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1 Introduction

The purpose of this paper is to obtain existence and uniqueness of solutions, as well as existence and
uniqueness of invariant measures, for a class of semilinear stochastic partial differential equations
driven by a discontinuous multiplicative noise. In particular, we consider the mild formulation of an
equation of the type

du(t) + Au(t) d t + F(u(t)) d t =

∫

Z

G(u(t−), z) µ̄(d t, dz) (1)

on L2(D), with D a bounded domain of Rn. Here −A is the generator of a strongly continuous
semigroup of contractions, F is a nonlinear function satisfying monotonicity and polynomial growth
conditions, and µ̄ is a compensated Poisson measure. Precise assumptions on the data of the prob-
lem are given in Section 2 below. We would like to note that, under appropriate assumptions on
the coefficients, all results of this paper continue to hold if we add a stochastic term of the type
B(u(t)) dW (t) to the right hand side of (1), where W is a cylindrical Wiener process on L2(D) (see
Remark 13 below). For simplicity we concentrate on the jump part of the noise. Similarly, all results
of the paper still hold with minimal modifications if we allow the functions F and G to depend also
on time and to be random.

While several classes of semilinear stochastic PDEs driven by Wiener noise, also with rather general
nonlinearity F , have been extensively studied (see e.g. [9, 11, 12] and references therein), a corre-
sponding body of results for equations driven by jump noise seems to be missing. Let us mention,
however, several notable exceptions: existence of local mild solutions for equations with locally Lip-
schitz nonlinearities has been established in [20] (cf. also [26]); stochastic PDEs with monotone
nonlinearities driven by general martingales have been investigated in [16] in a variational setting,
following the approach of [21] (cf. also [3] for an ad hoc method); an analytic approach yielding
weak solutions (in the probabilistic sense) for equations with singular drift and additive Lévy noise
has been developed in [23]. The more recent monograph [31] deals also with semilinear SPDEs
with monotone nonlinearity and additive Lévy noise, and contains a well-posedness result under
a set of regularity assumptions on F and the stochastic convolution. In particular, continuity with
respect to stronger norms (more precisely, in spaces continuously embedded into L2(D)) is assumed.
We avoid such conditions, thus making our assumptions more transparent and much easier to verify.

Similarly, not many results are available about the asymptotic behavior of the solution to SPDEs with
jump noise, while the literature for equations with continuous noise is quite rich (see the references
mentioned above). In this work we show that under a suitably strong monotonicity assumption one
obtains existence, uniqueness, and ergodicity of invariant measures, while a weaker monotonicity
assumption is enough to obtain the existence of invariant measures.

Our main contributions could be summarized as follows: we provide a) a set of sufficient conditions
for well-posedness in the mild sense for SPDEs of the form (1), which to the best of our knowledge is
not contained nor can be derived from existing work; b) a new concept of generalized mild solution
which allows us to treat equations with a noise coefficient G satisfying only natural integrability and
continuity assumptions; c) existence of invariant measures without strong dissipativity assumptions
on the coefficients of (1). It is probably worth commenting a little further on the first issue: it
is in general not possible to find a triple V ⊂ H ⊂ V ′ (see e.g. [16, 21, 32] for details) such that
A+F is defined from V to V ′ and satisfies the usual continuity, accretivity and coercivity assumptions
needed for the theory to work. For this reason, general semilinear SPDEs cannot be (always) treated
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in the variational setting. Moreover, the Nemitskii operator associated to F is in general not locally
Lipschitz on L2(D), so one cannot hope to obtain global well-posedness invoking the local well-
posedness results of [20], combined with a priori estimates. Finally, while the analytic approach of
[23] could perhaps be adapted to our situation, it would cover only the case of additive noise, and
solutions would be obtained only in the sense of the martingale problem.

The main tool employed in the existence theory is a Bichteler-Jacod-type inequality for stochastic
convolutions on Lp spaces, combined with monotonicity estimates. To obtain well-posedness for
equations with general noise, also of multiplicative type, we need to relax the concept of solution
we work with, in analogy to the deterministic case (see [4, 7]). Finally, we prove existence of an
invariant measure by an argument based on Krylov-Bogoliubov’s theorem under weak dissipativity
conditions. Existence and uniqueness of an invariant measure under strong dissipativity conditions
is also obtained, adapting a classical method (see e.g. [13]).

The paper is organized as follows. In Section 2 all well-posedness results are stated and proved, and
Section 3 contains the results on invariant measures. Finally, we prove in the Appendix an auxiliary
result used in Section 2.

Let us conclude this section with a few words about notation. Generic constants will be denoted by
N , and we shall use the shorthand notation a ® b to mean a ≤ N b. If the constant N depends on a
parameter p, we shall also write N(p) and a ®p b. Given a function f : R→ R, we shall denote its
associated Nemitsky operator by the same symbol. Moreover, given an integer k, we shall write f k

for the function ξ 7→ f (ξ)k. For any topological space X we shall denote its Borel σ-field by B(X ).
We shall occasionally use standard abbreviations for stochastic integrals with respect to martingales
and stochastic measures, so that H · X (t) :=

∫ t

0
H(s) dX (s) and φ ? µ(t) :=

∫ t

0

∫

φ(s, y)µ(ds, d y)
(see e.g. [19] for more details). Given two Banach spaces E and F , we shall denote the set of all
functions f : E→ F such that

sup
x 6=y

| f (x)− f (y)|F
|x − y|E

<∞

by Ċ0,1(E, F).

2 Well-posedness

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual conditions and E denote
expectation with respect to P. All stochastic elements will be defined on this stochastic basis, unless
otherwise specified. The preditable σ-field will be denoted by P . Let (Z ,Z , m) be a measure
space, µ̄ a Poisson measure on [0, T]× Z with compensator Leb⊗m, where Leb stands for Lebesgue
measure. We shall set, for simplicity of notation, Zt = (0, t]×Z , for t ≥ 0, and Lp(Zt) := Lp(Zt , Leb⊗
m). Let D be an open bounded subset of Rn with smooth boundary ∂ D, and set H = L2(D).
The norm and inner product in H are denoted by | · | and 〈·, ·〉, respectively, while the norm in
Lp(D), p ≥ 1, is denoted by | · |p. Given a Banach space E, we shall denote the set of all E-
valued random variables ξ such that E|ξ|p <∞ by Lp(E). For compactness of notation, we also set
Lp := Lp(Lp(D)). Moreover, we denote the set of all adapted processes u : [0, T]×Ω→ H such that

|[u]|p :=
�

sup
t≤T
E|u(t)|p

�1/p
<∞, ‖u‖p :=

�

E sup
t≤T
|u(t)|p

�1/p
<∞
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byHp(T ) and Hp(T ), respectively. Note that (Hp(T ), |[ · ]|p) and (Hp(T ),‖ · ‖p) are Banach spaces.
We shall also use the equivalent norms on Hp(T ) defined by

‖u‖p,α :=
�

E sup
t≤T

e−pαt |u(t)|p
�1/p

, α > 0,

and we shall denote (Hp(T ),‖ · ‖p,α) by Hp,α(T ).

2.1 Additive noise

Let us consider the equation

du(t) + Au(t) d t + f (u(t)) d t = ηu(t) d t +

∫

Z

G(t, z) µ̄(d t, dz), u(0) = x , (2)

where A is a linear maximal monotone operator on H; f : R→ R is a continuous maximal monotone
function satisfying the growth condition | f (r)|® 1+|r|d for some (fixed) d ∈ [1,∞[; G : Ω×[0, T]×
Z × D → R is a P ⊗Z ⊗B(Rn)-measurable process, such that G(t, z) ≡ G(ω, t, z, ·) takes values
in H = L2(D). Finally, η is just a constant and the corresponding term is added for convenience
(see below). We shall assume throughout the paper that the semigroup generated by −A admits a
unique extension to a strongly continuous semigroup of positive contractions on L2d(D) and Ld∗(D),
d∗ := 2d2. For simplicity of notation we shall not distinguish among the realizations of A and e−tA

on different Lp(D) spaces, if no confusion can arise.

Remark 1. Several examples of interest satisfy the assumptions on A just mentioned. For instance,
A could be chosen as the realization of an elliptic operator on D of order 2m, m ∈ N, with Dirichlet
boundary conditions (see e.g. [1]). The operator −A can also be chosen as the generator of a
sub-Markovian strongly continuous semigroup of contractions Tt on L2(D). In fact, an argument
based on the Riesz-Thorin interpolation theorem shows that Tt induces a strongly continuous sub-
Markovian contraction semigroup T (p)t on any Lp(D), p ∈ [2,+∞[ (see e.g. [14, Lemma 1.11]
for a detailed proof). The latter class of operators includes also nonlocal operators such as, for
instance, fractional powers of the Laplacian, and even more general pseudodifferential operators
with negative-definite symbols – see e.g. [18] for more details and examples.

Definition 2. Let x ∈ L2d . We say that u ∈H2(T ) is a mild solution of (2) if u(t) ∈ L2d(D) P-a.s. and

u(t) = e−tAx +

∫ t

0

e−(t−s)A�ηu(s)− f (u(s))
�

ds+

∫

Zt

e−(t−s)AG(s, z) µ̄(ds, dz) (3)

P-a.s. for all t ∈ [0, T], and all integrals on the right-hand side exist.

Let us denote the class of processes G as above such that

E
∫ T

0

h

∫

Z

|G(t, z)|pp m(dz) +
�

∫

Z

|G(t, z)|2p m(dz)
�p/2i

d t <∞.

by Lp. Setting d∗ = 2d2, we shall see below that a sufficient condition for the existence of the
integrals appearing in (3) is that G ∈ Ld∗ . This also explains the condition imposed on the sequence
{Gn} in the next definition.
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Definition 3. Let x ∈ L2. We say that u ∈ H2(T ) is a generalized mild solution of (2) if there exist
a sequence {xn} ⊂ L2d and a sequence {Gn} ⊂ Ld∗ with xn → x in L2 and Gn → G in L2(L2(ZT )),
such that un → u in H2(T ), where un is the mild solution of (2) with xn and Gn replacing x and G,
respectively.

In order to establish well-posedness of the stochastic equation, we need the following maximal
inequalities, that are extensions to a (specific) Banach space setting of the corresponding inequalities
proved for Hilbert space valued processes in [27], with a completely different proof.

Lemma 4. Let E = Lp(D), p ∈ [2,∞). Assume that g : Ω× [0, T]× Z ×D→ R is a P ⊗Z ⊗B(Rn)-
measurable function such that the expectation on the right-hand side of (4) below is finite. Then there
exists a constant N = N(p, T ) such that

E sup
t≤T

�

�

�

∫ t

0

∫

Z

g(s, z) µ̄(ds, dz)
�

�

�

p

E

≤ NE
∫ T

0

h

∫

Z

|g(s, z)|pE m(dz) +
�

∫

Z

|g(s, z)|2E m(dz)
�p/2i

ds, (4)

where (p, T ) 7→ N is continuous. Furthermore, let −A be the generator of a strongly continuous semi-
group e−tA of positive contractions on E. Then one also has

E sup
t≤T

�

�

�

∫ t

0

∫

Z

e−(t−s)Ag(s, z) µ̄(ds, dz)
�

�

�

p

E

≤ NE
∫ T

0

h

∫

Z

|g(s, z)|pE m(dz) +
�

∫

Z

|g(s, z)|2E m(dz)
�p/2i

ds, (5)

where N is the same constant as in (4).

Proof. We proceed in several steps.

Step 1. Let us assume that m(Z)<∞ (this hypothesis will be removed in the next step). Note that,
by Jensen’s (or Hölder’s) inequality and Fubini’s theorem, one has

∫

D

E
∫ T

0

�

∫

Z

|g(s, z,ξ)|2 m(dz)
�p/2

ds dξ®
∫

D

E
∫ T

0

∫

Z

|g(s, z,ξ)|p m(dz) ds dξ

= E
∫ T

0

∫

Z

|g(s, z)|pE m(dz) ds <∞,

therefore, since the right-hand side of (4) is finite, Fubini’s theorem implies that

E
∫ T

0

h

∫

Z

|g(s, z,ξ)|p m(dz) +
�

∫

Z

|g(s, z,ξ)|2 m(dz)
�p/2i

ds <∞

for a.a. ξ ∈ D. By the Bichteler-Jacod inequality for real-valued integrands (see e.g. [5, 27]) we
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have

E
�

�

�

∫ T

0

∫

Z

g(s, z,ξ) µ̄(ds, dz)
�

�

�

p

®p,T E
∫ T

0

h

∫

Z

|g(s, z,ξ)|p m(dz) +
�

∫

Z

|g(s, z,ξ)|2 m(dz)
�p/2i

ds (6)

for a.a. ξ ∈ D. Furthermore, Fubini’s theorem for integrals with respect to random measures (see
e.g. [22] or [6, App. A]) yields

E
�

�

�

∫ T

0

∫

Z

g(s, z) µ̄(ds, dz)
�

�

�

p

E
=

∫

D

E
�

�

�

∫ T

0

∫

Z

g(s, z,ξ) µ̄(ds, dz)
�

�

�

p
dξ,

hence also

E
�

�

�

∫ T

0

∫

Z

g(s, z) µ̄(ds, dz)
�

�

�

p

E
®p,T E

∫ T

0

∫

Z

∫

D

|g(s, z,ξ)|p dξm(dz) ds

+E
∫ T

0

∫

D

�

∫

Z

|g(s, z,ξ)|2 m(dz)
�p/2

dξ ds.

Minkowski’s inequality (see e.g. [24, Thm. 2.4]) implies that the second term on the right-hand side
of the previous inequality is less than or equal to

E
∫ T

0

�

∫

Z

�

∫

D

|g(s, z,ξ)|p dξ
�2/p

m(dz)
�p/2

ds = E
∫ T

0

�

∫

Z

|g(s, z)|2E m(dz)
�p/2

ds.

We have thus proved that

E|g ? µ̄(T )|pE ®p,T E
∫ T

0

h

∫

Z

|g(s, z)|pE m(dz) +
�

∫

Z

|g(s, z)|2E m(dz)
�p/2i

ds.

Step 2. Let us turn to the general case m(Z) = ∞. Let {Zn}n∈N a sequence of subsets of Z such
that ∪n∈NZn = Z , Zn ⊂ Zn+1 and m(Zn) < ∞ for all n ∈ N. By the Bichteler-Jacod inequality for
real-valued integrands we have

E
�

�

�

∫ T

0

∫

Z

g(s, z,ξ)1Zn
(z) µ̄(ds, dz)

�

�

�

p

®p,T E
∫ T

0

∫

Z

|g(s, z,ξ)|p1Zn
(z)m(dz) ds+E

∫ T

0

�

∫

Z

|g(s, z,ξ)|21Zn
(z)m(dz)

�p/2
ds

= E
∫ T

0

∫

Z

|g(s, z,ξ)|p mn(dz) ds+E
∫ T

0

�

∫

Z

|g(s, z,ξ)|2 mn(dz)
�p/2

ds,
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where mn(·) := m(· ∩ Zn). Integrating both sides of this inequality with respect to ξ over D we
obtain, using Fubini’s theorem and Minkowski’s inequality, we are left with

E

�

�

�

�

�

∫ T

0

∫

Z

gn(s, z) µ̄(ds, dz)

�

�

�

�

�

p

E

®p,T E
∫ T

0

∫

Z

�

�gn(s, z)
�

�

p
E m(dz) ds+E

∫ T

0

�

∫

Z

�

�gn(s, z)
�

�

2
E m(dz)

�p/2
ds

≤ E
∫ T

0

∫

Z

�

�g(s, z)
�

�

p
E m(dz) ds+E

∫ T

0

�

∫

Z

�

�g(s, z)
�

�

2
E m(dz)

�p/2
ds,

where gn(·, z) := g(·, z)1Zn
(z).

Let us now prove that gn?µ̄(T ) converges to g?µ̄(T ) on D×Ω in Leb⊗P-measure as n→∞. In fact,
by the isometric formula for stochastic integrals with respect to compensated Poisson measures, we
have

�

�(gn− g) ? µ̄(T )
�

�

2
L2(D×Ω)

= E
∫

D×[0,T]×Z

�

�gn(s, z,ξ)− g(s, z,ξ)
�

�

2
m(dz) ds dξ,

which converges to zero as n→∞ by the dominated convergence theorem. In fact, gn ↑ g a.e. on
D× [0, T]× Z , P-a.s., and

E
∫

D×[0,T]×Z

�

�gn(s, z,ξ)− g(s, z,ξ)
�

�

2
m(dz) ds dξ

≤ 2E
∫ T

0

∫

Z

�

�g(s, z)
�

�

2
L2(D)

m(dz) ds ® E
∫ T

0

∫

Z

�

�g(s, z)
�

�

2
E m(dz) ds <∞.

Finally, by Fatou’s lemma, we have

E
�

�g ? µ̄(T )
�

�

p
E = E

∫

D

�

�(g ? µ̄(T ))(ξ)
�

�

p
dξ

≤ lim inf
n→∞
E
∫

D

�

�(gn ? µ̄(T ))(ξ)
�

�

p
dξ= lim inf

n→∞
E
�

�gn ? µ̄(T )
�

�

p
E

≤ E
∫ T

0

∫

Z

�

�g(s, z)
�

�

p
E m(dz) ds+E

∫ T

0

�

∫

Z

�

�g(s, z)
�

�

2
E m(dz)

�p/2
ds.

Step 3. Estimate (4) now follows immediately, by Doob’s inequality, provided we can prove that
g ? µ̄ is an E-valued martingale. For this it suffices to prove that

E
�

〈g ? µ̄(t)− g ? µ̄(s),φ〉
�

�Fs
�

= 0, 0≤ s ≤ t ≤ T,

for all φ ∈ C∞c (D), the space of infinitely differentiable functions with compact support on D. In
fact, we have, by the stochastic Fubini theorem,

〈g ? µ̄(t)− g ? µ̄(s),φ〉=
D

∫

(s,t]

∫

Z

g(r, z) µ̄(dr, dz),φ
E

=

∫

(s,t]

∫

Z

∫

D

g(r, z,ξ)φ(ξ) dξµ̄(dr, dz),
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where the last term has Fs-conditional expectation equal to zero by well-known properties of Pois-
son measures. In order for the above computation to be rigorous, we need to show that the last
stochastic integral is well defined: using Hölder’s inequality and recalling that g ∈ Lp, we get

E
∫

(s,t]

∫

Z

h

∫

D

g(r, z,ξ)φ(ξ) dξ
i2

m(dz) dr ≤ |φ|2 p
p−1
E
∫ T

0

∫

Z

|g(s, z)|2E m(dz) ds

≤ |φ|2 p
p−1

T p/(p−2)
�

E
∫ T

0

�

∫

Z

|g(s, z)|2p m(dz)
�p/2

ds
�2/p

<∞.

Step 4. In order to extend the result to stochastic convolutions, we need a dilation theorem due to
Fendler [15, Thm. 1]. In particular, there exist a measure space (Y,A , n), a strongly continuous
group of isometries T (t) on Ē := Lp(Y, n), an isometric linear embedding j : Lp(D)→ Lp(Y, n), and
a contractive projection π : Lp(Y, n)→ Lp(D) such that j ◦ etA = π ◦ T (t) ◦ j for all t ≥ 0. Then we
have, recalling that the operator norms of π and T (t) are less than or equal to one,

E sup
t≤T

�

�

�

∫ t

0

∫

Z

e−(t−s)Ag(s, z) µ̄(ds, dz)
�

�

�

p

E

= E sup
t≤T

�

�

�πT (t)

∫ t

0

∫

Z

T (−s) j(g(s, z)) µ̄(ds, dz)
�

�

�

p

Ē

≤ |π|p sup
t≤T
|T (t)|p E sup

t≤T

�

�

�

∫ t

0

∫

Z

T (−s) j(g(s, z)) µ̄(ds, dz)
�

�

�

p

Ē

≤ E sup
t≤T

�

�

�

∫ t

0

∫

Z

T (−s) j(g(s, z)) µ̄(ds, dz)
�

�

�

p

Ē

Now inequality (4) implies that there exists a constant N = N(p, T ) such that

E sup
t≤T

�

�

�

∫ t

0

∫

Z

e−(t−s)Ag(s, z) µ̄(ds, dz)
�

�

�

p

E

≤ NE
∫ T

0

h

∫

Z

|T (−s) j(g(s, z))|p
Ē

m(dz) +
�

∫

Z

|T (−s) j(g(s, z))|2Ē m(dz)
�p/2i

ds

≤ NE
∫ T

0

h

∫

Z

|g(s, z)|pE m(dz) +
�

∫

Z

|g(s, z)|2E m(dz)
�p/2i

ds

where we have used again that T (t) is a unitary group and that the norms of Ē and E are equal.

Remark 5. (i) The idea of using dilation theorems to extend results from stochastic integrals to
stochastic convolutions has been introduced, to the best of our knowledge, in [17].

(ii) Since g ? µ̄ is a martingale taking values in Lp(D), it has a càdlàg modification, as it follows by
a theorem of Brooks and Dinculeanu (see [8, Thm. 3]). Moreover, the stochastic convolution also
admits a càdlàg modification by the dilation method, as in [17] or [31, p. 161].

We shall need to regularize the monotone nonlinearity f by its Yosida approximation fλ, λ > 0. In
particular, let Jλ(x) = (I+λ f )−1(x), fλ(x) = λ−1(x−Jλ(x)). It is well known that fλ(x) = f (Jλ(x))
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and fλ ∈ Ċ0,1(R) with Lipschitz constant bounded by 2/λ. For more details on maximal monotone
operators and their approximations see e.g. [2, 7]. Let us consider the regularized equation

du(t) + Au(t) d t + fλ(u(t)) d t = ηu(t) d t +

∫

Z

G(t, z) µ̄(d t, dz), u(0) = x , (7)

which admits a unique càdlàg mild solution uλ ∈ H2(T ) because −A is the generator of a strongly
continuous semigroup of contractions and fλ is Lipschitz (see e.g. [20, 27, 31]).

We shall now establish an a priori estimate for solutions of the regularized equations.

Lemma 6. Assume that x ∈ L2d and G ∈ Ld∗ . Then there exists a constant N = N(T, d,η, |D|) such
that

E sup
t≤T
|uλ(t)|2d

2d ≤ N
�

1+E|x |2d
2d

�

. (8)

Proof. We proceed by the technique of “subtracting the stochastic convolution”: set

yλ(t) = uλ(t)−
∫ t

0

e−(t−s)AG(s, z) µ̄(ds, dz) =: uλ(t)− GA(t), t ≤ T,

where

GA(t) :=

∫ t

0

∫

Z

e−(t−s)AG(s, z) µ̄(ds, dz).

Then yλ is also a mild solution in L2(D) of the deterministic equation with random coefficients

y ′λ(t) + Ayλ(t) + fλ(yλ(t) + GA(t)) = ηyλ(t) +ηGA(t), yλ(0) = x , (9)

P-a.s., where φ′(t) := dφ(t)/d t. We are now going to prove that yλ is also a mild solution of (9)
in L2d(D). Setting

f̃λ(t, y) := fλ(y + GA(t))−η(y + GA(t))

and rewriting (9) as
y ′λ(t) + Ayλ(t) + f̃λ(t, yλ(t)) = 0,

we conclude that (9) admits a unique mild solution in L2d(D) by Proposition 17 below (see the
Appendix).

Let yλβ be the strong solution in L2d(D) of the equation

y ′λβ(t) + Aβ yλβ(t) + fλ(yλβ(t) + GA(t)) = ηyλβ(t) +ηGA(t), yλ(0) = x , (10)

which exists and is unique because the Yosida approximation Aβ is a bounded operator on L2d(D).
Let us recall that the duality map J : L2d(D)→ L 2d

2d−1
(D) is single valued and defined by

J(φ) : ξ 7→ |φ(ξ)|2d−2φ(ξ)|φ|2−2d
2d

for almost all ξ ∈ D. Moreover, since L 2d
2d−1
(D) is uniformly convex, J(φ) coincides with the Gâteaux

derivative of φ 7→ |φ|22d/2. Therefore, multiplying (in the sense of the duality product of L2d(D)
and L 2d

2d−1
(D)) both sides of (10) by the function

J(yλβ(t))|yλβ(t)|2d−2
2d = |yλβ(t)|2d−2 yλβ(t),
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we get

1

2d

d

d t
|yλβ(t)|2d

2d + 〈Aβ yλβ(t), J(yλβ(t))〉|yλβ(t)|2d−2
2d

+ 〈 fλ(yλβ(t) + GA(t)), |yλβ(t)|2d−2 yλβ(t)〉

= η|yλβ(t)|2d
2d +η〈|yλβ(t)|

2d−2 yλβ(t), GA(t)〉.

Since A is m-accretive in L2d(D) (more precisely, A is an m-accretive subset of L2d(D)× L2d(D)),
its Yosida approximation Aβ = A(I + βA)−1 is also m-accretive (see e.g. [2, Prop. 2.3.2]), thus the
second term on the left hand side is positive because J is single-valued. Moreover, we have, omitting
the dependence on t for simplicity of notation,

fλ(yλβ + GA)|yλβ |2d−2 yλβ =
�

fλ(yλβ + GA)− fλ(GA)
�

yλβ |yλβ |2d−2

+ fλ(GA)|yλβ |2d−2 yλβ
≥ fλ(GA)|yλβ |2d−2 yλβ (t,ξ)-a.e.,

as it follows by the monotonicity of fλ. Therefore we can write

1

2d

d

d t
|yλβ(t)|2d

2d ≤ η|yλβ(t)|
2d
2d + 〈ηGA(t)− fλ(GA(t)), |yλβ(t)|2d−2 yλβ(t)〉

≤ η|yλβ(t)|2d
2d + |ηGA(t)− fλ(GA)|2d

�

�|yλβ(t)|2d−1
�

�

2d
2d−1

= η|yλβ(t)|2d
2d + |ηGA(t)− fλ(GA)|2d |yλβ(t)|2d−1

2d

≤ η|yλβ(t)|2d
2d +

1

2d
|ηGA(t)− fλ(GA)|2d

2d +
2d − 1

2d
|yλβ(t)|2d

2d ,

where we have used Hölder’s and Young’s inequalities with conjugate exponents 2d and 2d/(2d−1).
A simple computation reveals immediately that there exists a constant N depending only on d and
η such that

|ηGA(t)− fλ(GA)|2d
2d ≤ N(1+ |GA(t)|2d2

2d2).

We thus arrive at the inequality

1

2d

d

d t
|yλβ(t)|2d

2d ≤
�

η+
2d − 1

2d
�

|yλβ(t)|2d
2d + N

�

1+ |GA(t)|2d2

2d2

�

,

and Gronwall’s inequality yields

|yλβ(t)|2d
2d ®d,η 1+ |x |2d

2d + |GA(t)|2d2

2d2 ,

hence also, thanks to (5) and the hypothesis that G ∈ Ld∗ ,

E sup
t≤T
|yλβ(t)|2d

2d ≤ N(1+E|x |2d
2d).

where the constant N does not depend on λ. Let us now prove that yλβ → yλ in H2(T ) as β → 0:
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we have

|yλβ(t)− yλ(t)| ≤ |(e−tAβ − e−tA)yλ(0)|

+

∫ t

0

�

�e−(t−s)Aβ f̃λ(s, yλβ(s))− e−(t−s)A f̃λ(s, yλ(s))
�

� ds

≤ |(e−tAβ − e−tA)yλ(0)|

+

∫ t

0

�

�

�

e−(t−s)Aβ − e−(t−s)A� f̃λ(s, yλ(s))
�

� ds

+

∫ t

0

|e−(t−s)Aβ | | f̃λ(s, yλβ(s))− f̃λ(s, yλ(s))| ds

=: I1β(t) + I2β(t) + I3β(t).

By well-known properties of the Yosida approximation we have

sup
t≤T

I1β(t)
2 = sup

t≤T

�

�e−tAβ yλ(0)− e−tA yλ(0)
�

�

2→ 0

P-a.s. as β → 0, and
sup
t≤T

I1β(t)
2 ® |yλ(0)|2 ∈ L2,

therefore, by the dominated convergence theorem, the expectation of the left-hand side of the pre-
vious expression converges to zero as β → 0. Similarly, we also have

sup
t≤T

I2β(t)
2 ®
∫ T

0

sup
t≤T

�

�e−tAβ f̃λ(s, yλ(s))− e−tA f̃λ(s, yλ(s))
�

�

2
ds,

where the integrand on the right-hand side converges to zero P-a.s. for all s ≤ T . The last inequality
also yields, recalling that yλ and GA belong to H2(T ),

sup
t≤T

I2β(t)
2 ®
∫ T

0

| f̃λ(s, yλ(s))|2 ds ∈ L2,

hence, by the dominated convergence theorem, the expectation of the left-hand side of the previous
expression converges to zero as β → 0. Finally, since Aβ generates a contraction semigroup, by
definition of f̃λ and the fact that fλ has Lipschitz constant bounded by 2/λ, we have

E sup
t≤T

I3β(t)
2 ≤ (2/λ+η)

∫ T

0

E sup
s≤t
|yλβ(s)− yλ(s)|2 d t.

Writing
E sup

t≤T
|yλβ(t)− yλ(t)|2 ® E sup

t≤T
I1β(t)

2+E sup
t≤T

I2β(t)
2+E sup

t≤T
I3β(t)

2,

using the above expressions, Gronwall’s lemma, and letting β → 0, we obtain the claim. Therefore,
by a lower semicontinuity argument, we get

E sup
t≤T
|yλ(t)|2d

2d ≤ N(1+E|x |2d
2d).
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By definition of yλ we also infer that

E sup
t≤T
|uλ(t)|2d

2d ®d E sup
t≤T
|yλ(t)|2d

2d +E sup
t≤T
|GA(t)|2d

2d .

Since
E sup

t≤T
|GA(t)|2d

2d ®|D| E sup
t≤T
|GA(t)|2d

2d2 ® 1+E sup
t≤T
|GA(t)|2d2

2d2 ,

we conclude
E sup

t≤T
|uλ(t)|2d

2d ®T,d,η,|D| 1+E|x |2d
2d .

The a priori estimate just obtained for the solution of the regularized equation allows us to construct
a mild solution of the original equation as a limit in H2(T ), as the following proposition shows.

Proposition 7. Assume that x ∈ L2d and G ∈ Ld∗ . Then equation (2) admits a unique càdlàg mild
solution in H2(T ) which satisfies the estimate

E sup
t≤T
|u(t)|2d

2d ≤ N(1+E|x |2d
2d)

with N = N(T, d,η, |D|). Moreover, we have x 7→ u(x) ∈ Ċ0,1(L2,H2(T )).

Proof. Let uλ be the solution of the regularized equation (7), and uλβ be the strong solution of (7)
with A replaced by Aβ studied in the proof of Lemma 6 (or see [29, Thm. 34.7]). Then uλβ − uµβ
solves P-a.s. the equation

d

d t
(uλβ(t)− uµβ(t)) + Aβ(uλβ(t)− uµβ(t))

+ fλ(uλβ(t))− fµ(uµβ(t)) = η(uλβ(t)− uµβ(t)). (11)

Note that we have

uλβ − uµβ = uλβ − Jλuλβ + Jλuλβ − Jµuµβ + Jµuµβ − uµβ
= λ fλ(uλβ) + Jλuλβ − Jµuµβ −µ fµ(uµβ),

hence, recalling that fλ(uλβ) = f (Jλuλβ),

〈 fλ(uλβ)− fµ(uµβ), uλβ − uµβ〉 ≥ 〈 fλ(uλβ)− fµ(uµβ),λ fλ(uλβ)−µ fµ(uµβ)〉

≥ λ| fλ(uλβ)|2+µ| fµ(uµβ)|2− (λ+µ)| fλ(uλβ)|| fµ(uµβ)|

≥ −
µ

2
| fλ(uλβ)|2−

λ

2
| fµ(uµβ)|2,

thus also, by the monotonicity of A,

d

d t
|uλβ(t)− uµβ(t)|2− 2η|uλβ(t)− uµβ(t)|2 ≤ µ| fλ(uλβ(t))|2+λ| fµ(uµβ(t))|2.

Multiplying both sides by e−2ηt and integrating we get

e−2ηt |uλβ(t)− uµβ(t)|2 ≤
∫ t

0

e−2ηs�µ| fλ(uλβ(s))|2+λ| fµ(uµβ(s))|2
�

ds.
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Since uλβ → uλ in H2(T ) as β → 0 (as shown in the proof of Lemma 6) and fλ is Lipschitz, we can
pass to the limit as β → 0 in the previous equation, which then holds with uλβ and uµβ replaced by
uλ and uµ, respectively. Taking supremum and expectation we thus arrive at

E sup
t≤T
|uλ(t)− uµ(t)|2 ≤ e2ηT T (λ+µ)E sup

t≤T

�

| fλ(uλ(t))|2+ | fµ(uµ(t))|2
�

.

Recalling that | fλ(x)| ≤ | f (x)| for all x ∈ R, Lemma 6 yields

E sup
t≤T
| fλ(uλ(t))|2 ≤ E sup

t≤T
| f (uλ(t))|2 ® E sup

t≤T
|uλ(t)|2d

2d ≤ N(1+E|x |2d
2d), (12)

where the constant N does not depend on λ, hence

E sup
t≤T
|uλ(t)− uµ(t)|2 ®T (λ+µ)

�

1+E|x |2d
2d

�

,

which shows that {uλ} is a Cauchy sequence in H2(T ), and in particular there exists u ∈H2(T ) such
that uλ → u in H2(T ). Moreover, since uλ is càdlàg and the subset of càdlàg processes in H2(T ) is
closed, we infer that u is itself càdlàg.

Recalling that fλ(x) = f (Jλ(x)), Jλx → x as λ→ 0, thanks to the dominated convergence theorem
and (12) we can pass to the limit as λ→ 0 in the equation

uλ(t) = e−tAx −
∫ t

0

e−(t−s)A fλ(uλ(s)) ds+η

∫ t

0

e−(t−s)Auλ(s) ds+ GA(t),

thus showing that u is a mild solution of (2).

The estimate for E supt≤T |u(t)|2d
2d is an immediate consequence of (8).

We shall now prove uniqueness. In order to simplify notation a little, we shall assume that f is
η-accretive, i.e. that r 7→ f (r) + ηr is accretive, and consequently we shall drop the first term
on the right hand side of (2). This is of course completely equivalent to the original setting. Let
{ek}k∈N ⊂ D(A∗) be an orthonormal basis of H and ε > 0. Denoting two solutions of (2) by u and v,
we have

¬

(I + εA∗)−1ek, u(t)− v(t)
¶

=−
∫ t

0

¬

A∗(I + εA∗)−1ek, u(s)− v(s)
¶

ds

−
∫ t

0

¬

(I + εA∗)−1ek, f (u(s))− f (v(s))
¶

ds

for all k ∈ N. Therefore, by Itô’s formula,

¬

(I + εA∗)−1ek, u(t)− v(t)
¶2

=−2

∫ t

0

¬

A∗(I + εA∗)−1ek, u(s)− v(s)
¶¬

(I + εA∗)−1ek, u(s)− v(s)
¶

ds

− 2

∫ t

0

¬

(I + εA∗)−1ek, f (u(s))− f (v(s))
¶¬

(I + εA∗)−1ek, u(s)− v(s)
¶

ds.
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Summing over k and recalling that (I + εA∗)−1 =
�

(I + εA)−1�∗, we obtain

�

�(I + εA)−1(u(t)− v(t))
�

�

2

=−2

∫ t

0

¬

A(I + εA)−1(u(s)− v(s)), (I + εA)−1(u(s)− v(s))
¶

ds

− 2

∫ t

0

¬

(I + εA)−1( f (u(s))− f (v(s))), (I + εA)−1(u(s)− v(s))
¶

ds.

Using the monotonicity of A and then letting ε tend to zero and we are left with

|u(t)− v(t)|2 ≤−2

∫ t

0




f (u(s))− f (v(s)), u(s)− v(s)
�

ds

≤ 2η

∫ t

0

|u(s)− v(s)|2 ds,

which immediately implies that u= v by Gronwall’s inequality.

Let us now prove Lipschitz continuity of the solution map. Set u1 := u(x1), u2 := u(x2), and denote
the strong solution of (2) with A replaced by Aβ , f replaced by fλ, and initial condition x i , i = 1, 2,
by ui

λβ
, i = 1, 2, respectively. Then we have, omitting the dependence on time for simplicity,

(u1
λβ − u2

λβ)
′+ Aβ(u

1
λβ − u2

λβ) + fλ(u
1
λβ)− fλ(u

2
λβ) = η(u

1
λβ − u2

λβ)

P-a.s. in the strong sense. Multiplying, in the sense of the scalar product of L2(D), both sides by
u1
λβ
− u2

λβ and taking into account the monotonicity of A and f , we get

1

2
|u1
λβ(t)− u2

λβ(t)|
2 ≤ |x1− x2|2+η

∫ t

0

|u1
λβ(s)− u2

λβ(s)|
2 ds,

which implies, by Gronwall’s inequality and obvious estimates,

E sup
t≤T
|u1
λβ(t)− u2

λβ(t)|
2 ≤ e2ηTE|x1− x2|2.

Since, as seen above, ui
λβ
→ ui , i = 1, 2, in H2(T ) as β → 0, λ→ 0, we conclude by the dominated

convergence theorem that ‖u1− u2‖2 ≤ eηT |x1− x2|L2
.

Remark 8. We would like to emphasize that proving uniqueness treating mild solutions as if they
were strong solutions, as is very often done in the literature, does not appear to have a clear jus-
tification, unless the nonlinearity is Lipschitz continuous. In fact, if u is a mild solution of (2) and
uβ is a mild (or even strong) solution of the equation obtained by replacing A with Aβ in (2), one
would at least need to know that uβ converges to the given solution u, which is not clear at all and
essentially equivalent to what one wants to prove, namely uniqueness.

A general proof of uniqueness for mild solutions of stochastic evolution equations with dissipative
nonlinear drift and multiplicative (Wiener and Poisson) noise is given in [28].

In order to establish well-posedness in the generalized mild sense, we need the following a priori
estimates, which are based on Itô’s formula for the square of the norm and regularizations.
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Lemma 9. Let x1, x2 ∈ L2d , G1, G2 ∈ Ld∗ , and u1, u2 be mild solutions of (2) with x = x1, G = G1
and x = x2, G = G2, respectively. Then one has

e−2ηtE|u1(t)− u2(t)|2 ≤ E|x1− x2|2+E
∫

Zt

|G1(s, z)− G2(s, z)|2 m(dz) ds (13)

and

E sup
t≤T
|u1(t)− u2(t)|2 ®T E|x1− x2|2+E

∫

ZT

|G1(s, z)− G2(s, z)|2 m(dz) ds. (14)

Proof. Let uλ and uλβ be defined as in the proof of Proposition 7. Set w i(t) = e−ηtui
λβ
(t). Itô’s

formula for the square of the norm in H yields

|w1(t)−w2(t)|2 = 2

∫ t

0

〈w1(s−)−w2(s−), dw1(s)− dw2(s)〉+ [w1−w2](t),

i.e.

e−2ηt |u1
λβ(t)− u2

λβ(t)|
2+ 2

∫ t

0

e−2ηs〈Aβ(u1
λβ(s)− u2

λβ(s)), u1
λβ(s)− u2

λβ(s)〉 ds

+ 2

∫ t

0

e−2ηs〈 fλ(u1
λβ(s))− fλ(u

2
λβ(s)), u1

λβ(s)− u2
λβ(s)〉 ds

≤ |x1− x2|2+ [w1−w2](t) +M(t),

where M is a local martingale. In particular, since A and f are monotone, we are left with

e−2ηt |u1
λβ(t)− u2

λβ(t)|
2 ≤ |x1− x2|2+ [w1−w2](t) +M(t). (15)

In particular, taking expectations on both sides (if necessary, along a sequence {τn}n∈N of localizing
stopping times for the local martingale M , and then passing to the limit as n→∞), we obtain

e−2ηtE|u1
λβ(t)− u2

λβ(t)|
2 ≤ E|x1− x2|2+E

∫

Zt

|G1(s, z)− G2(s, z)|2 m(dz) ds,

where we have used the identity

E[w1−w2](t) = E〈w1−w2〉(t) = E
∫

Zt

e−2ηs|G1(s, z)− G2(s, z)|2 m(dz) ds. (16)

Recalling that ui
λβ
→ ui

λ
, i = 1, 2, in H2(T ) as β go to zero (see the proof of Lemma 6 or e.g. [27,

Prop. 3.11]), we get that the above estimate holds true for u1
λ
, u2
λ replacing u1

λβ
, u2
λβ , respectively.

Finally, since mild solutions are obtained as limits in H2(T ) of regularized solutions for λ→ 0, (13)
follows.

By (15) and (16) we get

E sup
t≤T

e−2ηt |u1
λβ(t)− u2

λβ(t)|
2 ≤ E|x1− x2|2+E

∫

ZT

|G1(s, z)− G2(s, z)|2 m(dz) ds

+E sup
t≤T
|M(t)|.
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Note that

M(t) = 2

∫

Zt




w1
−−w2

−, (G1(s, z)− G2(s, z)) µ̄(ds, dz)
�

= 2(w1
−−w2

−) · (X
1− X 2),

where X i := Gi ∗ µ̄, i = 1, 2. Thanks to Davis’ and Young’s inequalities we can write

E sup
t≤T
|M(t)| ≤ 6E[(w1

−−w2
−) · (X

1− X 2)](T )1/2

≤ 6E
�

sup
t≤T
|w1(t)−w2(t)|

�

[X 1− X 2](T )1/2

≤ 6εE sup
t≤T
|w1(t)−w2(t)|2+ 6ε−1E[X 1− X 2](T )

≤ 6εE sup
t≤T

e−2ηt |u1
λβ(t)− u2

λβ(t)|
2

+ 6ε−1E
∫

ZT

|G1(s, z)− G2(s, z)|2 m(dz) ds.

Therefore we have

(1− 6ε)E sup
t≤T

e−2ηt |u1
λβ(t)− u2

λβ(t)|
2

≤ E|x1− x2|2+ (1+ 6ε−1)E
∫

ZT

|G1(s, z)− G2(s, z)|2 m(dz) ds,

hence, passing to the limit as β and λ go to zero, we obtain (14).

Proposition 10. Assume that x ∈ L2 and G ∈ L2(L2(ZT )). Then (2) admits a unique càdlàg general-
ized mild solution u ∈H2(T ). Moreover, one has x 7→ u ∈ Ċ0,1(L2,H2(T )).

Proof. Let us choose a sequence {xn} ⊂ L2d such that xn → x in L2, and a sequence {Gn} ⊂ Ld∗

such that Gn → G in L2(L2(ZT )) (e.g. by a cut-off procedure1). By Proposition 7 the stochastic
equation

du+ Au d t + f (u) d t = ηu d t + Gn dµ̄, u(0) = xn

admits a unique mild solution un. Then (14) yields

E sup
t≤T
|un(t)− um(t)|2 ® E|xn− xm|2+E

∫

ZT

|Gn(s, z)− Gm(s, z)|2 m(dz) ds

In particular {un} is a Cauchy sequence in H2(T ), whose limit u ∈ H2(T ) is a generalized mild
solution of (2). Since un is càdlàg for each n by Proposition 7, u is also càdlàg.

Moreover, it is immediate that x i 7→ ui , i = 1,2, satisfies ‖u1 − u2‖22 ® |x1 − x2|2L2
, i.e. the solution

map is Lipschitz, which in turn implies uniqueness of the generalized mild solution.

Remark 11. One could also prove well-posedness in H2(T ), simply using estimate (13) instead of
(14). In this case one can also get explicit estimates for the Lipschitz constant of the solution map.
On the other hand, one cannot conclude that a solution in H2(T ) is càdlàg, as the subset of càdlàg
processes is not closed inH2(T ).

1For instance, one may set Gn(ω, t, z, x) := 1Zn
(z)
�

(−n)∨ G(ω, t, z, x)∧ n
�

, where {Zn}n∈N is an increasing sequence
of subsets of Z such that Zn ↑ Z and m(Zn)<∞.
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2.2 Multiplicative noise

Let us consider the stochastic evolution equation

du(t) + Au(t) d t + f (u(t)) d t = ηu(t) d t +

∫

Z

G(t, z, u(t−)) µ̄(d t, dz) (17)

with initial condition u(0) = x , where G : Ω× [0, T]× Z×R×D→ R is a P ⊗Z ⊗B(R)⊗B(Rn)-
measurable function, and we denote its associated Nemitski operator, which is a mapping from
Ω× [0, T]× Z ×H → H, again by G.

We have the following well-posedness result for (17) in the generalized mild sense.

Theorem 12. Assume that x ∈ L2 and G satisfies the Lipschitz condition

E
∫

Z

|G(s, z, u)− G(s, z, v)|2 m(dz) ds ≤ h(s)|u− v|2,

where h ∈ L1([0, T]). Then (17) admits a unique generalized solution u ∈ H2(T ). Moreover, the
solution map is Lipschitz from L2 to H2(T ).

Proof. For v ∈H2(T ) and càdlàg, consider the equation

du(t) + Au(t) d t + f (u(t)) d t = ηu(t) d t +

∫

Z

G(s, z, v(s−)) µ̄(ds, dz), u(0) = x . (18)

Since (s, z) 7→ G(s, z, v(s−)) satisfies the hypotheses of Proposition 10, (18) admits a unique gen-
eralized mild solution belonging to H2(T ). Let us denote the map associating v to u by F . We are
going to prove that F is well-defined and is a contraction on H2,α(T ) for a suitable choice of α > 0.
Setting ui = F(v i), i = 1,2, with v1, v2 ∈H2(T ), we have

d(u1− u2) + [A(u1− u2) + f (u1)− f (u2)] d t

= η(u1− u2) d t +

∫

Z

[G(·, ·, v1
−)− G(·, ·, v2

−)] dµ̄

in the mild sense, with obvious meaning of the (slightly simplified) notation. We are going to assume
that u1 and u2 are strong solutions, without loss of generality: in fact, one otherwise approximate
A, f and G with Aβ , fλ, and Gn, respectively, and passes to the limit in equation (19) below, leaving
the rest of argument unchanged. Setting w i(t) = e−αtui(t), i = 1,2, we have, by an argument
completely similar to the one used in the proof of Lemma 9,

|w1(t)−w2(t)|2 ≤ (η−α)
∫ t

0

e−2αs|u1(s)− u2(s)|2 ds+ [w1−w2](t)

+ 2

∫

Zt




e−2αs(u1(s−)− u2(s−), (G(s, z, v1(s−))− G(s, z, v2(s−))) µ̄(ds, dz)
�

.
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The previous inequality in turn implies

‖u1− u2‖22,α ≤ (η−α)
∫ T

0

E sup
s≤t

e−2αs|u1(s)− u2(s)|2 ds

+ 2E sup
t≤T

�

�(w1
−−w2

−) · (X
1− X 2)

�

�

+E
∫ T

0

∫

Z

e−2αs|G(s, z, v1(s−))− G(s, z, v2(s−))|2 m(dz) ds,

where we have set X i := G(·, ·, v i
−) ? µ̄ and we have used the identities

E sup
t≤T
[w1−w2](t) = E[w1−w2](T )

= E
∫ T

0

∫

Z

e−2αs|G(s, z, v1(s))− G(s, z, v2(s))|2 m(dz) ds.

An application of Davis’ and Young’s inequalities, as in the proof of Lemma 9, yields

2E sup
t≤T

�

�(w1
−−w2

−) · (X
1− X 2)

�

�≤ 6εE sup
t≤T
|w1(t)−w2(t)|2

+ 6ε−1E
∫ T

0

∫

Z

e−2αs|G(s, z, v1(s))− G(s, z, v2(s))|2 m(dz) ds,

because [X 1− X 2] = [w1−w2]. We have thus arrived at the estimate

(1− 6ε)‖u1− u2‖22,α ≤ (η−α)
∫ T

0

E sup
s≤t

e−2αs|u1(s)− u2(s)|2 d t

+ (1+ 6ε−1)E
∫ T

0

∫

Z

e−2αs|G(s, z, v1(s))− G(s, z, v2(s))|2 m(dz) ds (19)

Setting ε = 1/12 and φ(t) = E sups≤t e−2αs|u1(s)− u2(s)|2, we can write, by the hypothesis on G,

φ(T )≤ 2(η−α)
∫ T

0

φ(t) d t + 146|h|L1
‖v1− v2‖22,α,

hence, by Gronwall’s inequality,

‖u1− u2‖22,α = φ(T )≤ 146|h|1e2(η−α)T‖v1− v2‖22,α.

Choosing α large enough, we obtain that there exists a constant N = N(T ) < 1 such that ‖F(v1)−
F(v2)‖2,α ≤ N‖v1 − v2‖2,α. Banach’s fixed point theorem then implies that F admits a unique fixed
point in H2,α(T ), which is the (unique) generalized solution of (17), recalling that the norms ‖·‖2,α,
α≥ 0, are all equivalent. Since the fixed point of F can also be obtained as a limit of càdlàg processes
in H2(T ), by the well-known method of Picard’s iterations, we also infer that the generalized mild
solution is càdlàg.
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Moreover, denoting u(x1) and u(x2) by u1 and u2 respectively, an argument similar to the one
leading to (19) yields the estimate

ψ(T )≤ E|x1− x2|2+ 2(η−α)
∫ T

0

ψ(t) d t + 146

∫ T

0

h(t)ψ(t) d t,

where ψ(t) := E sups≤t |u1(s)− u2(s)|2. By Gronwall’s inequality we get

‖u1− u2‖22,α ≤ e2(η−α)+146|h|L1 |x1− x2|2L2
,

which proves that x 7→ u(x) is Lipschitz from L2 to H2,α(T ), hence also from L2 to H2(T ) by the
equivalence of the norms ‖ · ‖2,α.

Remark 13. As briefly mentioned in the introduction, one may prove (under suitable assumptions)
global well posedness for stochastic evolution equations obtained by adding to the right-hand side
of (17) a term of the type B(t, u(t)) dW (t), where W is a cylindrical Wiener process on L2(D), and
B satisfies a Lipschitz condition analogous to the one satisfied by G in Theorem 12. An inspection of
our proof reveals that all is needed is a maximal estimate of the type (5) for stochastic convolutions
driven by Wiener processes. To this purpose one may use, for instance, [10, Thm. 2.13]. Let us
also remark that many sophisticated estimates exist for stochastic convolutions driven by Wiener
processes. Full details on well posedness as well as existence and uniqueness of invariant measures
for stochastic evolution equations of (quasi)dissipative type driven by both multiplicative Poisson
and Wiener noise will be given in a forthcoming article.

3 Invariant measures and Ergodicity

Throughout this section we shall additionally assume that G : Z × H → H is a (deterministic)
Z ⊗B(H)-measurable function satisfying the Lipschitz assumption

∫

Z

|G(z, u)− G(z, v)|2 m(dz)≤ K |u− v|2,

for some K > 0. The latter assumption guarantees that the evolution equation is well-posed by The-
orem 12. Moreover, it is easy to see that the solution is Markovian, hence it generates a semigroup
via the usual formula Ptϕ(x) := Eϕ(u(t, x)), ϕ ∈ Bb(H). Here Bb(H) stands for the set of bounded
Borel functions from H to R.

3.1 Strongly dissipative case

Throughout this subsection we shall assume that there exist β0 and ω1 > K such that

2〈Aβu− Aβ v, u− v〉+ 2〈 fλ(u)− fλ(v), u− v〉 − 2η|u− v|2 ≥ω1|u− v|2 (20)

for all β ∈]0,β0[, λ ∈]0,β0[, and for all u, v ∈ H. This is enough to guarantee existence and unique-
ness of an ergodic invariant measure for Pt , with exponentially fast convergence to equilibrium.
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Proposition 14. Under hypothesis (20) there exists a unique invariant measure ν for Pt , which satisfies
the following properties:

(i)

∫

|x |2 ν(d x)<∞;

(ii) let ϕ ∈ Ċ0,1(H,R) and λ0 ∈M1(H). Then one has
�

�

�

∫

H

Ptϕ(x)λ0(d x)−
∫

H

ϕν(d y)
�

�

�≤ [ϕ]1e−ω1 t

∫

H×H

|x − y|λ0(d x)ν(d y)

Following a classical procedure (see e.g. [13, 31, 32]), let us consider the stochastic equation

du(t) + (Au(t) + f (u)) d t = ηu(t) d t +

∫

Z

G(z, u(t−)) dµ̄1(d t, dz), u(s) = x , (21)

where s ∈]−∞, t[, µ̄1 = µ1− Leb⊗m, and

µ1(t, B) =

(

µ(t, B), t ≥ 0,

µ0(−t, B), t < 0,

for all B ∈ Z , with µ0 an independent copy of µ. The filtration (F̄t)t∈R on which µ1 is considered
can be constructed as follows:

F̄t :=
⋂

s>t

F̄ 0
s , F̄ 0

s := σ
�

{µ1([r1, r2], B) : −∞< r1 ≤ r2 ≤ s, B ∈ Z},N
�

,

where N stands for the null sets of the probability space (Ω,F ,P). We shall denote the value at
time t ≥ s of the solution of (21) by u(t; s, x).

For the proof of Proposition 14 we need the following lemma.

Lemma 15. There exists a random variable ζ ∈ L2 such that u(0; s, x)→ ζ in L2 as s→ −∞ for all
x ∈ L2. Moreover, there exists a constant N such that

E|u(0; s, x)− x |2 ≤ e−2ω1|s|N(1+E|x |2) (22)

for all s < 0.

Proof. Let u be the generalized mild solution of (21). Define Γ(t, z) := G(z, u(t−)), and let Γn be
an approximation of Γ, as in the proof of Proposition 10. Let us denote the strong solution of the
equation

du(t) + (Aβu(t) + fλ(u(t))) d t = ηu(t) d t +

∫

Z

Γn(t, z) dµ̄1(d t, dz), u(s) = x ,

by un
λβ

. By Itô’s lemma we can write

|un
λβ(t)|

2+ 2

∫ t

s

�

〈Aβun
λβ(r), un

λβ(r)〉+ 〈 fλ(u
n
λβ(r)), un

λβ(r)〉 −η|u
n
λβ(r)|

2� dr

= |x |2+ 2

∫ t

s

∫

Z

〈Γn(r, z), un
λβ(r)〉 µ̄1(dr, dz) +

∫ t

s

∫

Z

|Γn(r, z)|2µ1(dr, dz). (23)
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Note that we have, by Young’s inequality, for any ε > 0,

−〈 fλ(u), u〉=−〈 fλ(u)− f (0), u− 0〉 − 〈 fλ(0), u〉

≤ −〈 fλ(u)− f (0), u− 0〉+
ε

2
|u|2+

1

2ε
| fλ(0)|2.

Since fλ(0)→ f (0) as λ→ 0, there exists δ > 0, λ0 > 0 such that

| fλ(0)|2 ≤ | f (0)|2+δ/2 ∀λ < λ0.

By (20) we thus have, for β < β0, λ < λ0 ∧ β0,

− 2〈Aβun
λβ , un

λβ〉 − 2〈 fλ(un
λβ), un

λβ〉+ 2η|un
λβ |

2

≤−ω1|un
λβ |

2+ ε|un
λβ |

2+ ε−1| f (0)|2+δ.

Taking expectations in (23), applying the above inequality, and passing to the limit as β → 0, λ→ 0,
and n→∞, yields

E|u(t)|2 ≤ E|x |2− (ω1− ε)
∫ t

s

E|u(r)|2 dr +
�

ε−1| f (0)|2+δ
�

(t − s)

+E
∫ t

s

∫

Z

|Γ(r, z)|2 m(dz) dr.

Note that, similarly as before, we have
∫

Z

|G(u, z)|2 m(dz)≤ (1+ ε)K |u|2+ (1+ ε−1)

∫

Z

|G(0, z)|2 m(dz)

for any u ∈ H, therefore, by definition of Γ,

E
∫ t

s

∫

Z

|Γ(r, z)|2 m(dz) dr ≤ (1+ ε)K
∫ t

s

E|u(r)|2 dr + (1+ ε−1)
�

�G(0, ·)
�

�

2
L2(Z ,m)(t − s).

Setting

ω2 :=ω1− K − ε(1+ K), N := ε−1| f (0)|2+δ+ (1+ ε−1)
�

�G(0, ·)
�

�

2
L2(Z ,m),

we are left with

E|u(t)|2 ≤ E|x |2−ω2

∫ t

s

E|u(r)|2 dr + N(t − s).

We can now choose ε such that ω2 > 0. Gronwall’s inequality then yields

E|u(t)|2 ® 1+ e−ω2(t+|s|)E|x |2. (24)

Set u1(t) := u(t; s1, x), u2(t) := u(t; s2, x) and w(t) = u1(t)− u2(t), with s2 < s1. Then w satisfies
the equation

dw+ Aw dt + ( f (u1)− f (u2)) d t = ηw dt + (G(u1)− G(u2)) dµ̄,
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with initial condition w(s1) = x − u2(s1), in the generalized mild sense. By an argument completely
similar to the above one, based on regularizations, Itô’s formula, and passage to the limit, we obtain

E|w(t)|2 ≤ E|x − u2(s1)|2− (ω1− K)

∫ t

s1

E|w(r)|2 dr,

and hence, by Gronwall’s inequality,

E|u1(0)− u2(0)|2 = E|w(0)|2 ≤ e−(ω1−K)|s1|E|x − u2(s1)|2.

Estimate (24) therefore implies that there exists a constant N such that

E|u1(0)− u2(0)|2 ≤ e−(ω1−K)|s1|N(1+E|x |2), (25)

which converges to zero as s1 → −∞. We have thus proved that {u(0; s, x)}s≤0 is a Cauchy net in
L2, hence there exists ζ = ζ(x) ∈ L2 such that u(0; s, x)→ ζ in L2 as s→−∞. Let us show that ζ
does not depend on x . In fact, let x , y ∈ L2 and set u1(t) = u(t; s, x), u2(t) = u(t; s, y). Yet another
argument based on approximations, Itô’s formula for the square of the norm and the monotonicity
assumption (20) yields, in analogy to a previous computation,

E|u1(0)− u2(0)|2 ≤ e−(ω1−K)|s|E|x − y|2, (26)

which implies ζ(x) = ζ(y), whence the claim. Finally, (25) immediately yields (22).

Proof of Proposition 14. Let ν be the law of the random variable ζ constructed in the previous
lemma. Since ζ ∈ L2, (i) will follow immediately once we have proved that ν is invariant for
Pt . The invariance and the uniqueness of ν is a well-known consequence of the previous lemma, see
e.g. [10].

Let us prove (ii): we have
�

�

�

∫

H

Ptϕ(x)λ0(d x)−
∫

H

ϕ(y)ν(d y)
�

�

�

=
�

�

�

∫

H

∫

H

Ptϕ(x)λ0(d x)ν(d y)−
∫

H

∫

H

Ptϕ(y)λ0(d x)ν(d y)
�

�

�

≤
∫

H×H

|Ptϕ(x)− Ptϕ(y)|λ0(d x)ν(d y)

≤ [ϕ]1e−ω1 t

∫

H×H

|x − y|λ0(d x)ν(d y),

where in the last step we have used the estimate (26).

3.2 Weakly dissipative case

In this subsection we replace the strong dissipativity condition (20) with a super-linearity assump-
tion on the nonlinearity f , and we prove existence of an invariant measure by an argument based
on Krylov-Bogoliubov’s theorem.

We assume that −A satisfies the weak sector condition and let (E , D(E )) be the associated closed
coercive form (see [25, §I.2]). We set H := D(E ), endowed with the norm associated to the inner
product E1(·, ·) := E (·, ·) + 〈·, ·〉.
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Theorem 16. Assume that

(i) f satisfies the super-linearity condition 〈 f (r), r〉 ≥ b|r|2(1+α)/2, b > 0, α > 0.

(ii) H is compactly embedded into L2(D).

Then there exists an invariant measure for the transition semigroup associated to the generalized mild
solution of (17).

Proof. Let u, un
λβ

, Γ, and Γn be defined as in the proof of Lemma 15. Then an application of Itô’s
formula yields the estimate

E|un
λβ(t)|

2+ 2E
∫ t

0

�

〈Aβun
λβ(s), un

λβ(s)〉+ 〈 fλ(u
n
λβ(s)), un

λβ(s)〉
�

ds

≤ E|x |2+E
∫ t

0

�

2η|un
λβ(s)|

2+ |Γn(s, ·)|2L2(Z ,m)

�

ds. (27)

Since
〈 fλ(r), r〉= 〈 f (Jλr), Jλr + (r − Jλr)〉= 〈 f (Jλr), Jλr〉+λ| fλ(r)|2,

we obtain, taking into account the monotonicity of Aβ ,

E|un
λβ(t)|

2 ≤ E|x |2+ 2η

∫ t

0

E|un
λβ(s)|

2 ds− 2E
∫ t

0

〈 f (Jλun
λβ(s)), Jλun

λβ(s)〉 ds

+E
∫ t

0

|Γn(s, ·)|2L2(Z ,m) ds.

By assumption (i) and Jensen’s inequality, we have

−2

∫ t

0

E〈 f (Jλun
λβ(s)), Jλun

λβ(s)〉 ds ≤−b

∫ t

0

E|Jλun
λβ(s)|

2+2α ds

≤−b

∫ t

0

�

E|Jλun
λβ(s)|

2�1+α ds,

thus also

E|un
λβ(t)|

2 ≤ E|x |2+ 2η

∫ t

0

E|un
λβ(s)|

2 ds− b

∫ t

0

�

E|Jλun
λβ(s)|

2�1+α ds

+E
∫ t

0

|Γn(s, ·)|2L2(Z ,m) ds.

Passing to the limit as β → 0, λ→ 0, n→∞, recalling the definition of Γ and Γn, and taking into
account the Lipschitz continuity of G, shows that y(t) := E|u(t)|2 satisfies the differential inequality
(in its integral formulation, to be more precise)

y ′ ≤ a y − b y1+α+ c, y(0) = E|x |2,
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for some positive constants a and c. By simple ODE techniques one obtains that y(t) is bounded for
all t, i.e. E|u(t)|2 ≤ C for all t ≥ 0, for some positive constant C .

Taking into account the monotonicity of fλ, (27) also implies

E
∫ t

0

〈Aβun
λβ(s), un

λβ(s)〉 ds ≤ E|x |2+ 2η

∫ t

0

E|un
λβ(s)|

2 ds− b

∫ t

0

�

E|Jλun
λβ(s)|

2�1+α ds

+E
∫ t

0

|Γn(s, ·)|2L2(Z ,m) ds.

As we have seen above, the right-hand side of the inequality converges, as β → 0, λ→ 0, n→∞, to

E|x |2+ N

∫ t

0

�

1+E|u(s)|2
�

ds− b

∫ t

0

�

E|u(s)|2
�1+α ds ® 1+ t,

where N is a constant that does not depend on λ, β , and n, and we have used the fact that E|u(t)|2

is bounded for all t ≥ 0. In analogy to an earlier argument, setting zβ := (I + βA)−1z, z ∈ H, we
have

〈Aβz, z〉= 〈Azβ , zβ + z− zβ〉= 〈Azβ , zβ〉+ β |Aβz|2.

In particular, setting vn
λβ

:= (I + βA)−1un
λβ
∈ D(E ), we obtain

E
∫ t

0

E
�

vn
λβ(s), vn

λβ(s)
�

ds ® 1+ t

for small enough β , λ, and 1/n. Since also vn
λβ
(s) → u(s) in H2(T ), it follows that u ∈ L2(Ω ×

[0, t], D(E )) and vn
λβ
→ u weakly in L2(Ω× [0, t], D(E )), where D(E ) is equipped with the norm

E1/2
1 (·, ·), and

E
∫ t

0

E1(u(s), u(s)) ds ® 1+ t.

Let us now define the sequence of probability measures (νn)n≥1 on the Borel set of H = L2(D) by

∫

H

φ dνn =
1

n

∫ n

0

Eφ(u(s, 0)) ds, φ ∈ Bb(H).

Then
∫

|x |2H νn(d x) =
1

n

∫ n

0

EE1(u(s, 0), u(s, 0) ds ® 1,

thus also, by Markov’s inequality,

sup
n≥1
νn(B

c
R)®

1

R
R→∞−−−→ 0,

where Bc
R stands for the complement inH of the closed ball of radius R inH . Since balls inH are

compact sets of L2(D), we infer that (νn)n≥1 is tight, and Krylov-Bogoliubov’s theorem guarantees
the existence of an invariant measure.
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A Auxiliary results

The following proposition is a slight modification of [30, Thm. 6.1.2] and it is used in the proof of
Lemma 6. Here [0, T]⊂ R and E is a separable Banach space.

Proposition 17. Assume that f : [0, T]× E→ E satisfies

| f (t, x)− f (t, y)| ≤ N |x − y|, ∀t ∈ [0, T], x , y ∈ E,

where N is a constant independent of t, and there exists a ∈ E such that t 7→ f (t, a) ∈ L1([0, T]; E).
If A is the infinitesimal generator of a strongly continuous semigroup etA on E and u0 ∈ E, then the
integral equation

u(t) = etAu0+

∫ t

0

e(t−s)A f (s, u(s)) ds, t ∈ [0, T], (28)

admits a unique solution u ∈ C([0, T], E).

Proof. As a first step, let us show that, if v ∈ L∞([0, T]; E), then t 7→ f (t, v(t)) ∈ L1([0, T]; E). In
fact, we have

| f (t, v(t))| ≤ | f (t, v(t))− f (t, a)|+ | f (t, a)|
≤ N |v(t)− a|+ | f (t, a)| ≤ N |v(t)|+ N |a|+ | f (t, a)|,

thus also
∫ T

0

| f (t, v(t))| d t ≤ N T |a|+ N T |v|L∞ + | f (·, a)|L1
<∞.

As a second step, we show that the map

[Fv](t) := etAu0+

∫ t

0

e(t−s)A f (s, v(s)) ds

is a (local) contraction in L∞([0, T]; E). In fact, setting MT = supt∈[0,T] |etA|, we have

sup
t∈[0,T]

�

�[F(v)](t)
�

�≤ MT |u0|+MT

∫ T

0

| f (s, v(s)| ds <∞,

because f (·, v(·)) ∈ L1([0, T]; E), as proved above. We also have

sup
t∈[0,T]

�

�[Fv](t)− [Fw](t)
�

�≤ N MT sup
t∈[0,T]

∫ t

0

|v(s)−w(s)| ds

≤ N MT T |v−w|L∞ ,

so that N MT T0 < 1 for T0 small enough. Then F admits a unique fixed point in L∞([0, T0]; E), and
by a classical patching argument we obtain the existence of a unique solution u ∈ L∞([0, T]; E) to
the integral equation (28). As a last step, it remains to prove that u ∈ C([0, T]; E). To this purpose,
it suffices to show that g ∈ L1([0, T]; E) implies F ∈ C([0, T]; E), with

F(t) :=

∫ t

0

e(t−s)Ag(s) ds.
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In fact, for 0≤ t < t + ε < T , we have

|F(t + ε)− F(t)| ≤
�

�

�

∫ t

0

[e(t+ε−s)Ag(s)− e(t−s)Ag(s)] ds
�

�

�+
�

�

�

∫ t+ε

t

e(t+ε−s)Ag(s) ds
�

�

�

≤ |eεA− I |MT

∫ t

0

|g(s)| ds+MT

∫ t+ε

t

|g(s)| ds,

and both terms converge to zero as ε → 0 by definition of strongly continuous semigroup and
because g ∈ L1([0, T], E). The case 0< t − ε < t ≤ T is completely similar, hence omitted.
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