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Abstract

We prove upper and lower bounds on the free energy of the Sherrington-Kirkpatrick model with
multidimensional spins in terms of variational inequalities. The bounds are based on a multidi-
mensional extension of the Parisi functional. We generalise and unify the comparison scheme
of Aizenman, Sims and Starr and the one of Guerra involving the GREM-inspired processes and
Ruelle’s probability cascades. For this purpose, an abstract quenched large deviations principle
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of the Gärtner-Ellis type is obtained. We derive Talagrand’s representation of Guerra’s remain-
der term for the Sherrington-Kirkpatrick model with multidimensional spins. The derivation is
based on well-known properties of Ruelle’s probability cascades and the Bolthausen-Sznitman
coalescent. We study the properties of the multidimensional Parisi functional by establishing a
link with a certain class of semi-linear partial differential equations. We embed the problem of
strict convexity of the Parisi functional in a more general setting and prove the convexity in some
particular cases which shed some light on the original convexity problem of Talagrand. Finally,
we prove the Parisi formula for the local free energy in the case of multidimensional Gaussian a
priori distribution of spins using Talagrand’s methodology of a priori estimates.
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1 Introduction

The Sherrington-Kirkpatrick (SK) model of a mean-field spin-glass has long been one of the most
enigmatic models of statistical mechanics. The recent rigorous proof of the celebrated Parisi for-

mula for its free energy, due to Talagrand [30], based on the ingenious interpolation schemes of
Guerra [17] and Aizenman, Sims, and Starr [1] constitutes one of the major recent achievements of
probability theory. Recently, these results have been generalised to spherical SK-models [29] and to
models with spins taking values in a bounded subset of R [21].

In this paper, we are mainly concerned with the question of the validity of the Parisi formula in
the case where spins take values in a d-dimensional Riemannian manifold. We address the issue of
extending the approach of Aizenman, Sims and Starr, and the one of Guerra to the multidimensional
spins. We study the properties of the multidimensional Parisi functional. Motivated by a problem
posed by [31], we show the strict convexity of the local Parisi functional in some cases.

We partially extend Talagrand’s methodology of estimating the remainder term to the multidimen-
sional setting. In the case of the multidimensional Gaussian a priori distribution of spins we prove
the validity of the Parisi formula in the low temperature regime.

Definition of the model

Let Σ ⊂ Rd and denote ΣN ≡ ΣN . We define a family of Gaussian processes X ≡ {X (σ)}σ∈ΣN
as

follows

X (σ) = XN (σ)≡
1

N

N∑

i, j=1

gi, j〈σi,σ j〉, (1.1)

where the interaction matrix G ≡ {gi, j}Ni, j=1 consists of i.i.d. standard normal random variables and,

for x , y ∈ Rd , 〈x , y〉 ≡
∑d

u=1 xu yu is the standard Euclidean scalar product. In what follows all
random variables and processes are assumed to be centred. We shall call HN (σ) ≡ −

p
NXN (σ) a

random Hamiltonian of our model.
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Throughout the paper we assume that we are given a large enough probability space (Ω,F ,P) such
that all random variables under consideration are defined on it. Without further notice we shall
assume that all Gaussian random variables (vectors and processes) are centred.

We shall be interested mainly in the free energy

pN (β)≡
1

N
log

∫

ΣN

exp
�
β
p

NX (σ)
�

dµ⊗N (σ), (1.2)

where β ≥ 0 is the inverse temperature and µ ∈Mf(Σ) is some arbitrary (not necessarily uniform or
discrete) finite a priori measure. We assume that the a priori measure µ is such that (1.2) is finite.
We shall be interested in proving bounds on the thermodynamic limits of these quantities, e.g., on

p(β)≡ lim
N↑+∞

pN (β). (1.3)

Remark 1.1. Note that there is no need to include the additional external field terms into the Hamilto-

nian (1.1), since they could be absorbed into the a priori measure µ.

Mean-field spin-glass models (see, e.g., [7]) with multidimensional (Heisenberg) spins were consid-
ered in the theoretical physics literature, see, e.g., [25] and references therein. Rigorous results are,
however, rather scarce. An early example is [15], where the authors get bounds on the free energy in
the high temperature regime. Methods of stochastic analysis and large deviations are used in [34] to
identify the limiting distribution of the partition function and also to obtain some information about
the geometry of the Gibbs measure for small β . More recent treatments of the high temperature
regime using the very different methods are due to Talagrand [27], see also [28, Subsection 2.13].
The importance of the SK model with multidimensional spins for understanding the ultrametricity
of the original SK model [26] (which corresponds to d = 1 and µ being the Rademacher measure in
the above notations) was emphasised in [33].

For the SK model, Guerra’s scheme gave historically the first way to obtain the variational upper
bound on the free energy in terms of the Parisi functional. The scheme is based on the comparison
between two Gaussian processes: the first one being the original SK Hamiltonian (1.1) and the other
one being a carefully chosen GREM inspired process indexed by σ ∈ ΣN . The second important in-
gredient is a recursively defined non-linear comparison functional acting on the Gaussian processes
indexed by σ ∈ ΣN .

The Aizenman-Sims-Starr (AS2) scheme [1; 2] gives an intrinsic way to obtain variational upper
bounds on the free energy in the SK model. The scheme is also based on a comparison between
two Gaussian processes. The first process is the sum of the original SK Hamiltonian X and a
GREM-inspired process indexed by additional index space A ≡ Nn. The second one is another
GREM-inspired process indexed by the extended configuration space ΣN ×A . The scheme uses a
comparison functional defined on Gaussian processes indexed by the extended configuration space
equipped with the product measure between the original a priori measure and Ruelle’s probability
cascade (RPC) [24]. The role of the comparison functional in the AS2 scheme is played by a free
energy functional acting on the Gaussian processes indexed by the extended configuration space. In
[22] Panchenko and Talagrand have reexpressed Guerra’s scheme for the SK model using the RPC.

Talagrand [30] using Guerra’s scheme and the wealth of other ingenious analytical insights showed
that the variational upper bound is also the lower bound for the free energy in the SK model. This
established, hence, the remaining half of the Parisi formula.
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A particular case (d = 1, µ with bounded support) of the model we are considering here was treated
by Panchenko in [21]. He used the techniques of [30] to prove that in the case d = 1 upper and
lower bounds on the free energy coincide (cf. (1.14) and (1.22) in this chapter). However, the
results of [21, Section 5 and the proofs of Theorems 2, 5 and 9] are based on relatively detailed
differential properties of the optimal Lagrange multipliers in the saddle point optimisation problem
of interest. These properties are harder to obtain in multidimensional situations such as that we
are dealing with here. In fact, as we show in Theorems 1.1 and 1.2, one can obtain the same
saddle point variational principles without invoking the detailed properties of the optimal Lagrange
multipliers. This is achieved using a quenched large deviations principle (LDP) of the GÃd’rtner-Ellis
type.

The most advanced recent study of spin-glass models with multidimensional spins was attempted
by Panchenko and Talagrand in [23], where the multidimensional spherical spin-glass model was
considered. The authors combined the techniques of [30; 21] to obtain partial results on the ultra-
metricity and also get some information on the local free energy for their model.

Main results

In this paper, we prove upper and lower bounds on the free energy in the SK model with multidi-
mensional spins in terms of variational inequalities involving the corresponding multidimensional
generalisation of the Parisi functional (Theorems 1.1, 1.2, 5.1, 5.18). For this purpose, we gener-
alise and unify the AS2 and Guerra’s schemes for the case of multidimensional spins, and employ
a quenched LDP which may be of independent interest (Theorems 3.1 and 3.2). Both schemes are
formulated in a unifying framework based on the same comparison functional. The functional acts
on Gaussian processes indexed by an extended configuration space as in the original AS2 scheme. As
a by-product, we provide also a short derivation of the remainder term in multidimensional Guerra’s
scheme (Theorem 5.4) using well-known properties of the RPC and the Bolthausen-Sznitman coa-
lescent. This gives a clear meaning to the remainder in terms of averages with respect to a measure
changed disorder. The change of measure is induced by a reweighting of the RPC using the expo-
nentials of the GREM-inspired process1. See [22] for another approach in the case of the SK model
(d = 1).

We study the properties of the multidimensional Parisi functional by establishing a link between
the functional and a certain class of non-linear partial differential equations (PDEs), see Proposi-
tions 6.1, 6.2 and Theorem 6.2. We extend the Parisi functional to a continuous functional on a
compact space (Theorems 6.1, 6.2). We show that the class of PDEs corresponds to the Hamilton-
Jacobi-Bellman (HJB) equations induced by a linear problem of diffusion control (Proposition 6.4).
Motivated by a problem posed by [31], we show the strict convexity of the local Parisi functional in
some cases (Theorem 6.4).

We partially extend Talagrand’s methodology of estimating the remainder term to the multidimen-
sional setting (Theorem 5.4, Proposition 7.1, Theorem 7.1). In the case of multidimensional Gaus-
sian a priori distribution of spins we prove the validity of the Parisi formula (Theorem 1.3).

We partially extend Talagrand’s methodology of estimating the remainder term to the multidimen-
sional setting (Theorem 5.4, Proposition 7.1, Theorem 7.1). Though the main technical problem of
the methodology in the general multidimensional setting remains (Remark 7.5). In the case of the

1In d = 1 the latter fact was also known to the author of [3], private communication.
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multidimensional Gaussian a priori distribution of spins we prove the validity of the Parisi formula
(Theorem 1.3).

Below we introduce the notations, assumptions and formulate our main results. The other results
(mentioned above) are formulated and proved in the subsequent sections.

Assumption 1.1. Suppose that the configuration space Σ is bounded and such that 0 ∈ int convΣ,

where convΣ denotes the convex hull of Σ.

The examples listed below verify this assumption:

1. Multicomponent Ising spins. Σ = {−1;1}d – the discrete hypercube.

2. Heisenberg spins. Σ =
¦
σ ∈ Rd : ‖σ‖2 = 1

©
– the unit Euclidean sphere.

3. Σ =
¦
σ ∈ Rd : ‖σ‖2 ≤ 1

©
– the unit Euclidean ball.

Remark 1.2. The boundedness assumption can be relaxed and replaced by concentration properties of

the a priori measure. In Section 8 we will exemplify this in the case of a Gaussian a priori distribution.

In general a subgaussian distribution will suffice.

Consider the space of all symmetric matrices Sym(d)≡
¦
Λ ∈ Rd×d | Λ = Λ∗

©
. Denote

Sym+(d)≡
�
Λ ∈ Sym(d) | Λº 0

	
,

where the notation Λ º 0 means that the matrix Λ is non-negative definite. We equip the space
Sym(d) with the Frobenius (Hilbert-Schmidt) norm

‖M‖2F ≡
d∑

u,v=1

M2
u,v , M ∈ Sym(d).

We shall also denote the corresponding (tracial) scalar product by 〈·, ·〉. For r >max{‖σ‖22 : σ ∈ Σ},
define

U ≡
�

U ∈ Sym(d) | U º 0,‖U‖2 ≤ r
	

.

We will call the set U the space of the admissible self-overlaps. In analogy to the usual overlap in the

standard SK model, we define, for two configurations, σ(i) = (σ(i)1 ,σ(i)2 , . . . ,σ(i)N ) ∈ ΣN , i = 1,2, the

(mutual) overlap matrix RN (σ
(1),σ(2)) ∈ Rd×d whose entries are given by

RN (σ
(1),σ(2))u,v ≡

1

N

N∑

i=1

σ
(1)
i,uσ

(2)
i,v , u, v ∈ [1; d]∩N. (1.4)

Fix an overlap matrix U ∈ U . Given a subset V ⊂U , define the set of the local configurations,

ΣN (V )≡
�
σ ∈ ΣN | RN (σ,σ) ∈ V

	
.

Next, define the local free energy

pN (V )≡
1

N
log

∫

ΣN (V )
eβ
p

NX (σ)dµ⊗N (σ). (1.5)
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We also define

p(V )≡ p(β ,V )≡ lim
N↑+∞

pN (V ), (1.6)

where the existence of the limit follows from a result of Guerra and Toninelli [19, Theorem 1].
Consider a sequence of matrices Q ≡ {Q(k) ∈ Sym(d)}n+1

k=0 such that

0≡Q(0) ≺Q(1) ≺ . . .≺Q(n+1) ≡ U , (1.7)

where the ordering is understood in the sense of the corresponding quadratic forms. Consider in
addition a partition of the unit interval x ≡ {xk}n+1

k=0, i.e.,

0≡ x0 < x1 < . . .< xn+1 ≡ 1. (1.8)

Let {z(k)}n
k=0 be a sequence of independent Gaussian d-dimensional vectors with

Cov
�

z(k)
�
=Q(k+1)−Q(k).

Given Λ ∈ Sym(d), define

Xn+1(x ,Q, U ,Λ)≡ log

∫

Σ

exp
�p

2β
D n∑

k=0

zk,σ
E
+ 〈Λσ,σ〉

�
dµ(σ). (1.9)

Define, for k ∈ {n, . . . , 0}, by a descending recursion,

Xk(x ,Q, U ,Λ)≡
1

xk

logEz(k)
�

exp
�

xkXk+1(x ,Q, U ,Λ)
��

(1.10)

with

X0(x ,Q, U ,Λ)≡ Ez(0)
�

X1(x ,Q, U ,Λ)
�

, (1.11)

where Ez(k) [·] denotes the expectation with respect to the σ-algebra generated by the random vector
z(k).

Remark 1.3. Section 5.4 contains the more general framework of dealing with the recursive quanti-

ties (1.11) which in particular brings to light the links with certain non-linear parabolic PDEs. For

these PDEs the recursion (1.2) is closely related to an iterative application of the well-known Hopf-Cole

transformation, see, e.g., [14].

Define the local Parisi functional as

f (x ,Q, U ,Λ)≡−〈Λ, U〉 −
β2

2

n∑

k=1

xk

�
‖Q(k+1)‖2F −‖Q

(k)‖2F
�
+ X0(x ,Q, U ,Λ). (1.12)

Assumption 1.2 (Hadamard squares). We shall say that a sequence, {Q(i)}n
i=1, of matrices satisfies

Assumption 1.2, if

�
Q(1)

�⊙2 ≺ . . .≺
�

Q(n)
�⊙2 ≺

�
Q(n+1)

�⊙2
. (1.13)
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Remark 1.4. The above assumption on the matrix order parameters Q is necessary only to employ

the AS2 scheme. In contrast, Guerra’s scheme (Theorems 5.1 and 5.18) does not require the above

assumption.

One may verify that the matrices q and ρ in [28, Theorems 2.13.1 and 2.13.2] correspond to the
matrices Q(1) and Q(2) of this paper (n= 1). (See also (1.25) below.) Furthermore, a straightforward
application of the Cauchy-Schwarz inequality shows that the matrices q and ρ actually satisfy As-
sumption 1.2. We also note that in the simultaneous diagonalisation scenario in which the matrices
in (1.7) are diagonalisable in the same orthogonal basis (see Sections 6.3 and 8.2) this assumption
is also satisfied.

The first main result of the present paper uses the AS2 scheme to establish the upper bound on the
limiting free energy p(β) in terms of the saddle point problem for the local Parisi functional (1.12).

Theorem 1.1. For any closed set V ⊂ Sym(d), we have

p(V )≤ sup
U∈V ∩U

inf
(x ,Q,Λ)

f (x ,Q,Λ, U), (1.14)

where the infimum runs over all x satisfying (1.8), all Q satisfying both (1.7) and Assumption 1.2,

and all Λ ∈ Sym(d).

We were not able to prove in general that the r.h.s. of (1.14) gives also the lower bound to the
thermodynamic free energy. See, however, Theorem 1.3 for a positive example.

To formulate the lower bound on (1.3) we need some additional definitions.

Let the comparison index space beA ≡ Nn. Given α(1),α(2) ∈A , define

Q(α(1),α(2))≡Q(qL(α
(1),α(2))), (1.15)

where qL(α
(1),α(2)) is the (normalised) lexicographic overlap defined as follows

qL(α
(1),α(2))≡ 1+

(
0, α

(1)
1 6= α

(2)
1

max
¦

k ∈ [1; n]∩N : [α(1)]k = [α
(2)]k

©
, otherwise.

(1.16)

Given a d × d-matrix M and p ∈ R, we denote by M⊙p the d × d-matrix with entries
�

M⊙p
�

u,v
≡
�

Mu,v

�p
.

The matrix valued lexicographic overlap (1.15) can be used to construct the multidimensional (d ≥
1) versions of the GREM (see, e.g., [8] and references therein for a review of the results on the one-
dimensional case of the model). Here we shall need the following two GREM-inspired real-valued
Gaussian processes: A≡ {A(σ,α)}σ∈ΣN ,α∈A and B ≡ {B(α)}α∈A with covariance structures

E
�

A(σ(1),α(1))A(σ(2),α(2))
�
= 2〈R(σ(1),σ(2)),Q(α(1),α(2))〉,

E
�

B(α(1))B(α(2))
�
= ‖Q(α(1),α(2))‖2F.

Note that the process A can be represented in the following form:

A(σ,α) =

�
2

N

�1/2 N∑

i=1

〈Ai(α),σi〉, (1.17)
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where {Ai ≡ {Ai(α)}α∈A }Ni=1 are the i.i.d. (for different indices i) Gaussian Rd -valued processes with

the following covariance structure: for i ∈ [1; N]∩N, for all α(1),α(2) ∈ A and all u, v ∈ [1; d]∩N
assume that the following holds

E
�

Ai(α
(1))uAi(α

(2))v
�
=Q(α(1),α(2))u,v .

Given t ∈ [0; 1], we define the interpolating AS2 Hamiltonian

Ht(σ,α)≡
p

t (X (σ) + B(α)) +
p

1− tA(σ,α). (1.18)

Next, we define the random probability measure πN ∈M1(ΣN ×A ) through

πN ≡ µ⊗N ⊗ ξ,

where ξ = ξ(x) is the RPC [24]. We denote by {ξ(α)}α∈A the enumeration of the atom locations
of the RPC and consider the enumeration as a random measure on A (independent of all other
random variables around). Define the local AS2 Gibbs measure GN (t, x ,Q, U ,V ) by

GN (t, x ,Q, U ,V )
�

f
�
≡

1

ZN (t,V )

∫

ΣN (V )×A
f (σ,α)e

p
NβHt (σ,α)dπN (σ,α), (1.19)

where f : ΣN ×A → R is an arbitrary measurable function for which the right-hand side of (1.19)
is finite. For V ⊂U , define the AS2 remainder term as

RN (x ,Q, U ,V )

≡−
1

2

∫ 1

0

E
�
GN (t, x ,Q, U ,V )⊗GN (t, x ,Q, U ,V )

�
‖RN (σ

(1),σ(2))−Q(α(1),α(2))‖2F
��

dt. (1.20)

We define also the limiting AS2 remainder term

R(x ,Q, U)≡ lim
ǫ↓+0

lim
N↑∞
RN (x ,Q, B(U ,ǫ))≤ 0, (1.21)

where B(U ,ǫ) is the ball with centre U and radius ǫ. (The existence of the limiting remainder term
is proved in Theorem 1.2.)

The second main result of this paper uses the AS2 scheme to establish a lower bound on (1.3)
in terms of the same saddle point Parisi-type functional as in the upper bound which includes,
however, the non-positive remainder term (1.21). In one-dimensional situations Talagrand [30]
and Panchenko [21], respectively, have shown that the corresponding error term vanishes on the
optimiser of the Parisi functional.

Theorem 1.2. For any open set V ⊂ Sym(d), we have

p(V )≥ sup
U∈V ∩U

inf
(x ,Q,Λ)

�
f (x ,Q,Λ, U) +R(x ,Q, U)

�
, (1.22)

where the infimum runs over all x satisfying (1.8), all Λ ∈ Sym(d), and all Q satisfying both (1.7)
and Assumption 1.2.
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Remark 1.5. The comparison scheme of Guerra [17] (see also more recent accounts [32], [18] and

[2]) is also applicable to our model and is covered by our quenched LDP approach, see Theorems 5.1

and 5.18 for the formal statements. Guerra’s scheme seems to be more amenable (compared to the

Aizenman-Sims-Starr one) for Talagrand’s remainder estimates [30], see Section 7. The scheme is

based on the following interpolation

eHt(σ,α)≡
p

tX (σ) +
p

1− tA(σ,α) (1.23)

which induces the corresponding local Gibbs measure (1.19) and remainder term (1.20) by substituting

(1.18) with (1.23). Guerra’s scheme does not include the process B and, hence, does not require As-

sumption 1.2. Recovering the terms corresponding to ΦN (x ,U )[B] (see, (4.23)) in the Parisi functional

requires then a short additional calculation (Lemma 5.1).

Note that the results of Talagrand [28, Theorems 2.13.2 and 2.13.3] imply that at least in the high
temperature region (i.e., for small enough β) the Parisi formula for the SK model with multidimen-
sional spins is valid with n= 1

p(β) = f (x ,Q∗, 0, U∗) = sup
U∈U

inf
(Q,Λ)

f (x ,Q,Λ, U), (1.24)

where the matrices Q∗(2) = U∗ and Q∗(1) solve the following system of equations:



∂

Q
(2)
u,v

f (x ,Q∗, 0, U∗) = 0, u, v ∈ [1; d]∩N,

∂
Q
(1)
u,v

f (x ,Q∗, 0, U∗) = 0, u, v ∈ [1; d]∩N.
(1.25)

Note that the system (1.25) coincides with the mean-field equations obtained in [28, see (2.469)
and (2.470)].

Let Σ ≡ Rd and fix some vector h ∈ Rd . Let µ ∈ Mf(Σ) be the finite measure with the following
density (with respect to the Lebesgue measure λ on Σ)

dµ

dλ
(σ) =

�
det C

(2π)d

�1/2

exp

�
−

1

2
〈Cσ,σ〉+ 〈h,σ〉

�
, (1.26)

where C ∈ Sym+(d). Note that, given m ∈ Rd and C ∈ Sym+(d) such that det C 6= 0, the density
(1.26) with h ≡ Cm coincides (up to the constant factor exp

�
−1

2
〈Cm, m〉

�
) with the Gaussian

density with covariance matrix C−1 and mean m.

Remark 1.6. It turns out that only matrices C with sufficiently large eigenvalues will result in finite

global free energy, cf. Lemma 8.8. The local free energy is, in contrast, always finite, see Lemma 8.7

and Theorem 1.3.

Consider the function f : (0 :+∞)2→ R given by

f (c,u) =




β2u2+ log cu− cu+ 1, u ∈ (0;

p
2

2β
],

(2
p

2β − c)u+ log c

β
− 1

2

�
1+ log 2

�
, u ∈ (

p
2

2β
;+∞].

(1.27)

The following result shows that, at least, in the highly symmetric situation (1.26) with h = 0 the
multidimensional Parisi formula indeed holds true (see Lemma 8.7 for an explanation why the result
is indeed a Parisi formula).
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Theorem 1.3. Let µ satisfy (1.26) with h= 0. Assume that the matrices U and C are simultaneously

diagonalisable in the same basis. Denote by {cv ∈ R+}dv=1 and {uv ∈ R+}dv=1 the eigenvalues of the

matrices C and U, respectively. Moreover, assume that minv uv > 0 and minv cv > 0.

Then we have

lim
ǫ↓+0

lim
N↑+∞

pN (ΣN (B(U ,ǫ))) =
d∑

v=1

f (cv,uv).

Remark 1.7. Close results have previously been obtained in the case of the spherical model in [23],

from where we borrow the general methodology of the proof of the Theorem 1.3. As noted in [23],

another more straightforward way to obtain the Theorem 1.3 is to diagonalise the interaction matrix G

and use the properties of the corresponding random matrix ensemble.

Organisation of the paper

The rest of the present paper is organised as follows. In Section 2 we record some basic properties
of the covariance structure of the process X and establish the relevant concentration of measure
results. The section contains also the tools allowing to compare and interpolate between the free
energy-like functionals of different Gaussian processes. In Section 3 we derive a quenched LDP of
the GÃd’rtner-Ellis type under measure concentration assumptions. Section 4 contains the derivation
(based on the AS2 scheme) of the upper and lower bounds on the free energy of the SK model with
multidimensional spins in terms of the saddle point of the Parisi-like functional. In Section 5 we
employ the ideas of Guerra’s comparison scheme in order to obtain the upper and lower bounds
on the free energy and we also get a useful analytic representation of the remainder term. In
Section 6 we study the properties of the multidimensional Parisi functional. Section 7 contains the
partial extension of Talagrand’s remainder term estimates to the case of multidimensional spins.
In Section 8 a case of Gaussian a priori distribution of spins is considered and the corresponding
local Parisi formula is proved. In the appendix we prove the almost super-additivity of the local free
energy, as an application of the Gaussian comparison results of Subsection 2.3.

2 Some preliminary results

2.1 Covariance structure

Our definition of the overlap matrix in (1.4) is motivated by the fact that, as can be seen from a
straightforward computation

E
�

XN (σ
(1))XN (σ

(2))
�
=

d∑

u,v=1

�
RN (σ

(1),σ(2))u,v

�2
= ‖RN (σ

(1),σ(2))‖22, (2.1)

that is, the the covariance structure of the process XN (σ) is given by the square of the Frobenius
(Hilbert-Schmidt) norm of the matrix RN (σ

(1),σ(2)). The basic properties of the overlap matrix are
summarised in the following proposition.

Proposition 2.1. We have, for all σ(1),σ(2),σ ∈ ΣN ,
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1. Matrix representation. RN (σ
(1),σ(2)) = 1

N

�
σ(1)

�∗
σ(2).

2. Symmetry #1. R
u,v
N (σ

(1),σ(2)) = R
v,u
N (σ

(2),σ(1)).

3. Symmetry #2. R
u,v
N (σ,σ) = R

v,u
N (σ,σ).

4. Non-negative definiteness #1. RN (σ,σ)º 0.

5. Non-negative definiteness #2.

�
RN (σ

(1),σ(1)) RN (σ
(1),σ(2))

RN (σ
(1),σ(2))∗ RN (σ

(2),σ(2))

�
º 0.

6. Suppose U ≡ RN (σ
(1),σ(1)) = RN (σ

(2),σ(2)), then

‖R(σ(1),σ(2))‖2F ≤ ‖U‖
2
F.

Proof. The proof is straightforward.

2.2 Concentration of measure

The following concentration of measure result for the free energy is standard.

Proposition 2.2. Let (Σ,S) be a Polish space. Suppose µ is a random finite measure on Σ. Sup-

pose, moreover, that X (σ), σ ∈ Σ is the family of Gaussian random variables independent of µ which

possesses a bounded covariance, i.e.,

there exists K > 0 such that sup
σ(1),σ(2)∈Σ

|Cov(X (σ(1)), X (σ(2)))| ≤ K . (2.2)

Assume that

f (X )≡ log

∫

Σ

eX (σ)dµ(σ)<∞.

Then

P
�
| f (X )−E[ f (X )]| ≥ t

	
≤ 2 exp

�
−

t2

4K

�
.

Remark 2.1. An analogous result was given in a somewhat more specialised case in [21].

Proof. This is an adaptation of the proof of [28, Theorem 2.2.4]. We can not apply the comparison
Theorem 2.5 directly, so we resort to the basic interpolation argument as stated in Proposition 2.1.
For j = 1,2, let the processes X j(·) be the two independent copies of the process X (·). For t ∈ [0;1],
let

X j,t ≡
p

tX j +
p

1− tX
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and

F j(t)≡ log

∫

Ω

exp
�

X j,t(σ)
�

dµ(σ).

For s ∈ R, let

ϕs(t)≡ E
�

exp
�
s(F1− F2)

��
.

Hence, differentiation gives

ϕ̇s(t) = sE
�

exp
�
s(F1− F2)

�
(Ḟ1− Ḟ2)

�
(2.3)

(the dots indicate the derivatives with respect to t) and also

Ḟ j(t) =
1

2

�∫

Σ

exp
�

X j,t(σ)
�

dµ(σ)
�−1

×
∫

Σ

�
t−1/2X j(σ)− (1− t)−1/2X (σ)

�
exp
�

X j,t(σ)
�

dµ(σ). (2.4)

Now, we substitute (2.4) back to (2.3) and apply Corollary 2.1 to the result. After some tedious but
elementary calculations we get

ϕ̇s(t) =s2
E


exp

�
s(F1− F2)

�
�∫

Σ

exp X1,t(σ)dµ(σ)

∫

Σ

exp X2,t(σ)dµ(σ)

�−1

∫

Σ

Cov(X (σ(1)), X (σ(2)))exp
�

X1,t(σ
(1)) + X2,t(σ

(2))
�

dµ(σ(1))dµ(σ(2))

�
.

Thus, thanks to (2.2), we obtain

ϕ̇s(t)≤ Ks2ϕs(t).

The conclusion of the theorem follows now exactly as in the proof of [28, Theorem 2.2.4].

We now apply this general result to the our model and also to the free energy-like functional of the
GREM-inspired process A.

Proposition 2.3. Suppose Σ⊂ B(0, r), for r > 0. For Ω⊂ ΣN , denote

PSK
N (β ,Ω)≡ log

∫

Ω

exp
�p

NβXN (σ)
�

dµ⊗N (σ),

and

PGREM
N (β ,Ω)≡ log

∫

Ω×A
exp
�
β
p

2
N∑

i=1

〈Ai(α),σi〉
�

dπN (σ,α).

Then, for all Ω⊂ ΣN , we have
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1. For any t > 0,

P

§¯̄
¯PSK

N (β ,Ω)−E
�

PSK
N (β ,Ω)

�¯̄
¯> t

ª
≤ 2 exp

�
−

t2

4β2r4N

�
. (2.5)

2. For any t > 0,

P

§¯̄
¯PGREM

N (β ,Ω)−E
�

PGREM
N (β ,Ω)

�¯̄
¯> t

ª
≤ 2 exp

�
−

t2

8β2r4N

�
. (2.6)

Proof. 1. We would like to use Proposition 2.2. By (2.1) and the Cauchy-Bouniakovsky-Schwarz
inequality, we have, for all N ∈ N, σ(1),σ(2) ∈ ΣN , that

Cov(XN (σ
(1),σ(2))) = ‖RN (σ

(1),σ(2))‖2F =
1

N2

N∑

i, j=1

〈σ(1)
i

,σ(1)
j
〉〈σ(2)

i
,σ(2)

j
〉 ≤ r4. (2.7)

Hence, for all N ∈ N and all subsets Ω of ΣN , we obtain

sup
σ(1),σ(2)∈Σ

|Cov(X (σ(1)), X (σ(2)))| ≤ r4.

Thus (2.5) is proved.

2. We fix an arbitrary N ∈ N, σ(1),σ(2) ∈ ΣN , α(1),α(2) ∈A . We have

Cov(A(σ(1),α(1)),A(σ(2),α(2))) = E
�

A(σ(1),α(1))A(σ(2),α(2))
�

=

N∑

i=1

〈Q(α(1),α(2))σ(1)
i

,σ(2)
i
〉.

Bound (2.7) implies that, for any U ∈ U , we have ‖U‖2 ≤ r2. Since Q(α(1),α(2)) ∈ U , we
obtain

|〈Q(α(1),α(2))σ(1)
i

,σ(2)
i
〉| ≤ ‖Q(α(1),α(2))‖2‖σ(1)i

‖2‖σ(2)i
‖2

≤ ‖Q(α(1),α(2))‖2r2 ≤ r4.

Therefore, using Proposition 2.2, we obtain (2.6).

2.3 Gaussian comparison inequalities for free energy-like functionals

We begin by recalling well-known integration by parts formula which is the source of many compar-
ison results for functionals of Gaussian processes.

Let F : X → R be a functional on a linear space X . Given x ∈ X and e ∈ X , a directional (Gâteaux)

derivative of F at x along the direction e is

∂x eF(x)≡ ∂t F(x + te)

¯̄
¯
t=0

. (2.8)

With this notation the following lemma holds.
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Lemma 2.1. Let {g(i)}i∈I be a real-valued Gaussian process (the set I is an arbitrary index set), and h

be some Gaussian random variable. Define the vector e ∈ RI as e(i)≡ E
�

hg(i)
�

, i ∈ I . Let F : RI → R
such that, for all f ∈ RI , the function

R ∋ t 7→ F( f + te) ∈ R (2.9)

is either locally absolute continuous or everywhere differentiable on R. Moreover, assume that the

random variables hF(g) and ∂g eF(g) are in L1.

Then

E[hF(g)] = E
�
∂g eF(g)

�
. (2.10)

The previous proposition coincides with [21, Lemma 4] (modulo the differentiability condition on
(2.9) and the integrability assumptions which are needed, e.g., for [5, Theorem 5.1.2]).

The following proposition connects the computation of the derivative of the free energy with respect
to the parameter that linearly occurs in the Hamiltonian with a certain Gibbs average for a replicated
system.

Proposition 2.4. Consider a Polish measure space (Σ,S) and a random measure µ on it. Let X =

{X (σ)}σ∈Σ and Y ≡ {Y (σ)}σ∈Σ be two independent Gaussian real-valued processes. For u ∈ R, we

define

Hu(σ)≡ uX (σ) + Y (σ).

Assume that, for all u ∈ [a, b] ⋐ R, we have

∫
exp
�
Hu(σ)

�
dµ(σ)<∞,

∫
X (σ)exp

�
Hu(σ)

�
dµ(σ)<∞

almost surely, and also that

E

�
log

∫
exp
�
Hu(σ)

�
dµ(σ)

�
<∞.

Then we have

d

du
E

�
log

∫
eHu(σ)dµ(σ)

�
= uE [G (u)⊗G (u) [Var X (σ)−E [X (σ), X (τ)]]] ,

where G (u) is the random element ofM1(Σ) which, for any measurable f : Σ→ R , satisfies

G (u)
�

f
�
=

1

Z(u)

∫
f (σ)exp

�
Hu(σ)

�
dµ(σ).

Proof. We write

d

du
log

∫
eHu(σ)dµ(σ) =

∫
X (σ)

eHu(σ)

Zu(β)
dµ(σ), (2.11)
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where Zu(β) ≡
∫

eβHu(σ)dµ(σ). The main ingredient of the proof is the Gaussian integration by
parts formula. Denote, for τ ∈ Σ, e(τ)≡ E

�
X (σ)Hu(τ)

�
. By (2.10), we have

E

�
X (σ)

eHu(σ)

Zu(β)

�
= E


∂X

 
eHu(σ)

∫
eHu(τ)dµ(τ)

!
(X ; e)


 . (2.12)

Due to the independence, we have

E
�

X (σ)Hu(τ)
�
= uE [X (σ), X (τ)] .

Henceforth, the computation of the directional derivative in (2.12) amounts to

∂

∂ t


 eHu(σ)+tu Var(σ)

∫
eHu(τ)+tu Cov(σ,τ)dµ(τ)




=

�∫
eHu(σ)dµ(σ)

�−2�
uVar X (σ)eHu(σ)

∫
eHu(τ)dµ(τ)

−eHu(σ)

∫
uCov [X (σ), X (τ)]eHu(τ)dµ(τ)

�
. (2.13)

Substituting the r.h.s. of (2.13) into (2.11), we obtain the assertion of the proposition.

The following proposition gives a short differentiation formula, which is useful in getting comparison
results between the (free energy-like) functionals of Gaussian processes.

Proposition 2.5. Let (X (σ))σ∈Σ, (Y (σ))σ∈Σ be two independent Gaussian processes as before. Set

Ht(σ)≡
p

tX (σ) +
p

1− tY (σ).

Assume that
∫

eHt (σ)dµ(σ)<∞,

∫
X (σ)eHt (σ)dµ(σ)<∞,

∫
Y (σ)eHt (σ)dµ(σ)<∞

almost surely, and also that, for all t ∈ [0;1],

E

�
log

∫
eHt (σ)dµ(σ)

�
<∞.

Then we have

E

�
log

∫
eX (σ)dµ(σ)

�
= E

�
log

∫
eY (σ)dµ(σ)

�

−
1

2

∫ 1

0

G (t)⊗G (t)
��

Var X (σ(1))− Var Y (σ(1))
�

−
�

Cov
�

X (σ(1)), X (σ(2))
�
−Cov

�
Y (σ(1)), Y (σ(2))

���
dt, (2.14)
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where G (t) is the random element ofM1(Σ) which, for all measurable f : Σ→ R, satisfies

G (t)
�

f
�
=

1

Z(t)

∫

Σ

f (σ)exp
�
Ht(σ)

�
dµ(σ). (2.15)

Proof. Let us introduce the process

Wu,v(σ)≡ uX (σ) + vY (σ).

Hence,

Ht(σ) =Wpt,
p

1−t(σ). (2.16)

Thus

d

dt
E

�
log

∫
eHt (σ)dµ(σ)

�
=

1

2

�
1
p

t

∂

∂ u
E

�
log

∫
eWu,v(σ)dµ(σ)

�

−
1
p

1− t

∂

∂ v
E

�
log

∫
eWu,v(σ)dµ(σ)

��¯̄
¯̄
¯
u=
p

t,v=
p

1−t

.

Applying Proposition 2.4 and
∫ 1

0
·dt to the previous formula, we conclude the proof.

3 Quenched Gärtner-Ellis type LDP

In this section, we derive a quenched LDP under measure concentration assumptions. Theorems 3.1
and 3.2 give the corresponding LDP upper and lower bounds, respectively. The proofs of the LDP
bounds will be adapted to get the proofs of the upper and lower bounds on the free energy of the
SK model with multidimensional spins. However, they may be of independent interest.

Note that the existing “level-2" quenched large deviation results of Comets [10] are applicable only
to a certain class of mean-field random Hamiltonians which are required to be “macroscopic” func-
tionals of the joint empirical distribution of the random variables representing the disorder and
the independent spin variables. The SK Hamiltonian can not be represented in such form, since
the interaction matrix consists of i.i.d. random variables. Moreover, it is assumed in [10] that the
Hamiltonian has the form HN (σ) = NV (σ), where {V (σ)}σ∈ΣN

is a random process taking values
in some fixed bounded subset of R. Since the Hamiltonian of our model is a Gaussian process, this
assumption is also not satisfied, due to the unboundedness of the Gaussian distribution.

3.1 Quenched LDP upper bound

The following assumption will be satisfied for the applications we have in mind. As is clear from
what follows, much weaker concentration functions are also allowed.

Assumption 3.1. Suppose {QN}∞N=1 is a sequence of random measures on a Polish space (X ,X).
Assume that there exists some L > 0 such that for any QN -measurable set A⊂X we have

P
¦¯̄

logQN (A)−E
�

logQN (A)
�¯̄
> t
©
≤ exp

�
−

t2

LN

�
. (3.1)
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Note that Assumption 3.1 will hold in the cases we are interested in due to Proposition 2.2.

Lemma 3.1. Suppose {QN}∞N=1 is a sequence of random measures on a Polish space (X ,X) and for

{Ar ⊂ X : r ∈ {1, . . . , p}} is a sequence of QN -measurable sets such that, for some absolute constant

L > 0 and some concentration function ηN (t) : R+→ R+ with the property

∫ +∞

0

ηN (tN)dt −−−→
N↑+∞

0, (3.2)

we have

P
¦¯̄

logQN (Ar)−E
�

logQN (Ar)
�¯̄
> t
©
≤ ηN (t). (3.3)

Then we have

lim
N↑+∞

1

N
E

�¯̄
¯̄logQN

� p⋃

r=1

Ar

�
− max

r∈{1,...,p}
E
�

logQN (Ar)
�
¯̄
¯̄
�
= 0. (3.4)

Remark 3.1. As is easy to extract from Assumption 3.1, we will apply this result in the very pleasant

situation, where

γN (t) = exp

�
−

t2

LN

�
.

However, our subsequent results hold for substantially worse concentration functions satisfying (3.2).

Proof of Lemma 3.1. First, (3.3) gives

P

½
max

r∈{1,...,p}

¯̄
logQN (Ar)−E

�
logQN (Ar)

�¯̄
≥ t

¾
≤ pηN (t).

Since, for a, b ∈ Rp, the following elementary inequality holds
¯̄
¯max

r
ar −max

r
br

¯̄
¯≤max

r
|ar − br |,

we get

P

¨¯̄
¯̄ max
r∈{1,...,p}

logQN (Ar)− max
r∈{1,...,p}

E
�

logQN (Ar)
�
¯̄
¯̄≥ t

«
≤ pηN (tN).

The last equation in turn implies that

1

N
E

�¯̄
¯̄ max
r∈{1,...,p}

logQN (Ar)− max
r∈{1,...,p}

E
�

logQN (Ar)
�
¯̄
¯̄
�
≤ p

∫ +∞

0

ηN (tN)dt, (3.5)

and the r.h.s. of the previous formula vanishes as N ↑+∞ due to (3.2).
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Let QN ∈M (X ), N ∈ N be a family of random measures on (X ,X). Define the Laplace transform

LN (Λ)≡
∫

X
eN〈x ,Λ〉dQN (x).

Suppose that, for all Λ ∈ Rd , we have

I(Λ)≡ lim
N↑∞

1

N
E
�

log LN (Λ)
�
∈ R = R∪ {−∞,+∞}. (3.6)

Define the Legendre transform

I∗(x)≡ inf
Λ
[−〈x ,Λ〉+ I(Λ)] . (3.7)

Define, for δ > 0,

I∗δ(x)≡max

½
I∗(x) +δ,−

1

δ

¾
. (3.8)

Lemma 3.2. Suppose

0 ∈ intD(I)≡ int{Λ : I(Λ)<+∞}. (3.9)

Then

1. The mapping I∗(·) :X → R is upper semi-continuous and concave.

2. For all M > 0,

{x ∈ X : I∗(x)≤ M} is a compact.

Proof. 1. Since, for all Λ ∈ D(I), the linear mappings

x 7→ −〈Λ, x〉+ I(Λ)

are obviously concave, the infimum of this family is upper semi-continuous and concave.

2. See, e.g., [13] for the proof.

Theorem 3.1. Suppose that

1. The family {QN} satisfies condition (3.4).

2. Condition (3.6) is satisfied.

3. Condition (3.9) is satisfied.

Then, for any closed set V ⊂ Rd , we have

lim
N↑∞

1

N
E
�

logQN (V )
�
≤ sup

x∈V
I∗(x). (3.10)
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Proof. 1. Suppose at first that V is a compact.

Thanks to (3.7), for any x ∈ X , there exists Λ(x) ∈ X such that

−〈x ,Λ(x)〉+ I(Λ(x))≤ I∗δ(x). (3.11)

For any x ∈ X , there exists a neighbourhood A(x)⊂X of x such that

sup
y∈A(x)

〈y − x ,Λ(x)〉 ≤ δ.

By compactness, the covering
⋃

x∈Y A(x)⊃ V has the finite subcovering, say
⋃p

r=1 A(xr)⊃ V .
Hence,

1

N
logQN (V )≤

1

N
log

 
p⋃

r=1

QN (A(xr))

!
. (3.12)

Applying condition (3.4), we get

lim
N↑∞

1

N
E

�
max

r∈{1,...,p}
logQN (A(xr))− max

r∈{1,...,p}
E

�
1

N
logQN (A(xr))

��
≤ 0. (3.13)

By the Chebyshev inequality,

QN (A(x))≤QN

�
y ∈ X : 〈y − x ,Λ(x)〉 ≤ δ

	

≤ e−δN

∫

X
eN〈y−x ,Λ(x)〉dQN (y)

= e−δN e−N〈x ,Λ(x)〉LN (Λ(x)). (3.14)

Hence, (3.14) together with (3.11) yields

lim
N↑+∞

1

N
E
�

logQN (A(xr))
�
≤ lim

N↑+∞

�
−〈x r ,Λ(x r)〉+

1

N
log LN (Λ(x r))

�
−δ

=−〈x r ,Λ(x r)〉+ I(Λ(x r))−δ
≤ I∗δ(xr)−δ. (3.15)

Combining (3.12), (3.13), (3.15), we obtain

lim
N↑+∞

1

N
E
�

logQN (V )
�
≤ max

r∈{1,...,p}
I∗δ(xr)−δ

≤ sup
x∈V

I∗δ(x)−δ.

Taking δ ↓+0 limit, we get the assertion of the theorem.

2. Let us allow now the set V to be unbounded. We first prove that the family QN is quenched
exponentially tight. For that purpose, let

RN (M)≡
1

N
E
�

logQN (X \ [−M ; M]d)
�

,
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and denote

R(M)≡ lim
N↑+∞

RN (M).

We want to prove that

lim
M↑+∞

R(M) = −∞. (3.16)

Fix some u ∈ {1, . . . , d}. Suppose δu,p ∈ {0,1} is the standard Kronecker symbol. Let eu ∈ Rd

be an element of the standard basis of Rd , i.e., for all p ∈ {1, . . . , d}, we have

(eu)p ≡ δu,p.

Thanks to the Chebyshev inequality, we have

QN{xu ≤−M} ≤ e−N M

∫

Rd

e−N〈x ,eu〉dQN (x), a.s. (3.17)

Now, we get
∫

Rd

e−N〈x ,eu〉dQN (x) =
1

LN (Λe)

∫

Rd

eN〈x ,Λe−eu〉dQN (x)

=
LN (Λe − eu)

LN (Λe)
, a.s. (3.18)

Hence, combining (3.17) and (3.18), we obtain

1

N
E
�

logQN{xu ≤−M}
�
≤−M + IN (Λe − eu)− IN (Λe). (3.19)

Using the same argument, we also get

1

N
E
�

logQN{xu ≥ M}
�
≤−M + IN (Λe + eu)− IN (Λe). (3.20)

We obviously have

RN (M)≤
1

N
E

h
logQN

� d⋃

u=1

��
xu ≤−M

	
∪
�

xu ≥ M
	��i

. (3.21)

Applying condition (3.4) to (3.21), we get

lim
N↑+∞

1

N
E

h
logQN

� d⋃

u=1

��
xu ≤−M

	
∪
�

xu ≥ M
	��

− max
u∈{1,...,d}

max
n
E[logQN

��
xu ≤−M

	�
],E[logQN

��
xu ≥ M

	�
]
oi
≤ 0. (3.22)

Applying (3.19) and (3.20) in (3.22), we get

lim
N↑+∞

1

N
E

h
logQN

� d⋃

u=1

��
xu ≤−M

	
∪
�

xu ≥ M
	��i

≤−M − I(Λe) + max
u∈{1,...,d}

max
�

I(Λe − eu), I(Λe + eu)
	

. (3.23)
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The bound (3.23) assures (3.16). Now, since we have (with the help of (3.4) and (3.10))

lim
N↑+∞

1

N
E
�

logQN (V )
�
≤ lim

N↑+∞

1

N
E
�

logQN ((V ∩ [−M ; M]d)∪ (X \ [−M ; M]d))
�

≤max

½
sup

x∈(V ∩[−M ;M]d )

I∗(x),R(M)

¾
, (3.24)

the assertion of the theorem follows from (3.16) by taking the limM↑+∞ in the bound (3.24).

3.2 Quenched LDP lower bound

Suppose that, for some Λ ∈ Rd and all N ∈ N, we have
∫

X
eN〈y,Λ〉dQN (y)<+∞.

Let eQN ,Λ ∈M (X ) be the random measure defined by

eQN ,Λ(A) =

∫

A

eN〈y,Λ〉dQN (y), (3.25)

for any QN measurable A⊂X .

Lemma 3.3. Suppose the family of random measures QN satisfies the following assumptions.

1. Measure concentration. For all N ∈ N, there exists some L > 0 and ηN : R+→ R+ such that, for

any QN -measurable set A⊂X , we have

P
¦¯̄

logQN (A)−E
�

logQN (A)
�¯̄
> t
©
≤ ηN (t).

Assume, in addition, that, for some p > 0, the concentration function satisfies

N p

∫ +∞

0

ηN (N t)dt −−−→
N↑+∞

0. (3.26)

2. Tails decay condition. Let

C(M)≡ {x ∈ X : ‖x‖< M}.

There exists p ∈ N such that

lim
K↑+∞

lim
N↑∞

∫ +∞

0

P

½
1

N
log eQN ,Λ(X \ C(N p))> −K + t

¾
dt = 0. (3.27)

3. Non-degeneracy. The family of the sets
¦

B j ⊂X : j ∈ {1, . . . ,q}
©

satisfies the following condition

there exists some j0 ∈ {1, . . . ,q} such that lim
N↑∞

1

N
E
�

log eQN ,Λ(B j0
)
�
>−∞. (3.28)
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Then, for any Λ ∈ Rd , we have

lim
N↑∞

1

N
E

�
log eQN ,Λ

� q⋃

j=1

B j

�
− max

j∈{1,...,q}
E
�

log eQN ,Λ(B j)
��
≤ 0. (3.29)

Remark 3.2. The polynomial growth choice of M = MN ≡ N p made in assumptions (3.27) and (3.26)
is made for specificity. Inspecting the following proof, one can easily restate the conditions (3.27)
and (3.26) for general MN dependencies. Effectively, the growth rate of MN is related to the covering

dimension of the Polish space (X ,X).

Proof of Lemma 3.3. We fix some j ∈ {1, . . . ,q}. Take an arbitrary ǫ > 0, M > 0 and denote JM ,ǫ ≡
Z∩ [−‖Λ‖M/ǫ;‖Λ‖M/ǫ]. Consider, for i ∈ JM ,ǫ, the following closed sets

Ai, j ≡ {x ∈ B j : ( j − 1)ǫ ≤ 〈Λ, x〉 ≤ jǫ}.

We get

1

N
log eQN ,Λ

� q⋃

j=1

B j

�
≤

1

N
log eQN ,Λ

�� q⋃

j=1

B j ∩ C(M)
�
∪ (X \ C(M))

�

≤
1

N
max

¦
max

j∈{1,...,q}
log eQN ,Λ(B j ∩ C(M)),

log eQN ,Λ(X \ C(M))
©
+

log(q+ 1)

N
. (3.30)

We have

1

N
log eQN ,Λ(B j ∩ C(M))≤

1

N
log
� ∑

i∈JM ,ǫ

eNiǫQN (Ai, j)
�

≤ max
i∈{1,...,p}

�
iǫ+

1

N
logQN (Ai, j)

�
+

log(card JM ,ǫ)

N
. (3.31)

Denote

αN (ǫ)≡ max
j∈{1,...,q}

max
i∈JM ,ǫ

�
iǫ+

1

N
logQN (Ai, j)

�
,

and

βN ≡ max
j∈{1,...,q}

E
�

log eQN ,Λ(B j)
�

,

eβN (ǫ)≡ max
j∈{1,...,q}

E

�
max
i∈JM ,ǫ

�
iǫ+

1

N
logQN (Ai, j)

��
,

γN (M)≡
1

N
log eQN ,Λ(X \ C(M)).
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We also have
1

N
log eQN ,Λ(B j)≥

1

N
log eQN ,Λ(B j ∩ C(M))

≥ max
i∈JM ,ǫ

�
(i − 1)ǫ+

1

N
logQN (Ai, j)

�

= max
i∈JM ,ǫ

�
iǫ+

1

N
logQN (Ai, j)

�
− ǫ. (3.32)

Due to condition (1), we have

P

§¯̄
¯αN (ǫ)− eβN (ǫ)

¯̄
¯> t

ª
≤ ηN (tN)q card JM ,ǫ. (3.33)

We put M ≡ MN ≡ N p, and we get

card JM ,ǫ ≤ 2‖Λ‖M/ǫ+ 1

≤ 2‖Λ‖N p/ǫ+ 1. (3.34)

Let

XN (M ,ǫ)≡max{γN (M),αN (ǫ)} − βN ,

then we have

P{XN (K ,ǫ)> t} ≤ P{γN (M)> βN + t}+ P{αN (ǫ)> βN + t}. (3.35)

Due to property (3.28), there exists K > 0 such that we have

P{γN (M)> βN + t} ≤ P{γN (M)> −K + t}. (3.36)

Thanks to (3.32), we have

P{αN (ǫ)> βN + t} ≤ P{αN (ǫ)> eβN (ǫ) + t − ǫ}. (3.37)

For t > ǫ, we apply (3.33) and (3.34) to (3.37) to obtain

P{αN (ǫ)> βN + t} ≤ (2‖Λ‖N p/ǫ+ 1)qηN (tN). (3.38)

Combining (3.30) and (3.31), we get

E

�
log eQN ,Λ

� q⋃

j=1

B j

�
− max

j∈{1,...,q}
E
�

log eQN ,Λ(B j)
��

≤ E
�

XN (M ,ǫ)
�
+

log(q+ 1)

N
+

log (2‖Λ‖N p/ǫ+ 1)

N
. (3.39)

Now, (3.35), (3.36) and (3.38) imply

E
�

XN (M ,ǫ)
�
≤
∫ +∞

0

P
�

XN (M ,ǫ)> t
	

dt

≤
∫ +∞

ǫ

P
�

XN (M ,ǫ)> t
	

dt + ǫ

≤
∫ +∞

ǫ

P{γN (M)>−K + t}dt

+ (2‖Λ‖N p/ǫ+ 1)q

∫ +∞

ǫ

ηN (tN)dt + ǫ. (3.40)
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Therefore, taking sequentially limN↑+∞, limK↑+∞ and limǫ↑+0 in (3.40), and using (3.26), we arrive
at

lim
N↑∞
E
�

XN (M ,ǫ)
�
≤ 0. (3.41)

Bound (3.41) together with (3.39) implies the assertion of the lemma.

Let Q̂N ,Λ be the (random) probability measure defined by

Q̂N ,Λ ≡
eQN

LN (Λ)
.

Lemma 3.4. Suppose that the measure QN satisfies the assumptions of the previous lemma.

Then (3.29) is valid also for Q̂N ,Λ.

Proof. Similar to the one of the previous lemma.

Remark 3.3. Recall that a point x ∈ X is called an exposed point of the concave mapping I∗ if there

exists Λ ∈ Rd such that, for all y ∈ X \ {x}, we have

I∗(y)− I∗(x)< 〈y − x ,Λ〉. (3.42)

Theorem 3.2. Suppose

1. The family
�
QN : N ∈ N

	
⊂M (Rd) satisfies the assumptions of Lemma 3.3.

2. G ⊂X is an open set.

3. ; 6= E (I∗)⊂ D(I∗) is the set of the exposed points of the mapping I∗.

4. Condition (3.9) is satisfied.

Then

lim
N↑+∞

1

N
E
�

logQN (G ∩E )
�
≥ sup

x∈G
I∗(x). (3.43)

Proof. Let B(x ,ǫ) be a ball of radius ǫ > 0 around some arbitrary x ∈ X . It suffices to prove that

lim
ǫ↓+0

lim
N↑∞

1

N
E
�

logQN (B(x ,ǫ))
�
≥ I∗(x). (3.44)

Indeed, since we have

QN (G )≥QN (B(x ,ǫ)), (3.45)

applying 1
N

log(·), taking the expectation, taking limN↑+∞, ǫ ↓ +0 and taking the supremum over
x ∈ G in (3.45), we get (3.43).
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Take any x ∈ G ∩ E . Then we can find the corresponding vector Λe = Λe(x) ∈ Rd orthogonal to
the exposing hyperplane at the point x , as in (3.42). Define the new (“tilted”) random probability
measure Q̂N on Rd by demanding that

dQ̂N

dQN

(y) =
1

LN (Λe)
eN〈y,Λe〉. (3.46)

Moreover, we have

1

N
E
�

logQN (B(x ,ǫ))
�
=

1

N
E

�
log

∫

B(x ,ǫ)

dQN (y)

�

=
1

N
E
�

log LN (Λe)
�
+

1

N
E

�∫

B(x ,ǫ)

e−N〈y,Λe〉dQ̂N (y)

�

≥
1

N
E
�

log LN (Λe)
�
− 〈x ,Λe〉 − ǫ‖Λe‖2+

1

N
E
�

log Q̂N (B(x ,ǫ))
�

.

Hence,

lim
ǫ↓+0

lim
N↑∞

1

N
E
�

logQN (B(x ,ǫ))
�
≥
�
−〈x ,Λe〉+ I(Λe)

�
+ lim
ǫ↓+0

lim
N↑∞

1

N
E
�

log Q̂N (B(x ,ǫ))
�

.

Since we have

−〈x ,Λe〉+ I(Λe)≥ I∗(x),

in order to show (3.44) it remains to prove that

lim
ǫ↓+0

lim
N↑∞

1

N
E
�

log Q̂N (B(x ,ǫ))
�
= 0. (3.47)

The Laplace transform of Q̂N is

L̂N (Λ) =
LN (Λ+Λe)

LN (Λe)
.

Hence, we arrive at

Î(Λ) = I(Λ+Λe)− I(Λe).

Moreover, we have

Î∗(x) = I∗(x) + 〈x ,Λe〉 − I(Λe). (3.48)

By the assumptions of the theorem, the family QN satisfies the assumptions of Lemma 3.3. Hence,
due to Lemma 3.4, the family Q̂N satisfies (3.4). Thus we can apply Theorem 3.1 to obtain

lim
N↑+∞

1

N
E
�

log Q̂N (R
d \ B(U ,ǫ))

�
≤ sup

y∈U\B(x ,ǫ)
Î∗(y). (3.49)
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Lemma 3.2 implies that there exists some x0 ∈ X \ B(x ,ǫ) (note that x0 6= x) such that

sup
y∈X\B(x ,ǫ)

Î∗(y) = Î∗(x0).

Since Λe is an exposing hyperplane, using (3.48), we get

Î∗(x0) = I∗(x0) + 〈x0,Λe〉 − I(Λe)

≤ [I∗(x0) + 〈x0,Λe〉]− [I∗(x) + 〈x ,Λe〉]< 0, (3.50)

and hence, combining (3.49) and (3.50), we get

lim
N↑+∞

1

N
E
�

log Q̂N (R
d \ B(x ,ǫ))

�
< 0.

Therefore, due to the concentration of measure, we have almost surely

lim
N↑+∞

1

N
log Q̂N (R

d \ B(x ,ǫ))< 0

which implies that, for all ǫ > 0, we have almost surely

lim
N↑+∞

Q̂N (R
d \ B(x ,ǫ)) = 0,

and (3.47) follows by yet another application of the concentration of measure.

Corollary 3.1. Suppose that in addition to the assumptions of previous Theorem 3.2 we have

1. I(·) is differentiable on intD(I).

2. Either D(I) =X or

lim
Λ→∂D(I)

‖∇I(Λ)‖= +∞.

Then E (I∗) = Rd , consequently

lim
N↑+∞

1

N
E
�

logQN (G )
�
≥ sup

x∈G
I∗(x).

Proof. The proof is the same as in the classical GÃd’rtner-Ellis theorem (see, e.g., [13]).

4 The Aizenman-Sims-Starr comparison scheme

In this section, we shall extend the AS2 scheme to the case of the SK model with multidimensional
spins and prove Theorems 1.1 and 1.2, as stated in the introduction. We use the Gaussian compar-
ison results of Section 2.3 in the spirit of AS2 scheme in order to relate the free energy of the SK
model with multidimensional spins with the free energy of a certain GREM-inspired model. Com-
paring to [1], due to more intricate nature of spin configuration space, some new effects occur. In
particular, the remainder term of the Gaussian comparison non-trivially depends on the variances
and covariances of the Hamiltonians under comparison. To deal with this obstacle, we use the idea
of localisation to the configurations having a given overlap (cf. (1.5)). This idea is formalised by
adapting the proofs of the quenched GÃd’rtner-Ellis type LDP obtained in Section 3.
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4.1 Naive comparison scheme

We start by recalling the basic principles of the AS2 comparison scheme (see, e.g., [7, Chapter 11]).
It is a simple idea to get the comparison inequalities by adding some additional structure into the
model. However, the way the additional structure is attached to the model might be suggested by
the model itself. Later on we shall encounter a real-world use of this trick. Let (Σ,S) and (A ,A)
be Polish spaces equipped with measures µ and ξ, respectively. Furthermore, let

X ≡ {X (σ)}σ∈Σ,A≡ {A(σ,α)}σ∈Σ,
α∈A

, B ≡ {B(σ)}α∈A

be independent real-valued Gaussian processes. Define the comparison functional

Φ[C] ≡ E
�

log

∫

Σ×A
eC(σ,α)d

�
µ⊗ ξ

�
(σ,α)

�
, (4.1)

where C ≡ {C(σ,α)}σ∈Σ
α∈A

is a suitable real-valued Gaussian process. Theorem 4.1 of [2] is easily

understood as an example of the following observation. Suppose Φ[X ] is somehow hard to compute
directly, but Φ[A] and Φ[B] are manageable. We always have the following additivity property

Φ[X + B] = Φ[X ] +Φ[B] . (4.2)

Assume now that

Φ[X + B]≤ Φ[A] (4.3)

which we can obtain, e.g., from Proposition 2.5. Combining (4.2) and (4.3), we get the bound

Φ[X ] ≤ Φ[A]−Φ[B] . (4.4)

4.2 Free energy upper bound

Let V ⊂ Sym(d) be an arbitrary Borell set.

Remark 4.1. Note that U is closed and convex.

Let

ΣN (V )≡
�
σ ∈ ΣN : RN (σ,σ) ∈ V

	

=
�
σ ∈ ΣN : RN (σ,σ) ∈ V ∩U

	
. (4.5)

Let us define the local comparison functional ΦN (x ,V ) as follows (cf. (4.1))

ΦN (x ,V )[C]≡
1

N
E
�

logπN

�
1ΣN (V ) exp

�
β
p

NC
���

, (4.6)

where C ≡ {C(σ,α)}σ∈Σ
α∈A

is a suitable Gaussian process. Let us consider the following family (N ∈
N) of random measures on the Borell subsets of Sym(d) generated by the SK Hamiltonian,

PN (V )≡
∫

ΣN (V )
eβ
p

NXN (σ)dµ⊗N (σ),
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and consider also the following family of the random measures generated by the Hamiltonian
A(σ,α)

ePN (V )≡ eP x ,Q,U
N (V )≡

∫

ΣN (V )×A
exp
�
β
p

N

N∑

i=1

〈Ai(α),σi〉
�

dπN (σ,α), (4.7)

where the parameters Q and U are taken from the definition of the process A(α) (cf. (1.7)). The
vector x defines the random measure ξ ∈ M (A ) (cf. (1.8)), and, hence, also the measure πN ∈
M (Σ×A ).
Remark 4.2. To lighten the notation, most of the time we shall not indicate explicitly the dependence

of the following quantities on the parameters x, Q, U.

Consider (if it exists) the Laplace transform of the measure (4.7)

eLN (Λ)≡
∫

U
eN〈U ,Λ〉dePN (U). (4.8)

Let (if it exists)

eI(Λ)≡ lim
N↑∞

1

N
E
�

logeLN (Λ)
�

. (4.9)

Define the following Legendre transform

eI∗(U)≡ inf
x∈Q′(1,1),
Q∈Q′(U ,d),
Λ∈Sym(d)

�
−〈U ,Λ〉 −ΦN (x ,V )[B] + eI(Λ)

�
. (4.10)

Denote, for δ > 0,

eI∗δ(U)≡max

½
eI∗(U) +δ,−

1

δ

¾
.

Let

p(V )≡ lim
N↑+∞

1

N
E
�

log PN (V )
�

. (4.11)

Remark 4.3. Note that the result of [19] assures the existence of the limit in the previous formula.

Lemma 4.1. We have

1. The Laplace transform (4.8) exists. Moreover, for any Λ ∈ Sym(d), we have
∫

V
eN〈U ,Λ〉dPN (U)

=

∫

ΣN (V )
exp
�

N〈Λ,RN (σ,σ)〉+ β
p

NX (σ)
�

dµ⊗N (σ), (4.12)

∫

V
eN〈U ,Λ〉dePN (U)

=

∫

ΣN (V )×A
exp
�

N〈Λ,RN (σ,σ)〉+ β
p

N

N∑

i=1

〈Ai(α),σi〉
�

dπN (σ,α). (4.13)
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2. The quenched cumulant generating function (4.9) exists in the N ↑ ∞ limit, for any Λ ∈ Sym(d).
Moreover, for all N ∈ N, we have

IN (Λ)≡
1

N
E
�

log LN (Λ)
�
= X0(x ,Q,Λ, U), (4.14)

that is IN (·) in fact does not depend on N.

Proof. 1. We prove (4.13), the proof of (4.12) is similar. Since U is a compact, it follows that,
for arbitrary ǫ > 0, there exists the following ǫ-partition of U

N (ǫ) =
�
Vr ⊂U : r ∈ {1, . . . , K}

	

such that
⋃

r Vr =U , Vr ∩Vs = ;, diamVr ≤ ǫ and pick some Vr ∈ intVr , for all r 6= s.

We denote

eLN (Λ,ǫ)≡
K∑

r=1

eN〈Λ,Vr 〉
∫

ΣN (Vr )×A
exp
�
β
p

N

N∑

i=1

〈Ai(α),σi〉
�

dπN (σ,α).

For small enough ǫ, we have

(1− 2N‖Λ‖ǫ)eN〈Λ,RN (σ,σ)〉 ≤ eN〈Λ,U〉 ≤ eN〈Λ,RN (σ,σ)〉 (1+ 2N‖Λ‖ǫ) .

Therefore, if we denote

bLN (V ,Λ)≡
∫

ΣN (V )×A
exp
�

N〈Λ,RN (σ,σ)〉+ β
p

N

N∑

i=1

〈Ai(α),σi〉
�

dπN (σ,α),

we get

(1− 2N‖Λ‖ǫ)
K∑

r=1

bLN (Vr ,Λ)≤ eLN (Λ,ǫ)≤ (1+ 2N‖Λ‖ǫ)
K∑

r=1

bLN (Vr ,Λ).

Hence,

(1− 2N‖Λ‖ǫ)bLN (U ,Λ)≤ eLN (Λ,ǫ)≤ (1+ 2N‖Λ‖ǫ)bLN (U ,Λ). (4.15)

Let ǫ ↓+0 in (4.15) and we arrive at

eLN (Λ) = bLN (U ,Λ).

That is, the existence of LN (Λ) and the representation (4.13) are proved.

2. For all N ∈ N, we have, by the RPC averaging property (see, e.g., [2, Theorem 5.4] or Theo-
rem 5.3, property (4) below), that

1

N
E
�

logeLN (U ,Λ)
�
= ΦN (x ,U )

�
A+ N〈Λ,RN (σ,σ)〉

�
= X0(x ,Q,Λ, U).
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Proof of Theorem 1.1. In essence, the proof follows almost literally the proof of Theorem 3.1. The
notable difference is that we apply the Gaussian comparison inequality (Proposition 2.5) in order to
“compute” the rate function in a somewhat more explicit way.

Due to (4.5), we can without loss of generality suppose that V is compact. For any δ > 0 and U ∈ V ,
by (4.10), there exists Λ(U ,δ) ∈ Sym(d), x(U ,δ) ∈ Q ′(1,1) and Q(U ,δ) ∈ Q′(U , d) such that

−〈U ,Λ(U)〉+ eI(Λ(U))≤ eI∗δ(U). (4.16)

For any U ∈ V , there exists an open neighbourhood V (U)⊂ Sym(d) of U such that

sup
V∈V (U)

〈V − U ,Λ(U)〉 ≤ δ.

Fix some ǫ > 0. Without loss of generality, we can suppose that all the neighbourhoods satisfy ad-
ditionally the condition diamV (U) ≤ ǫ. By compactness, the covering

⋃
U∈V V (U) ⊃ V has a finite

subcovering, say
⋃p

r=1V (U (r))⊃ V . We denote the corresponding to this covering approximants in
(4.16) by {x (r) ∈ Q′(1,1)}pr=1 and {Q(r) ∈ Q′(U (r), d)}pr=1. We have

1

N
log PN (V )≤

1

N
log
� p⋃

r=1

PN (V (U (r)))
�

. (4.17)

Due to the concentration of measure Proposition 2.3, we can apply Lemma 3.1 and get

lim
N↑+∞

1

N
E

�¯̄
¯̄log PN

� p⋃

r=1

V (U (r))
�
− max

r∈{1,...,p}
E
�

log PN (V (U (r)))
�¯̄¯̄
�
= 0. (4.18)

In fact, since we know that (4.11) exists, (4.18) implies that

lim
N↑+∞

1

N
E

h
log PN

� p⋃

r=1

V (U (r))
�i
= max

r∈{1,...,p}
lim

N↑+∞

1

N
E
�

log PN (V (U (r)))
�

. (4.19)

For U (r), x = x (r), Q =Q(r), Proposition 2.5 gives

1

N
E
�

log PN (V (U (r)))
�
=

1

N
E
�

log ePN (V (U (r)))
�
−ΦN (x ,U )[B]

+RN (x
(r),Q(r), U (r),V (U (r))) + O (ǫ)

≤
1

N
E
�

log ePN (V (U (r)))
�
−ΦN (x ,U )[B] + Kǫ, (4.20)

where K > 0 is an absolute constant.

By the Chebyshev inequality and Lemma 4.1, we have

ePN (V (U))≤ ePN {V ∈ U : 〈V − U ,Λ(U)〉 ≤ δ}

≤ e−δN

∫

U
eN〈V−U ,Λ(U)〉dePN (V )

= e−δN e−N〈U ,Λ(U)〉eLN (Λ(U)).
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Thus, using (4.20) and (4.16), we get

lim
N↑+∞

1

N
E
�

log PN (V (U (r)))
�
≤ lim

N↑+∞

�
−〈U (r),Λ(U (r))〉 −Φ[B] +

1

N
logeLN (Λ(U

(r)))

�
−δ+ Kǫ

=−〈Ur ,Λ(Ur)〉 −Φ[B] + eI(Λ(Ur))−δ+ Kǫ

≤ eI∗δ(Ur)−δ+ Kǫ. (4.21)

Combining (4.17), (3.13), (4.21), we obtain

p(V ) = lim
N↑+∞

1

N
E
�

log PN (V )
�
≤ max

r∈{1,...,p}
lim

N↑+∞

1

N
E
�

log PN (V (U (r)))
�

≤ max
r∈{1,...,p}

eI∗δ(U (r)) + Kǫ−δ

≤ sup
U∈V

eI∗δ(V ) + Kǫ−δ.

Taking δ ↓+0 and ǫ ↓+0 limits, we get

p(V )≤ sup
V∈V

eI∗(U). (4.22)

The averaging property of the RPC (see, e.g., [2, Theorem 5.4] or property (4) of Theorem 5.3)
gives

ΦN (x ,U )[B] =
β2

2

n∑

k=1

xk

�
‖Q(k+1)‖2F −‖Q

(k)‖2F
�

. (4.23)

To finish the proof it remains to show that, for any fixed Λ ∈ Sym(d), we have

eI(Λ) = X0(x ,Q,Λ, U)

which is assured by Lemma 4.1.

4.3 Free energy lower bound

In this subsection, we return to the notations of Section 4.2.

Lemma 4.2. For anyB ⊂ Sym(d) such that intB ∩ intU 6= ; there exists ∆⊂ Σ with int∆ 6= ; such

that

lim
N↑∞

1

N
E

�∫

ΣN (B)×A
exp
�

N〈Λ,RN (σ,σ)〉+
N∑

i=1

〈Ai(α),σi〉
�

dπN (σ,α)

�

≥ log

∫

∆

exp
�
〈(β2U +Λ)σ,σ〉

�
dµ(σ)>−∞. (4.24)

Proof. In view of (1.10), iterative application of the Jensen inequality with respect to Ez(k) leads to
the following

E
�

Xn+1(x ,Q,Λ, U)
�
≤ X0(x ,Q,Λ, U).
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Performing the Gaussian integration, we get

E
�

Xn+1(x ,Q,Λ, U)
�
≥ log

∫

∆

exp
�
〈(β2U +Λ)σ,σ〉

�
dµ(σ),

where ∆⊂ Σ is such that µ(∆)> 0 and {R(σ,σ) : σ ∈∆N} ⊂B .

Define the following Legendre transform

bI∗(U)≡ inf
x∈Q′(1,1),
Q∈Q′(U ,d),
Λ∈Sym(d)

�
−〈U ,Λ〉 −Φ[B] + eI(Λ)+R(x ,Q, U)

�
. (4.25)

Proof of Theorem 1.2. As it is the case with the proof of Theorem 1.1, this proof also follows in
essence almost literally the proof of Theorem 3.2. The notable difference is that we apply the
Gaussian comparison in order to “compute” the rate function in a somewhat more explicit way.

In notations of Theorem 3.2 we are in the following situation: X ≡ Sym(d) and X is the topology
induced by any norm on Sym(d).

Let B(U ,ǫ) be the ball (in the Hilbert-Schmidt norm) of radius ǫ > 0 around some arbitrary U ∈ V .
Let us prove at first that

lim
ǫ↓+0

lim
N↑∞

1

N
E
�

log PN (B(U ,ǫ))
�
≥ bI∗(U). (4.26)

Similarly to (4.20), for any (x ,Q), we have

E

�
1

N
log PN (B(U ,ǫ))

�

=
1

N
E
�

log ePN (B(U ,ǫ))
�
−Φ[B] +RN (x ,Q, U , B(U ,ǫ)) + O (ǫ). (4.27)

The random measure ePN satisfies the assumptions of Corollary 3.1. Indeed:

1. Due to representation (4.14), mapping I(·) is differentiable with respect to Λ. Henceforth
assumption (1) of the corollary is also fulfilled.

2. Let us note at first that, thanks to Proposition 2.3, we have D(I) = Rd . Thus, the assumption
(2) of Corollary 3.1 is satisfied, as is condition (3.9).

Moreover, the assumptions of Lemma 3.3 are satisfied:

1. The concentration of measure condition is satisfied due to Proposition 2.3.

2. The tail decay is obvious since the family {ePN : N ∈ N} has compact support. Namely, for all
N ∈ N, we have supp ePN = U . Thus the measure eQN ,Λ (cf. (3.25)) generated by ePN has the

same support. Thus, supp eQN ,Λ =U .

3. The non-degeneracy is assured by Lemma 4.2.
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Hence, due to (4.27), arguing in the same way as in Theorem 3.2, we arrive at (4.26). Note that the
N ↑+∞ limit ofRN (x ,Q, U , B(U ,ǫ)) exists, since in (4.27) the limits of the other two N -dependent
quantities exist due to [19]. The subsequent ǫ ↓ +0 limit of the remainder term exists due to the
monotonicity.

Finally, taking the supremum over U ∈ V in (4.26), we get (1.22).

5 Guerra’s comparison scheme

In this section, we shall apply Guerra’s comparison scheme (see the recent accounts by [18; 32;
2]) to the SK model with multidimensional spins. However, we shall use also the ideas (and the
language) of [1]. In particular, we shall use the same local comparison functional (4.6) as in the
AS2 scheme, see (5.4). The section contains the proofs of the upper (5.16) and lower (5.18) bounds
on the free energy without Assumption 1.2. The proofs use the GREM-like Gaussian processes, RPCs
as in the AS2 scheme. We also obtain an analytic representation of the remainder term (which is an
artifact of this scheme) using the properties of the Bolthausen-Sznitman coalescent.

5.1 Multidimensional Guerra’s scheme

Let ξ = ξ(x1, . . . , xn) be an RPC process. Theorem 5.3 of [2] guarantees that there exists a rear-
rangement ξ= {ξ(i)}i∈N of the ξ’s atoms in a decreasing order. Recall (1.16) and define a (random)
limiting ultrametric overlap qL : N2→ [0; n]∩Z as follows

qL(i, j)≡ 1+max{k ∈ [0; n]∩Z : [π(i)]k = [π( j)]k}, (5.1)

where we use the convention that max; = 0. This overlap valuation induces a sequence of random

partitions of N into equivalence classes. Namely, given a k ∈ N ∩ [0; n], we define, for any i, j ∈ N,
the Bolthausen-Sznitman equivalence relation as follows

i ∼
k

j
def
⇐⇒ qL(i, j)≥ k. (5.2)

Given n ∈ N, assume that x and Q satisfy (1.8) and (1.7), respectively. Recall the definitions of the
Gaussian processes X and A which satisfy (1.1) and (1.17), respectively. We consider, for t ∈ [0;1],
the following interpolating Hamiltonian on the configuration space ΣN ×A

Ht(σ,α)≡
p

tX (σ) +
p

1− tA(σ,α). (5.3)

Given U ⊂ Sym+(d), the Hamiltonian (5.3) in the usual way induces the following local free energy

ϕN (t, x ,Q,U )≡ ΦN (x ,U )
�

Ht

�
, (5.4)

where we use the same local comparison functional (4.6) as in the AS2 scheme. Using (1.5), we
obtain then

ϕ(0, x ,Q,U ) = ΦN (x ,U )[A] and ϕ(1, x ,Q,U ) = ΦN (x ,U )[X ] = pN (U ).
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Now, we are going to disintegrate the Gibbs measure defined on U ×A into two Gibbs measures
acting on U and A separately. For this purpose we define the correspondent (random) local free

energy on U as follows

ψ(t, x ,Q,α,U )≡ log

∫

ΣN (U )
exp
�
β
p

NHt(σ,α)
�

dµ⊗N (σ). (5.5)

For α ∈A , we can define the (random) local Gibbs measure G (t,Q,α,U ) ∈M1(ΣN ) by demanding
that the following holds

dG (t, x ,Q,α,U )
dµ⊗N

(σ)≡ 1ΣN (U )(σ)exp
�
β
p

NHt(σ,α)−ψ(t, x ,Q,U ,α)
�

.

Let us define a certain reweighting of the RPC ξ with the help of (5.5). We define the random point
process {ξ̃}α∈A in the following way

ξ̃(α)≡ ξ(α)exp
�
ψ(t, x ,Q,U ,α)

�
.

We also define the normalisation operation N :Mf(A )→M1(A ) as

N (ξ) (α)≡
ξ(α)∑

α′∈A ξ(α
′)

.

We introduce the local Gibbs measure G (t, x ,Q,U ) ∈M1(U ×A ), for any V ⊂U ×A , as follows

G (t, x ,Q,U ) [V ]≡
∑

α∈An

N (ξ̃)(α)G (t, x ,Q,α,U ) [V ] . (5.6)

Finally, we introduce, what shall call Guerra’s remainder term:

R(t, x ,Q,U )≡−
β2

2
E
�
G (t, x ,Q,U )⊗G (t, x ,Q,U )

�
‖R(σ1,σ2)−Q(α1,α2)‖2F

��
. (5.7)

Note that (5.7) coincides with (1.20) after substituting (1.18) with (1.23).

5.2 Local comparison

We recall for completeness the following.

Proposition 5.1 (Ruelle [24], Bolthausen and Sznitman [6]). For any k ∈ [1; n+ 1]∩N, we have

E
�
N (ξ)⊗N (ξ)

¦
(α(1),α(2)) ∈A 2 : qL(α

1,α2)≤ k
©�
= xk.

The results of Section 4 can be straightforwardly generalised to the comparison scheme based on
(5.3). Given ǫ,δ > 0 and Λ ∈ Sym(d), define

V (Λ,U ,ǫ,δ)≡ {U ′ ∈ Sym(d) : ‖U ′− U‖F < ǫ, 〈U ′− U ,Λ〉< δ}. (5.8)

We now specialise to the case U = ΣN (V (Λ, U ,ǫ,δ)).
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Lemma 5.1. We have

∂

∂ t
ϕN (t, x ,Q,V (Λ, U ,ǫ,δ)) =R(t, x ,Q,ΣN (A (Λ, U ,ǫ,δ)))

−
β2

2

n∑

k=1

xk

�
‖Q(k+1)‖2F −‖Q

(k)‖2F
�
+ O (ǫ). (5.9)

Proof. This is an immediate consequence of Proposition 2.5. Indeed, recalling that Q(α1,α1) = U ,
and setting U ≡ Σ(B(U ,ǫ)), we have

∂

∂ t
ϕ(t, x ,Q,U )

=
β2

2
E
�
G (t, x ,Q,U )⊗G (t, x ,Q,U )

�
‖R(σ1,σ1)− U‖2F −‖R(σ

1,σ2)−Q(α1,α2)‖2F
−
�
‖U‖2F −‖Q(α

1,α2)‖2F
���

= −
β2

2
E
�
G (t, x ,Q,U )⊗G (t, x ,Q,U )

�
‖R(σ1,σ2)−Q(α1,α2)‖2F

��

−
β2

2
E
�
G (t, x ,Q,U )⊗G (t, x ,Q,U )

�
‖U‖2F −‖Q(α

1,α2)‖2F
��
+ O (ǫ). (5.10)

Using the Proposition 5.1, we get

β2

2
E
�
G (t, x ,Q,U )⊗G (t, x ,Q,U )

�
‖U‖2F −‖Q(α

1,α2)‖2F
��

=
β2

2
E


N (ξ)⊗N (ξ)




n∑

k=qL(α
(1),α(2))

�
‖Q(k+1)‖2F −‖Q

(k)‖2F
�






=
β2

2

n∑

k=1

�
‖Q(k+1)‖2F −‖Q

(k)‖2F
�
E
�
N (ξ)⊗N (ξ){k ≥ qL(α

(1),α(2))}
�

=
β2

2

n∑

k=1

xk

�
‖Q(k+1)‖2F −‖Q

(k)‖2F
�

. (5.11)

Combining (5.10) and (5.11), we get (5.9)

Lemma 5.2. We have

pN (ΣN (B(U ,ǫ))) =ΦN (x ,ΣN (B(U ,ǫ))) [A]−
β2

2

n∑

k=1

xk

�
‖Q(k+1)‖2F −‖Q

(k)‖2F
�

+

∫ 1

0

R(t, x ,Q,ΣN (B(U ,ǫ))dt + O (ǫ). (5.12)

Remark 5.1. Note that the above lemma also holds if we substitute B(U ,ǫ) with the smaller set

V (Λ, U ,ǫ,δ).
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Proof. The claim follows from (5.9) by integration.

Proposition 5.2. There exists C = C(Σ,µ) > 0 such that, for all U ∈ Sym+(d) as above, and all

ǫ,δ > 0, there exists an δ-minimal Lagrange multiplier Λ = Λ(U ,ǫ,δ) ∈ Sym(d) in (1.12) such that,

for all t ∈ [0; 1], and all (x ,Q), we have

pN (ΣN (V (Λ, U ,ǫ,δ)))≤ inf
Λ∈Sym(d)

f (x ,Q, U ,Λ)+ C(ǫ+δ) (5.13)

and

lim
N↑+∞

pN (ΣN (B(U ,ǫ)))≥ inf
Λ∈Sym(d)

f (x ,Q, U ,Λ)+ lim
N↑+∞

∫ 1

0

R(t, x ,Q,ΣN (B(U ,ǫ)))dt

− C(ǫ+ δ). (5.14)

Remark 5.2. The following upper bound also holds true. There exists C = C(Σ,µ) > 0, such that, for

any Λ ∈ Sym(d),

pN (ΣN (B(U ,ǫ)))≤ f (x ,Q, U ,Λ)+ C‖Λ‖Fǫ. (5.15)

Proof. The result follows from Lemma 5.2 by the same arguments as in the proofs of Theorems 1.1
and 1.2.

5.3 Free energy upper and lower bounds

Similarly to the quenched LDP bounds for the AS2 scheme in the SK model with multidimensional
spins (see Section 3), we get the quenched LDP bounds for Guerra’s scheme in the same model
without Assumption 1.2 on Q.

Recall the definition of the local Parisi functional f (1.12).

Theorem 5.1. For any closed set V ⊂ Sym(d), we have

p(V )≤ sup
U∈V ∩U

inf
(x ,Q,Λ)

f (x ,Q,Λ, U), (5.16)

where the infimum runs over all x satisfying (1.8), all Q satisfying (1.7) and all Λ ∈ Sym(d).

Proof. The proof is identical to the one of Theorem 1.1.

Define the local limiting Guerra remainder term R(x ,Q, U) as follows

R(x ,Q, U)≡− lim
ǫ↓+0

lim
N↑+∞

∫ 1

0

R(t,ΣN (B(U ,ǫ)))dt ≤ 0. (5.17)

The existence of the limits in (5.17) is proved similar to the case of the AS2 scheme, see the proof
of Theorem 1.2.
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Theorem 5.2. For any open set V ⊂ Sym(d), we have

p(V )≥ sup
U∈V ∩U

inf
(x ,Q,Λ)

�
f (x ,Q,Λ, U) +R(x ,Q, U)

�
, (5.18)

where the infimum runs over all x satisfying (1.8); all Q satisfying (1.7) and all Λ ∈ Sym(d).

Proof. The proof is identical to the one of Theorem 1.2. The only new ingredient is Lemma 5.1
needed to recover Guerra’s remainder term (5.7).

5.4 The filtered d-dimensional GREM

Given U ∈ Sym+(d) non-negative definite, denote by Q(U , d) the set of all cÃădlÃăg (right contin-
uous with left limits) Sym+(d)-valued non-decreasing paths which end in matrix U , i.e.,

Q(U , d)≡ {ρ : [0; 1]→ Sym+(d) | ρ(0) = 0;ρ(1) = U;ρ(t)¹ ρ(s), for t ≤ s;ρ is cádlág}.
(5.19)

Define the natural inverse ρ−1 : Imρ→ [0;1] as

ρ−1(Q)≡ inf{t ∈ [0;1] | ρ(t)ºQ},

where Imρ ≡ ρ([0; 1]). Let x ≡ ρ−1 ◦ρ ∈ Q(1,1).

Let also Q′(U , d) ⊂ Q(U , d) be the space of all piece-wise constant paths in Q(U , d) with finite
(but arbitrary) number of jumps with an additional requirement that they have a jump at x = 1.
Given some ρ ∈ Q′(U , d), we enumerate its jumps and define the finite collection of matrices
{Q(k)}n+1

k=0 ≡ Imρ ⊂ Rd . This implies that there exist {xk}n+1
k=0 ⊂ R such that

0≡ x0 < x1 < . . .< xn < xn+1 ≡ 1,

0≡Q(0) ¹Q(1) ¹Q(2) ¹ · · · ¹Q(n+1) ≡ U ,

where ρ(xk) = Q(k). Let us associate to ρ ∈ Q′(U , d) a new path ρ̃ ∈ Q(U , d) which is obtained by
the linear interpolation of the path ρ. Namely, let

ρ̃(t)≡Q(k)+ (Q(k+1)−Q(k))
t − xk

xk+1− xk

, t ∈ [xk; xk+1).

Let g : Rd → R be a function satisfying Assumption 5.1. Let us introduce the filtered d-dimensional

GREM process W . Let

W ≡
¦
{Wk(t, [α]k)}t∈R+ : α ∈A , k ∈ [0; n]∩N

©

be the collection of independent (for different α and k) Rd -valued correlated Brownian motions
satisfying

Wk(t, [α]k)∼ (Q(k+1)−Q(k))1/2W

�
t − xk

xk+1− xk

�
,

where {W (t)}t∈R+ is the standard (uncorrelated) Rd -valued Brownian motion. Now, for k ∈ [0; n]∩
N, we define the Rd -valued process {Y (t,α) | α ∈A , t ∈ [0;1]} by

Y (t,α)≡
n∑

k=0

1[xk;1](t)Wk(t ∧ xk+1, [α]k).
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Lemma 5.3. For α(1),α(2) ∈A , we have

Cov
�

Y (t1,α(1)), Y (t2,α(2))
�
= ρ̃

�
t1 ∧ t2 ∧ xqL(α

(1),α(2))

�
.

Proof. The proof is straightforward.

Assumption 5.1. Suppose that the function g : Rd → R satisfies g ∈ C (2)(Rd) and, for any c > 0, we

have
∫
Rd exp

�
g(y)− c‖y‖22

�
dy <∞ and also

sup
y∈Rd

�
‖∇g(y)‖2+ ‖∇2 g(y)‖2

�
< +∞, (5.20)

where ∇2 g(y) denotes the matrix of second derivatives of the function g at y ∈ Rd .

Assume g satisfies the above assumption. Let f ≡ fρ : [0;1]×Rd → R be the function satisfying the
following (backward) recursive definition

f (t, y)≡
(

g(y), t = 1,
1
xk

logE
�

exp
�

xk f (xk+1, y + Y (xk+1,α)− Y (t,α))
	�

, t ∈ [xk; xk+1),
(5.21)

where k ∈ [0; n]∩N, α ∈A is arbitrary and fixed.

Remark 5.3. It is easy to recognise that the definition of f is a continuous “algorithmisation" of (1.11).

Namely, Xk(x ,Q,Λ, U) = f (xk, 0), where

f (1, y) = g(y)≡ log

∫

Σ

exp
�p

2β



y,σ
�
+ 〈Λσ,σ〉

�
dµ(σ). (5.22)

5.5 A computation of the remainder term

Recall the equivalence relation (5.2). In words, the equivalence i ∼
k

j means that the atoms of the

RPC ξ with ranks i and j have the same ancestors up to the k-th generation. Varying the k in (5.2),
we get a family of equivalences on N which possesses important Markovian properties, see [6].

Lemma 5.4. For all k ∈ [0; n− 1]∩N, we have

E




∑

i∼
k

j

i ≁
k+1

j

N (ξ)(i)N (ξ)( j)



= xk+1− xk, (5.23)

and also

E

h∑

i

N (ξ)(i)2
i
= 1− xn. (5.24)
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Proof. 1. To prove (5.23) we notice that

E




∑

i∼
k

j

i ≁
k+1

j

N (ξ)(i)N (ξ)( j)



= E



∑

i ≁
k+1

j

N (ξ)(i)N (ξ)( j)−
∑

i≁
k

j

N (ξ)(i)N (ξ)( j)




= xk+1− xk,

where the last equality is due to Proposition 5.1.

2. Similarly, (5.24) follows from the following observation

E



∑

i

N 2(ξ)(i)


= E



∑

i, j

N (ξ)(i)N (ξ)( j)−
∑

i≁
n

j

N (ξ)(i)N (ξ)( j)




= 1− xn,

where the last equality is due to Proposition 5.1.

Note that, using the above notations, we readily have

A(σ,α)∼
�

2

N

�1/2 N∑

i=1

〈Y (i)(1,α),σi〉,

where {Y (i) ≡ {Y (i)(1,α)}α∈A }Ni=1 are i.i.d. copies of {Y (1,α)}α∈A . Consider the following weights

ξ̃(t)(α)≡ ξ(α)exp
�

f (t, Y (t,α))
�

.

As in [6], the above weights induce the permutation π̃(t) : N → A such that, for all i ∈ N, the
following holds

ξ̃(t)(π̃(t)(i))> ξ̃(t)(π̃(t)(i + 1)). (5.25)

In what follows, we shall use the short-hand notations ξ̃(t)(i)≡ ξ̃(t)(π̃(t)(i)), Ỹ (t)(s, i)≡ Y (s, π̃(t)(i))
and Q̃(t) ≡ {Q̃(t)(i, j)≡Q(π̃(t)(i), π̃(t)( j))}i, j∈N.

Theorem 5.3. Given a discrete order parameter x ∈ Q′(1,1), we have

1. Independence #1. The normalised RPC point process N (ξ) is independent from the correspond-

ing randomised limiting GREM overlaps q.

2. Independence #2. The reordered filtered limiting GREM Ỹ is independent from the corresponding

reordered weights ξ̃.
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3. The reordering change of measure. Given I ⋐ N, let νI(·|Q) be the joint distribution of

{Y (1, i)}i∈I , and ν̃I(·|Q) be the joint distribution of {Ỹ (1)(1, i)}i∈I both conditional on Q. Then

dν̃I(·|Q)
dνI(·|Q)

=

n∏

k=0

∏

i∈
�

I/∼
k

�
exp
�

xk

�
f (xk+1, Y (xk+1, i))− fk(xkY (xk, i))

	�
, (5.26)

where the innermost product in the previous formula is taken over all equivalence classes on the

index set I induced by the equivalence ∼
k

.

4. The averaging property. For all s, t ∈ [0;1], we have

�¦
ξ(t)(α)

©
α∈A , Q̃(t)

�
∼
�¦
ξ(s)(α)

©
α∈A , Q̃(s)

�
. (5.27)

Proof. The proof is the same as in the case of the one-dimensional SK model, see [6; 3].

Keeping in mind (5.26), we define, for k ∈ [0; n− 1]∩N, the following random variables

Tk(α)≡ exp
�

xk

�
f (xk+1, Y (xk+1,α))− f (xk, Y (xk,α))

��
.

Given k ∈ [1; n] ∩N, assume that α(1),α(2) ∈ A satisfy qL(α
(1),α(2)) = k. We introduce, for nota-

tional convenience, the (random) measure µk(t,U ) – an element ofM1(ΣN ) – by demanding the
following

µk(t,U )
�

g
�
≡ E

�
T1(α

1) · · · Tk(α
1)Tk+1(α

1)Tk+1(α
2) · · · Tn(α

1)Tn(α
2)

G (t,α(1),U )⊗G (t,α(2),U )
�

g
��

, (5.28)

where g :U 2→ R is an arbitrary measurable function such that (5.28) is finite. Using this notation,
we can state the following lemma.

Lemma 5.5. For any i, j ∈ N, satisfying i ∼
k

j, i ≁
k+1

j, we have

E
�
G (t, i,U )⊗G (t, j,U )

�
‖R(σ1,σ2)−Q(i, j)‖2F

��
= µk(t,U )

�
‖R(σ1,σ2)−Q(k)‖2F

�
. (5.29)

Proof. This is a direct consequence of (5.26) and the fact that under the assumptions of the theorem
Q(i, j) =Q(k).

Remark 5.4. It is obvious from the previous theorem that µk is a probability measure.

The main result of this subsection is an “analytic projection” of the probabilistic RPC representation
which integrates out the dependence on the RPC. Comparing to (1.20), it has a more analytic flavor
which will be exploited in the remainder estimates (Section 7). This is also a drawback in some
sense, since the initial beauty of the RPCs is lost.
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Theorem 5.4. In the case of Guerra’s interpolation (1.23), we have

R(t, x ,Q,ΣN (B(U ,ǫ))) =
1

2

n−1∑

k=0

(xk+1− xk)µk(t,ΣN (B(U ,ǫ)))
�
‖R(σ1,σ2)−Q(k)‖2F

�

+ O (ǫ) + O (1− xn), (5.30)

as ǫ→ 0 and xn→ 1.

Proof. Recalling (5.7) and (5.6), we write

R(t, x ,Q,Σ(U ,ǫ)) =
β2

2
E

h∑

i, j

N (ξ̃)(i)N (ξ̃)( j)

×G (t, x ,Q, i,U )⊗G (t, x ,Q, j,U )
h
‖R(σ1,σ2)−Q(i, j)‖2F

ii
.

Using Theorem 5.3, we arrive to

R(t, x ,Q,Σ(U ,ǫ)) =
β2

2

∑

i, j

E
�
N (ξ̃)(i)N (ξ̃)( j)

�

×E
�
G (t, x ,Q, i,U )⊗G (t, x ,Q, j,U )

�
‖R(σ1,σ2)−Q(i, j)‖2F

��
.

(We can interchange the summation and expectation since all summands are non-negative.) The
averaging property (see Theorem 5.3) then gives

R(t,Σ(U ,ǫ)) =
β2

2

∑

i, j

E
�
N (ξ)(i)N (ξ)( j)

�
E
�
G (t, i,U )⊗G (t, j,U )

�
‖R(σ1,σ2)−Q(i, j)‖2F

��
.

(5.31)

For each k ∈ [1; n−1]∩N, we fix any indexes i0, i
(k)

0 , j
(k)

0 ∈ N such that i ∼
k

j and i ≁
k+1

j. Rearranging

the terms in (5.31), we get

R(t,Σ(U ,ǫ)) =
β2

2

n∑

k=1

E

h
G (t, i

(k)

0 ,U )⊗G (t, j
(k)

0 ,U )
�
‖R(σ1,σ2)−Q(k)‖2F

�i

×
∑

i∼
k

j

i ≁
k+1

j

E
�
N (ξ)(i)N (ξ)( j)

�

+
β2

2
E
�
G (t, i0,U )⊗G (t, i0,U )

�
‖R(σ1,σ2)− U‖2F

��∑

i

E
�
N (ξ)(i)2

�
. (5.32)

Finally, applying Lemmata 5.4 and 5.5 to (5.32), we arrive at (5.30).
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6 The Parisi functional in terms of differential equations

In this section, we study the properties of the multidimensional Parisi functional. We derive the mul-
tidimensional version of the Parisi PDE. This allows to represent the Parisi functional as a solution of
a PDE evaluated at the origin. We also obtain a variational representation of the Parisi functional in
terms of a HJB equation for a linear problem of diffusion control. As a by-product, we arrive at the
strict convexity of the Parisi functional in 1-D which settles a problem of uniqueness of the optimal
Parisi order parameter posed by [31; 20].

Lemma 6.1. Consider the function B : Rd ×R+→ R defined as

B(y, t)≡
1

x
logE

�
exp
�

x f (y + z(t))
	�

,

where f : Rd → R satisfies Assumption 5.1 and {z(t)}t∈[0;1] is a Gaussian Rd -valued process with

Cov [z(t)]≡Q(t) ∈ Sym(d) such that Q(t)u,v is differentiable, for all u, v. Then

∂t B(y, t) =
1

2

d∑

u,v=1

Q̇u,v(t)
�
∂ 2

yu yv
B(y, t) + x∂yu

B(y, t)∂yv
B(y, t)

�
, (t, y) ∈ (0;1)×Rd . (6.1)

In particular, the function B is differentiable with respect to the t-variable on (0;1) and C2(Rd) with

respect to the y-variable.

Proof. Denote Z ≡ E
�

ex f (y+z(t))
�

. By [2, Lemma A.1], we have

∂t B(y, t) =
1

2x


 1

Z
E

h d∑

u,v=1

Q̇u,v(t)∂
2
zuzv

ex f (z)|z=y+z(t)

i
 .

A straightforward calculation then gives

∂t B(y, t) =
1

2x


 1

Z
E

h d∑

u,v=1

Q̇u,v(t)
�

x2∂zu
f (z)∂zv

f (z) + x∂ 2
zuzv

f (z)
�

ex f (z)|z=y+z(t)

i
 . (6.2)

We also have

∂yu
B(y, t) =

1

x Z
E
�

xex f (z)∂zu
f (z)|z=y+z(t)

�
, (6.3)

and

∂ 2
yu yv

B(y, t) =
1

x

� 1

Z
E

h
ex f (z)

�
x2∂zu

f (z)∂zv
f (z) + ∂ 2

zuzv
f (z)

�
|z=y+z(t)

i

−
1

Z2
E
�

xex f (z)∂zu
f (z)|z=y+z(t)

�
E
�

xex f (z)∂zv
f (z)|z=y+z(t)

��
. (6.4)

Combining (6.2), (6.3) and (6.4), we get (6.1).
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Proposition 6.1. Denote D ≡
⋃n

k=0(xk; xk+1). The function f = fρ defined in (5.21) satisfies the

final-value problem for the controlled semi-linear parabolic Parisi-type PDE





∂t f (y, t) + 1
2

∑d

u,v=1
d
dt
ρ̃u,v(t)

�
∂ 2

yu yv
f (y, t) + x(t)∂yu

f (y, t)∂yv
f (y, t)

�
= 0, (t, y) ∈ D×Rd ,

f (1, y) = g(y), y ∈ Rd ,

f (y, xk − 0) = f (y, xk + 0), k ∈ [1; n]∩N, y ∈ Rd .

(6.5)

Note that d
dt
ρ̃(t) = Q(k+1)−Q(k)

xk+1−xk
, for t ∈ (xk; xk+1).

Proof. A successive application of Lemma 6.1 to (5.21) on the intervals D starting from (xn; 1) gives
(6.5).

Remark 6.1. Note that a straightforward inspection of (5.21), using (6.2), (6.3) and (6.4), shows

that the function f defined in (5.21) is C1(D) ∩ C([0;1]) with respect to the t-variable and C2(Rd)

with respect to the y-variable.

Lemma 6.2. Given ρ ∈ Q′(U , d), the function (5.21) satisfies the following:

fρ(0,0) = E
h

log
∑

α∈A
ξ(α)exp

�
g(Y (1,α))

	i
. (6.6)

Proof. This is an immediate consequence of the RPC averaging property (5.27).

Lemma 6.3.

1. Given k ∈ [1; n]∩N and a non-negative definite matrix Q ∈ Sym(d), we have

∂Q(k) Q fρ(0,0) =−
1

2
(xk − xk−1)E [〈Q, M〉] , (6.7)

where M ∈ Rd×d is defined as

Mu,v ≡T1(α
(1)) · · · Tk(α

(1))Tk+1(α
(1))Tk+1(α

(2)) · · · Tn(α
(1))Tn(α

(2))

∂zu
g(z)|z=Y (1,α(1))∂zv

g(z)|z=Y (1,α(2))

with qL(α
(1),α(2)) = k. Moreover, (6.7) does not depend on the choice of α(1),α(2) ∈A but only

on k.

2. Given a non-negative definite matrix Q ∈ Sym(d), we have

∂U Q fρ(0,0) =
1

2
E
�
〈Q, M ′〉

�
, (6.8)

where M ′ ∈ Sym(d) is satisfies

M ′u,v = T1(α) · · · Tn(α)
�
∂ 2

zuzv
g(z) + ∂zu

g(z)∂zv
g(z)

�¯̄
¯
z=Y (1,α)

+ O (1− xn),

as xn→ 1. Note that (6.8) obviously does not depend on the choice of α ∈A .

205



Proof. Applying [2, Lemma A.1] to (6.6), we obtain

∂sE

h
log
∑

α∈A
exp
�

g(Y (1,α))
	 ¯̄
¯
Q(k)=Q(k)+sQ

i

=
1

2
E

h d∑

u,v=1

N (ξ̃)⊗N (ξ̃)
h
∂s

�
Q(α(1),α(2))u,v|Q(k)=Q(k)+sQ

�

n
1α(1)=α(2)(α

(1),α(2))
�
∂ 2

zuzv
g(z) + ∂zu

g(z)∂zv
g(z)

�¯̄
¯
z=Y (1,α(1))

− ∂zu
g(z)|z=Y (1,α(1))∂zv

g(z)|z=Y (1,α(2))

o¯̄
¯
Q(k)=Q(k)+sQ

ii
.

Note that

∂s

�
Q(α(1),α(2))u,v|Q(k)=Q(k)+sQ

�
=

(
Qu,v , qL(α

(1),α(2)) = k,

0, qL(α
(1),α(2)) 6= k.

1. Define M(α(1),α(2)) ∈ Rd×d as

M(α(1),α(2))u,v ≡ ∂zu
g(z)|z=Y (1,α(1))∂zv

g(z)|z=Y (1,α(2)).

Hence, we arrive at

∂Q(k) Q fρ(0,0) =−
1

2
E

h ∑

α(1)α(2)∈A
1qL(α

(1),α(2))=kξ(α
(1))ξ(α(2))(α(1),α(2))〈Q, M(α(1),α(2))〉

i
.

The proof is concluded similarly to the proof of Theorem 5.4 by using the properties of the
RPC (Theorem 5.3 and Lemma 5.4).

2. The proof is the same as in (1).

The following is a multidimensional version of [30, Lemma 4.3].

Lemma 6.4. For any α ∈A , we have

1.

∂xk
fρ(0,0)|xk=xk−1

=
1

xk−1
E

h
T1(α) · · · Tk−2(α)Tk−1(α)|xk=xk−1

�
E

h
f (xk+1, Y (xk+1,α))Tk(α)|xk=xk−1

i
− f (xk, Y (xk,α))

�i
.

2. Let M ∈ Sym(d) with Mu,v ≡ ∂zu
f (xk, Y (xk,α))∂zv

f (xk, Y (xk,α)), then

∂ 2
Q(k) Q,xk

fρ(0,0) =
1

2
E

h
T1(α) · · · Tk−2(α)〈Q, M〉

i
.

Proof. This proof is the same as in [30].
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We now generalise the PDE (6.5). Given a piece-wise continuous x ∈ Q(1,1) and Q ∈ Q(U , d),
consider the following terminal value problem

(
∂t f + 1

2

�
〈Q̇,∇2 f 〉+ x〈Q̇∇ f ,∇ f 〉

�
= 0, (y, t) ∈ Rd × (0,1),

f (y, 1) = g(y).
(6.9)

We say that f ∈ C([0; 1]× Rd → R) is a piece-wise viscosity solution of (6.9), if there exists the
partition of the unit segment 0 =: x0 < x1 < . . . < xn+1 ≡ 1 such that, for each k ∈ [0, n] ∩ N,
f : (xk; xk+1)×Rd → R is a viscosity solution (see, e.g., [9]) of





∂t f + 1
2

�
〈Q̇,∇2 f 〉+ x〈Q̇∇ f ,∇ f 〉

�
= 0, (y, t) ∈ Rd × (xk, xk+1),

f (y, xk+1+ 0) = f (y, xk+1− 0),

f (y, 1) = g(y).

Proposition 6.2. For any ρ(1),ρ(2) ∈ Q′(U , d), we have

| fρ(1)(0,0)− fρ(2)(0,0)| ≤
C

2

∫ 1

0

‖ρ(1)(t)−ρ(2)(t)‖Fdt,

where C = C(Σ)≡ E
�
‖M‖F

�
.

Proof. This is an adaptation of the proof of [31, Theorem 3.1] to the multidimensional case. Assume
without loss of generality that the paths ρ(1) and ρ(2) have same jump times {xk}n+1

k=0. Denote the

corresponding overlap matrices as {Q(1,k)}n+1
k=0 and {Q(2,k)}n+1

k=0. Given s ∈ [0;1], define the new path

ρ(s) ∈ Q′(U , d) by assuming that it has the same jump times {xk}n+1
k=0 as the paths ρ(1),ρ(2) and

defining its overlap matrices as Q(k)(s)≡ sQ(1,k)+ (1− s)Q(2,k). On the one hand, we readily have

∫ 1

0

‖ρ(1)(t)−ρ(2)(t)‖Fdt =

n∑

k=1

(xk − xk−1)‖Q(1,k)−Q(2,k)‖F.

On the other hand, using Lemma 6.3, we have

|∂s fρ(s)(0,0)| ≤
C

2

n∑

k=1

(xk − xk−1)‖Q(1,k)−Q(2,k)‖F.

Finally, we have

| fρ(1)(0,0)− fρ(2)(0,0)| ≤
∫ 1

0

|∂s fρ(s)(0,0)|ds.

Combining the last three formulae, we get the theorem.

Remark 6.2. Note that using the same argument and notations as in the previous theorem we get that,

for any (y, t) ∈ Rd × [0; 1],

| fρ(1)(y, t)− fρ(2)(y, t)| ≤
C(Σ)

2

∫ 1

t

‖ρ(1)(s)−ρ(2)(s)‖Fds.
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Remark 6.3. Note that we can associate to each ρ ∈ Q(U , d) a Sym+(d)-valued countably additive

vector measure νρ ∈M ([0; 1], Sym+(d)) by the following standard procedure. Given [a; b) ⊂ [0;1],
define

νρ([a; b))≡ ρ(b)−ρ(a)

and then extend the measure, e.g., to all Borell subsets of [0;1].

Theorem 6.1. Given U ∈ Sym+(d), we have

1. The set Q(U , d) is compact under the topology induced by the following norm

‖ρ‖ ≡
∫ 1

0

‖ρ(t)‖Fdt, ρ ∈ Q(U , d). (6.10)

2. The functionalQ′(U , d) ∋ ρ 7→ fρ(0,0) is Lipschitzian and can be uniquely extended by continu-

ity to the whole Q(U , d).

Proof. 1. The topology induced by the norm (6.10) coincides with the topology of weak conver-
gence of the above-defined vector measures. Since Q(U , d) is a bounded set, it is compact in
the weak topology.

2. This is an immediate consequence of Proposition 6.2.

In the next result, we summarise some results on the PDE (6.9) for the non-discrete parameters, cf.
Proposition 6.1.

Theorem 6.2.

1. Existence. Assume that Q is in Q(U , d) and is piece-wise C (1). Assume also that x is in Q(1,1)
and is piece-wise continuous. Then the terminal value problem (6.9) has a unique continuous,

piece-wise viscosity solution fQ,x ∈ C([0;1]×Rd).

2. Monotonicity with respect to x . Assume Q ∈ Q(U , d). Assume also that x (1), x (2) ∈ Q(1,1)
are such that x (1)(t) ≤ x (2)(t), almost everywhere for t ∈ [0;1]. Let fQ,x (1) and fQ,x (2) be the

corresponding solutions of (6.9). Then fQ,x (1) ≤ fQ,x (2) .

3. Monotonicity with respect to g. Assume g1, g2 : Rd → R satisfy Assumption 5.1 and also

g1 ≤ g2 almost everywhere. Let fg1
, fg2

: Rd×[0;1]→ R be the corresponding solutions of (6.9)
with g = g1, g = g2, respectively. Then fg1

≤ fg2
.

Proof. 1. Due to the assumptions, the diffusion matrix Q̇(t) = ρ̇(t) in (6.9) is non-negative
definite. Applying [9, Proposition 8] to the PDE (6.9) successively on the intervals [xk; xk+1),
where the ρ̇ is continuous, gives the existence of the solutions in viscosity sense and, moreover,
gives their continuity. Uniqueness is ensured by [12, Theorem 1.1].
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2. By the approximation argument (cf. Theorem 6.1), it is enough to assume that x (1), x (2) ∈
Q′(1,1) and Q ∈ Q′(U , d). Then Proposition 6.1 gives the existence of the corresponding
piece-wise classical solutions of (6.9): fQ,x (1) , fQ,x (2) . These solutions are obviously also the
(unique) piece-wise viscosity solutions of (6.9). The comparison result [9, Theorem 5] and
the non-linear Feynman-Kac formula [9, Proposition 8 ] give then the claim.

3. This can be seen either from the representation (6.6) and an approximation argument, or
exactly as in (2) by invoking the results of [9].

6.1 The Parisi functional

We consider now a specific terminal condition in the system (6.5) given in (5.22).

Given ρ ∈ Q(U , d), let fρ : [0;1]×Rd → R be the value of (the continuous extension onto Q(U , d)

of) the solution of (6.5) with the specific terminal condition given by (5.22). Following the ideas in
the physical literature, we now define the Parisi functional P (β ,ρ,Λ) : R+×Q′(U , d)×Sym+(d)×
Sym(d)→ R in as

P (β ,ρ,Λ)≡ fρ(0,0)−
β2

2

∫ 1

0

x(t)d
�
‖ρ(t)‖2F

�
− 〈U ,Λ〉. (6.11)

The integral in (6.11) is understood in the usual Lebesgue-Stiltjes sense.

Remark 6.4. Note that the path integral term in (6.11) equals f (0,0), where f (t, y) is the solution of

(6.9) with the following boundary condition

g(y)≡ β〈y,1〉= β
d∑

u=1

yu, y ∈ Rd .

Obviously Q′(d) is dense in Q(d).

Theorem 6.3. We have

p(β)≤ sup
U∈Sym+(d)

inf
ρ∈Q′(U ,d)
Λ∈Sym(d)

P (β ,ρ,Λ). (6.12)

Proof. The bound (6.12) is a straightforward consequence of Theorem 5.1.

6.2 On strict convexity of the Parisi functional and its variational representation

In this subsection, we derive a variational representation for Parisi’s functional. As a consequence,
for d = 1, we prove that the functional is strictly convex with respect to the x ∈ Q(1,1), if the
terminal condition g (cf. (6.9)) is strictly convex and increasing. This result is related to the
problem of strict convexity of the Parisi functional in the case of the SK model.
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Let W ≡ {W (s)}s∈R+ be the standard Rd -valued Brownian motion and let {Ft}t∈R+ be the corre-
spondent filtration. Define

U [t; T] ≡ {u : [t; T]→ Rd | u is {Ft}t∈R+ progressively measurable }.

Given u ∈ U [t; 1], Q ∈ Q(U , d) and x ∈ Q(1,1), consider the following Rd -valued and adapted to
{Ft}t∈R+ diffusion

Y (Q,x ,u,t,y)(s) = y −
∫ s

t

�
x(s)Q̇(s)

�1/2
u(s)ds+

∫ s

t

�
Q̇(s)

�1/2
dW (s), s ∈ [t; 1].

Given some function g : Rd → R satisfying Assumption 5.1, define fQ,x : Rd × [0;1]→ R as

fQ,x(y, t)≡ sup
u∈U [t;1]

E


g(Y (Q,x ,u,t,y)(1))−

1

2

∫ 1

t

‖u(s)‖22ds


 . (6.13)

Proposition 6.3. Let d = 1. If g is strictly convex and increasing, then the functional Q(1,1) ∋ x 7→
fQ,x is strictly convex.

Proof. We have

Y (Q,x ,u,t,y)(1) = y −
∫ 1

t

�
x(s)Q̇(s)

�1/2
u(s)ds+

∫ 1

t

�
Q̇(s)

�1/2
W (s).

By an approximation argument, it is enough to prove the strict convexity for the continuous x1, x2 ∈
Q(1,1) (x1 6= x2). For any γ ∈ (0;1), we have

Y (Q,γx1+(1−γ)x2,u,t,y)(1) =−
∫ 1

t

�
γx1+ (1− γ)x2Q̇(s)

�1/2
u(s)ds+

∫ 1

t

�
Q̇(s)

�1/2
W (s)

<−γ
∫ 1

t

�
x1Q̇(s)

�1/2
u(s)ds− (1− γ)

∫ 1

t

�
x2Q̇(s)

�1/2
u(s)ds

+

∫ 1

t

�
Q̇(s)

�1/2
W (s)

= γY (Q,x1,u,t,y)(1) + (1− γ)Y (Q,x2,u,t,y)(1), (6.14)

where the strict inequality above is due to the strict concavity of the square root function. The strict
convexity and monotonicity of g combined with the representation (6.14) implies that (6.13) is
strictly convex as a function of x , since a supremum of a family of convex functions is convex.

Proposition 6.4. Given a piece-wise continuous x ∈ Q(1,1) and a Q ∈ Q(U , d) which is piece-wise

in C1(0; 1), the function fQ,x : Rd × [0;1]→ R defined by (6.13) is a unique, continuous, piece-wise

viscosity solution of the following terminal value problem

(
∂t f + 1

2

�
〈Q̇,∇2 f 〉+ x〈Q̇∇ f ,∇ f 〉

�
= 0, (y, t) ∈ Rd × (0,1),

f (y, 1) = g(y).
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Proof. In a way similar to the proof of Theorem 6.2, we successively use [12, Theorem 2.1] on the
intervals (xk; xk+1), where the data of the PDE are continuous.

Theorem 6.4. Assume d = 1. Suppose also that g satisfies the assumptions of Proposition 6.3. For

any u ∈ R, the generalised Parisi functional given by (6.11) with fρ(0,0) corresponding to the terminal

condition g is strictly convex on Q(u, 1). Consequently, there exists a unique optimising order parameter.

Proof. In 1-D, we can choose the coordinates such that Q ≡ U t, on [0;1]. Consequently, Q̇ ≡ U ≡
const on [0; 1]. Hence, it is enough check the strict convexity with respect to x ∈ Q(1,1). The result
follows by approximation in the norm (6.10) of an arbitrary pair of different elements of Q(U , d)

by a pair of elements of Q′(U , d) and Propositions 6.1, 6.3 and 6.4.

Remark 6.5. Due to the monotonicity assumption on g, Theorem 6.4 does not cover the case of the SK

model, where the terminal value g is given by (5.22).

6.3 Simultaneous diagonalisation scenario

In the setups with highly symmetric state spaces ΣN (such as the spherical spin models of [23] or
the Gaussian spin models, see Section 8 below), less complex order parameter spaces as Q(U , d)

suffice.

Given some orthogonal matrix O ∈ O (d), we briefly discuss the case ρ ∈ Qdiag(U ,O, d), where

Qdiag(U ,O, d)≡ {ρ ∈ Q(U , d) | for all t ∈ [0;1], the matrix Oρ(t)O∗ is diagonal}.

The space Qdiag(U ,O, d) is obviously isomorphic to the space of “paths” with the non-decreasing

coordinate functions in Rd , starting from the origin and ending at u, i.e.,

Q̄(u, d)≡ {ρ : [0; 1]→ Rd | ρ̄(0) = 0; ρ̄(1) = u; ρ̄(t)¹ ρ̄(s), for t ≤ s; ρ̄ is cádlág},

where u= OUO∗ ∈ Rd . The isomorphism is then given by

Q̄(u, d) ∋ ρ̄ 7→ OρO∗ ∈ Qdiag(U ,O, d). (6.15)

7 Remainder estimates

In this section, we partially extend Talagrand’s remainder estimates to the multidimensional setting.
Due to Proposition 5.2, to prove the validity of Parisi’s formula it is enough to show that all the
µk terms in (5.30) almost vanish for the almost optimal parameters of the optimisation problem in
(5.16). This can be done if the free energy of two coupled replicas of the system (7.3) is strictly
smaller than twice the free energy of the uncoupled single system (5.4), see inequality (7.2). How-
ever, the systems involved in (7.2) are effectively at least as complex as the SK model itself. In
Section 7.2, we again apply Guerra’s scheme to obtain the upper bounds on (7.3) in terms of the
free energy of the corresponding comparison GREM-inspired model. One might then hope that by a
careful choice of the comparison model one can prove inequality (7.2). In Sections 7.3 and 7.4, we
formulate some conditions on the comparison system which would suffice to get inequality (7.2),
giving, hence, the conditional proof of the Parisi formula, see Theorem 7.1.
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7.1 A sufficient condition for µk-terms to vanish

In this subsection, we are going to establish a sufficient condition for the measures µk to vanish.
This condition states roughly the following. Whenever the free energy of a certain replicated system
uniformly in N strictly less then twice the free energy of the single system, the measure µk vanishes
in N → +∞ limit (see Lemma 7.2).

Keeping in mind the definition of µk (cf. (5.28)) and of the Hamiltonian Ht(σ,α) (cf. (5.3)), we
define, for α(1),α(2) ∈A (2),k, the corresponding replicated Hamiltonian as

H
(2)
t (σ

(1),σ(2),α(1),α(2))≡ Ht(σ
(1),α(1)) + Ht(σ

(2),α(2)). (7.1)

Remark 7.1. We note here that the distribution of the Hamiltonian Ht(k,σ(1),σ(2)) depends only on

k and not on the choice of the indices α(1),α(2) ∈A (2),k.

Remark 7.2. The superscript (2) in (7.1) (and in what follows) indicates that the quantity is related

to the twice replicated objects.

Define

A (2),k ≡ {(α(1),α(2)) ∈A 2 : qL(α
(1),α(2)) = k}.

Additionally, for any V ⊂ Σ(B(U ,ǫ))2 and any suitable Gaussian process,

{F(σ(1),σ(2),α(1),α(2)) : σ(1),σ(2) ∈ ΣN ,α(1),α(2) ∈A},

we define the local remainder comparison functional as

Φ
(2),k,x
V [F] ≡

1

N
E

h
log

∫∫

V

∫∫

A (2),k
exp
¦
β
p

N F(σ(1),σ(2),α(1),α(2))
©

dµ⊗N (σ(1))dµ⊗N (σ(2))dξ(α(1))dξ(α(2))
i

. (7.2)

Define

ϕ
(2)
N (k, t, x ,Q,V )≡ Φ(2),kV

h
H
(2)
t

i
. (7.3)

Lemma 7.1. Recalling the definition (5.4), for any V ⊂ Σ(B(U ,ǫ))2, we have

ϕ
(2)
N (k, t, x ,Q,V )≤ ϕ(2)N (k, t, x ,Q,Σ(B(U ,ǫ))2) = 2ϕN (t, x ,Q,Σ(B(U ,ǫ))). (7.4)

Proof. The first inequality in (7.4) is obvious, since the expression under the integral in (7.2) is
positive. The equality in (7.4) is an immediate consequence of the RPC averaging property (5.27).

In what follows, we shall be looking for the sharper (in particular, strict) versions of the inequality
(7.4) because of the following observation due to Talagrand [30].
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Lemma 7.2. Fix an arbitrary V ⊂ ΣN (B(U ,ǫ))2. Suppose that, for some ǫ > 0, the following inequal-

ity holds

ϕ
(2)
N (k, t, x ,Q,V )≤ 2ϕN (t, x ,Q,ΣN (B(U ,ǫ)))− ǫ. (7.5)

Then, for some K > 0, we have

µk(V )≤ K exp

�
−

N

K

�
.

Proof. The proof is based on Theorem 2.2 and follows the lines of [21, Lemma 7].

7.2 Upper bounds on ϕ(2): Guerra’s scheme revisited

In this subsection, we shall develop a mechanism to obtain upper bounds on ϕ(2) defined in (7.3).
This will be achieved in the full analogy to Guerra’s scheme by using a suitable Gaussian comparison
system.

Given U ∈ Sym+(d), we say that V ∈ Rd×d is an admissible mutual overlap matrix for U , if

U≡
�

U V

V ∗ U

�
∈ Sym+(2d). (7.6)

Furthermore, define

V (U)≡ {V ∈ Rd×d : V is an admissible mutual overlap matrix for U}.

Hereinafter without further notice we assume that U ∈ Sym+(2d) has the form (7.6), where V is
some admissible mutual overlap matrix for U .

Let Q ∈ Q(U, 2d). Let x ≡ {xl ∈ [0;1]}n
l=1 be the “jump times” of the path ̺. We assume that the

“times” are increasingly ordered, i.e.,

0= x0 < x1 < . . .< xn < xn+1 = 1.

Consider the following collection of matrices

Q≡ {Ql ≡Q(xl)⊂ Sym+(2d)}n+1
l=0 .

We obviously then have

0=Q(0) ≺Q(1) ≺ . . .≺Q(n) ≺Q(n+1) = U. (7.7)

Such a path Q induces in the usual way the “doubled” GREM overlap kernel Q ≡ {Q(α(1),α(2)) ∈
Sym+(2d) | α(1),α(2) ∈An}, defined as

Q(α(1),α(2))≡Q(qL(α
(1),α(2))).

We also need the d × d submatrices of the above overlap such that

Q(α(1),α(2)) =

�
Q|11(α

(1),α(2)) Q|12(α
(1),α(2))

Q|12(α
(1),α(2))∗ Q|22(α

(1),α(2))

�
. (7.8)
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Remark 7.3. For σ(1)σ(2) ∈ ΣN , we shall use the notation σ(1) q σ(2) ∈
�
R

2d
�N

to denote the vector

obtained by the following concatenation of the vectors σ(1) and σ(2)

σ(1) q σ(2) ≡
�
σ
(1)
i
σ
(2)
i
∈ Σ×Σ⊂ R2d

�N

i=1
.

Let us observe that the process

X (2) ≡
¦

X (2)(τ) = X (σ(1)) + X (σ(1)) | τ= σ(1) q σ(2);σ(1),σ(2) ∈ ΣN

©

is actually an instance of the 2d-dimensional Gaussian process defined in (1.1). Hence, it has the

following correlation structure, for τ1,τ2 ∈ Σ(2)N ,

Cov
�

X (2)(τ1), X (2)(τ2)
�
= ‖R(2)(τ1,τ2)‖2F.

The path ̺ induces also the following two new (independent of everything before) comparison
process Y (2) ≡

¦
Y (2)(α) ∈ R2d | α ∈An

©
, with the following correlation structures

Cov
�

Y (2)(α(1)), Y (2)(α(2))
�
=Q(α(1),α(2)) ∈ Sym+(d).

As usual, let {Y (2)
i
}Ni=1 be the independent copies of Y (2). For the purposes of new Guerra’s scheme

we define a GREM-like process (cf. (1.17))

A(2) = {A(2)(τ,α) : τ= σ(1) q σ(2);σ(1),σ(2) ∈ ΣN ;α ∈An}

as

A(2)(τ,α)≡
�

2

N

�1/2 N∑

i=1

〈Y (2)
i
(α),τi〉.

We fix some t ∈ [0; 1]. We would now like to apply Guerra’s scheme to the comparison functional
(7.2) and the following two processes

n
H
(2)
t (σ

(1),σ(2),α)
o
σ(1),σ(2)∈ΣN ,α∈A

,
¦p

tA(2)(σ(1) q σ(2),α)
©
σ(1),σ(2)∈ΣN ,α∈A .

These two processes are, respectively, the counterparts of the processes X (σ) and A(σ,α) in Guerra’s
scheme.

Consider a path eQ ∈ Q′(U , d) with the following jumps

0=: eQ(0) ≺ eQ(1) ≺ . . .≺ eQ(n) ≺ eQ(n+1).

Let eA ≡
¦eA(σ,α) : σ ∈ ΣN ;α ∈An

©
be a Gaussian process (independent of all random objects

around) with the following covariance structure

E
�eA(σ(1),α(1))eA(σ(2),α(2))

�
= 2〈R(σ(1),σ(2)), eQ(α(1),α(2))〉.

For notational convenience, we introduce also the following process

eA(2)(σ(1) q σ(2),α(1),α(2))≡ eA(σ(1),α(1)) + eA(σ(2),α(2)). (7.9)
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Recalling the replicated Hamiltonian (7.1) and following Guerra’s scheme, we introduce, for s ∈
[0; 1], the following interpolating Hamiltonian

H
(2)
t,s (σ

(1),σ(2),α(1),α(2))≡
p

stX (2)(σ(1) q σ(2)) +
p
(1− s)tA(2)(σ(1) q σ(2),α(1))

+
p

1− t eA(2)(σ(1) q σ(2),α(1),α(2)). (7.10)

Given ǫ,δ > 0 and L ∈ Sym(2d), define (cf. (5.8))

V (2)(L,U,ǫ,δ)≡ {U′ ∈ Sym+(2d) : ‖U′−U‖F < ǫ, 〈U′−U,L〉< δ}.

We consider the following set of the local configurations

Σ
(2)
N (L,U,ǫ,δ) ≡

n
(σ(1),σ(2)) ∈ ΣN ×ΣN : R

(2)
N (σ

(1)
q σ(2),σ(1) q σ(2)) ∈ V (2)(L,U,ǫ,δ)

o
. (7.11)

Note that Σ(2)N (L,U,ǫ,δ)⊂ ΣN (B(U ,ǫ))2. We consider also the RPC ζ= ζ(x) generated by the vector
x and, for any suitable Gaussian process

F ≡ {F(σ(1),σ(2),α(1),α(2)) | σ(1),σ(2) ∈ ΣN ;α(1),α(2) ∈An},

define the corresponding local comparison functional (cf. (7.2)) as follows

Φ
(2),k,x
V [F] ≡

1

N
E

h
log

∫∫

V

∫∫

A (2),k
exp
¦
β
p

N F(σ(1),σ(2),α(1),α(2))
©

dµ⊗N (σ(1))dµ⊗N (σ(2))dζ(α(1))dζ(α(2))
i

.

Define the corresponding local free energy-like quantity as (cf. (5.4))

χ(s, t, k, x,Q, eQ,Σ(2)N (L,U,ǫ,δ))≡ Φ(2),k,x

Σ
(2)
N (L,U,ǫ,δ)

h
H
(2)
t,s

i
. (7.12)

To lighten the notation, we indicate hereinafter only the dependence of χ on s. Denote

Bx,Q ≡
tβ2

2

n∑

l=1

xl

�
‖Q(l+1)‖2F −‖Q

(l)‖2F
�

.

Lemma 7.3. There exists C = C(Σ)> 0 such that, for any U as above, we have

∂

∂ s
χ(s, t, k, x,Q, eQ,Σ(2)N (L,U,ǫ,δ))≤−Bx,Q+ Cǫ, (7.13)

Consequently,

ϕ
(2)
N (k, t, x ,Q,Σ(2)N (L,U,ǫ,δ))≤Φ(2),k,x

Σ
(2)
N (L,U,ǫ,δ)

hp
tA(2)(σ(1) q σ(2),α(1))

+
p

1− t eA(2)(σ(1) q σ(2),α(1),α(2))
i
− Bx,Q+ Cǫ. (7.14)

Proof. The idea is the same as in the proof of Theorem 5.1 and is based on Proposition 2.5. Since
we are considering the localised free energy-like quantities (7.12), the variance terms induced by
the interpolation (7.10) in (2.14) cancel out (up to the correction O (ǫ)) and we are left with the
non-positive contribution of the covariance terms.
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Given L ∈ Sym(2d), we consider the following stencil of the Legendre transform

eΦ(2),k,x,L [F] ≡−〈L,U〉 − Bx,Q+
1

N
E[log

∫∫

Σ2
N

∫∫

A (2),k
exp{β

p
N F(σ(1),σ(2),α(1),α(2))

+ 〈L(σ(1) q σ(2)),σ(1) q σ(2)〉}
dµ⊗N (σ(1))dµ⊗N (σ(2))dζ(α(1))dζ(α(2))

�
. (7.15)

Definition 7.1. Let F : Sym(2d)→ R. Given δ > 0, we call L(0) ∈ Sym(2d) δ-minimal for F, if

F(Λ(0))≤ inf
Λ∈Sym(2d)

F(Λ)+δ.

Lemma 7.4. There exists C = C(Σ) > 0 such that, for all U and Q ∈ Q′(U, 2d) as above, all ǫ,δ > 0,

there exists a δ-minimal Lagrange multiplier L = L(U,ǫ,δ) ∈ Sym(2d) for (7.15) such that, for all

k ∈ [1; n]∩N, all t ∈ [0; 1], and all (x ,Q), we have

ϕ
(2)
N (k, t, x ,Q,Σ(2)N (L,U,ǫ,δ))≤ inf

L∈Sym(2d)

eΦ(2),k,x,L
�p

tA(2)(σ(1) q σ(2),α(1))

+
p

1− t eA(2)(σ(1) q σ(2),α(1),α(2))
i

+ C(ǫ+δ). (7.16)

Proof. The argument is the same as in the proof of Theorem 1.1.

Consider the family of matrices eQ≡
¦eQ(l) ∈ Sym+(2d) | l ∈ [0;n+ 1]∩N

©
, defined as

eQ(l) ≡
�
eQ(l) eQ(l)
eQ(l) eQ(l)

�
, (7.17)

for l ∈ [0; k]∩N, and as

eQ(l) ≡
�
eQ(l) eQ(k)
eQ(k) eQ(l)

�
, (7.18)

for l ∈ [k+ 1;n+ 1]∩N. Additionally we define, for l ∈ [0;n+ 1], the matrices

bQ(l)(t)≡ tQ+ (1− t)eQ.

Let bZ (l) ∈ R2d×2d , for l ∈ [0; x], be independent Gaussian vectors with

Cov
�bZ (l)

�
= 2β2

�
bQ(l+1)(t)− bQ(l)(t)

�
.

Given by ∈ R2d , L ∈ Sym(2d), consider the random variable

X
(2)
n+1(by , x, bQ(t),L)≡ log

∫

Σ

∫

Σ

exp
�
〈by ,σ(1) q σ(2)〉+ 〈L(σ(1) q σ(2)),σ(1) q σ(2)〉

�
dµ(σ(1))dµ(σ(2)).

(7.19)

Define recursively, for l ∈ [n; 0]∩N, the following quantities

X
(2)
l
(by , k, x, bQ(t),L)≡

1

xl

logE
bZ (l)
h

exp
�
xl X

(2)
l+1(by + bZ

(l), k, x, bQ(l)(t),L)
�i

. (7.20)
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Lemma 7.5. We have

eΦ(2),k,x,L
hp

tA(2)(σ(1) q σ(2),α(1)) +
p

1− t eA(2)(σ(1) q σ(2),α(1),α(2))
i

= −〈L,U〉+ X
(2)
0 (0, x, bQ(l)(t),L). (7.21)

Proof. This is an immediate consequence of the RPC averaging property (5.27).

Proposition 7.1. Under the conditions of Lemma 7.4, we have

ϕ
(2)
N (k, t, x ,Q,Σ(2)N (L,U,ǫ,δ))≤ inf

L∈Sym(2d)

�
−〈L,U〉+ X

(2)
0 (0, x, bQ(t),L)

�
− Bx,Q+ C(ǫ+δ).

Remark 7.4. Similarly to (5.15), there exists C = C(Σ,µ)> 0, such that, for any L ∈ Sym(2d),

ϕ
(2)
N (k, t, x ,Q,Σ(2)N (B(U,ǫ))≤−〈L,U〉 − Bx,Q+ X

(2)
0 (0, x, bQ(t),L)

�
+ C‖L‖Fǫ.

Proof. Immediately follows from Lemmata 7.4 and 7.5.

7.3 Adjustment of the upper bounds on ϕ(2)

Proposition 2.1 implies that there exists r ∈ [1; n]∩N such that

‖Q(r−1)‖2F < ‖V‖
2
F < ‖Q

(r)‖2F. (7.22)

Assume r = k. (Other cases are similar or easier as shown for 1-D in [30].) We make the following
tuning of the upper bounds of the previous subsection. Set n≡ n+ 1. Let w ∈ [x r−1/2; xr]. Define

xl ≡ xl(w)≡





x l

2
, l ∈ [0; k− 1]∩N,

w, l = k,

x l , l ∈ [k+ 1; n+ 1]∩N.

(7.23)

Let

eQ(l) ≡
(

Q(l), l ∈ [0; k− 1]∩N,

Q(l−1), l ∈ [k; n+ 2]∩N.

Moreover, suppose Q≡ {Q(l)}n+2
l=0 satisfy

‖Q(l)‖2F =





4‖Q(l)‖2F, l ∈ [0; k− 1]∩N,

4‖V‖2F, l = k,

2
�
‖Q(l−1)‖2F + ‖V‖2F

�
, l ∈ [k+ 1; n+ 2]∩N.

(7.24)

Such Q exists due to (7.22). Moreover, if d ≥ 2, then it is obviously non-unique.

Lemma 7.6. In the above setup, we have

Bx,Q ≡ tβ2
n
(w− x l−1)

�
‖Q(k)‖2F −‖V‖

2
F

�
+

n∑

l=1

x l

�
‖Q(l+1)‖2F −‖Q

(l)‖2F
�o

.
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Proof. The claim is a straightforward consequence of (7.23) and (7.24).

Define the matrix D(n+1) ∈ Sym+(2d) block-wise as

D(n+1)|11 ≡ β2 t(U −Q(n+1)|11) + β
2(1− t)(U −Q(n)) +L|11,

D(n+1)|12 ≡ β2 t(V −Q(n+1)|12) +L|12,

D(n+1)|21 ≡ β2 t(V −Q(n+1)|12)
∗+L|∗12,

D(n+1)|22 ≡ β2 t(U −Q(n+1)|22) + β
2(1− t)(U −Q(n)) +L|22.

Furthermore, we define

Sym+(2d) ∋ eD(n+1) ≡
�
β2(U −Q(n)) +Λ 0

0 β2(U −Q(n)) +Λ

�
.

Lemma 7.7. We have

X
(2)
n+1(by , k, x, bQ(t),L)≡ log

∫

Σ

∫

Σ

exp
�
〈by ,σ(1) q σ(2)〉+ 〈D(n+1)(σ(1) q σ(2)),σ(1) q σ(2)〉

�

× dµ(σ(1))dµ(σ(2)).

Proof. Since xn+2 = 1, the result follows from a straightforward calculation of the Gaussian integrals
in (7.20) for l = n+ 1.

Define

eL≡
�
Λ 0
0 Λ

�
, eU≡

�
U Q(k)

Q(k) U

�
.

Lemma 7.8. For any y ∈ Rd , l ∈ [0; n+ 2]∩N, we have

X
(2)
l
(y q y, x(w), eQ, eL)|w=xk−1

=

(
2X l−1(y, x ,Q, U ,Λ), l ∈ [k; n+ 2]∩N,

2X l(y, x ,Q, U ,Λ), l ∈ [0; k− 1]∩N.

Proof. A straightforward (decreasing) induction argument on l gives the result. Indeed: for l = n+2,
an inspection of (7.19) and (1.9) immediately yields

X
(2)
n+2(y

(1)
q y(2), x(w), eQ, eL) = Xn+1(y

(1), x ,Q, U ,Λ)+ Xn+1(y
(2), x ,Q, U ,Λ),

where y(1), y(2) ∈ Rd . Let bZ (l) be a Gaussian 2d-dimensional vector with

Cov
h
eZ (l)
i
= 2β2(eQ(l+1)− eQ(l)).

Define two Gaussian d-dimensional vectors eZ (l),1 and eZ (l),2 by demanding that

eZ (l) = eZ (l),1 q eZ (l),2.
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Due to (7.17) and (7.18), the vectors eZ (l),1 and eZ (l),2 are independent, for l ∈ [k; n+ 1]. We have
eZ (l),1 ∼ eZ (l),2, for l ∈ [0; k− 1]. Assume that l ∈ [k; n+ 1]∩N and

X
(2)
l+1(y

(1)
q y(2), x(w), eQ, eL) = X l(y

(1), x ,Q, U ,Λ)+ X l(y
(2), x ,Q, U ,Λ).

By definition (7.19), we have

X
(2)
l
(y(1) q y(2), k, x, eQ, eL) =

1

xl

logE
eZ (l)
h

exp
�
xl X

(2)
l+1(y

(1)
q y(2)+ bZ (l), k, x, eQ,L)

�i

=
1

x l

logE
eZ (l)
h

exp
n

x l

�
X l(y

(1)+ eZ (l),1, x ,Q, U ,Λ)

+ X l(y
(2)+ eZ (l),2, x ,Q, U ,Λ)

�oi

= X l−1(y
(1), x ,Q, U ,Λ)+ X l−1(y

(2), x ,Q, U ,Λ).

By the construction and previous formula, for l = k− 1, we have

X
(2)
k−1(y

(1)
q y(2), k, x, eQ, eL)|w=xk−1

= X
(2)
k
(y(1) q y(2), k, x, eQ, eL)

= Xk−1(y
(1), x ,Q, U ,Λ)+ Xk−1(y

(2), x ,Q, U ,Λ).

Finally, for l ∈ [0; k− 2], we recursively obtain

X
(2)
l
(y(1) q y(1), k, x, eQ, eL)|w=xk−1

=
1

xl

logE
eZ (l)
h

exp
�
xl X

(2)
l+1(y

(1)
q y(1)+ bZ (l), k, x, eQ,L)|w=xk−1

�i

=
2

x l

logE
eZ (l),1
h

exp
n x l

2

�
X l+1(y

(1)+ eZ (l),1, x ,Q, U ,Λ)

+ X l+1(y
(1)+ eZ (l),1, x ,Q, U ,Λ)

�oi

= 2X l(y
(1), x ,Q, U ,Λ).

Remark 7.5. Motivated by Lemmata 7.2 and 7.8 (see also Section 7.4), we pose the following problem.

Is it true that, as in 1-D (see [30; 21]), there exists Q ∈ Q′(U, 2d) satisfying the assumption (7.24)
such that the following inequality holds

inf
L∈Sym(2d)

�
−〈L,U〉+ X

(2)
0 (0, x(w), bQ(t),L)|w=xk−1

�

?
≤ 2 inf

Λ∈Sym(d)

�
−〈Λ, U〉+ X0(0, x ,Q, U ,Λ)

�
? (7.25)

Similar problems have at first been posed in [33]. The resolution of the above problem seems to require

more detailed information on the behaviour of the Parisi functional (6.11) or, equivalently, of the

solution of (6.9) as a function of Q ∈ Q(U , d) .

7.4 Talagrand’s a priori estimates

We start from defining a class of the almost optimal paths for the optimisation problem in (6.12).
Recall the following convenient definition from [21].
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Definition 7.2. Given U ∈ Sym+(d), we shall call the triple (n,ρ∗,Λ∗) ∈ N ×Q′n(U , d)× Rd a θ -
optimiser of the Parisi functional (6.11), if it satisfies the following two conditions

P (β ,ρ∗,Λ∗)≤ inf
ρ∈Q′(U ,d)
Λ∈Sym(d)

P (β ,ρ,Λ)+ θ . (7.26)

P (β ,ρ∗,Λ∗) = inf
ρ∈Q′n(U ,d)
Λ∈Sym(d)

P (β ,ρ,Λ). (7.27)

Remark 7.6. It is obvious that for any θ > 0 such a θ -optimiser exists. The main convenient feature

of this definition (as pointed out in [30]) is that n (the number of jumps of ρ∗) is finite and fixed.

Recalling (5.13), we set

φ(x ,Q,Λ)(t)≡−〈U ,Λ〉 −
tβ2

2

n∑

k=1

xk

�
‖Q(k+1)‖2F −‖Q

(k)‖2F
�
+ X0(x ,Q, U ,Λ). (7.28)

Under the following assumption (at first proposed in 1-D in [30]), we shall effectively prove that
remainder term almost vanishes on the θ minimisers of (6.11), see Theorem 7.1.

Assumption 7.1. Let U ∈ Sym+(2d) be defined by (7.6). We fix arbitrary t0 ∈ [0;1), ǫ > 0 and δ > 0.

There exists K = K(t0,ǫ,δ,U) > 0, θ(t0,ǫ,δ,U) > 0, and N0 = N0(t0,ǫ,δ,U) ∈ N and L∗ ∈ Sym(2d)

with the following property:

If (n,ρ∗,Λ∗) is a θ -optimiser, for some θ ∈ (0;θ(t0,ǫ,δ,U)], then uniformly, for all t ∈ [0; t0), N > N0

and all k ∈ [1; n]∩N, we have

ϕ
(2)
N (k, t, x∗,Q∗,Σ(2)N (L

∗,U,ǫ,δ))≤ 2φ(x
∗,Q∗,Λ)(t)−

1

K
‖Q∗(k) − V‖2F + C(ǫ+δ). (7.29)

Remark 7.7. The validity of the above assumption for general a priori measures is an open problem.

However, in the particular case of the Gaussian a priori distribution the assumption is indeed effectively

satisfied. See Section 8 and Theorem 8.1, in particular. This gives a complete proof of the Parisi formula

for the case of Gaussian spins.

Remark 7.8. If the bound (7.25) holds then Lemma 7.6 with w = xr−1 would imply that

ϕ
(2)
N (k, t,Σ(2)N (L

∗,U,ǫ,δ))
?
≤ 2φ(x

∗,Q∗,Λ∗)(t) + C(ǫ+δ). (7.30)

The above inequality would then be a starting point for the a priori estimates in the spirit of Tala-

grand [30] which might lead to the proof of Assumption 7.1.

7.5 Gronwall’s inequality and the Parisi formula

Theorem 7.1. Suppose Assumption 7.1 holds.

Then we have

lim
N↑+∞

pN (β) = sup
U∈Sym+(d)

inf
ρ∈Q′(U ,d)
Λ∈Sym(d)

P (β ,ρ,Λ).
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Proof. The proof follows the argument of [30] (see also [21]) with the adaptations to the case of
multidimensional spins. The main ingredients are the Gronwall inequality and Lemma 7.2. Theo-
rem 5.1 implies that

lim
N↑+∞

pN (β)≤ sup
U∈Sym+(d)

inf
ρ∈Q′(U ,d)
Λ∈Sym(d)

P (β ,ρ,Λ).

We now turn to the proof of the matching lower bound. As in the proof of Theorem 1.2, it is enough
to show that

lim
ǫ↓+0

lim
N↑+∞

ϕN (1, x ,Q, B(U ,ǫ))≥ inf
ρ∈Q′(U ,d)
Λ∈Sym(d)

P (β ,ρ,Λ). (7.31)

1. We fix an arbitrary U ∈ Sym+(d). Fix also some t0 ∈ [0;1). By Assumption 7.1, we can find
the corresponding θ(t0, V, U) > 0 with the properties listed in the assumption. We pick any
θ ∈ (0;θ(t0, V, U)] and let (n,ρ∗,Λ∗) be a correspondent θ -optimiser. Note that, by definition
(7.28), we have

φ(x
∗,Q∗,Λ∗)(1) =P (β ,ρ∗, U ,Λ∗)

and, by Definition 7.2,

|φ(x∗,Q∗,Λ∗)(1)− inf
ρ∈Q′(U ,d)
Λ∈Sym(d)

P (β ,ρ, U ,Λ)| ≤ θ . (7.32)

2. We denote

∆N (t)≡ φ(x
∗,Q∗,Λ∗)(t)−ϕN (t, x∗,Q∗, B(U ,ǫ)).

Note that, due to (5.12), we obviously have

∆N (t)≥−Cǫ. (7.33)

Define

∆(t)≡ lim
N↑+∞

∆N (t).

The definition (7.28) and Theorem 5.4 yield

d

dt
∆N (t)≤

1

2

n−1∑

k=0

(xk+1− xk)µk

�
‖RN (σ

(1),σ(2))−Q(k)‖2F
�
+ Cǫ. (7.34)

3. Let us set D ≡ supσ∈Σ ‖σ‖2. We note that, for any σ(1),σ(2) ∈ ΣN , we have

R(σ(1),σ(2)) ∈ [−D2; D2]d×d .

Given the constant K from (7.29), for any c > 0, we define the set

Σ
(2),k
N (U ,ǫ)≡

¦
(σ(1),σ(2)) ∈ ΣN (B(U ,ǫ))2 : ‖R(σ(1),σ(2))−Q(k)‖2F ≥ 2K

�
∆N (t) + c

�©
.

(7.35)
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It is easy to see that by compactness we can find a finite covering of Σ(2),kN (U ,ǫ) by the neigh-
bourhoods (7.11) with centres, e.g., in the corresponding set of admissible overlap matrices

V (k)N (U ,ǫ)≡
n

R(σ(1),σ(1)) ∈ [−D2; D2]d×d : (σ(1),σ(2)) ∈ Σ(2),kN (U ,ǫ)
o

.

That is, there exists M = M(ǫ,δ) ∈ N and the finite collections of matrices {V (i)}Mi=1 ⊂
V (k)N (U ,ǫ) and {U(i)}Mi=1 ⊂ B(U ,ǫ)∩ Sym+(d) such that

Σ
(2),k
N (U ,ǫ)⊂

M⋃

i=1

Σ
(2)
N (L

∗(i),U(i),ǫ,δ), (7.36)

where

U(i)≡
�

U(i) V (i)

V ∗(i) U(i)

�
∈ Sym+(2d),

and L∗(i) is the corresponding δ-minimal Lagrange multiplier.

4. Given i ∈ [1; M]∩N, let (n(i), x∗(i),Q∗(i),Λ∗(i)) be the corresponding to U(i) θ(i)-optimisers.
Due to Lipschitzianity of the Parisi functional (Proposition 6.2) and the fact that U(i) ∈ B(U ,ǫ)
we can assume that n(i) = n. Using the bound (7.29) and the definition (7.35), we obtain

ϕ
(2)
N (k, t, x∗i ,Q∗i ,Σ

(2)
N (L

∗(i),U(i),ǫ,δ))≤ 2φ(x
∗(i),Q∗(i),Λ∗(i))(t)−

1

K
‖Q(k)− V (i)‖2F + C(ǫ+δ)

≤ 2ϕN (t, x∗,Q∗, B(U ,ǫ))− c + C(ǫ+δ),

where the last inequality is again due to Lipschitzianity of the Parisi functional (Proposi-
tion 6.2) which allows to approximate functional’s value at (x∗(i),Q∗(i),Λ∗(i)) by the value
at (x∗,Q∗,Λ∗) paying the cost of at most Cǫ. Choose c > C(ǫ + δ). Then Lemma 7.2 implies
that there exists L = L(ǫ,δ, c) > 0 such that

µk

�
Σ
(2)
N (L

∗,U,ǫ,δ)
�
≤ L exp

�
−

N

L

�
.

Therefore, the inclusion (7.36) gives

µk

�
Σ
(2),k
N (U ,ǫ)

�
≤ LM exp

�
−

N

L

�
. (7.37)

Hence, for each k ∈ [1; n]∩N, we have

µk

h
‖RN (σ

(1),σ(2))−Q(k)‖2F
i
= µk

h
‖RN (σ

(1),σ(2))−Q(k)‖2F1Σ(2),kN (U ,ǫ)
(σ(1),σ(2))

i

+µk

h
‖RN (σ

(1),σ(2))−Q(k)‖2F
�

1−1
Σ
(2),k
N (U ,ǫ)

(σ(1),σ(2))
�i

=: I+ II. (7.38)

For all (σ(1),σ(2)) ∈
�
ΣN (B(U ,ǫ))2 \Σ(2),kN (U ,ǫ,δ)

�
, we have by definition

‖R(σ(1),σ(2))−Q(k)‖2F < 2K
�
∆N (t) + c

�
.
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Therefore, using Remark 5.4, we arrive to

II≤ 2K
�
∆N (t) + c

�
. (7.39)

The bound (7.37) assures that

I≤ LM exp

�
−

N

L

�
. (7.40)

5. Combining (7.39) and (7.40) with (7.38) and (7.34), we obtain

d

dt
∆N (t)≤ 2K

�
∆N (t) + c

�
+ LM exp

�
−

N

L

�
+ C(ǫ+δ).

Hence,

d

dt

�
(∆N (t) + c)exp(−2K t)

�
= exp(−2K t)

� d

dt
(∆N (t) + c)− 2K(∆N (t) + c)

�

≤ exp(−2K t)
� d

dt
(LM exp

�
−

N

L

�
+ C(ǫ+δ)

�
.

Integrating the above inequality and noting that due to (5.12) |∆N (0)| ≤ Cǫ, we arrive to

∆N (t) + c ≤(Cǫ+ c)exp(−2K t) + LM exp

�
−

N

L

�

+ C(ǫ+δ)(exp(−2K t)− 1) + C(ǫ+ δ).

Passing consequently to the limits N ↑ +∞, ǫ ↓ +0, δ ↓ +0 and finally c ↓ +0 in the above
inequality, we get

lim
ǫ↓+0
∆(t)≤ 0, for all t ∈ [0; t0].

The existence of the N ↑+∞ limits is guaranteed by the general result of Guerra and Toninelli
[19]. The limits ǫ ↓ +0, δ ↓ +0 exist due to monotonicity. Finally, combining the above
inequality with (7.33), we get

lim
ǫ↓+0
∆(t) = 0, for all t ∈ [0; t0]. (7.41)

6. Now, it is easy to extend the validity of (7.41) onto the whole interval [0;1]. Indeed, due to
the boundedness of the derivatives of ϕN and φ, we have, for any t ∈ [0;1],

∆N (t)≤
∫ 1

0

d

dt
∆N (t)dt

=

 ∫ t0

0

+

∫ 1

t0

!
d

dt
∆N (t)dt

≤
�
∆N (t0)−∆N (0)

�
+

∫ 1

t0

¯̄
¯̄ d

dt
∆N (t)

¯̄
¯̄dt

≤∆N (t0) + L(1− t0). (7.42)

Passing to the N ↑+∞ limit, applying (7.41), and then to t0→ 1 limit in (7.42), we get

lim
ǫ↓+0
∆(t) = 0, for all t ∈ [0;1].
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7. In particular, the previous formula yields

0= lim
ǫ↓+0
∆(1) = φ(x

∗,Q∗,Λ∗)(1)− lim
ǫ↓+0
ϕN (1, x∗,Q∗, B(U ,ǫ)).

Note that ϕN (1, x ,Q, B(U ,ǫ)) does not depend on the choice of x and Q. Hence, by (7.32),
we obtain

| lim
ǫ↓+0
ϕN (1, x∗,Q∗, B(U ,ǫ))− inf

ρ∈Q′(U ,d)
Λ∈Sym(d)

P (β ,ρ, U ,Λ)| ≤ θ .

The proof of (7.31) is finished by noticing that the θ can be made arbitrary small.

8 Proof of the local Parisi formula for the SK model with multidimen-

sional Gaussian spins

In this section, we prove Theorem 1.3. The rich symmetries of the Gaussian a priori distribution
allow rather explicit computations of the X0 terms (see (1.11)). This allows us to prove that the
analogon of Assumption 7.1 is satisfied, implying the Parisi formula for the local free energy (Theo-
rem 1.3).

Remark 8.1. The case of Gaussian spins is very tractable due to the (unusually) good symmetry (i.e.,

the rotational invariance) of the Gaussian measure. Therefore, it is not surprising that in this case the

calculus resembles the one for the spherical SK model, cf. [23; 29].

We start from the estimates under a generic (i.e., no simultaneous diagonalisation, cf. Section 6.3)
scenario.

8.1 The case of positive increments

Let, for k ∈ [0; n]∩N,

∆Q(k) ≡Q(k+1)−Q(k).

We define, for Λ ∈ Sym(d), a family of matrices
¦

D(l) ∈ Rd×d
©n+1

l=0
as follows

D(n+1) ≡ C ,

and, further, for k ∈ [0; n]∩N,

D(k) ≡ C −Λ− 2β2
n∑

l=k

x l∆Q(l). (8.1)

We assume that the matrices Λ and C are such that, for all l ∈ [1; n+ 1]∩N, we have

D(l) ≻ 0.

We need the following two small (and surely known) technical Lemmata which exploit the symme-
tries of our Gaussian setting. We include their statements for reader’s convenience.
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Lemma 8.1. Fix some vector h ∈ Rd and a Gaussian random vector z ∈ Rd with Var z = C−1 ∈ Rd×d .

Then we have

E
z
�

exp (〈z,h〉+ 〈Λσ,σ〉)
�
=
�

det
�

C (C −Λ)−1
��1/2

× exp

�
1

2

¬
(C −Λ)−1h,h

¶�
.

Proof. This is a standard Gaussian averaging argument.

Lemma 8.2. For a positive definite matrix ∆Q ∈ Sym(d), let z ∼ N (0,∆Q). We fix also another

positive definite matrix D ∈ Sym(d) such that ∆Q−1 ≻ D−1.

Then we have

E
z

�
exp

�
1

2
〈D−1(z + h), z + h〉

��
=
�

det
�

D(D−∆Q)−1
��−1/2

×
∫

Rd

exp

�
1

2
〈(D−∆Q)−1h,h〉

�
.

Proof. This is a standard Gaussian averaging argument. See, e.g., [29] for an argument in 1-D.

Now we are ready to compute the term X0(x ,Q, U ,Λ) (see (1.11)) corresponding to the a priori
distribution (1.26) in a rather explicit way.

Lemma 8.3. We have

X0(x ,Q, U ,Λ) =
1

2

 
〈[D(1)]−1,∆Q(0)〉+ 〈[D(1)]−1h,h〉+

n∑

l=1

1

x l

log

�
det D(l+1)

det D(l)

�!
.

Proof. 1. We start from computing the following quantity

Xn+1 ≡ log

∫

Rd

exp

 
n∑

l=0

〈Y (l),σ〉+ 〈Λσ,σ〉
!

dµ(σ), (8.2)

where Y (l) ∈ Rd are independent Gaussian vectors with variance

Var
�

Y (l)
�
= 2β2∆Q(l).

We denote

eh≡ h+

n∑

l=0

Y (l).

Lemma 8.1 gives
∫

Rd

exp

 
n∑

l=0

〈Y (l),σ〉+ 〈Λσ,σ〉
!

dµ(σ) =
�

det
�

C (C −Λ)−1
��1/2

× exp

�
1

2

¬
(C −Λ)−1eh,eh

¶�
.
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2. Next, we define, for l ∈ [0; n]∩N, recursively the following quantities

X l ≡
1

x l

logEYl
�

exp
�

x l X l+1
��

.

Applying the Lemma 8.2 to (8.2) recursively, we obtain

X1 ≡
1

2
〈[(D(1)]−1

�
Y (0)+ h

�
, Y (0)+ h〉+

1

2

n∑

l=1

1

x l

log

�
det D(l+1)

det D(l)

�
. (8.3)

Recall that we have

X0 = lim
x→+0

1

x
logEY0

�
exp
�

xX1
��

= EY0
�

X1
�

(8.4)

and note that

E
Y0
�
〈[D(1)]−1(Y (0)+ h), Y (0)+ h〉

�
= 2β2〈[D(1)]−1,∆Q(0)〉+ 〈[D(1)]−1h,h〉. (8.5)

Hence, combining (8.4) and (8.5) with (8.3), we obtain the theorem.

8.2 Simultaneous diagonalisation scenario

In what follows, we employ the simultaneous diagonalisation scenario introduced in Section 6.3.
Suppose that, for l ∈ [0; n+ 1]∩N, and some matrix O ∈ O (d), we have

D(l) ≡ O∗d(l)O,

where the vectors d(l) ∈ Rd , for l ∈ [0; n]∩N, satisfy

0≺ d(l) ≺ d(l+1).

That is, the vectors d(l) are (component-wise) increasingly ordered and non-negative.

Lemma 8.4. We have

X0(x ,Q, U ,Λ) =
1

2

d∑

v=1

 
2β2q(1)v + h2

v

d
(1)
v

+

n∑

l=1

1

x l

log

 
d(l+1)

v

d
(l)
v

!!
, (8.6)

β2

2

n∑

k=1

xk

�
‖Q(k+1)‖2F −‖Q

(k)‖2F
�
=
β2

2

n∑

k=1

x l

�
‖q(k+1)‖22−‖q

(k)‖22
�

. (8.7)

Proof. This is a standard argument which relies on the standard invariance properties of the deter-
minant and the matrix trace.
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Define the 1-D Parisi functional for the case (1.26) as

P (ρ,λ)≡−λu+
2β2q(1)+ h2

d(1)
+

n∑

l=1

1

x l

log

�
d(l+1)

d(l)

�

− β2
n∑

l=1

x l

�
[q(l+1)]2− [q(l)]2

�
. (8.8)

Proposition 8.1. There exists C = C(Σ) > 0 such that, for all u ∈ Rd
+ and all ǫ,δ > 0, there exists

an δ-minimal Lagrange multiplier λ = λ(U ,ǫ,δ) ∈ Rd in (1.12) such that, for all t ∈ [0;1] and all

(x ,ρ), we have

pN (ΣN (V (Λ, U ,ǫ,δ)))≤
1

2
inf
ρ,λ

 
d∑

v=1

P (ρv,λv)

!
+ C(ǫ+δ) (8.9)

and

lim
N↑+∞

pN (ΣN (B(U ,ǫ)))≥
1

2
inf
ρ,λ

 
d∑

v=1

P (ρv,λv) + lim
N↑+∞

∫ 1

0

R(t, x ,Q,ΣN (B(U ,ǫ)))dt

!

+ C(ǫ+δ). (8.10)

Proof. We combine (8.6) and (8.7) and the Proposition 5.2 to get (8.9) and (8.10).

8.3 The Crisanti-Sommers functional in 1-D

In this subsection, we adapt the proof of [29] to obtain the equivalence between the (very tractable)
Crisanti-Sommers functional [11] and the Parisi one (8.8) in the case of the Gaussian a priori mea-
sure (1.26). Similar ideas based on the symmetry of the a priori measure were exploited in the case
of the spherical models by [4; 23].

We restrict the consideration to 1-D situation for a moment. Given u ≥ 0, consider ρ ∈ Q ′n(u, 1),
λ ∈ R, h ∈ R and let {d(l) ∈ R}n+1

l=1 be the scalars playing the role of matrices D(l) (cf. (8.1)). That
is,

d(l) ≡ c −λ− 2β2
n∑

k=l

xk

�
q(k+1)− q(k)

�
,

d(n+1) ≡ c.

We define, for k ∈ [1; n]∩N, the family of vectors {s(k) ∈ Rd}n
k=0 by

s(k) ≡
n∑

l=k

x l

�
q(l+1)− q(l)

�
. (8.11)

We also define the Crisanti-Sommers functional as follows

CS (ρ)≡1− cu+ h2s(1)+
q(1)

s(1)
+

n−1∑

l=1

1

x l

log

�
s(l)

s(l+1)

�
+ log

�
c(u− q(n))

�

+ β2
n∑

l=1

x l

�
[q(l+1)]2− [q(l)]2

�
. (8.12)
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Lemma 8.5. If (ρ,λ) is an optimiser for (8.8), that is,

P (ρ,λ) = inf
(ρ′,λ′)
P (ρ′,λ′), (8.13)

then, for all k ∈ [1; n]∩N, the pair (ρ,λ) satisfies

q(k) =
h2+ 2β2q(1)

[d(1)]2
+

k−1∑

l=1

1

x l

�
1

d(l)
−

1

d(l+1)

�
. (8.14)

Moreover,

λ= c − 2β2(u− q(n))− (u− q(n))−1, (8.15)

and, for all k ∈ [1; n]∩N, we have

1

s(k+1)
−

1

s(k)
= 2β2 xk

�
q(k+1)− q(k)

�
, (8.16)

and also

s(k) =
1

d(k)
. (8.17)

Remark 8.2. In the formulation of the theorem (as well as elsewhere), it is implicit that d(k) =

d(k)(ρ,λ) and s(k) = s(k)(ρ,λ).

Proof. 1. Rearranging the terms in (8.8), we observe that

P (ρ′,λ′) =−λu+
2β2q(1)+ h2

d(1)
+

n∑

l=2

log d(l)
�

1

x l−1
−

1

x l

�
+

1

xn

log d(n+1)−
1

x1
log d(1)

− β2
n∑

l=1

x l

�
[q(l+1)]2− [q(l)]2

�
. (8.18)

We compute, for k, l ∈ [1; n]∩N,

∂ d(l)

∂ q(k)
=





0, k < l,

2β2 xk, l = k,

2β2 �xk − xk−1
�

, k > l.

(8.19)

Using (8.19) and the representation (8.18), we compute the necessary condition for (q,λ)
satisfy (7.27), for k ∈ [2; n]∩N,

0=
∂

∂ q(k)
P (q,λ) =2β2 �xk − xk−1

�

−

2β2q(1)+ h2

[d(1)]2
+

k−1∑

l=2

1

d(l)

�
1

x l−1
−

1

x l

�

+
1

d(k)xk−1

−
1

x1d(1)
+ qk

�
. (8.20)
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We also have (for k = 1)

0=
∂

∂ q(1)
P (q,λ) = 2β2


d(1)− x1

�
q(1)+ h2

�

[d(1)]2
−

x1

x1d(1)
+ x1q(1)




= 2β2 x1


q(1)−

�
q(1)+ h2

�

[d(1)]2


 . (8.21)

Relations (8.20) and (8.21) then imply (8.14).

2. Using the fact that

∂ d(l)

∂ λ
= −1,

we obtain

∂

∂ λ
P (q,λ) = −u+

h2+ 2β2q(1)

[d(1)]2
+

n−1∑

l=1

1

x l

�
1

d(l)
−

1

d(l+1)

�
+

1

d(n)
. (8.22)

Applying (8.14) with k = n in (8.22), we obtain that the necessary condition for λ to satisfy
(8.13) is as follows

0=
∂

∂ λ
P (q,λ) =−u+ q(n)+

1

xn

�
1

d(n)
−

1

d(n+1)

�

=−u+ q(n)+
1

d(n)
=−u+ q(n)+

�
c −λ− 2β2(u− q(n))

�−1
(8.23)

which implies (8.15).

3. Relation (8.16) is proved as follows. Subtracting the relations (8.14), we obtain, for k ∈
[1; n− 1]∩N,

xk

�
q(k+1)− q(k)

�
=

1

d(k)
−

1

d(k+1)
. (8.24)

By (8.23), we have

xn

�
q(n+1)− q(n)

�
= u− q(n) =

1

d(n)
.

(That is, (8.24) is valid also for k = n.) Combining the previous two relations, we get, for
k ∈ [1; n]∩N,

s(k) =
1

d(k)
. (8.25)

Using (8.25) and (8.24), we get

2β2 xk

�
q(k+1)− q(k)

�
= d(k+1)− d(k)

(by (8.24)) = d(k+1)d(k)xk

�
q(k+1)− q(k)

�
= d(k+1)d(k)

�
s(k)− s(k+1)

�

(by (8.25)) =
1

s(l+1)
−

1

s(l)

which is (8.16).
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Lemma 8.6. If ρ is an optimiser of (8.12), that is,

CS (ρ) = inf
ρ′
CS (ρ′),

then, for all l ∈ [1; n]∩N, (8.16) holds.

Proof. The strategy is the same as in the previous lemma. We rearrange the summands in (8.12) to
get

CS (ρ) =h2s(1)+
q(1)

s(1)
+

log s(1)

x1
−

log s(n)

xn−1
+

n−1∑

l=2

�
1

x l

−
1

x l+1

�
log s(l)

+ log
�

c(u− q(n))
�
+ β2

n∑

l=1

x l

�
[q(l+1)]2− [q(l)]2

�
. (8.26)

We have, for k, l ∈ [1; n]∩N,

∂ s(l)

∂ q(k)
=





0, k < l,

−xk, k = l,

xk−1 − xk, k > l.

(8.27)

1. Relation (8.27) implies, for k ∈ [2; n− 1]∩N,

∂

∂ q(k)
CS (ρ) =h2(xk−1 − xk)−

q(1)

[s(1)]2
(xk−1 − xk) +

xk−1 − xk

x1s(1)

+

k−1∑

l=2

xk−1 − xk

s(l)

�
1

x l

−
1

x l−1

�
−

xk

s(k)

�
1

xk

−
1

xk−1

�

+ 2β2q(k)
�

xk−1 − xk

�
= 0.

Hence,

2β2q(k) = −h2+
q(1)

[s(1)]2
−

1

x1s(1)
+

1

xk−1s(k)
−

k−1∑

l=2

1

s(l)

�
1

x l

−
1

x l−1

�

= −h2+
q(1)

[s(1)]2
−

k−1∑

l=1

1

x l

�
1

s(l)
−

1

s(l+1)

�
. (8.28)

2. To handle the case k = n, we note that

log
�

1+ c(u− q(n))
�
=

1

xn

log

�
s(n)

s(n+1)

�
,

and, hence, the argument in the previous item shows that (8.28) is also valid for k = n.
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3. Differentiating the representation (8.26) with respect to q(1) and using (8.27), we obtain

∂

∂ q(1)
CS (ρ) =−x1h2+

1

s(1)
+

x1q(1)

[s(1)]2
−

x1

x1s(1)
− 2β2 x1q(1) = 0.

Therefore,

2β2q(1) =−h2+
q(1)

[s(1)]2

which is (8.28), for k = 1.

4. Subtracting equations (8.28), we arrive to (8.16), for all k ∈ [1; n]∩N.

Proposition 8.2. The functionals (8.12) and (8.8) are equivalent in the following sense

inf
ρ′,λ′
P (ρ′,λ′) = inf

ρ′
CS (ρ′).

Proof. 1. Let (ρ,λ) be the solutions of equations (8.16) and (8.15). Lemma 8.6 guarantees that
ρ is the optimiser of the Crisnati-Sommers functional and Lemma 8.5 assures that (ρ,λ) is
the optimiser of the Parisi functional.

2. We have

P (ρ,λ)−CS (ρ) =−λu+ 2β2q(1)s(1)−
q(1)

s(1)
+ cu− 1

− 2β2
n∑

l=1

x l

�
[q(l+1)]2− [q(l)]2

�
. (8.29)

We can simplify the Φ[B]-like term (that is the summation) in (8.29), using (8.16) and (8.15).
Indeed,

2β2
n−1∑

l=1

x l

�
[q(l+1)]2− [q(l)]2

�
= 2β2

n−1∑

l=1

x l

�
q(l+1)[q(l+1)− q(l)] + q(l)[q(l+1)− q(l)]

�

(by (8.16) and (8.11)) =
n−1∑

l=1

�
2β2q(l+1)

�
s(l)− s(l+1)

�
+ q(l)

�
1

s(l+1)
−

1

s(l)

��
.

(8.30)

Regrouping the summands in (8.30), we get

(8.30) =2β2
n−1∑

l=1

s(l)
�

q(l+1)− q(l)
�
+ 2β2

�
q(1)s(1)− q(n)s(n)

�

+

n−1∑

l=1

q(l)− q(l+1)

s(l+1)
+

�
q(n)

s(n)
−

q(1)

s(1)

�
. (8.31)
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Due to (8.16), we have

2β2
�

q(l+1)− q(l)
�
=

s(l)− s(l+1)

x ls
(l)s(l+1)

=
q(l+1)− q(l)

s(l)s(l+1)
.

Applying the previous relation, we get that the both summations in (8.31) cancel out and we
end up with

(8.31) = 2β2
�

q(1)s(1)− q(n)s(n)
�
+

q(n)

s(n)
−

q(1)

s(1)
.

Now, turning back to (8.29), we get

P (ρ,λ)−CS (ρ) = −λu− 2β2
�

u2− [q(n)]2
�
+ 2β2q(n)s(n)−

q(n)

s(n)
+ cu− 1

(by (8.15)) and (8.11)= −u
�

c − 2β2(u− q(n))− (u− q(n))−1
�
− 2β2

�
u2− [q(n)]2

�

−
q(n)

u− q(n)
+ 2β2q(n)

�
u− q(n)

�
+ cu− 1

= 0.

8.4 Replica symmetric calculations

In this subsection, we shall consider the one dimensional case of the a priori measure (1.26) with
h = 0. We shall also restrict the computations to the case n = 1 which is often referred to in
physical literature as the replica symmetric scenario. It is indeed the right scenario under the above
assumptions, as shows Theorem 1.3.

Lemma 8.7. Let µ satisfy (1.26) with h= 0. Assume d = 1, n= 1 and c > 0. Given u≥ 0, we have

inf
ρ∈Q(u,1)

CS (ρ) = inf
q∈[0;u]

�
1− cu+ log

�
c(u− q)

�
+

q

u− q
+ β2

�
u2− q2

��
= f (c,u), (8.32)

where f (c,u) is defined in (1.27).

Proof. Using the definitions, we obtain

∂

∂ q
CS (ρ) =

∂

∂ q

�
log
�
u− q

�
+

q

u− q
+ β2

�
u2− q2

��
=

q

(u− q)2
− 2β2q.

Hence, the critical points of q 7→ CS (q,u) are

q0 = 0,q1,2 = u±
p

2

2β
.

Furthermore, we also have

∂ 2

∂ q2
CS (q,u) =

1

(u− q)2
+

2q

(u− q)3
− 2β2.
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Hence, as a simple calculation shows, the infima in (8.32) are attained on

q∗ =





0, u≤
p

2
2β

,

u−
p

2
2β

, u>
p

2
2β

(8.33)

which implies (8.32).

Lemma 8.8. Under the assumptions of Lemma 8.7, we have

1. For c ≥ 2
p

2β , we have

sup
u≥0

inf
q∈[0;u]

CS (q,u) = CS (0,u∗) = β2(u∗)2+ log cu∗ − cu∗ + 1,

where

u∗ ≡
1

4β2

�
c −
p

c2− 8β2
�

.

2. For c < 2
p

2β , we have

sup
u≥0

inf
q∈[0;u]

CS (q,u) = +∞.

Remark 8.3. Under the assumptions, the above theorem says that from the point of view of the global

free energy, the system can only exist in the “high temperature” scenario, cf. (1.27). The threshold at

c0 = 2
p

2β could be easily understood from the perspective of the norms of random matrices.

Proof. 1. Suppose c ≥ 2
p

2β . Recalling (1.27), for u ∈ (0;
p

2
2β
], we introduce the following

function

f (u)≡ log(cu) + β2u2− cu+ 1.

We have

∂

∂ u
f (u) =

1

u
+ 2β2u− c.

Hence, the critical points of the function f are

u1,2 =
c ±
p

c2− 8β2

4β2
.

Furthermore, we have

∂ 2

∂ u2
f (u) = 2β2−

1

u2
.

We notice that u∗ ≤
p

2
2β

and, hence, due to (1.27)

CS (0,u∗) = β2(u∗)2+ log cu∗ − cu∗ + 1.
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2. If c < 2
p

2β , then the function

u 7→ (2
p

2β − c)u+ log
c

β
−

1

2

�
1+ log 2

�

is unbounded on (
p

2
2β

;+∞).

8.5 The multidimensional Crisanti-Sommers functional

Recall the definition (7.28).

Proposition 8.3. Assume d = 1. Given u> 0, we have

2φ(x∗,Q∗,Λ∗)(t) =





�
3
p

2β − c
�

u+ log c

β
− 1− log 2

2
− t
�p

2uβ − 1
2

�
, u>

p
2

2β
,

2β2(u)2+ log(cu)− cu+ 1− tβ2(u)2, u≤
p

2
2β

.
(8.34)

Proof. Combining (8.8), (8.12) with Lemma 8.7 and Proposition 8.2, we get the claim.

8.6 Talagrand’s a priori estimates

In this subsection, we prove that Assumption 7.1 is satisfied in the case of the Gaussian a priori
distribution (1.26) with h= 0.

Theorem 8.1. Let µ satisfy (1.26) with h = 0, assume U ∈ Sym+(d) is such that minv uv >
p

2
2β

and

suppose C ≻ 0. Let Q =Q∗ and Λ = Λ∗.

Then, for any t0 ∈ (0; 1) and any t ∈ (0; t0], we have (cf. (7.29) with k = 1)

ϕ
(2)
N (1, t, x ,Q,Σ(2)N (L,U,ǫ,δ))≤ 2φ(x ,Q,Λ)(t)−

1

K
‖Q(1)− V‖2F + O (ǫ+δ). (8.35)

Proof. 1. We employ the notations of Section 7.2. Let n = 1. Given U ∈ Sym(2d) (cf. (7.6)),
choose arbitrary matrices

¦
Q(l) ∈ Sym(2d) | l ∈ [0;2]∩N

©
satisfying (7.7). Define x ≡ x

which, in particular, implies that ζ= ξ. Finally, we set, for l ∈ [0; n+ 1]∩N, eQ(l) ≡Q(l).

2. Proposition 7.1 implies that, for any δ-minimal L ∈ R2d×2d , we have

ϕ
(2)
N (1, t, x ,Q,Σ(2)N (L,U,ǫ,δ))≤−〈L,U〉 −

tβ2

2

�
‖Q(2)‖2F −‖Q

(1)‖2F
�

+ X
(2)
0 (1, x, bQ(l)(t),L) + O (ǫ+δ). (8.36)
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3. We define a matrix C ∈ R2d×2d as follows

C≡
�

C 0
0 C

�
.

Recalling (8.1), we define also the following matrices D(2) ≡ C and

D(1) ≡ C−L−
�bQ(2)(t)− bQ(1)(t)

�
. (8.37)

Applying Proposition 8.1 to (8.36), we get

ϕ
(2)
N (1, t,Σ(2)N (L,U,ǫ,δ))≤

1

2

�
−〈L,U〉 − tβ2

�
‖Q(2)‖2F −‖Q

(1)‖2F
�

+2β2〈[D(1)]−1, bQ(1)(t)〉+ log

�
detD(2)

detD(1)

��
+ O (ǫ)

=: eΦ(2),k,x,L+ O (ǫ). (8.38)

4. Assume that the matrices

Q(1),Q(2),D(1) ∈ R2d×2d (8.39)

are simultaneously diagonalisable in the same basis which is given by the orthogonal matrix
O ∈ R2d×2d . Let the vectors

q(1),q(2),d(1) ∈ R2d (8.40)

be the corresponding spectra of the matrices (8.39). That is, we assume that

Q(1) =O∗ diagq(1)O,Q(2) =O∗ diagq(2)O,

D(1) =O∗d(1)O, eQ(1) =O∗ diag eQ′(1)O,

where we have introduced the matrix eQ′(1)(t) ∈ Sym+(2d). By (8.33), we have, Q(2)−Q(1) =p
2

2β
I , where I denotes the unit matrix of the suitable dimension. The definitions (7.17) and

(7.18) then imply

eQ(2)− eQ(1) =
p

2

2β
I . (8.41)

Using the definitions and the above relation, we obtain

bQ(1)v (t) =O∗
�

t diagq(1)+ (1− t)eQ′(1)
�
O,

bQ(2)(t)− bQ(1)(t) =O∗
�

t diag(q(2)− q(1)) + (1− t)

p
2

2β
I
�
O. (8.42)

Motivated by (8.17), we set

d(1)v ≡
�
uv − q(1)v

�−1
. (8.43)
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In view of (8.37), the above choice necessarily yields (cf. (8.15))

L= C−O∗ diag(uv − q(1)v )
−1O−

�
bQ(2)(t)− bQ(1)(t)

�

= C−O∗
�

diag(uv − q(1)v )
−1 + t diag(q(2)− q(1)) + (1− t)

p
2

2β
I
�
O. (8.44)

Applying Lemma 8.4 to (8.38) and using (8.44), (8.43), (8.42), we get the following diago-
nalised representation of (8.36)

ϕ
(2)
N (1, t, x ,Q,Σ(2)N (L,U,ǫ,δ))≤

1

2
log detC−

1

2
〈C,U〉

+
1

2

2d∑

v=1

n
uv

h
(uv − q(1)v )

−1 + 2β2
�

t(q(2)v − q(1)v ) + (1− t)

p
2

2β

�i

+ 2β2(uv − q(1)v )
�

tq(1)v + (1− t)eq(1)v

�
+ log(uv − eQ′(1)v,v )

− tβ2
�
(q(2)v )

2− (q(1)v )
2
�o
+ O (ǫ). (8.45)

Using the definitions, we get

〈C,U〉= 2〈C , U〉= 2
d∑

v=1

cvuv,

log detC= 2 log det C = 2
d∑

v=1

log cv . (8.46)

Motivated by (8.41) (or by (8.33)), we define

q(1)v := uv −
p

2

2β
. (8.47)

In this case, as a straightforward calculation shows, the expression in the curly brackets in
(8.45) equals

2
p

2βuv + β
p

2eQ′(1)v,v (1− t)− logβ −
1

2
(log 2− t). (8.48)

By the definitions and the general properties of matrix trace, we have

2d∑

v=1

eQ′(1)v,v =

2d∑

v=1

eQ(1)v,v = 2
d∑

v=1

Q(1)v,v ,

2d∑

v=1

uv = 2
d∑

v=1

Uv,v . (8.49)
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Combining (8.45) with (8.48), (8.49) and (8.46), we obtain

ϕ
(2)
N (1, t, x ,Q,Σ(2)N (L,U,ǫ,δ))≤

d∑

v=1

�
−cvuv + log cv + 3

p
2uβ

−
1

2
(log 2− t)−

p
2β tu− logβ − 1

�
+ O (ǫ)

= 2
d∑

v=1

φ(t)|c=cv ,
u=uv

+ O (ǫ), (8.50)

where in the last line we have used the relation (8.34).

5. To get the version of the a priori bound (8.50) with the quadratic correction term as stated in
(8.35), we perturb the r.h.s of (8.36) around our choice of D(1) in (8.43), i.e.,

D(1) =
�
Uv −Q(1)v

�−1
=
p

2β I ,

where in the last equality we used (8.47).

8.7 The local low temperature Parisi formula

Proof of Theorem 1.3. The result follows from Theorem 8.1 and Theorem 7.1. Note that the proof of
Theorem 7.1 requires a minor modification to cope with the fact that the a priori distribution (1.26)
is unbounded. This minor problem can be fixed by considering the pruned Gaussian distribution
and using the elementary estimates to bound the tiny Gaussian tails.

A

The general result of Guerra and Toninelli [19] implies that the thermodynamic limit of the local
free energy (1.6) exists almost surely and in L1. The following existence of the limiting average
overlap is an immediate consequence of this.

Proposition A.1. We have

E
�
GN (β)⊗GN (β)

�
Var HN (σ)−E

�
HN (σ)HN (σ

′)
���
−−−→
N↑+∞

C(β)≥ 0,

where C : R+→ R+.

Proof. The free energy is a convex function of β (a consequence of the HÃűlder inequality). Hence,
by a result in [16] the following holds

lim
N↑∞

d

dβ
E
�

pN (β)
�
=

d

dβ
E
�

p(β)
�

.

Proposition 2.4 implies

d

dβ
E
�

pN (β)
�
= βE

�
GN (β)⊗GN (β)

�
Var HN (σ)−E

�
HN (σ)HN (σ

′)
���

.
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The following super-additivity result is an application of the Gaussian comparison inequalities ob-
tained in Subection 2.3. Note that the result does not provide enough information for the cavity-like
argument of [1].

Proposition A.2. For any V ≡ B(U ,ǫ)⊂U , we have

NE
�

pN (V )
�
+ME

�
pM (V )

�
≤ (N +M)E

�
pN+M (V )

�
+ (N +M)O (ǫ),

as ǫ ↓+0.

Proof. Define the process YN ,M ≡ {Y (σ) : σ = α q τ;α ∈ ΣN ,τ ∈ ΣM} as follows

Y (α q τ)≡
�

N

N +M

�1/2

X
(1)
N (α) +

�
M

N +M

�1/2

X
(2)
M (τ),

where X (1) and X (2) are two independent copies of the process X . Given some Gaussian process
{C(σ)}σ∈ΣN

, let us introduce the functional ΦN (β)[C] as follows

ΦN ,M (β)[C]≡ E
h

logµ⊗(N+M)
h
1ΣN (V )1ΣM (V ) exp(β

p
N +MC)

ii
.

Now, set ϕ(t)≡ ΦN+M (β)
�p

tXN+M +
p

1− tYN ,M

�
. Applying Proposition 2.5, we get

d

dt
ϕ(t) =

β2(N +M)

2
E [G (t)⊗G (t) [

�
Var XN+M (σ

(1))− Var YN ,M (σ
(1))
�

−
�

Cov
�

XN+M (σ
(1)), XN+M (σ

(2))
�
−Cov

�
YN ,M (σ

(1)), YN ,M (σ
(2))
����

. (A.1)

Note that we have

ϕ(0) = NE
�

pN (V )
�
+ME

�
pM (V )

�
,

ϕ(1)≤ (N +M)E
�

pN+M (V )
�

, (A.2)

where the last inequality is due to the fact that, for all α ∈ ΣN (V ) and all τ ∈ ΣN (V ), we have

α q τ ∈ ΣN+M (V ).

Moreover, for σ = α q τ with α ∈ ΣN (V ) and σ ∈ ΣM (V ) we have

Var XN+M (σ)− Var YN ,M (σ) =


N

N +M
RN (α,α) +

M

N +M
RM (τ,τ)


2

2

−
N

N +M
‖RN (α,α)‖22

−
M

N +M
‖RM (τ,τ)‖22 = O (ǫ).

Also, due to convexity of the norm, we have

Cov
�

XN+M (σ
(1)), XN+M (σ

(2))
�
−Cov

�
YN ,M (σ

(1)), YN ,M (σ
(2))
�

=


N

N +M
RN (α

(1),α(2)) +
M

N +M
RM (τ

(1),τ(2))


2

2

−
N

N +M
‖RN (α

(1),α(2))‖22

−
M

N +M
‖RM (τ

(1),τ(2))‖22 ≤ 0.

Applying
∫ 1

0
dt to (A.1) and using the previous two formulae, we get the claim.
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