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Abstract

We consider the internal diffusion limited aggregation (IDLA) process on the infinite cluster
in supercritical Bernoulli bond percolation on Zd . It is shown that the process on the cluster
behaves like it does on the Euclidean lattice, in that the aggregate covers all the vertices in a
Euclidean ball around the origin, such that the ratio of vertices in this ball to the total number
of particles sent out approaches one almost surely.
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1 Introduction

1.1 Background and discussion

Given a graph, IDLA defines a random aggregation process, starting with a single vertex and growing
by a vertex in each time step. To begin the process, we specialize a vertex v to be the initial aggregate
on the graph. In each time step, we send out one random walk from v. Once this walk exits the
aggregate, it stops, and the new vertex is added to the aggregate. Let I (n) be the aggregate in step
n, thus I (1) = {v} and |I (n)|= n.

This process is a special case of a model Diaconis and Fulton introduced in [DF91]. In the setting
where the graph is the d-dimensional lattice, Lawler, Bramson and Griffeath in [LBG92] used Green
function estimates to prove the process has a Euclidean ball limiting shape. Let Br be all vertices
in Zd of Euclidean distance less than r from the origin. The main theorem in [LBG92] implies
that for any ε > 0, I (

�

�BR

�

�) ⊃ B(1−ε)R for all sufficiently large R with probability one. Seeking to
generalize this result to other graphs, we note that convergence of a random walk on the lattice
to isotropic Brownian motion plays an important role in convergence of IDLA on the lattice to an
isotropic limiting shape.

However, this property by itself is in general not enough for IDLA to have such an inner bound, as
the following example shows. Consider the three dimensional Euclidean lattice, and choose a vertex
v at distance R from the origin. Let r = R0.9 and let Br(v) be the set of vertices of distance less
than r from v. Remove all edges but one from the boundary of Br(v), and denote by v′ the only
vertex in Br(v) with a neighbor outside of Br(v). Let us look at I (

�

�B2R

�

�). A rough calculation gives
that the average number of visits to v′ is of order R−1

�

�B2R

�

�. Since at least
�

�Br(v)
�

� = R2.7 visits to v′

are needed to fill Br(v), we don’t expect the ball to be full after an order of R3 particles have been
sent out. Repeating this edge removal procedure for balls of radius R0.9

n at distance Rn from the
origin where Rn = 2nR, will ensure that there is never a Euclidean inner bound. However, a random
walk from the origin on this graph will converge to Brownian motion because our disruptions are
sublinear. We will not give full proofs of these facts, but hope they convince the reader that to get
an inner bound some kind of local regularity property is needed.

The main theorem of this paper states that IDLA on the supercritical cluster in the lattice has a
Euclidean ball as an inner bound. The two main tools that are used to show this are a quenched
invariance principle [BB07] which gives us convergence in distribution to Brownian Motion from a
fixed point, and a Harnack inequality from [Bar04], which give us oscillation bounds on harmonic
functions in all small balls close to the origin. The latter allows us to establish the local regularity
missing from the above example.

1.2 Assumptions and statement

Consider supercritical bond percolation in Zd with the origin conditioned to be in the infinite cluster.
Let the graph Γ(V, E) be the natural embedding in Rd of the infinite cluster, i.e. V ⊂ Rd . Fixing
this embedding for Γ, we get two separate (but comparable, see [AP96]) distances. We denote
by
�

�x − y
�

� or d(x , y) Euclidean distance between points x , y , and by dΓ(x , y) the graph distance
between them. If one of the points is not in V , dΓ(x , y) =∞. Let Br(x) = {v ∈ V | d(x , v) < r} be
the vertices contained in a Euclidean ball of radius r and center x . We abbreviate Br(0) as Br . To
differentiate between such a set of vertices and a full ball in Rd , we denote by bold lowercase the
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Figure 1.1: IDLA of 1000 particles from marked vertex on the percolation cluster with p = 0.7.

following: br(x) = {y ∈ Rd | d(x , y)< r}. Let dr(x) be a box of side r with center x , and as above,
let Dr(x) be the vertices in this box.

By existing work, which we will reference later, we know that with probability one, the graph of the
supercritical cluster, Γ, in its natural Rd embedding, satisfies the following assumptions:

1. A random walk on Γ converges weakly in distribution to a Brownian Motion as defined in 1.4.

2. Convergence to vertex density aG > 0 as defined in 1.5.

3. A uniform upper bound on exit time from a ball as defined in 1.6.

4. A Harnack inequality as defined in 1.7.

We denote by X t a discrete “blind” random walk on Γ defined as follows. For x ∈ Γ and t ∈ N∪{0},
P
�

X t+1 = y|X t = x
�

= 1/2d if y is a neighbor of x in Γ, and P
�

X t+1 = x |X t = x
�

= 1− deg x/2d.
We prefer this walk since its Green functions are symmetric, a fact which will be useful later on. For
non-integer t we set X t = Xbtc.

Note that assumption 4 does not imply 3, see [Del02] for a counterexample.

Using only above assumptions and that V ⊂ Zd (which serves mostly to simplify notation and could
be replaced by weaker conditions), we show the IDLA process starting at 0 will have a Euclidean
ball inner bound as stated in the following theorem:

Let I (n) denote the random IDLA aggregate of n particles starting at 0.

Theorem 1.1. Almost surely, for any ε > 0, we have that for all large enough R, B(1−ε)R ⊂ I (
�

�BR

�

�)

We fix ε with which we prove the above for the rest of the paper.
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1.3 Outline

In the remainder of this section we state our assumptions precisely, and explain why these assump-
tions are valid almost surely for the infinite cluster in supercritical percolation.

Then, to prove IDLA inner bound, we need to show that for each vertex v ∈ V the Green function
from 0 and expected exit time from a ball around 0 of a random walk starting at v, behave similarly
to those functions of a Brownian motion. The exact statement needed appears in Lemma 3.1.
The invariance principle gives us integral convergence of these functions to the right value, but to
improve them to pointwise statements, we must show that they are locally regular. We use the
Harnack inequality from [Bar04] to prove they are Hölder continuous. This is a similar scheme to
improving a CLT to an LCLT, as was done in [BH09] using a different method than ours.

In section 2, we start by proving a lemma comparing expected exit time from a set to the Green
function of a point in the set. Then, we show how our Harnack assumption leads to an oscillation
inequality which we use to show regularity of the Green function and expected exit time of the
walk in a ball when we are far from the boundary and the center. Next, in section 3, we use our
assumption of an invariance principle to show that in small balls the integral of these functions
approaches a tractable limit that can be calculated by knowledge of Brownian motion. Finally, in
section 4, we utilize these estimates to prove theorem 1.1.

Remark 1.2. Since the paper makes use of results based on ergodic theory, there is no rate estimate
for the convergence in theorem 1.1. Also, on the Euclidean lattice there is an almost sure outer
bound with sublinear fluctuations from the sphere. Another interesting question that is not treated
here, is whether a similar outer bound holds in our setting.

1.4 Weak convergence to Brownian Motion

In this and the next three subsections, we give a precise formulation of each of our assumptions
from above, and argue that they hold a.s. on Γ, the supercritical cluster.

Let C d
T = C([0, T] → Rd), i.e. the continuous functions from the closed interval [0, T] to d-

dimensional Euclidean space. For R ∈ N, let

wR(t) =
1

R

�

XbtR2c+ (tR
2− btR2c)(XbtR2c+1− XbtR2c)

�

.

Thus wR(t) is a scaled linear interpolation of X t (defined in 1.2) with its restriction to [0, T] an
element of C d

T .

We say that assumption 1 holds if for any T > 0, the law of wR(t) on C d
T converges weakly in the

supremum topology to the law of a (not necessarily standard) Brownian Motion (Bt : 0≤ t ≤ T ) .

Lemma 1.3. Assumption 1 holds for Γ with probability one.

Proof. This is Theorem 1.1 in [BB07]. Another paper with a similar invariance principle is [MP05].

LetB(t) denote the Brownian motion weak limit of X t .
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1.5 Convergence to positive density

Assumption 2 holds if there exists a positive aG such that for any δ,γ > 0 and all sufficiently large R
we have that for all x ∈ bR and all δR≤ r ≤ R

�

�

�

�

|Dr(x)|
rd

− aG

�

�

�

�

,

�

�

�

�

|Br(x)|
�

�b1

�

� rd
− aG

�

�

�

�

< γ.

That is, balls and boxes of size δR to R, have vertex density in
�

aG − γ, aG + γ
�

for all large enough
R.

Lemma 1.4. Assumption 2 holds for Γ with probability one.

Proof. Let θ(p) be the probability for 0 to be in the infinite cluster. θ(p) is positive in the supercrit-
ical regime. From Theorem 3 in [DS88] for d = 2 and from (2) on p. 15 of [Gan89] for d > 2, we
know that for any ρ > 0 there is a positive c = c(ρ) such that

P
�

n−d
�

�Dn(x)
�

�< (1−ρ)θ(p)
�

< exp(−cn).

where x ∈ Rd and n ∈ N. Recall Dn(x) are the vertices in a box of side-length n and center
x . Theorem 2 in [DS88] proves the easier density upper bound for d = 2, which under trivial
modifications gives that for all d

P
�

n−d
�

�Dn(x)
�

�> (1+ρ)θ(p)
�

< exp(−cn).

The above, together with Borel Cantelli gives that if we choose γ > 0, x ∈ b1, then for all large
enough R

�

�

�

�DρR(Rx)
�

�− θ(p)(ρR)d
�

�<
γ

2
Rd .

So we have the result for small boxs of size ρR. To expand it to larger boxes, let D be any box of
diameter between δR to R. We partition the box DR into ρR-sized boxes and choose ρ = ρ(δ) small
enough so that the number of boxes that intersect both D and DR\D is negligible compared to the
number that intersect D. Proving for balls is similar.

1.6 Uniform Bound on Exit time from ball

Denote by τr(x) the first time the walk leaves Br(x), and write τr for τr(0).

Assumption 3 holds if there is a cE such that for any δ > 0 and all large enough R, if x ∈ BR and
r > δR then

Ex
�

τr(x)
�

< cE r2. (1.1)

The assumption holds for Γ with probability one as a direct consequence of the following lemma,
proved below.

Lemma 1.5. With probability one, there is an L such that for all δ > 0 and all large enough R, if
x ∈ BR and r > δR then

Px(τr(x)> Lr2)< exp(−cL). (1.2)
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Proof. Since we prove for all R outside a bounded interval, it suffices to prove the above for r = δR
with fixed δ > 0. To prove this holds a.s. for supercritical percolation clusters, we use a heat kernel
upper bound given in Theorem 1 of Barlow’s paper [Bar04]. The proof in [Bar04] is for continuous
walks with a mean time of one between jumps. However, it can be transferred to our discrete walk
using Theorem 2.1 of [BB07]. We state an implication of what was proved.

With probability one there exists a function from V to N,
�

Tx <∞
	

x∈V where Tx is sublinear in the
sense that Tx

‖x‖ → 0, and there exist positive constants c1, c2 such that for any x ∈ V , the following
holds. For all y ∈ Bt(x), t ≥ Tx :

Px(X t = y)< c2 t−d/2. (1.3)

Barlow’s result actually states that almost surely Tx grows slower than a logarithmic function of ‖x‖
and gives stronger Gaussian bounds for the heat kernel from below and above.

Using the heat kernel upper bound (1.3), the convergence to zero of Tx

‖x‖ , and the upper bound on

vertex density resulting from Γ ⊂ Zd , we have that for any K and all large enough R, if x ∈ BR and
r = δR, then

Px(XKr2 /∈ Br(x)) = 1−
∑

y∈Br (x)

Px(XKr2 = y)

≥ 1−
∑

y∈Br (x)

c2K−d/2r−d

≥ 1− C(d)K−d/2.

Thus for some K ′, for all large enough R, and all x ∈ BR, Px(XK ′r2 ∈ Br(x)) <
1
2
. Next, for any

positive L, we use the Markov property to upper bound Px(τr(x)> LK ′r2) by

Px(XK ′r2 ∈ Br(x))
bLc
∏

i=2

P(X iK ′r2 ∈ Br(x) | X(i−1)K ′r2 ∈ Br(x))≤ 2−bLc,

which proves the claim.

We will later use that assumption 3 implies L1 convergence of R−2τR∧T to R−2τR with T , uniformly
in R for all x ∈ BR.

Lemma 1.6. For all β > 0 there is a T (β) such that for all large enough R, ∀x ∈ BR
�

�

�Ex
�

τR
�

− Ex

�

τR ∧ TR2
�

�

�

�< βR2. (1.4)

We rewrite the left hand side of (1.4) and use the Markov property with the exit time assumption.

Ex

h

�

τR− TR2
�

1{τR>TR2}
i

=
∑

y∈BR

�

Ex

�

τR− TR2 | τR > TR2, X (TR2) = y
�

·

P(τR > TR2, X (TR2) = y)
�

=
∑

y∈BR

Ey
�

τR
�

P(τR > TR2, X (TR2) = y)

≤ cER2
∑

y∈BR

P(τR > TR2, X (TR2) = y)

= cER2P(τR > TR2).
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Since Ex

�

τR/R
2
�

is bounded by cE for all R, we have by the Markov inequality that P(τR/R
2 >

T )≤ cE/T which converges to zero as T goes to∞ uniformly in R for all x ∈ BR.

1.7 Harnack inequality

A function h : Γ → R is harmonic on x ∈ Γ if h(x) = |N(x)|−1∑

y∈N(x) h(y) where N(x) =
�

y ∈ Γ : dΓ(x , y) = 1
	

are the neighbors of x . We say h is harmonic on Z ⊂ Γ if it harmonic on
every vertex v ∈ Z .

Assumption 4 holds if there is a 1< cH <∞ such that for all δ > 0 we have that for all large enough
R, if x ∈ BR, r > δR and h is a function that is non-negative and harmonic on B2r(x) then

sup
Br (x)

h≤ cH inf
Br (x)

h. (1.5)

In order to simplify the paper, the inequality above is formulated for Euclidean distance rather than
graph distance. We show that since the distances are almost surely comparable on Γ, this is the same.
We start by proving the assumption holds for graph distance, using Lemma 2.19 and Theorem 5.11
of [Bar04]. We write BΓr =

�

x ∈ Γ : dΓ(0, x)≤ r)
	

. The lemma, using appropriate parameters and
Borel Cantelli, tells us that for all large enough R, BΓR log R are very good balls. Specifically, all balls

contained in BΓR log R of graph radius larger than R1/4(d+2) have a positive volume density and satisfy
a weak Poincaré inequality as explained in (1.15) and (1.16) of the same. Theorem 5.11 then tells
us that for very good ball of graph radius R log R, all x ∈ BΓ(R log R)/3 satisfy that for any function h

non-negative harmonic on BΓR(x)
sup

BΓR/2(x)
h≤ ĉH inf

BΓR/2(x)
h (1.6)

where ĉH(d, p) > 0 is a constant dependent only on dimension and percolation probability. Since
all but a finite number of balls of graph radius R log R are very good and R is o(R log R) we have
assumption 4 for graph distance.

Next, we transfer this to the Euclidean balls formulation of (1.5). By Theorem 1.1 of [AP96], we
have that for some k > 0, ρ(d, p)> 0 and M <∞,

P
�

dΓ(x , y)> ρm
�

�

�x , y ∈ Γ,
�

�x − y
�

�= m> M
�

< exp(−km).

Let A(x , y) be the event
�

dΓ(x , y)> ρm
	

. Union bounding the probability for A(x , y) over every
pair of points in BR of Euclidean distance greater than c log R for some large c(k), we upper bound
the probability of any such event occuring by

CRd
∞
∑

m=c log R

md−1 exp(−km)< C ′Rd �log R
�d−1 R−2d ,

which is summable for d > 1. Hence by Borel Cantelli, almost surely for all large enough R, we have
that for any x , y ∈ BR with

�

�x − y
�

� > c log R, dΓ(x , y) < ρ
�

�x − y
�

�. Since log R is o(R), this implies
that for any δ > 0 and all large enough R, for any x ∈ BR,

Bδρ−1R(x)⊂ BΓδR(x). (1.7)
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Note that BΓr (x) ⊂ Br(x) always because Γ is embedded in Zd . Hence, given a function that is non-
negative harmonic on B2r(x) it is also such on BΓ2r(x). For large enough R, we use (1.6) and (1.7)
to get (1.5) for Bρ−1r(x) with constant ĉH . A routine chaining argument (see e.g. (3.5) in [Del02])
transfers this to Br(x) as required with new constant cH .

2 Pointwise bounds on Green function and expected exit time

In this section, we show the assumptions of a uniform bound on exit time from a ball along with
the Harnack inequality give us pointwise bounds of the Green function and expected exit time of a
random walk.

As a convention, we use plain c and C to denote positive constants that do not retain their values
from one expression to another, as opposed to subscripted constants ci , that do. In general, these
constants are graph dependent, and in the context of percolation, can be seen as random functions
of the percolation configuration. However, we view the graph as being fixed and satisfying the
assumptions stated in subsection 1.2.

We start with a general lemma on the relation between expected exit time from a set and the
expected number of visits to a fixed point in the set.

Let Z ⊂ Γ and let τZ be the first hitting time of Z for X t . For x ∈ Γ we set GZ(x) =
Ex

h

∑τZ
t=0 1{X t=x}

i

, the expected number of visits to x of a walk starting at x before τZ .

Lemma 2.1. There is a k = k(d)> 0 such that for any x ∈ Γ and Z ⊂ Γ where N(x)∩ Z = ;

Ex
�

τZ
�

> kG2
Z/ log GZ . (2.1)

Proof. Recall from 1.2 that X t has a positive staying probability at certain vertices. Since we apply
electrical network interpretation to estimate hitting probabilities, we prove the above for Yt , the
usual discrete simple random walk, with 0 probability to stay at a vertex. This implies (2.1) for X t
as well, since the expected exit time cannot decrease, and the Green functions for X t can only grow
by a 2d factor since the escape probabilites for X t and Yt are at most a 2d factor apart.

Fix x ∈ Γ, set T0 = 0, and define for each i ∈ N the r.v.’s

Ti = inf
�

t > Ti−1 : Yt = x
	

.

Let i∗ = inf
�

i : Ti =∞
	

. For 1 ≤ i ≤ i∗ let ρi = Ti − Ti−1. We show there are positive constants
k1, k2 dependent only on d such that

P
�

ρ1 ≥ k1r2/ log r
�

≥
k2

r
. (2.2)

For some r > 1, let ∂ BΓr (x) =
�

v ∈ Γ : dΓ(v, x) = r
	

. By electrical network interpretation (see
e.g. [DS84]), the probability for a walk beginning at x to hit ∂ BΓr (x) before returning to x is
(2d)−1Ce f f (r), where Ce f f (r) is the effective conductance from x to ∂ BΓr (x). Since Γ is infinite and
connected, for any r there is a connected path of r edges from x to ∂ BΓr (x). By the monotonicity
principle, Ce f f (r) is at least the conductance on this path, which is r−1. Thus the probability to hit
some y ∈ ∂ BΓr (x) before returning to x is at least (2dr)−1.
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Next, let y ∈ ∂ BΓr (x). By the Carne-Varopoulos upper bound (see [Var85]),

P
�

Yt = x |Y0 = y
�

≤ 4d1/2 exp

�

−
r2

2t

�

and thus, for some k1(d), k2(d)> 0 and all r > 1, the probability that a walk starting at y ∈ ∂ BΓr (x)
does not hit x in the next bk1r2/ log rc steps, by union bound, is greater than k2. Together with our
lower bound on the probability that we arrive at such a y ∈ ∂ BΓr (x), we get (2.2).

Next, let g = inf
�

i : Ti > τZ
	

be the number of visits of Yt to x before hitting Z , including t = 0 . g
is a geometric random variable with mean G = GZ . Let α = 1

2
ln (4/3) and note that since there is a

constant in (2.1) and τZ ≥ 1, we can assume G > 2. Thus

P
�

g ≥ αG
�

≥
�

1− G−1
�αG

≥
�

1− G−1
�2α(G−1)

≥ e−2α = 3/4

We further assume G > 2
α
∨ 16

k2
so that αG − 1 > αG/2 and G k2

16
> 1. Let A be the event that there

is an 1 ≤ i ≤ (αG− 1)∧ i∗ such that ρi > k1

�

k2

16
G
�2
/ log

�

k2

16
G
�

Note that i∗ ≤ αG − 1 implies A.
Thus by (2.2) and the independence of consecutive excursions from x ,

P [Ac]≤
�

1−
16

G

�αG/2

≤ e−8α

which is smaller than 1/4.

Thus

P
��

g ≥ αG
	

, A
�

≥
1

2
.

This implies the lemma since τZ >
∑g−1

i=1 ρi , and for k = k1k2
2/256,

∑g−1
i=1 ρi > kG2/ log G.

Next, we state the fact that a Harnack inequality implies an oscillation inequality. For a set of vertices
U and a function u, let

oscU(u) =maxU(u)−minU(u).

Proposition 2.2. Let x ∈ Γ and assume that for some r > 0 we have that any function h that is non-
negative and harmonic on B2r(x) satisfies (1.5) on Br(x). Then for any h that is harmonic on B2r(x),
we have

oscBr (x)h≤
cH − 1

cH + 1
oscB2r (x)h. (2.3)

Proof. We quote a proof from chapter 9 of [Tel06].

Set v = h−minB2r (x) h. Since v is non-negative and harmonic on B2r(x), the Harnack inequality
(1.5) is satisfied here, so we have

max
Br (x)

v ≤ cH min
Br (x)

v,
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whence

max
Br (x)

h− min
B2r (x)

h≤ cH

�

min
Br (x)

h− min
B2r (x)

h
�

,

and

oscBr (x)h≤
�

cH − 1
�

�

min
Br (x)

h− min
B2r (x)

h
�

.

Similarly, we have

oscBr (x)h≤
�

cH − 1
�

�

max
B2r (x)

h−max
Br (x)

h
�

.

Summing up these two inequalities, we obtain

oscBr (x)h≤
1

2

�

cH − 1
�

�

oscB2r (x)h− oscBr (x)h
�

,

whence (2.3) follows.

Iterating this on the Harnack assumption 4 we get

Corollary 2.3. For any α > 0 there is an M(α) such that for any η > 0 and for all R > Rη, if x ∈ BR,
r ≥ ηR and h is a harmonic function on BM(α)r(x) then

oscBr (x)h≤ αoscBM r (x)h.

We use this to show regularity of the green function and for expected exit time.

Lemma 2.4. There is a cG(ε) such that for all large enough R, and any x ∈ B(1−ε)R \ BεR

GτR
(0, x)< cGR2−d . (2.4)

Proof. Any two vertices in u, v ∈ B(1−ε)R \ BεR can be joined by a path of n < C(d)/ε overlap-
ping balls Bε/4(x1), . . . , Bε/4(xn) that are all subsets of B(1−ε/2)R \ B(ε/2)R such that x1 = u and
xn = v. Since GτR

(0, x) is positive and harmonic in B(1−ε/2)R \ B(ε/2)R, Harnack assumption 4

tells us that c−C/ε
H < u/v < cC/ε

H . Next, note that
∑

x∈BR
GτR
(0, x) = E0

�

τR
�

. Thus, letting

M(R) = max
¦

GτR
(0, x) : x ∈ B(1−ε)R \ BεR

©

, and using the exit time bound in assumption 3, we
get

�

�BR

�

� c−C/ε
H M ≤

∑

x∈BR

GτR
(0, x)< cER2.

Lemma 2.5. For any β > 0, there is a δ > 0 such that for all large enough R, any x , y ∈ B(1−ε)R \ BεR
satisfying

�

�x − y
�

�< δR also satisfy
�

�

�

�

GτR
(0, x)− GτR

(0, y)

�

�

�

�

≤ βR2−d . (2.5)

Proof. GτR
(0, x) is positive and harmonic in B(1−ε/2)R \ B(ε/2)R and bounded by cGR2−d . We use

corollary 2.3 with α= β c−1
G and η= ε/ (2M(α)). This gives us the lemma with δ = η.
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Lemma 2.6. For any β > 0, there is a δ > 0 such that for all large enough R, any x , y ∈ B(1−ε)R
satisfying

�

�x − y
�

�< δR also satisfy:

�

�

�

�

Ex
�

τR
�

− Ey
�

τR
�

�

�

�

�

≤ βR2. (2.6)

Proof. Fix x ∈ B(1−ε)R and for δ > 0 determined below, fix some y ∈ BδR(x). Define the r.v. τ1
to be the random time it takes a walk starting somewhere inside BεR(x) to exit BεR(x), and let
τ2 = τR −τ1, i.e. the additional time it takes the walk to exit BR. Note that Ex

�

τ2
�

is harmonic in
BεR(x), and that from exit time assumption 3 for all large R it is bounded by cER2. We use corollary
2.3 with α= β c−1

E /2 and η= ε/M(α), to get that for δ ≤ η
�

�

�

�

Ex
�

τ2
�

− Ey
�

τ2
�

�

�

�

�

≤ αcER2 = βR2/2.

Take δ ≤
�

β

2cE

�1/2
∧η so that, again by exit time bound, for all large enough R, Ex

�

τ1
�

, Ey
�

τ1
�

<

βR2/2. Applying the triangle inequality finishes the proof.

3 Domination of Green function

Let Ω = ΓN∪{0} and let PB(·) denote a probability measure on paths in Ω starting at 0 that make X t
a “blind” simple random walk as defined in subsection 1.2. PB is pushed forward to a measure on
C d

T by wR(t) as defined in subsection 1.4. To contrast, we call P(·) the Wiener measure on curves
corresponding to the Brownian motion B(t) which is the weak limit of wR(t). Thus, for fixed T ,
C d

T is the probability space on which PB �wR(t)
�

converges to P in distribution. Write EB [·] and
E [·] for the corresponding expectations.

3.1 Integral Convergence of expected exit time

Since we assume control of convergence to Brownian Motion only from 0, we must describe the
expected exit time from an arbitrary point in the unit ball as a function of Brownian motion that
starts at 0. We do this by conditioning the Brownian motion to hit a small box containing that point
and measuring the additional time needed to exit the unit ball.

We denote the first hitting time of a set Z by τZ . This hitting times may refer to the Brownian
motion B(t), scaled linearly interpolated walks wR(t), or the discrete random walk X t . Another
implicit part of this notation is the starting point of the walk or curve. The correct interpretation
should be evident from context, and will be stated otherwise. Some notation used in this section
was introduced in subsections 1.2 and 1.4.

Fix T > 0, 0 < θ < ε, u ∈ b1−ε and let A =A (T ) =
¦

w(t) ∈ C d
2T : τdθ (u) ≤ T

©

. A ⊂ C d
2T is the

event that the curve hits a small box around u before time T .

Henceforth, to avoid the complication where a vertex after scaling is in the boundary of a box dθ (u),
we always take u to have rational coordinates, and the side length θ to be irrational. This will suffice
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as our scale parameter R is a natural number. Secondly we take T to be an integer so that a curve
wR(t) hits dθ (u) until T if and only if it hits a vertex in DRθ (Ru) until TR2.

Since we are interested in estimating the behavior of X t and not just its interpolation, we define
A ∗ =A ∗(R, T ) =

¦

ω ∈ Ω : τDRθ (Ru)(X t(ω))≤ TR2
©

. A ∗ ⊂ Ω is the event a vertex in DRθ (Ru) is
visited until time TR2. Thus for all R ∈ N, and for all ω ∈ Ω, X t(ω) ∈A ∗ ⇐⇒ wR(ω, t) ∈A .

Let τ+ be the first exit time of the unit ball b1 after hitting dθ (u). Let k :C d
2T → R be defined as

k(ω) = 1A
�

(τ+−τdθ (u))∧ T
�

.

Analogously, let τ+R be the first exit time of BR after hitting DRθ (Ru), and let

k∗(ω) = R−2 · 1A ∗
�

(τ+R −τDRθ (Ru))∧ TR2�.

k(ω) is bounded by T and is discontinuous on ∂A , a set of Wiener measure zero. Therefore, by the
Portmanteau theorem and our assumption of weak convergence,

EB �k
�

wR(t)
��

→ E [k (B(t))] as R→∞.

By the strong Markov property for Brownian motion, we may average over the hitting point.

P(A )−1 · E [k (B(t))] = E [k (B(t)) | A ] = E0

h

EB(τdθ (u)
) [τ∧ T]

i

,

where τ = τbc
1
, the first exit time from the unit ball (we start measuring time at B(τdθ (u))). Note

that R2k(wR(ω, t))measures the time that the unscaled interpolated walk w1(ω, t) takes to get from
the boundary of dRθ (Ru) to bc

R, but what interests us is the span between the first time that X t(ω)
takes a value in DRθ (Ru) to the first time it takes a value in the complement of BR. R2k∗

�

X t(ω)
�

measures this time. By the strong Markov property for random walks

PB(A ∗)−1 · EB �k∗
�

X t
��

= EB �k∗
�

X t
�

| A ∗
�

= R−2EB
0

�

EB
Y (τDRθ (Ru))

�

τR ∧ TR2
�

�

.

If the unscaled interpolated curve w1(ω, t) crosses the boundary of dRθ (Ru), it will hit a vertex in
DRθ (Ru) in less than one time unit. The same is true for exiting bR. Thus for all ω in our probability
space

�

�R2k
�

wR(ω, t)
�

− R2k∗
�

X t(ω)
�

�

�< 2 and
�

�EB �k(wR(ω, t))
�

− EB [k∗(ω)]
�

�< 2
R2 .

By weak convergence, for any fixed T, PB �wR(ω, t) ∈A (T )
�

→ P (A (T )), and sinceA ∗ ⇐⇒ A ,

R−2EB
0

�

EB
Y (τDRθ (Ru))

�

τR ∧ TR2
�

�

→ E0

h

Eω(τdθ (u)
) [τ∧ T]

i

as R→∞. (3.1)

In summary, we have some average on the boundary vertices of DRθ (Ru) of the function R−2EB
x (τR∧

TR2), that is close as we like to an average on dθ (u) of a Brownian motion’s expected time to exit
the unit ball.

3.2 Integral convergence of Green function

For a fixed T > 0, θ > 0 and u ∈ b1 let h :C d
T → R be defined for w(t) ∈ C d

T as follows:

h(w(t)) =

T
∫

0

1{w(t)∈dθ (u),t<τ}d t.
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h(ω) measures a curve’s occupation time of dθ (u) before leaving b1 and until time T . Since
h(B(ω, t)) is bounded by T and is discontinuous on curves whose occupation time of ∂ dθ (u) before
exit of b1 is positive - a set of Wiener measure zero. Thus the Portmanteau theorem gives:

EB �h
�

wR(t)
��

→ E [h(B(t))] as R→∞.

Note that E [h(B(t))] =
∫

dθ (u)

gτ∧T (0, x)d x where gτ∧T is the Green function of B(t) killed on

leaving the unit ball or when time T is reached.

Again, we are measuring the time that a linearly interpolated curve spends in a set, while we would
like to have control over the time the random walk itself spends in the set. However, E [h(B(t))] is
a continuous function of θ , and for any δ > 0 the time the discrete walk spends in DRθ (Ru) is even-
tually sandwiched between the time the unscaled interpolated walk w1(ω, t) spends in dR(θ+δ)(Ru)
and dR(θ−δ)(Ru). Thus:

R−2
∑

x∈DRθ (Ru)

GB
τR∧TR2(0, x)→

∫

dθ (u)

gτ∧T (0, x)d x as R→∞, (3.2)

where GB
τR∧TR2 is the Green function of the walk from 0, killed on leaving BR or when time TR2 is

reached.

3.3 Pointwise domination of Green function

Lemma 3.1. ∀ε > 0 ∃R̂ and η > 0 s.t. ∀R> R̂ the following holds:

x ∈ B(1−ε)R \ BεR =⇒ |BR|GτR
(0, x)> (1+η)Ex(τR).

This is the main result needed for IDLA lower bound, and will proved be in this section.

First, it is known (see, e.g., [LBG92] p.2121) for Brownian motion starting at zero, and killed on
exiting the unit ball, that the Green function gτ(0, x) and expected hitting time Ex(τ) are continuous
functions with the property that |b1|gτ(0, x)− Ex(τ) descends strictly monotonically to zero as x
goes from 0 to 1. This is true for any Brownian motion, in particular, B(t), the weak limit of X t
on the graph starting at 0. Thus for any ε > 0 the minimum of the difference between the two
when ||x || ∈ [ε, 1− ε] is bounded away from zero. The Lebesgue monotone convergence theorem
implies that gτ∧T (0, x)↗ gτ(0, x) and Ex(τ∧ T )↗ Ex(τ) as T →∞. Since all functions involved
are continuous and converge monotonically on a compact set, by Dini’s theorem, the convergence is
uniform. Thus we have the following uniform bounding of the difference away from zero:

∃γ(ε)> 0, T s.t. ∀u, ||u|| ∈ [ε/2,1− ε/2], Eu(τ∧ T ) + γ < |b1|gτ∧T (0,u).

Since Eu(τ ∧ T ), gτ∧T (0,u) converge uniformly with T , they are uniformly equicontinuous in the
variable u in the closed interval [ε/2, 1− ε/2]. We may then choose a θ > 0 such that for all large
enough T , any average of gτ∧T (0, ·) in a box of side θ with center u, is close to gτ∧T (0,u) for any
u ∈ [ε,1− ε]. We have the analogous claim for Eu(τ∧ T ). Thus:

735



Lemma 3.2. For any positive ε, there is γ(ε)> 0 such that for all large enough T and all small enough
θ

∀u, ||u|| ∈ [ε, 1− ε],
∫

∂ dθ (u)

Ev(τ∧ T )dµ(v) + 3γ < |b1|θ−d

∫

dθ (u)

gτ∧T (0,v)dv.

In the above, dµ is an arbitrary probability measure (total mass one) on the boundary of dθ (u),
while the integral on the right is by d-dimensional Lebesgue measure.

We apply lemmas 2.5 and 2.6 to get a δ > 0 for which (2.6) and (2.5) hold with β = γ̂ for all large
enough R. γ̂ > 0 is some multiple of γ from lemma 3.2 that we determine later. Set θ to be small
enough so that dθ is covered by a ball of radius δ. Increase T further if necessary so that (1.4) holds
with β = γ

4
. Fix T and θ for the remainder of the proof.

We cover b(1−ε) \ bε by a finite number of open θ -boxes, and so to prove lemma 3.1, it suffices to
prove the implication in the restricted setting of x ∈ DRθ (Ru) where u is the center of an arbitrary
box in our θ -net.

Now, we show the Green function at every point in this box is close to the continuous one.

3.3.1 Pointwise Green function estimate

Let GΣR =
∑

x∈DRθ (Ru)
GτR∧TR2(0, x) and let g

∫

=
∫

dθ (u)

gτ∧T (0, x)d x . By (3.2), we have for large enough

R:
�

�

�

�

R−2GΣR − g
∫

�

�

�

�

< γ̂θ d |b1|.

Let αR =
|BR|

|DRθ (Ru)| . By density assumption (2), for all R large enough

�

�

�

�

αR − θ−d |b1|
�

�

�

�

< γ̂. Using the

triangle inequality on
�

�

�

�

R−2GΣR (αR+ θ
−d |b1| −αR)− θ−d |b1|g

∫

�

�

�

�

< γ̂,

we get
�

�

�

�

R−2GΣRαR− θ−d |b1|g
∫

�

�

�

�

< γ̂+ R−2GΣR

�

�

�αR− θ−d |b1|
�

�

�< γ̂(1+ c5θ
d),

where for the right inequality, we used (2.4) to bound GτR∧TR2(0, x) and (Rθ)d as a bound on the
number of vertices.

We set θ such that (2.5) bounds the difference between the maximum and minimum of GτR
(0, x)

in DRθ (Ru) by γ̂R2−d for all large enough R. Thus, since GτR
(0, x) > GτR∧TR2(0, x) we have for any

x ∈ DRθ (Ru)
�

R−2GτR
(0, x)|BR| − θ−d |b1|g

∫�

>−
�

γ̂(1+ c5θ
d) + R−2|BR|γ̂R2−d

�

.

Recall γ from lemma 3.2. We now determine γ̂ so that for all large enough R, for any x ∈ DRθ (Ru)








R−2GτR
(0, x)|BR| − θ−d |b1|

∫

dθ (u)

gτ∧T (0,v)dv









>−γ. (3.3)

Next we show that the expected hitting time from any point is close to the continuous one.
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3.3.2 Pointwise expected hitting time estimate

Recall we chose T such that for any x ∈ BR

�

�

�Ex
�

τR
�

− Ex

�

τR ∧ TR2
�

�

�

�<
γ

4
R2.

Combining this with (3.1) we have for large enough R
�

�

�

�

�

R−2
∑

x∈DRθ (Ru)

λ(R)x Ex(τR)−
∫

∂ dθ (u)

Ev(τ∧ T )dµ(v)

�

�

�

�

�

<
γ

2
.

where for each R, λ(R)x are non-negative and sum to one and dµ is some probability measure on
∂ dθ (u).

We set θ such that (2.6) holds with β = γ̂ < γ/2, so for large enough R we have for any x ∈ DRθ (Ru)
�

�

�

�

�

R−2Ex(τR)−
∫

∂ dθ (u)

Ev(τ∧ T )dµ(v)

�

�

�

�

�

< γ.

Putting the above together with (3.3) and 3.2, for all large enough R, we get that for any x ∈
DRθ (Ru)

GτR
(0, x)|BR| − Ex(τR)> γR2.

The above along with our upper bound on Ex(τR) from assumption 3, implies lemma 3.1.

4 Lower Bound

We begin by formally defining the IDLA process.

Let
�

X n
t

�n∈N
t≥0

be a a sequence of independent random walks starting at 0. The aggregate begins

empty, i.e. I (0) = ;, and I (n) = I (n− 1)∪ X n
t ′ where t ′ = mint

¦

X n
t /∈ I (n− 1)

©

. Thus we have
an aggregate growing by one vertex in each time step.

As in [LBG92], we fix z ∈ B(1−ε)R \ BεR, and look at the first
�

�BR

�

� walks. Let A= A(z, R) be the event
z ∈ I (

�

�BR

�

�). We show the probability this does not happen decreases exponentially with R.

Let M = M(z, R) be the number of walks out of the first
�

�BR

�

� that hit z before exiting BR. Let
L = L(z, R) be the number of walks out of the first

�

�BR

�

� that hit z before exiting BR, but after leaving
the aggregate. Then for any a,

P(Ac)< P(M = L)< P(M ≤ a) + P(L ≥ a).

We choose a later to minimize the terms. In order to bound the above expression, we calculate the
average of M and L,

E [M] =
�

�BR

�

� P0(τz < τR).
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E [L] is hard to determine, but each walk that contributes to L, can be tied to the unique point at
which it exits the aggregate. Thus, by the Markov property, if we start a random walk from each
vertex in BR and let L̂ be those walks that hit z before exiting BR, P(L > n) ≤ P(L̂ > n), and so it
suffices to bound P(L̂ > a). E[ L̂] is a sum of independent indicators:

E[ L̂] =
∑

x∈BR

Px(τz < τR).

Since both M and L̂ are sums of independent variables, we expect them to be close to their mean.
Our aim now becomes showing that for some δ > 0 and all large enough R,

E [M]> (1+ 2δ)E[ L̂]. (4.1)

By standard Markov chain theory,

Px(τz < τR) =
GτR
(x , z)

GτR
(z, z)

.

Using this and symmetry of the Green function, it is enough to show for all large enough R
�

�BR

�

�GτR
(0, z)> (1+ 2δ)

∑

x∈BR

GτR
(x , z) = (1+ 2δ)Ez

�

τR
�

,

which is lemma 3.1.

Choosing a = (1+δ)E[ L̂] we write

P(L̂ > (1+δ)E[ L̂]) < P(
�

�

� L̂− E[ L̂]
�

�

�> δE[ L̂]1/2σ L̂) (4.2)

< 2 exp
�

−E[ L̂]δ2/4
�

. (4.3)

In the first line we use that L̂ is a sum of independent indicators, and the variance of such a sum is
smaller than the mean. The second line is an application of Chernoff’s inequality. Similarly, using
(4.1)

P(M < (1+δ)E[ L̂]) < P(M <
1+δ
1+ 2δ

E [M]) (4.4)

< P(|M − E [M]|>
δ

2
E [M]) (4.5)

< 2 exp
�

−E [M]δ2/16
�

. (4.6)

To lower bound E[ L̂] = Ez[τR]
�

GτR
(z, z)

�−1
we use (2.1) to write that for some M ,

GτR
(z, z)≤

�

M Ez[τR] log Ez[τR]
�1/2

and since Ez[τR]≥ R we have

E
�

L̂(z, R)
�

>
cR1/2

log R
.
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Together with (4.3) and (4.6) and summing over all z ∈ B(1−ε)R \ BεR, we get that the probability
one of the vertices in B(1−ε)R \ BεR is not in I (

�

�BR

�

�) is bounded by CRd exp(−cR1/2/ log R). Since
the expression is summable by R, by Borel Cantelli, this happens only a finite number of times with
probability one. So if R′ is the largest radius for which some vertex in BR′(1−ε) \ BR′ε is not covered
after

�

�BR′
�

� steps, then we possibly have a finite sized hole in the aggregate which will almost surely
fill up after another finite number of steps.

Thus we have proved the main theorem 1.1.

Acknowledgement. Thanks to Itai Benjamini for suggesting the problem, to Gady Kozma for many
helpful discussions, and to Greg Lawler for suggesting an elegant approach.
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