c > 0, such that for all a ∈ G
such that a < c, x − a ∈ A(b) and y − a ∈ A(b). We have already argued above that the n− 1-st
derivative of Π̄∗n is a constant on A(b) due to Lemma 9. By the induction hypothesis for those a

dn−1

d xn−1 Π̄
∗n((b− a)+)−

dn−1

d xn−1 Π̄
∗n((b− a)−)> 0.

Thus we conclude the induction and the proof of the lemma.

The observation of the lemma motivates the strategy for the main proofs: first, choose N large
enough that the integral of the Laplace inversion representation can be differentiated as often as
needed. Secondly, consider the finite sum of iterated convolutions for which critical points for kth
derivatives only occur for the kth summand. Lower order convolutions vanish and higher order
convolutions are smooth enough.

Before we give the main proofs, one more lemma is needed to show how to separate Π̄ and q and
afterwards absolutely continuous and discrete part of the Lévy measure.

Lemma 10. Suppose Π is purely atomic with possible accumulation point only at zero. If f is infinitely
differentiable away from Gi with locally bounded derivatives and integrable at zero, then Π̄ ∗ f is
infinitely differentiable away from Gi+1 with locally bounded derivatives.

Proof. First note that by (4.15) for arbitrary a > 0

dk

d xk
1[0,a] ∗ f (x) =

(

dk−1

d xk−1 f (x)− dk−1

d xk−1 f (x − a) : a < x ,
dk−1

d xk−1 f (x) : a ≥ x ,
(4.19)

From this simple identity the claim follows for the special case Π = δa. For infinitely many atoms
the difficulty appears from the fact that Π̄ is an infinite sum of indicator functions so that summation
and differentiation in

Π̄ ∗ f (x) =

 

∑

a∈G

Π({a})1[0,a]

!

∗ f (x) =
∑

a∈G

Π({a})
�

1[0,a] ∗ f
�

(x) (4.20)

need to be interchanged. To justify the Fubini flip in (4.20) it suffices to show locally uniform
absolute convergence of the right hand side. An upper bound can be obtained as

∑

x>a∈G

Π({a})
∫ x

x−a

| f (y)| d y +
∑

x≤a∈G

Π({a})
∫ x

0

| f (y)| d y

≤ sup
y∈[x−c,x]

| f (y)|
∑

x>a∈G

Π({a})a+
∫ x

0

| f (y)| d y
∑

x≤a∈G

Π({a}),

where c denotes the largest atom strictly smaller than x which exists as the atoms are discrete away
from zero. The right hand side is finite by property (1.1), continuity of f , and integrability of f at
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zero.
Having justified (4.20), we now show that away from Gi+1

dk

d xk
Π̄ ∗ f (x) =

∑

a∈G

Π({a})
dk

d xk

�

1[0,a] ∗ f
�

(x) (4.21)

which we prove by showing locally uniform absolute convergence of the series of derivatives. First
note that as x /∈ Gi+1 there is c′ > 0 such that (x−c′, x+c′)∩Gi+1 =∅. As the set B = {a ∈ G : a > c′}
is finite, we appeal to (4.19) and the mean value theorem, we obtain for a ∈ Bc ∩ G

dk

d xk
1[0,a] ∗ f (x)≤ sup

y∈[x−c′,x]∩G

�

�

�

�

dk

d yk
f (y)

�

a
�

�

�.

Then

∑

a∈Bc∩G

Π({a})

�

�

�

�

�

dk

d xk
(1[0,a] ∗ f )(x)

�

�

�

�

�

≤ sup
y∈[x−c,x]

�

�

�

�

�

dk

d yk
f (y)

�

�

�

�

�

∑

a∈Bc∩G

Π({a})a,

which again is bounded by property (1.1) and local boundedness of derivatives of f . This is enought
to show (4.21) as B is a finite set.
In total we proved that Π̄∗ f is infinitely differentiable away from Gi+1 and derivatives may be taken
termwise. Local boundedness of the derivatives follows from the above estimate.

With the lemmas in mind we can give the proofs of the main results.

Proof of Theorem 2. To prove higher order (non)differentiability, we consider the Laplace inversion
representation of Proposition 2 for N >− k

β(Π)−1
:

dk

d xk
u(q)(x) =

dk

d xk

N−1
∑

n=1

(−1)n

δn+1 1 ∗ (Π̄ + q)∗n(x) +
dk

d xk
eλx 1

2π

∫ ∞

−∞
eiθ x gN ,q(λ+ iθ) dθ . (4.22)

As N was assumed to be large enough, the integral is everywhere k-times differentiable by Lemma
7 so that the critical points claimed in the theorem have to come from differentiating the finite
(possibly very large) sum. As motivated before the proof, N can be chosen arbitrarily large as the
higher order convolutions are smooth enough.
Since representation (4.22) is valid replacing k by some n ≤ k, we proceed by induction showing
that u(q) is k-times differentiable in x iff x 6∈ Gk. The induction basis for n = 1 is true in complete
generality (without Assumption (A)) due to Corollary 3. Assume next that the claim is true for some
n < k and consider (4.22) with k replaced by n + 1. Since the nth derivative does not exist on
Gn, we only need to consider the (n+ 1)st derivative on R+\Gn. The integral term is (n+ 1)-times
differentiable as seen above so that we only consider the sum

N−1
∑

i=1

(−1)i

δi+1 1 ∗ (Π̄ + q)∗i(x)

=
n
∑

i=1

(−1)i

δi+1 1 ∗ (Π̄ + q)∗i(x) +
(−1)n+1

δn+2 1 ∗ (Π̄ + q)∗(n+1)(x) +
N−1
∑

i=n+2

(−1)i

δi+1 1 ∗ (Π̄ + q)∗i(x).
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We start with the case q = 0. By Lemma 9, Π̄∗i(x) is everywhere (i − 2)-times continuously differ-
entiable implying everywhere the existence of n+ 1 continuous derivatives for the third summand.
According to Lemma 9 the first sum is everywhere sufficiently differentiable away from Gn. There-
fore we are left to deal with the middle term. But again according to Lemma 9, Π̄∗(n+1) is n−times
differentiable on R+\Gn+1 with jumps of the (n+ 1)st derivative on Gn+1\Gn. This shows that the
(n+ 1)st derivative of u exists iff x /∈ Gn+1. In particular, setting k = n+ 1 and using U ′ = u, the
proof is complete for q = 0. To extend the result to q > 0, we use that by linearity

(Π̄ + q)∗n(x) =
n
∑

k=0

�n

k

�

Π̄∗k ∗ q∗(n−k)(x)

= Π̄∗n(x) +
n−1
∑

k=0

�n

k

�

Π̄∗k ∗ q∗(n−k)(x).

Plugging this into the previous equation reduces the problem to the case q = 0 and additional
convolutions with higher order convolutions of the constant function q. By Lemma 10 and induction,
smoothness of higher convolutions of the constant function q implies that the convolutions Π̄∗k ∗
q∗(n−k) are differentiable away from Gk. As k ≤ n−1 this shows that the additional convolutions do
not generate additional points of non-differentiability.
Hence, that the claimed differentiability property for u(q) follows from that for u.

Proof of Theorem 3: The strategy is similar to the one of Theorem 2. Choosing again N > − k
β(Π)−1

,
representation (4.22) holds by Proposition 2 and taking into account Lemma 7 implies that we only
need to discuss differentiability of Π̄∗n = (Π̄1+ Π̄2+ q)∗n for n= 1, ..., N − 1.
The first term Π̄1 + Π̄2 + q is infinitely differentiable precisely for any x /∈ G as Π̄1 is constant away
from the atoms and jumps downwards on G and Π̄2 is infinitely differentiable. For the iterated
convolutions we have to separate the contributions of Π̄1 and Π̄2. Writing again

(Π̄1+ Π̄2+ q)∗n(x) =
n
∑

k=0

�n

k

�

Π̄∗k1 ∗ (Π̄2+ q)∗(n−k)(x)

= Π̄∗n1 (x) +
n−1
∑

k=0

�n

k

�

Π̄∗k1 ∗ (Π̄2+ q)∗(n−k)(x)

the problem is reduced to pure convolutions of Π̄1 and mixed convolutions. The pure convolutions
have been analyzed in the course of the proof of Theorem 2 and we have the claimed differentiability
behavior of the theorem.
The proof is complete if we can show that smoothness of Π̄2 + q makes the mixed convolutions
Π̄∗k1 ∗ (Π̄2 + q)∗(n−k) everywhere infinitely differentiable away from Gk. To apply Lemma 10, we
use Lemma 8 and (4.2) to see that (Π̄2 + q)∗l is everywhere infinitely differentiable and integrable
at zero for arbitrary integer l. Hence, Π̄1 ∗ (Π̄2 + q)∗l is infinitely differentiable away from G and
furthermore integrable at zero by the same arguments used to derive (4.2). Inductively, Lemma 10
shows that Π̄∗k1 ∗(Π̄2+q)∗l is infinitely differentiable away from Gk for any integers k, l. As k ≤ n−1
this shows that no additional points of non-differentiability are caused by Π̄2.
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4.3 Asymptotic Behavior

In contrast to the application to differentiability of the Laplace inversion representation, we now
apply the series representation to find the asymptotics of u(q) and it’s derivative at zero. The Laplace
inversion representation is then applied to the asymptotics of u′ at infinity.

Proof of Theorem 4: From Equation (3.2) it follows that

1
δ
− u(q)(x)

1
δ2 1 ∗ (q+ Π̄)(x)

= 1+
∞
∑

n=2

(−1)n+1 1∗(q+Π̄)∗n(x)
δn+1

1
δ2 1 ∗ (q+ Π̄)(x)

. (4.23)

Hence, we need to show that the latter summand of the right hand side converges to zero (abso-
lutely) as x tends to zero. To this end we use the estimate (4.2) to obtain

�

�

�

�

�

�

∑∞
n=2(−1)n+1 1∗(q+Π̄)∗n(x)

δn+1

1
δ2 (1 ∗ (q+ Π̄)(x))

�

�

�

�

�

�

≤
∞
∑

n=1

�

1 ∗ (q+ Π̄)(x)
�n

δn .

Clearly, limx→0 1 ∗ (q+ Π̄)(x) = 0 by the property (1.1) so that for x small enough the right hand
side is bounded from above by

1

1− 1∗(q+Π̄)(x)
δ

− 1.

This shows that the right hand side vanishes for x tending to zero proving (4.23). The higher order
asymptotics follow in precisely the same manner.

The refined first order asymptotics can now be deduced directly:

Proof of Corollary 4: By Theorem 4, u(q) behaves asymptotically like 1
δ2 (qx +

∫ x

0
Π̄(y) d y) at zero.

As Π̄ decreases we have for x sufficiently small

u(q)(x)
x

≥
qx + xΠ̄(x)

δ2 x
=

q+ Π̄(x)
δ2

and the right hand side diverges if the Lévy measure is infinite. In the finite case we obtain similarly
for x sufficiently small

q+ Π̄(x)
δ2 ≤

u(q)(x)
x

≤
q+ Π̄(0)
δ2

proving the claim.

Proof of Theorem 5: Without loss of generality we assume δ = 1. Also consider the case when
Π̄(0+) = ∞. To prove the theorem, taking into account Equation (3.2) we need to show that for
β(Π)< n

n+1

lim
x→0

∞
∑

k=n+1

(−1)k(q+ Π̄)∗k(x) = 0. (4.24)
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Note that taking into account Lemma 4 we may appeal to q+Π̄(y)≤ C y−(β(Π)+ε) for ε > 0 satisfying
β(Π)+ ε < 1. Then for y small enough

(q+ Π̄)∗2(y) =

∫ y

0

(q+ Π̄)(z)(q+ Π̄(y − z))dz

≤ C ′
∫ y

0

z−(β(Π)+ε)(y − z)−(β(Π)+ε)dz

= C2 y−2(β(Π)+ε)+1.

By induction, for all y such that q+ Π̄(y) ≤ y−β(Π)−ε, it is easy to show that for each k there is a
constant Ck depending only on β(Π) such that

(q+ Π̄)∗k(y)≤ Ck y−k(β(Π)+ε)+k−1.

For ε small enough, the quantity−k(β(Π)+ε)+(k−1) is strictly positive for k > n by the assumption
β(Π)< n

n+1
. Therefore limx→0(q+ Π̄)∗(n+1)(x) = 0 and with (4.2) for x > 0

(q+ Π̄)∗(n+1+k)(x)≤ sup
y≤x

�

(q+ Π̄)∗(n+1)(y)
�

1 ∗ (q+ Π̄)∗k(x)

≤ sup
y≤x

�

(q+ Π̄)∗(n+1)(y)
�

(1 ∗ (q+ Π̄)(x))k.

Again taking into account property (1.1), we see that limx→0 1∗ (q+Π̄)(x) = 0 and also limx→0(q+
Π̄)∗(n+1)(x) = 0. Furthermore, we have q+ Π̄(x)∼ Π̄(x) so that we can easily deduce (4.24).

If Π̄(0+)<∞ then β(Π) = 0 and clearly (4.24) holds with n= 1. Thus we conclude the proof.

For the asymptotic behavior at infinity we need to have a more carefull look at the Laplace inversion
representation.

Proof of Theorem 6: Formally setting λ= 0 in the Laplace inversion integral of (3.6) leads to

u′(x+) =−
Π̄(x+)
δ2 +

N−1
∑

n=2

(−1)n

δn+1 Π̄
∗n(x) +

1

2π

∫ ∞

−∞
eiθ x mN (θ) dθ , (4.25)

u′(x−) =−
Π̄(x−)
δ2 +

N−1
∑

n=2

(−1)n

δn+1 Π̄
∗n(x) +

1

2π

∫ ∞

−∞
eiθ x mN (θ) dθ , (4.26)

where

mN (θ) =
(−F Π̄(θ))N

δN+1(1+ 1
δ
F Π̄(θ))

.

To see that mN is well-defined, recall from Remark 5 that for finite mean Lévy measure the de-
nominator is bounded away from zero. To prove the representation rigorously we need to send
λ to zero in the Laplace inversion representation (3.6), (3.7). For this sake, convergence un-
der the integral and the interchange of limit and integration need to be justified. Here, the fi-
nite mean assumption is crucial. As convergence of the exponential is trivial, we only show that
limλ→0 hN (λ+ iθ) = hN (iθ) = mN (θ) for fixed θ . By definition of hN it suffices to show

lim
λ→0
L Π̄∗l(λ+ iθ) =L Π̄∗l(iθ) =F Π̄∗l(θ)
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for l = 1 and l = N . Here we use that the additional assumption E[X1] < ∞ is equivalent to
∫∞

0
Π̄(x) d x <∞ to apply dominated convergence justified by the uniform (in λ) upper bound

∫ ∞

0

�

�

�e−x(λ+iθ)Π̄∗l(x)
�

�

� d x ≤
∫ ∞

0

Π̄∗l(x) d x ≤
�

∫ ∞

0

Π̄(x) d x
�l
<∞.

Having shown pointwise convergence of hN , we now verify dominated convergence for λ tending
to zero. The estimate (4.13) is not strong enough as around the real axis the upper bound explodes
with λ tending to zero. The additional assumption again leads to the (coarse) uniform upper bound

�

�Im(L Π̄(λ+ iθ))
�

�=

�

�

�

�

�

∫ ∞

0

sin(θ y)rλ(y)d y

�

�

�

�

�

≤
∫ ∞

0

Π̄(x) d x <∞

and similarly for the real part Re(L Π̄(λ + iθ)). For large θ we employ the estimate (4.13) for
sufficiently small ε > 0 so that we obtain from our choice of N the integrable in θ upper bound
(uniformly in λ)

�

�hN (λ+ iθ)
�

�≤

(
∫∞

0
Π̄(x) d x : |θ | ≤ 1,

C |θ |N(β(Π)+ε−1) : |θ |> 1.
(4.27)

Exploiting the Fourier inversion representation for N large enough we can complete the proof. Ap-
parently, it suffices to show that limx→∞ Π̄∗n(x) = 0 for n= 1, ..., N − 1 and

lim
x→∞

∫ ∞

−∞
eiθ x mN (θ) dθ = 0.

The first is a consequence of
∫∞

0
Π̄∗n(x) d x < ∞ for which we take into account (4.2) and the

assumption. The integral vanishes at infinity by the Riemann-Lebesgue theorem as soon as we justify
that mN is integrable in θ . But this follows from the upper bound (4.27) which, being uniform in λ,
is also valid for mN (θ) = hN (iθ).
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