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Large time asymptotics of growth models

on space-like paths I: PushASEP
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Abstract

We consider a new interacting particle system on the one-dimensional lattice that interpolates

between TASEP and Toom’s model: A particle cannot jump to the right if the neighboring site is

occupied, and when jumping to the left it simply pushes all the neighbors that block its way.

We prove that for flat and step initial conditions, the large time fluctuations of the height function

of the associated growth model along any space-like path are described by the Airy1 and Airy2

processes. This includes fluctuations of the height profile for a fixed time and fluctuations of a

tagged particle’s trajectory as special cases.
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1 Introduction

We consider a model of interacting particle systems, which is a generalization of the TASEP (totally

asymmetric simple exclusion process) and the Toom model. Besides the extension of some universal-

ity results to a new model, the main feature of this paper is the extension of the range of analysis to

any “space-like” paths in space-time, whose extreme cases are fixed time and fixed particle (tagged

particle problem), see below for details.

Consider the system of N particles x1 > · · ·> xN in Z that undergoes the following continuous time

Markovian evolution: Each particle has two exponential clocks – one is responsible for its jumps to

the left while the other one is responsible for its jumps to the right. All 2N clocks are independent,

and the rates of all left clocks are equal to L while the rates of all right clocks are equal to R. When

the ith left clock rings, the ith particle jumps to the nearest vacant site on its left. When the ith right

clock rings, the ith particle jumps to the right by one provided that the site x i+1 is empty; otherwise

it stays put. The main goal of the paper is to study the asymptotic properties of this system when

the number of particles and the evolution time become large.

If L = 0 then the dynamics is known under the name of Totally Asymmetric Simple Exclusion Process

(TASEP), and if R= 0 the dynamics is a special case of Toom’s model studied in [9] (see references

therein too). Both systems belong to the Kardar-Parisi-Zhang (KPZ) universality class of growth

models in 1+ 1 dimensions.

Particle’s jump to the nearest vacant spot on its left can be also viewed as the particle pushing all

its left neighbors by one if they prevent it from jumping to the left. This point of view is often

beneficial because it remains meaningful for infinite systems, and also the order of particles is not

being changed. Because of this pushing effect we call our system the Pushing Asymmetric Simple

Exclusion Process or PushASEP.

Observe that for a N -particle PushASEP with particles x1(t) > · · ·> xN (t), the evolution of

(x1, . . . , xM ) for any M ≤ N is the M -particle PushASEP not influenced by the presence of the

remaining N −M particles. This "triangularity property" seems to be a key feature of our model that

allows our analysis to go through.

Our results split in two groups – algebraic and analytic.

Algebraically, we derive a determinantal formula for the distribution of the N -particle PushASEP

with an arbitrary fixed initial condition, and we also represent this distribution as a gap probability

for a (possibly, signed) determinantal point process (see [17; 12; 21; 16; 22] for information on

determinantal processes). The result is obtained in greater generality with jump rates L and R being

both time and particle-dependent (Proposition 3.1). The first part (the determinantal formula, see

Proposition 2.1) is a generalization of similar results due to [20; 19; 2] obtained by the Bethe Ansatz

techniques. Also, a closely related result have been obtained very recently in [10] using a version of

the Robinson-Schensted-Knuth correspondence.

Analytically, we use the above-mentioned determinantal process to study the large time behavior of

the infinite-particle PushASEP with two initial conditions:

1. Flat initial condition with particles occupying all even integers.

2. Step initial condition with particles occupying all negative integers.

It is not obvious that the infinite-particle PushASEP started from these initial configurations is cor-

rectly defined, and some work needs to be done to prove the existence of the Markovian dynamics.
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However, we take a simpler path here and consider our infinite-particle system as a limit of growing

finite-particle systems. It turns out that for the above initial conditions, the distribution of any finite

number of particles at any finitely many time moments stabilizes as the total number of particles in

the system becomes large enough. It is this limiting distribution that we analyze.

We are able to control the asymptotic behavior of the joint distribution of xn1
(t1), . . . , xnk

(tk) with

xn1
(0) ≥ · · · ≥ xnk

(0) and t1 ≥ · · · ≥ tk. It is the second main novel feature of the present paper

(the first one being the model itself) that we can handle joint distributions of different particles at

different time moments. As special cases we find distributions of several particles at a given time

moment and distribution of one particle at several time moments (a.k.a. the tagged particle).

In the growth model formulation of PushASEP (that we do not give here; it can be easily recon-

structed from the growth models for TASEP and Toom’s model described in [9] and references

therein), this corresponds to joint distributions of values of the height function at a finite number

of space-time points that lie on a space-like path; for that reason we use the term ‘space-like path’

below. The two extreme space-like paths were described above – they correspond to t1 = · · · = tk

and n1 = · · ·= nk.

The algebraic techniques of handling space-like paths are used in the subsequent paper [6] to an-

alyze two different models, namely the polynuclear growth (PNG) model on a flat substrate and

TASEP in discrete time with parallel update.

Our main result states that large time fluctuations of the particle positions along any space-like path

have exponents 1/3 and 2/3, and that the limiting process is the Airy1 process for the flat initial

condition and the Airy2 process for the step initial condition (see the review [11] and Section 2.4

below for the definition of these processes).

In the PushASEP model, we have the fluctuation exponent 1/3 even in the case of zero drift. This is

due to the asymmetry in the dynamical rules and it is consistent with the KPZ hypothesis. In fact,

from KPZ we expect to have the 1/3 exponent when j′′(ρ) 6= 0, where j(ρ) is the current of particles

as a function of their density ρ, and j′′(ρ) = −2(R+ L/(1−ρ)3) for PushASEP.

We find it remarkable that up to scaling factors, the fluctuations are independent of the space-like

path we choose (this phenomenon was also observed in [7] for the polynuclear growth model (PNG)

with step initial condition). It is natural to conjecture that this type of universality holds at least as

broadly as KPZ-universality does.

Interestingly enough, so far it is unknown how to study the joint distribution of xn1
(t1) and xn2

(t2)

with xn1
(0) > xn2

(0) and t1 < t2 (two points on a time-like path); this question remains a major

open problem of the subject.

Previous results. For the TASEP and PNG models, large time fluctuation results have already been

obtained in the following cases: For the step initial condition the Airy2 process has been shown to

occur in the scaling limit for fixed time [18; 14; 15], and more recently for tagged particle [13]. For

TASEP, the Airy1 process occurs for flat initial conditions in continuous time [4] and in discrete time

with sequential update [3] with generalization to the initial condition of one particle every d ≥ 2

sites1. Also, a transition between the Airy2 and Airy1 processes was obtained in [5]. These are fixed

time results; the only previous result concerning general space-like paths is to be found in [7] in the

1Similar results for discrete time TASEP with parallel update and PNG model will follow from more general results

of [6].
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context of the PNG model, where the Airy2 process was obtained as a limit for a directed percolation

model.

Outline. The paper is organized as follows. In Section 2 we describe the model and the results.

In Proposition 2.1 the transition probability of the model is given. Then, we define what we mean

by space-like paths, and formulate the scaling limit results; the definitions of the Airy1 and Airy2

processes are recalled in Section 2.4. In Section 3 we state the general kernel for PushASEP (Propo-

sition 3.1) and then particularize it to step and flat initial conditions (Proposition 3.4 and 3.6). In

Section 4 we first prove Proposition 2.1 and then obtain the general kernel for a determinantal mea-

sure of a certain form (Theorem 4.2), which includes the one of PushASEP. Finally, the asymptotic

analysis is the content of Section 5.
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2 The PushASEP model and limit results

2.1 The PushASEP

The model we consider is an extension of the well known totally asymmetric simple exclusion pro-

cess (TASEP) on Z. The allowed configuration are like in the TASEP, i.e., configurations consist of

particles on Z, with the constraint that at each site can be occupied by at most one particle (exclu-

sion constraint). We consider a dynamics in continuous time, where particles are allowed to jump

to the right and to the left as follows. A particle jumps to its right-neighbor site with some rate, pro-

vided the site is empty (TASEP dynamics). To the left, a particle jump to its left-neighbor site with

some rate and, if the site is already occupied by another particle, this is pushed to its left-neighbor

and so on (push dynamics).

To define precisely the jump rates, we need to introduce a few notations. Since the dynamics

preserves the relative order of particles, we can associate to each particle a label. Let xk(t) be

the position of particle k at time t. We choose the right-left labeling, i.e., xk(t) > xk+1(t) for all

k ∈ I ⊆ Z, t ≥ 0. With this labeling, we consider vk > 0, k ∈ I , and some smooth positive increasing

functions a(t), b(t) with a(0) = b(0) = 0. Then, the right jump rate of particle k is ȧ(t)vk, while its

left jump rate is ḃ(t)/vk.

In Proposition 2.1 we derive the expression of the transition probability from time t = 0 to time t

for N particles, proven in Section 4.

Proposition 2.1. Consider N particles with initial conditions x i(0) = yi. Denote its transition proba-

bility until time t by

G(xN , . . . , x1; t) =P(x i(t) = x i, 1≤ i ≤ N |x i(0) = yi , 1≤ i ≤ N). (2.1)
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Then

G(xN , . . . , x1; t) (2.2)

=

� N∏

n=1

v xn−yn
n e−a(t)vn e−b(t)/vn

�
det
�

Fk,l(xN+1−l − yN+1−k, a(t), b(t))
�

1≤k,l≤N
,

where

Fk,l(x , a, b) =
1

2πi

∮

Γ0

dzzx−1

∏k−1

i=1 (1− vN+1−iz)∏l−1

j=1(1− vN+1− jz)
ebzea/z , (2.3)

where Γ0 is any anticlockwise oriented simple loop with including only the pole at z = 0.

2.2 Space-like paths

The computation of the joint distribution of particle positions at a given time t can be obtained

from Proposition 2.1 by adapting the method used in [4] for the TASEP. However, one of the main

motivation for this work is to enlarge the spectrum of the situations which can be analyzed to what

we call space-like paths. In this context, space-like paths are sequences of particle numbers and

times in the ensemble

S = {(nk, tk), k ≥ 1|(nk, tk)≺ (nk+1, tk+1)}, (2.4)

where, by definition,

(ni, t i)≺ (n j, t j) if n j ≥ ni, t j ≤ t i , and the two couples are not identical. (2.5)

The two extreme cases are (1) fixed time, tk = t for all k, and (2) fixed particle number, nk = n

for all k. This last situation is known as tagged particle problem. Since the analysis is of the same

degree of difficulty for any space-like path, we will consider the general situation.

Consider any smooth function π, w0 = π(w1), in the forward light cone of the origin that satisfies

|π′| ≤ 1, |w1| ≤ π(w1). (2.6)

These are space-like paths in R×R+, see Figure 1. The first condition (the space-like property) is

related to the applicability of our result to sequences of particles in S . The second condition just

reflects the choice of having t ≥ 0 and n ≥ 0. Time and particle number are connected with the

variables w1 and w0 by a rotation of 45 degrees. To avoid unnecessary
p

2’s, we set

¨
w1 = t−n

2

w0 = t+n

2

«
⇐⇒

¨
t = w0 +w1

n = w0 −w1

«
(2.7)

We want to study the joint distributions of particle positions in the limit of large time, where uni-

versal processes arise. Since we consider several times, we can not simply use t as large parameter.

Instead, we consider a large parameter T . Particle numbers and times under investigation will have

a leading term proportional to T . In the (w1, w0) plane, we consider w1 around θT for a fixed θ ,

while w0 = Tπ(w1/T ). From KPZ we know that correlations are on T 2/3 scale. Therefore, we set

the scaling as (
w1(u) = θT − uT 2/3,

w0(u) = π(θ)T −π′(θ)uT 2/3 + 1

2
π′′(θ)u2T 1/3.

(2.8)
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Figure 1: An example of a space-like path. Its slope is, in absolute value, at most 1.

Notice that w0(u) is equal to Tπ(w1(u)/T ) up to terms that remain bounded, and they become ir-

relevant in the large T limit, since the fluctuations grow as T 1/3. Coming back to the (n, t) variables,

we have

t(u) = (π(θ) + θ)T − (π′(θ) + 1)uT 2/3 + 1

2
π′′(θ)u2T 1/3,

n(u) =
�
(π(θ)− θ)T + (1−π′(θ))uT 2/3 + 1

2
π′′(θ)u2T 1/3�. (2.9)

In particular, setting π(θ) = 1−θ we get the fixed time case with t = T , while setting π(θ) = α+θ

we get the tagged particle situation with particle number n= αT .

2.3 Scaling limits

Universality occurs in the large T limit. In Proposition 3.1 we obtain an expression for the joint dis-

tribution in the general setting. For the asymptotic analysis we consider the case where all particles

have the same jump rates, i.e., we set

vk = 1 for all k ∈ I . (2.10)

Moreover, we consider time-homogeneous case, i.e., we set a(t) = Rt and b(t) = Lt for some

R, L ≥ 0 (for time non-homogeneous case, one would just replace R and L by some time-dependent

functions). Two important initial conditions are

(a) flat initial condition: particles start from 2Z,

(b) step initial condition: particles start from Z− = {. . . ,−3,−2,−1}.
In the first case, the macroscopic limit shape is flat, while in the second case it is curved, see [11] for

a review on universality in the TASEP. For TASEP with step initial conditions and particle-dependent

rates vk, the study of tagged particle has been carried out in [13].

Flat initial conditions

For the flat initial condition, it is not very difficult to get the proper scaling limit as T → ∞. The

initial position of particle n(u) is −2n(u) and during time t(u) it will have traveled around v t(u),
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where v is the mean speed of particles, given by

v= −2L+ R/2. (2.11)

The reason is that the density of particle is 1/2 and the particles jumps to the right with rate R

but the site on its right has a 1/2 chance to be empty. Moreover, particles move (and push) to the

left with rate L but typically every second move to the left is due to a push from another particle.

Therefore, the rescaled process is given by

u 7→ XT (u) =
xn(u)(t(u))− (−2n(u)+ v t(u))

−T 1/3
, (2.12)

where n(u) and t(u) are defined in (2.9). The rescaled process XT has a limit for large T given in

terms of the Airy1 process,A1 (see [4; 5; 11] and Section 2.4 for details onA1).

Theorem 2.2 (Convergence to the Airy1 process). Let us set the vertical and horizontal rescaling

Sv = ((8L+ R)(π(θ)+ θ))1/3, Sh =
4((8L+ R)(π(θ)+ θ))2/3

(R+ 4L)(π′(θ) + 1)+ 4(1−π′(θ)) . (2.13)

Then

lim
T→∞

XT (u) = SvA1(u/Sh) (2.14)

in the sense of finite dimensional distributions.

The proof of this theorem is in Section 5. The specialization for fixed time t = T is

Sv = (8L+ R)1/3, Sh =
(8L+ R)2/3

2
, (2.15)

and the one for tagged particle n= αT at times t(u) = T−2uT 2/3, obtained by setting θ = (1−α)/2,

is

Sv = (8L+ R)1/3, Sh =
2(8L+R)2/3

4L+ R
. (2.16)

Step initial condition

The proper rescaled process for step initial condition is quite intricate. Denote by β t the typical

position of particle with number around αt at time t. In the situations previously studied in the

literature, there was a nice function β = β(α). In the present situation this is not anymore true, but

we can still describe the limit shape. More precisely, α and β are parametrized by a µ ∈ (0,1) via

α(µ) = (1−µ)2(R+ L/µ2), β(µ) = −((1− 2µ)R+ L/µ2). (2.17)

The parameter µ comes from the asymptotic analysis in Section 5.2, where it represents the position

of the double critical point. To see that it is a proper parametrization, we have to verify that for a

given point on the space-like curve (θ ,π(θ)) there corresponds exactly one value of µ. From (2.9)

we have n≃ t(π(θ)− θ)/(π(θ) + θ) and, since we have set n≃ αt, we have

α(µ) =
π(θ)− θ
π(θ) + θ

. (2.18)
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Figure 2: Parametric plot of (β(µ),α(µ)), for L = 1,R= 4.

For any given θ , there exists only one µ such that (2.18) holds, because α is strictly monotone in µ.

Some computations are needed, but finally we get the rescaling of the position x as a function of u,

namely,

x(u) = σ0T −σ1uT 2/3 +σ2u2T 1/3, (2.19)

where

σ0 = (π(θ) + θ)β(µ)

σ1 = 1+ (π′(θ) + 1)
�
µR− L

µ

�
+ (1−π′(θ))

1

1−µ (2.20)

σ2 = 1

2
π′′(θ)

�
µR+ L

µ
− 1

1−µ

�
+
(π′(θ)(1−α(µ))− (1+α(µ)))2

4(1−µ)3(π(θ) + θ)(R+ L/µ3)
.

The rescaled process is then given by

u 7→ XT (u) =
xn(u)(t(u))− (σ0T −σ1uT 2/3 +σ2u2T 1/3)

−T 1/3
, (2.21)

with n(u) and t(u) given in (2.9). Define the constants

κ0 =
(π(θ)+ θ)(R+ L/µ3)

µ(1−µ) ,

κ1 =
(π′(θ) + 1)(R+ L/µ2)

2µ
−
π′(θ)− 1

2µ(1−µ)2
. (2.22)

Then, a detailed asymptotic analysis would lead to,

lim
T→∞

XT (u) = µκ
1/3
0 A2(κ1κ

−2/3
0 u), (2.23)

in the sense of finite dimensional distributions, where A2 is the Airy2 process (see [18; 14; 11] and

Section 2.4 for details on A2). As for the flat PNG, special cases are tagged particle and fixed time.

In Section 5.2 we obtain (2.23) by looking at the contribution coming from the series expansion

around a double critical point. To get (2.23) rigorously, one has to control (1) the error terms in

the convergence on bounded sets and (2) get some bounds to get convergence of the Fredholm

determinants. This is what we actually do in the flat initial condition setting.
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2.4 Limit processes

For completeness, we shortly recall the definitions of the limit processes A1 and A2 appearing

above. The notation Ai(x) below stands for the classical Airy function [1].

Definition 2.3 (The Airy1 process). The Airy1 process A1 is the process with m-point joint distribu-

tions at u1 < u2 < . . . < um given by the Fredholm determinantP� m⋂

k=1

{A1(uk)≤ sk}
�
= det(1−χsKA1

χs)L2({u1,...,um}×R), (2.24)

where χs(uk, x) = 1(x > sk) and the kernel KA1
is given by

KA1
(u1, s1; u2, s2) = −

1
p

4π(u2 − u1)
exp

�
−
(s2 − s1)

2

4(u2− u1)

�1(u2 > u1)

+Ai(s1 + s2 + (u2 − u1)
2)exp

�
(u2 − u1)(s1+ s2) +

2

3
(u2− u1)

3

�
. (2.25)

Definition 2.4 (The Airy2 process). The Airy2 process A2 is the process with m-point joint distribu-

tions at u1 < u2 < . . . < um given by the Fredholm determinantP� m⋂

k=1

{A2(uk)≤ sk}
�
= det(1−χsKA1

χs)L2({u1,...,um}×R), (2.26)

where χs(uk, x) = 1(x > sk) and the kernel KA2
is given by

KA2
(u1, s1; u2, s2) =





∫R+ e−λ(u2−u1)Ai(s1 +λ)Ai(s2+λ), u2 ≥ u1,

−
∫R− e−λ(u2−u1)Ai(s1 +λ)Ai(s2 +λ), u2 < u1.

(2.27)

3 Finite time kernel

In this section we first derive an expression for the joint distributions of particle positions in a finite

system. They are given by Fredholm determinants of a kernel, which is first stated for general jump

rates and initial positions. After that, we specialize to the cases of uniform jump rates in the case of

step and flat initial conditions. Flat initial conditions are obtained via a limit of finite systems.

3.1 General kernel for PushASEP

To state the following result, proven in Section 4, we introduce a space of functions Vn. Consider

the set of numbers {v1, . . . , vn} and let {u1 < u2 < . . . < uν} be their different values, with αk being

the multiplicity of uk (vk is the jump rate of particle with label k). Then we define the space

Vn = span{x lux
k
, 1≤ k ≤ ν , 0 ≤ l ≤ αk − 1}. (3.1)

Recall that the evolution of particle indexed by n is independent of the particles with index m > n.
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Proposition 3.1. Consider a system of particles with indices n = 1,2, . . . starting from positions y1 >

y2 > . . .. Denote by xn(t) the position of particle with index n at time t. Then the joint distribution of

particle positions is given by the Fredholm determinantP� m⋂

k=1

{xnk
(tk)≥ sk}

�
= det

�1− χ̃sKχ̃s

�
ℓ2({(n1,t1),...,(nm,tm)}×Z) (3.2)

with ((n1, t1), . . . , (nm, tm)) ∈ S , and χ̃s((nk, tk))(x) = 1(x < sk). The kernel K is given by

K((n1, t1), x1; (n2, t2), x2) = −φ((n1 ,t1),(n2,t2))(x1, x2) +

n2∑

k=1

Ψ
n1,t1

n1−k
(x1)Φ

n2,t2

n2−k
(x2) (3.3)

where

Ψ
n,t

n−l
(x) =

1

2πi

∮

Γ0

dzzx−yl−1ea(t)/z+b(t)z
(1− v1z) · · · (1− vnz)

(1− v1z) · · · (1− vlz)
, l = 1,2, . . . , (3.4)

the functions {Φn,t

n−k
}n

k=1
are uniquely determined by the orthogonality relations

∑

x∈ZΨn,t

n−l
(x)Φ

n,t

n−k
(x) = δk,l , 1≤ k, l ≤ n, (3.5)

and by the requirement span{Φn,t

n−l
(x), l = 1, . . . , n}= Vn. The first term in (3.3) is given by

φ((n1 ,t1),(n2,t2))(x , y) =
1

2πi

∮

Γ0

dz

z y−x+1

e(a(t1)−a(t2))/ze(b(t1)−b(t2))z

(1− vn1+1z) · · · (1− vn2
z)
1[(n1,t1)≺(n2 ,t2)]

. (3.6)

The notation Γ0 stands for any anticlockwise oriented simple loop including only the pole at 0.

3.2 Kernel for step initial condition

We set all the jump rates to 1: v1 = v2 = · · · = 1. The transition function (3.6) does not depend on

initial conditions. It is useful to rewrite it in a slightly different form.

Lemma 3.2. The transition function can be rewritten as

φ((n1 ,t1),(n2,t2))(x , y) (3.7)

=
1

2πi

∮

Γ0,1

dw
1

wx−y+1

�
w

w − 1

�n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2,t2)]

.

Proof of Lemma 3.2. The proof follows by the change of variable z = 1/w in (3.6).

Lemma 3.3. Let yi = −i, i ≥ 1. Then, the functions Φ and Ψ are given by

Ψ
n,t

k
(x) =

1

2πi

∮

Γ0,1

dw
(w − 1)k

wx+n+1
ea(t)w+b(t)/w ,

Φ
n,t
j
(x) =

1

2πi

∮

Γ1

dz
zx+n

(z− 1) j+1
e−a(t)z−b(t)/z . (3.8)
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Proof of Lemma 3.3. Ψ
n,t

k
(x) comes from the change of variable z = 1/w in (3.4). For k ≥ 0, the pole

at w = 1 is irrelevant, but in the kernel Ψ
n,t

k
enters also for negative values of k.

We have to verify that the function Φ
n,t
j
(x) satisfy the orthogonal condition (3.5) and span the space

Vn given in (3.1). For v1 = · · · = vn = 1, Vn = span(1, x , . . . , xn−1). By the residue’s theorem, the

function Φ
n,t
j
(x) is a polynomial of degree j in x . Thus, span(Φ

n,t
j
(x), j = 0, . . . , n− 1) = Vn.

The second step is to compute
∑

x∈ZΦn,t
j
(x)Ψ

n,t

k
(x) for 0 ≤ j, k ≤ n− 1. We divide it into the sum

over x ≥ 0 and the one over x < 0. We have

∑

x≥0

Φ
n,t
j
(x)Ψ

n,t

k
(x) =

∑

x≥0

1

(2πi)2

∮

Γ1

dz

∮

Γ0

dw
ea(t)w+b(t)/w

ea(t)z+b(t)/z

(w − 1)k

(z − 1) j+1

zx+n

wx+n+1
. (3.9)

We choose the paths Γ0 and Γ1 satisfying |z| < |w|, so that we can take the sum inside the integrals

and use ∑

x≥0

zx

wx+1
=

1

w − z
, (3.10)

to get

(3.9) =
1

(2πi)2

∮

Γ1

dz

∮

Γ0,z

dw
ea(t)w+b(t)/w

ea(t)z+b(t)/z

(w− 1)k

(z− 1) j+1

zn

wn

1

w − z
, (3.11)

where the subscript z in Γ0,z reminds that z is a pole for the integral over w.

Next consider the sum over x < 0. We have

∑

x<0

Φ
n,t
j
(x)Ψ

n,t

k
(x) =

∑

x<0

1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
ea(t)w+b(t)/w

ea(t)z+b(t)/z

(w − 1)k

(z − 1) j+1

zx+n

wx+n+1
. (3.12)

This time we choose the paths Γ0 and Γ1 satisfying |z| > |w| and then take the sum inside the

integrals. Using
∑

x<0

zx

wx+1
= −

1

w − z
(3.13)

we obtain

(3.12) = −
1

(2πi)2

∮

Γ0

dw

∮

Γ1,w

dz
ea(t)w+b(t)/w

ea(t)z+b(t)/z

(w − 1)k

(z − 1) j+1

zn

wn

1

w − z
, (3.14)

where now w is a pole for the integral over z. Thus,

∑

x∈ZΦn,t
j
(x)Ψ

n,t

k
(x) = (3.11) + (3.14). (3.15)

We can deform the paths of integration in (3.14) so that they become as the integration paths of

(3.11) up to correcting the contribution of the residue at z = w. Thus we finally get, for 0 ≤ j, k ≤
n− 1,

∑

x∈ZΦn,t
j
(x)Ψ

n,t

k
(x) =

1

2πi

∮

Γ1

dz(z − 1)k− j−1 = δ j,k. (3.16)

As a side remark, the same computations would not hold for k, j < 0, for which Φ
n,t
j
(x)≡ 0, because

it is not possible to choose the paths with |z| > |w| without introducing an extra pole at z = 0.
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Proposition 3.4 (Step initial condition, finite time kernel).

The kernel for yi = −i, i ≥ 1, is given by

K((n1, t1), x1; (n2, t2), x2) (3.17)

= −
1

2πi

∮

Γ0

dw
1

wx1−x2+1

�
w

1−w

�n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2 ,t2)]

+
1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
eb(t1)/w+a(t1)w

eb(t2)/z+a(t2)z

(1−w)n1

wx1+n1+1

zx2+n2

(1− z)n2

1

w − z
.

The contours Γ0 and Γ1 include the poles w = 0 and z = 1 and no other poles. This means in particular

that Γ0 and Γ1 are disjoints, because of the term 1/(w− z).

Proof of Proposition 3.4. Consider the main term of the kernel, namely

n2∑

k=1

Ψ
n1,t1

n1−k
(x1)Φ

n2,t2

n2−k
(x2) =

n2∑

k=1

1

2πi

∮

Γ0,1

dw
(w − 1)n1−k

wx1+n1+1
ea(t1)w+b(t1)/w

×
1

2πi

∮

Γ1

dz
zx2+n2

(z− 1)n2−k+1
e−a(t2)z−b(t2)/z . (3.18)

First we extend the sum to +∞, since the second term is identically equal to zero for k > n2. We

choose the integration paths so that |z−1|< |w−1|. Then, we can take the sum inside the integral.

The k-dependent terms are
∑

k≥1

(z − 1)k−1

(w − 1)k
=

1

w − z
. (3.19)

Thus, we get

(3.18) =
1

(2πi)2

∮

Γ1

dz

∮

Γ0,z

dw
ea(t1)w+b(t1)/w

ea(t2)z+b(t2)/z

(w− 1)n1

wx1+n1+1

zx2+n2

(z − 1)n2

1

w − z
. (3.20)

Notice now we have a new pole at w = z, but the one at w = 1 vanished. The contribution of the

pole at w = z is exactly equal to the contribution of the pole at z = 1 in the transition function (3.7).

Therefore in the final result the first term coming from (3.7) has the integral only around z = 0, and

the second term is (3.20) but with the integral over w only around the pole at w = 0 and does not

contain z. Finally, a conjugation by a factor (−1)n1−n2 gives the final result.

3.3 Kernel for flat initial condition

The kernel for the flat initial condition is obtained as a limit of those for systems with finitely

many particles as follows. We first compute the kernel for a finite number of particles starting from

yi = −2i, i ≥ 1. Then we shift the focus by N particles, i.e., we consider particles with numbers

N + ni instead of those with numbers ni. For any finite time t, we then take the N → ∞ limit, in

which the deviations due to the finite number of particles on the right tend to zero. The limiting

kernel is what we call the kernel for the flat initial condition (yi = −2i with i ∈ Z).

For this case we also consider the homogeneous jump rates, v1 = v2 = · · · = 1.
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Lemma 3.5. Let yi = −2i, i ≥ 1. Then, the functions Φ and Ψ are given by

Ψ
n,t

k
(x) =

1

2πi

∮

Γ0,1

dw
(w(w − 1))k

wx+2n+1
ea(t)w+b(t)/w ,

Φ
n,t
j
(x) =

1

2πi

∮

Γ1

dz
(2z − 1)zx+2n

(z(z − 1)) j+1
e−a(t)z−b(t)/z . (3.21)

Proof of Lemma 3.5. The proof is almost identical to the one of Lemma 3.3. The only difference is

that contribution of the residue is in this case given by

∑

x∈ZΦn,t
j
(x)Ψ

n,t

k
(x) =

1

2πi

∮

Γ1

dz(2z − 1)(z(z − 1))k− j−1 = δ j,k (3.22)

by the change of variable w = z(z − 1).

Proposition 3.6 (Flat initial conditions, finite time kernel).

The kernel for yi = −2i, i ∈ Z, is given by

K((n1, t1), x1; (n2, t2), x2)

= −
1

2πi

∮

Γ0

dw
1

wx1−x2+1

�
w

1−w

�n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2 ,t2)]

+
−1

2πi

∮

Γ1

dz
ea(t1)(1−z)+b(t1)/(1−z)

ea(t2)z+b(t2)/z

zn1+n2+x2

(1− z)n1+n2+x1+1
. (3.23)

Proof of Proposition 3.6. The first step is to get the kernel for yi = −2i, i ≥ 1. This step is similar to

the one of Proposition 3.4. The integration paths are taken to satisfy |z(z − 1)| < |w(w − 1)|. Then

this time, the sum in k is
∑

k≥1

(z(z − 1))k−1

(w(w − 1))k
=

1

(w − z)(w − 1+ z)
(3.24)

and we get

1

(2πi)2

∮

Γ1

dz

∮

Γ0,1−z,z

dw
ea(t1)w+b(t1)/w

ea(t2)z+b(t2)/z

(w− 1)n1

(z− 1)n2

zx2+n2

wx1+n1+1

2z− 1

(w − z)(w − 1+ z)
. (3.25)

Notice that the pole for w = 1 is now replaced by two simple poles, one at w = z and one at

w = 1 − z. The pole at w = z cancels with the one at z = 1 of (3.7). Therefore, the kernel for

yi = −2i, i ≥ 1, is given by

−
1

2πi

∮

Γ0

dw
1

wx1−x2+1

�
w

1−w

�n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2 ,t2)]

+
1

(2πi)2

∮

Γ1

dz

∮

Γ0,1−z

dw
ea(t1)w+b(t1)/w

ea(t2)z+b(t2)/z

(w− 1)n1

(z− 1)n2

zx2+n2

wx1+n1+1

2z − 1

(w − z)(w − 1+ z)
. (3.26)
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At this point, we pick a large N and shift the focus to particles around the N th one. Accordingly, we

shift the positions by −2N . More precisely, in (3.26), we replace

ni → ni + N , x i → x i − 2N . (3.27)

Then we get the kernel K = K0 + K1+ K(N) with ((n1, t1), x1; (n2, t2), x2)-entries given by

K0 = −
1

2πi

∮

Γ0

dw
1

wx1−x2+1

�
w

1−w

�n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2 ,t2)]

K1 =
(−1)n1−n2+1

2πi

∮

Γ1

dz
ea(t1)(1−z)+b(t1)/(1−z)

ea(t2)z+b(t2)/z

zx2+n2+n1

(1− z)x1+n1+n2+1
, (3.28)

K(N) =
1

(2πi)2

∮

Γ1

dz

∮

Γ0

dw
ea(t1)w+b(t1)/w

ea(t2)z+b(t2)/z

(w − 1)n1+N

(z − 1)n2+N

zx2+n2−N

wx1+n1−N+1

2z − 1

(w− z)(w − 1+ z)
.

The terms K0 and K1 are independent of N , while K(N) is not. We need to show that in the N →∞
limit, the contribution of K(N) vanishes, in the sense that the Fredholm determinant giving the joint

distributions of Proposition 3.1 converges to the one with kernel K0+ K1.

The Fredholm determinant (3.2) is projected onto x i < si. Therefore, for any given s1, . . . , sm we

need to get bounds on the kernel for x i ’s bounded from above, say for x i ≤ ℓ for an ℓ ∈ Z fixed.

In the simplest case of pure TASEP dynamics (b(t) ≡ 0), the limit turns out to be easy because

for x1 + n1 < N , the pole at w = 0 vanishes. However, in our model, b(t) is generically non-zero

and the integrand has an essential singularity at w = 0. In what follows, we choose the indices

k ∈ {1, . . . , m} so that (nk, tk) ≺ (nk+1, tk+1), k = 1, . . . , m − 1. Also, we simplify the notation

by writing k ∈ {1, . . . , m} instead of (nk, tk) in the arguments of the kernel. Then, the Fredholm

determinant becomes

(3.2) =
∑

n≥0

(−1)n

n!

m∑

i1,...,in=1

∑

x1<si1

· · ·
∑

xn<sin

det
�
K(ik, xk; il , x l)

�
1≤k,l≤n . (3.29)

We apply the following conjugation of the kernel, which keeps unchanged the above expression,

eK(ik, xk; il , x l) = K(ik, xk; il , x l)e
ǫil xl−ǫik xk e(xl−xk)/2. (3.30)

Using the bound of Lemma 3.7, for any choice of ǫ in (0, (8m)−1] and for xk, x l bounded from

above, we have

|eK0(ik, xk; il , x l)| ≤ const eǫxl ,

|eK1(ik, xk; il , x l)| ≤ const e(xl+xk)/8 ≤ const eǫxl , (3.31)

|eK(N)(ik, xk; il , x l)| ≤ const e(xl+xk)/8κN ≤ const eǫxlκN ,

where κ ∈ [0,1). In the above bounds, we use the same symbol ‘const ’ for all the constants. With

the choice of ordering of the (nk, tk)’s, we have that K0 = 0 = eK0 if il ≤ ik, thus the bound holds

trivially. For the case il > ik, Lemma 3.7 implies the estimate

|eK0| ≤ const eǫik(xl−xk)e−|xl−xk |/4eǫxl , (3.32)
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for xk, x l bounded from above. The bound in (3.31) is then obtained by choosing ǫ ≤ (4m)−1, since

then ǫik ≤ ǫm≤ 1/4. The other bounds on eK1 and eK(N) are satisfied for ǫm≤ 1/8.

Therefore, the summand in the multiple sums of (3.29) is uniformly bounded by

����
(−1)n

n!
det
�eK(ik, xk; il , x l)

�
1≤k,l≤n

���� ≤
1

n!
eǫ(x1+...+xn)const n(1+ κN )nnn/2, (3.33)

the term nn/2 being Hadamard bound on the value of a n × n determinant whose entries have

modulus bounded by 1. Since κ < 1, replacing 1+ κN by 2 yields a uniform bound, which is

summable. Thus, by dominated convergence we can take the N → ∞ limit inside the Fredholm

series. Since κ < 1, we have limN→∞ K(N) = 0, thus the result is proven. Finally, just for convenience,

we conjugate the kernel by (−1)n1−n2 , which however has no impact on the Fredholm determinant

in question.

Lemma 3.7. Let K0, K1, K(N) be as in (3.28). Then, for x1, x2 ≤ ℓ, we have the following bounds.

|K0((n1, t1), x1; (n2, t2), x2)| ≤ const e(x1−x2)/2e−|x2−x1|/41[(n1,t1)≺(n2 ,t2)]
,

|K1((n1, t1), x1; (n2, t2), x2)| ≤ const e(x1−x2)/2e(x1+x2)/4, (3.34)

|K(N)((n1, t1), x1; (n2, t2), x2)| ≤ const e(x1−x2)/2e(x1+x2)/4κN ,

for some κ ∈ [0,1). The constants const and κ are uniform in N and depend only on ℓ and ni, t i ’s.

Proof of Lemma 3.7. For K0 and x2− x1 ≥ 0, we can just choose the integration path as Γ0 = {|w| =
e−1}, from which we have |K0| ≤ const e−(x2−x1) ≤ const e−(x2−x1)3/4. In the case x1 − x2 ≥ 0, we

choose the integration path as Γ0 = {|w| = e−1/4}. Then, |K0| ≤ const e(x1−x2)/4.

For K1, we choose Γ1 = {|1− z| = e−2}. Then,

|K1| ≤ const
maxΓ1

|z|x2

minΓ1
|1− z|x1

. (3.35)

Along Γ1, |1−z| is constant, thus (minΓ1
|1−z|x1)−1 = e2x1 ≤ const e3x1/4 for x1 bounded from above.

Remark that const depends on the upper bound, ℓ, for x1. In this case, we can take const = e5ℓ/4.

Also, for x2 bounded from above, maxΓ1
|z|x2 ≤ const (1− 1/e2)x2 ≤ const e−x2/4.

For K(N), we use the path Γ0 = {|w| = e−4} and Γ1 = {|1− z| = e−2}. As required, these paths do

not intersect because 1/e4 < 1− 1/e2. Then,

|K(N)| ≤ const
maxΓ1

|z|x2

minΓ0
|w|x1

κN , κ=
maxΓ0

|w(w − 1)|
minΓ1

|z(z − 1)| . (3.36)

For x1, x2 bounded from above, we have maxΓ1
|z|x2 ≤ const e−x2/4 (as above), and

(minΓ0
|w|x1)−1 = e4x1 ≤ const e3x1/4. Finally, it is not difficult to obtain κ = (1+ 1/e4)/(1− e2) =

0.159 . . ., since the maximum of |w(w − 1)| is obtained at w = −e−4 and the minimum of |z(z − 1)|
at z = 1− e−2.
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4 Determinantal measures

In this section we first prove Proposition 2.1. Then, we use it to extend the measure to space-like

paths. More precisely, we first obtain a general determinantal formula in Theorem 4.1. Then, in

Theorem 4.2, we prove that the measure has determinantal correlations and obtain an expression

of the associated kernel.

Proof of Proposition 2.1. We first prove that the initial condition is satisfied. We have

Fk,l(x , 0) =
1

2πi

∮

Γ0

dzzx−1

∏k−1

i=1 (1− vN+1−iz)∏l−1

j=1(1− vN+1− jz)
. (4.1)

(a) Fk,l(x , 0) = 0 for x ≥ 1 because the pole at z = 0 vanishes.

(b) Fk,l(x , 0) = 0 for k ≥ l and x < l − k, because then

Fk,l(x , 0) =
1

2πi

∮

Γ0

dzzx−1(1− vlz) · · · (1− vk−1z) (4.2)

and the residue at infinity equals to zero for x < l − k.

Assume that xN < · · ·< x1. If xN > yN , also x l > yN for l = 1, . . . , N−1. Thus F1,l(xN+1−l− yN , 0) =

0 using (a). Therefore G(xN , . . . , x1; 0) = 0. On the other hand, if xN < yN , then xN < yk − N + k,

k = 1, . . . , N − 1. Thus Fk,1(xN − yN+1−k, 0) = 0 using (b) and the fact that xN − yN+1−k < 1− k.

Therefore we conclude that G(xN , . . . , x1; 0) = 0 if xN 6= yN . For xN = yN , F1,1(0,0) = 1 and by (a)

F1,l(xN+1−l − yN , 0) = 0 for l = 2, . . . , N . This means that

G(xN , . . . , x1; 0) = δxN ,yN
G(xN−1, . . . , x1; 0). (4.3)

By iterating the procedure we obtain

G(xN , . . . , x1; 0) =

N∏

k=1

δxk ,yk
. (4.4)

Notice that the prefactor in (2.2) is equal to one at t = 0.

The initial condition being settled, we need to prove that (2.2) satisfies the PushASEP dynamics. For

that purpose, let us first compute
dFk,l (x ,t)

dt
.

dFk,l(x , t)

dt
= ȧ(t)Fk,l(x − 1, t) + ḃ(t)Fk,l(x + 1, t), (4.5)

from which it follows, by differentiating the prefactor and the determinant column by column,

dG(xN , . . . , x1; t)

dt
= −

�
ȧ(t)

N∑

k=1

vk + ḃ(t)

N∑

k=1

1

vk

�
G(xN , . . . , x1; t)

+ȧ(t)

N∑

k=1

vkG(. . . , xk − 1, . . . ; t) (4.6)

+ ḃ(t)

N∑

l=1

1

vl

G(. . . , x l + 1, . . . ; t).
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To proceed, we need an identity. Using

zx

1− vN+1−lz
=

vN+1−lz
x+1

1− vN+1−lz
+ zx (4.7)

it follows that

Fk,l+1(x , t) = Fk,l(x , t) + vN+1−l Fk,l+1(x + 1, t). (4.8)

Therefore, for j = 2, . . . , N , by setting ỹk = yN+1−k,

G(. . . , x j, x j−1 = x j, . . . ; t) =
1

ZN

det
h

v
xN+1−l

N+1−l
Fk,l(xN+1−l − ỹk, t)

i
1≤k,l≤N

=
1

ZN

det
h

. . . v
x j

j
Fk,N+1− j(x j − ỹk, t) v

x j

j−1
Fk,N+2− j(x j−1− ỹk, t) · · ·

i
. (4.9)

Here ZN does not depend on the x j ’s.

Using (4.8) we have

v
x j

j−1
Fk,N+2− j(x j − ỹk, t) (4.10)

= v
x j

j−1
Fk,N+1− j(x j − ỹk, t) + v

x j+1

j−1
Fk,N+2− j(x j + 1− ỹk, t)

v j

v j−1

.

Using this identity in the previous formula, the first term cancels being proportional to its left col-

umn, and the second term yields

G(. . . , x j, x j−1 = x j, . . . ; t) =
v j

v j−1

G(. . . , x j, x j−1 = x j + 1, . . . ; t). (4.11)

With (4.11) we can go back to (4.6). First, consider all the terms in (4.6) which are proportional to

ȧ(t). They are given by

−
N∑

k=1

vkG(. . . ; t) +

N∑

k=1

vkG(. . . , xk − 1, . . . ; t) (4.12)

= −v1G(. . . ; t)−
N∑

k=2

vk(1− δxk−1,xk+1)G(. . . ; t) (4.13)

+vN G(xN − 1, . . . ; t) +

N−1∑

k=1

vk(1− δxk+1,xk
)G(. . . , xk − 1, . . . ; t) (4.14)

−
N∑

k=2

vkG(. . . , xk, xk−1 = xk + 1, . . . ; t) (4.15)

+

N−1∑

k=1

vkG(. . . , xk+1 = xk, xk, . . . ; t). (4.16)

The notation means that the first term of (4.12) has been subdivided into (4.13), which contains

non-zero terms when xk−1 6= xk+1, and (4.15), whose terms are non-zero only when xk−1 = xk+1.
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Similarly for the second term of (4.12). By using (4.11) and shifting the summation index by one,

we get that (4.16) equals

N∑

k=2

vk−1G(. . . , xk, xk−1 = xk + 1, . . . ; t)
vk

vk−1

, (4.17)

which cancels (4.15). The expression (4.13) is the contribution in the master equation of the par-

ticles jumping to the right and leaving the state (xN , . . . , x1) with jump rate ȧ(t)vk, while (4.14) is

the contribution of the particles arriving to the state (xN , . . . , x1). Therefore, the jumps to the right

satisfy the exclusion constraint.

Secondly, consider all the terms in (4.6) which are proportional to ḃ(t). They are

−
N∑

k=1

1

vk

G(. . . ; t) +

N∑

k=1

1

vk

G(. . . , xk + 1, . . . ; t). (4.18)

Let us denote by m(k) the index of the last particle to the right of particle k such that particle m(k)

belongs to the same block of particles as particle k (we say that two particles are in the same block

if between them all sites are occupied). Then, (4.18) takes the form

(4.18) = −
N∑

k=1

1

vk

G(. . . ; t) +

N∑

k=1

1

vk

G(. . . , xk + 1, xk + 1, . . . , xk + k−m(k), . . . ; t). (4.19)

Using (4.11) we get

1

vk

G(. . . , xk + 1, xk + 1, . . . , xk + k−m(k), . . . ; t)

=
1

vk

vk

vk−1

G(. . . , xk + 1, xk + 2, . . . , xk + k−m(k), . . . ; t) (4.20)

=
1

vk−1

G(. . . , xk + 1, xk−1+ 1, . . . , xk + k−m(k), . . . ; t). (4.21)

By iterations we finally obtain

(4.18) = −
N∑

k=1

1

vk

G(. . . ; t) +

N∑

k=1

1

vm(k)

G(. . . , xk + 1, xk−1+ 1, . . . , xm(k)+ 1, . . . ; t). (4.22)

The first term in (4.22) is the contribution of particles pushing to the left and leaving the state

(xN , . . . , x1), while the second term is the contribution of particles arriving at the state (xN , . . . , x1)

because they were pushed, and the particle number k pushes to the left with rate ḃ(t)/vk.

We would like to obtain the joint distribution of particle Nk at time tk for N1 ≥ N2 ≥ . . . ≥ Nm ≥ 1

and 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm. By Proposition 2.1, this can be written as an appropriate marginal of a

product of m determinants (by summing over all variables except the x
Nk

1 (tk), k = 1, . . . , Nm under

consideration).

Notational remark: Below there is an abuse of notation. For example, xn
l
(t i) and xn

l
(t i+1) are

considered different variables even if t i = t i+1. One could call them simply xn
l
(i) and xn

l
(i+ 1), but

then one loses the connection with the times t i ’s. In this sense, t i is considered as a symbol, not as

a number.
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Theorem 4.1. Let us set t0 = 0, a(t0) = b(t0) = 0, and Nm+1 = 0. The joint distribution of PushASEP

particles is a marginal of a (generally speaking, signed) measure, obtained by summation of the vari-

ables in the set

D = {x l
k(t i), 1≤ k ≤ l, 1 ≤ l ≤ Ni, 0≤ i ≤ m} \ {xNi

1 (t i), 1≤ i ≤ m}; (4.23)

the range of summation for any variable in this set in Z. Precisely,P(xNi
(t i) = x

Ni

1 (t i), 1≤ i ≤ m|xk(0) = yk, 1≤ k ≤ N1)

= const ×
∑

D

det
h
Ψ

N1

N1−l
(x

N1

k
(t0))

i
1≤k,l≤N1

×
m∏

i=1

�
det[Tti ,ti−1

(x
Ni

l
(t i), x

Ni

k
(t i−1))]1≤k,l≤Ni

×
Ni∏

n=Ni+1+1

det[φn(x
n−1
k
(t i), xn

l
(t i))]1≤k,l≤n

�
(4.24)

where

Tt j ,ti
(x , y) =

1

2πi

∮

Γ0

dzzx−y−1e(a(t j)−a(ti))/z e(b(t j)−b(ti))z , (4.25)

Ψ
N1

N1−l
(x) =

1

2πi

∮

Γ0

dzzx−yl−1(1− vl+1z) · · · (1− vN1
z), (4.26)

φn(x , y) = v y−x
n 1[y≥x] and φn(x

n−1
n , y) = v y

n . (4.27)

The normalizing constant in (4.24) is chosen so that the sum over all variables {x l
k
(t i), 1≤ k ≤ l, 1≤

l ≤ Ni, 0≤ i ≤ m} equals 1.

Remark: the variables xn−1
n participating in the last factor of (4.24) are fictitious, cf. (4.27), and

are used for convenience of notation only.

We illustrate the determinantal structure in Figure 3.

Proof of Theorem 4.1. Since the evolution is Markovian, we haveP(xNi
(t i) = x

Ni

1
(t i), 1≤ i ≤ m|xk(0) = yk, 1≤ k ≤ N1)

=
∑1(x k

1(0) = yk, 1≤ k ≤ N1) (4.28)

×
m∏

i=1

P(xk(t i) = x k
1(t i), 1≤ k ≤ Ni|xk(t i−1) = x k

1(t i−1), 1≤ k ≤ Ni)

where the sum is over x k
1(0), 1 ≤ k ≤ N1, and x k

1(t i), 1 ≤ k ≤ Ni − 1, i = 1, . . . , m. Note that so far

the lower index of all variables x k
l

is identically equal to 1.

The continuation of the proof requires a series of Lemmas collected at the end of this section, see

Section 4.1. We apply Proposition 2.1 to the m+1 factors in (4.28) (including the indicator function,

which corresponds to the value t = 0 in Proposition 2.1). Namely,P(xk(t i) = x k
1(t i), 1≤ k ≤ Ni|xk(t i−1) = x k

1(t i−1), 1≤ k ≤ Ni) (4.29)

= const ×
� Ni∏

n=1

v
xn

1(ti)−xn
1 (ti−1)

n

�
det
h

Fk,l(x
Ni+1−l

1 (t i)− x
Ni+1−k

1 (t i−1), ai, bi)
i

1≤k,l≤Ni

,
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Figure 3: A graphical representation of variables entering in the determinantal structure, illustrated

for m = 2. The wavy lines represents the time evolution between t0 and t1 and from t1 to t2. The

rest is the interlacing structure on the variables induced by the det[φn(· · · )]. The black dots are the

only variables which are not in the summation set D = D(0) ∪ D∗(t1) ∪ · · · ∪ D∗(tm) (see Figure 4

too). The variables of the border of the interlacing structures are explicitly indicated.

where we introduced the notation ai := a(t i)− a(t i−1), and bi := b(t i)− b(t i−1).

First we collect all the factors coming from the
∏Ni

n=1 v
xn

1(ti)−xn
1 (ti−1)

n . We have the factor

� N1∏

n=1

v
xn

1 (0)−yn

n

� m∏

k=1

Nn∏

n=1

v
xn

1(tk)−xn
1 (tk−1)

n

=
� N1∏

n=1

v−yn
n

��m−1∏

i=1

Ni∏

n=Ni+1+1

v
xn

1 (ti)
n

� Nm∏

n=1

v
xn

1(tm)
n . (4.30)

Then we apply Lemma 4.4 to all the factors det[Fk,l(· · · )]. For the initial condition we have

∑

eD(0)
det
h

FN1+1−l ,1(x
N1

k
(0)− yl , 0,0)

i
1≤k,l≤N1

N1∏

n=2

det
�
ϕn(x

n−1
k
(0), xn

l
(0))

�
1≤k,l≤n

. (4.31)

For the other terms, i = 1, . . . , m, we get

∑

eD(ti)

det
h

FNi+1−l ,1(x
Ni

k
(t i)− x l

1(t i−1), ai, bi)
i

1≤k,l≤Ni

×
Ni∏

n=2

det
�
ϕn(x

n−1
k
(t i), xn

l (t i))
�

1≤k,l≤n
. (4.32)

Thus, the probability we want to compute in (4.28) is obtained by a marginal of a measure on m+1

interlacing triangles, when we sum over all the variables in D(0), D∗(t1), . . . , D∗(tm), see Figure 4

for the definitions of these sets. At this point we apply Lemma 4.5 as follows. For i = 1, . . . , m−1 we
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do the sum over the variables in bD(t i). Notice that the remaining variables in (4.30) do not belong

to the bD(t i), thus we factorize them out. So, r.h.s. of (4.28) is, up to a constant, equal to

∑
(4.30)× det

h
FN1+1−l ,1(x

N1

k
(0)− yl , 0,0)

i
1≤k,l≤N1

×
�

m−1∏

i=0

� Ni∏

n=2

det
�
ϕn(x

n−1
k
(t i), xn

l
(t i))

�
1≤k,l≤n

�

× det
h

FNi+1+1−l ,1(x
Ni+1

k
(t i+1)− x l

1(t i), ai+1, bi+1)
i

1≤k,l≤Ni+1

�

×
Nm∏

n=2

det
�
ϕn(x

n−1
k
(tm), xn

l
(tm))

�
1≤k,l≤n

(4.33)

with the sum is over the variables described just above. By summing over the bD(t i), the determinant

with FNi+1+1−l ,1 becomes a determinant with F1,1 and the product of the det[ϕn(· · · )] is restricted

to n= Ni+1+ 1, . . . , Ni. Thus,

(4.28) = const ×
∑
(4.30)× det

h
FN1+1−l ,1(x

N1

k
(0)− yl , 0,0)

i
1≤k,l≤N1

×
m∏

i=1

�
det
h

F1,1(x
Ni

k
(t i)− x

Ni

l
(t i−1), ai , bi)

i
1≤k,l≤Ni

×
Ni∏

n=Ni+1+1

det
�
ϕn(x

n−1
k
(t i), xn

l (t i))
�

1≤k,l≤n

�
(4.34)

where we set Nm+1 = 0 (the contribution from n = 1 is 1). Finally, by using Lemma 4.6 we can

include the terms in (4.30) into the ϕn’s by modifying the last row, i.e., by setting it equal to v
y
n .

Thus,

(4.28) = const × det
h

FN1+1−l ,1(x
N1

k
(0)− yl , 0,0)

i
1≤k,l≤N1

×
m∏

i=1

�
det
h

F1,1(x
Ni

k
(t i)− x

Ni

l
(t i−1), ai , bi)

i
1≤k,l≤Ni

×
Ni∏

n=Ni+1+1

det
�
φn(x

n−1
k
(t i), xn

l
(t i))

�
1≤k,l≤n

�
. (4.35)

The identification to the expressions in Theorem 4.1 uses the representations (2.3) and (3.4).

The first line represent the initial condition at t0 = 0, the term with Ψ
N1

N1−l
in Theorem 4.1. These

N1 variables evolves until time t1 and this is represented by the first line (term Tt1,t0
). After that,

there is a reduction of the number of variables from N1 to N2 by the interlacing structure, which is

followed by the time evolution from t1 to t2. This is repeated m− 1 times. Finally it ends with an

interlacing structure. If N1 = N2, then the first interlacing structure is trivial (not present), while if

for example t2 = t1, then the time evolution is just the identity.

In what follows, the picture to keep in mind consists of reading Figure 3 from bottom to top, i.e., in

the reversed order with respect to the original decomposition. Then ni increases and t i decreases.
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This corresponds to having a sort of vicious walkers with increasing number of walkers when the

transition is made by the φ’s, and with constant number of walkers if the transition is the temporal

one made by T .

The measure in (4.24) is written with the outer product over time moments but it can be rewritten

by taking the outer product over the index n in the variables xn
k
’s. Let us introduce the following

notations. For any level n there is a number c(n) ∈ {0, . . . , m+ 1} of products of terms T which are

the time evolution of n particles between consecutive times in the set {t1, . . . , tm} (in other words

c(n) is #{i|Ni = n}). Let us denote them by tn
0 < . . . < tn

c(n)
. Notice that tn

0 = tn+1
c(n+1)

, t
N1

0 = t0,

t
N1

1 = t1, and t0
0 = t0

c(0)
= tm. Then, the measure in (4.24) takes the form

const ×
N1∏

n=1

�
det[φn(x

n−1
k
(tn−1

0 ), xn
l (t

n
c(n)
))]1≤k,l≤n (4.36)

×
c(n)∏

a=1

det[Ttn
a ,tn

a−1
(xn

k(t
n
a), xn

l (t
n
a−1))]1≤k,l≤n

�
det[Ψ

N1

N1−l
(x

N1

k
(t

N1

0 ))]1≤k,l≤N1
.

In Theorem 4.2 we show that a measure on the xn
k
(tn

a) of the form (4.36) is determinantal and we

give the expression for the kernel. Then we particularize it in case of the PushASEP with particle

dependent jump rates. For this purpose, we introduce a couple of notations. For any two time

moments t
n1
a1

, t
n2
a2

, we define the convolution over all the transitions between them by φ(t
n1
a1

,t
n2
a2
)

(backwards in time, since forward in the n’s). For (n1, t1)≺ (n2, t2) (see the definition in (2.5)), we

set

φ(t
n1
a1

,t
n2
a2
) = Tt

n1
a1

,t
n1
0
∗ φn1+1 ∗ T n1+1 ∗ · · · ∗φn2

∗ Tt
n2
c(n2)

,t
n2
a2

(4.37)

where

T n = Ttn
c(n)

,tn
0
. (4.38)

For (n1, t1) 6≺ (n2, t2) we set φ(t
n1
a1

,t
n2
a2
) = 0. Above we used

Tt3,t2
∗ Tt2,t1

= Tt3,t1
, (4.39)

which is an immediate corollary of (4.25). In a more general case considered in Theorem 4.2 below,

if (4.39) does not holds, then T n is just the convolution of the transitions between tn
c(n)

and tn
0 by

definition. Moreover, define the matrix M with entries Mk,l , 1≤ k, l ≤ N1,

Mk,l =
�
φk ∗ T k ∗ · · · ∗φN1

∗ T N1 ∗ΨN1

N1−l

�
(x k−1

k
) (4.40)

and the vector

Ψ
n,tn

a

n−l
= φ(t

n
a ,t

N1
0 ) ∗ΨN1

N1−l
. (4.41)

We remind that the variables x k−1
k

in Mk,l are fictitious, compare with (4.27).

Theorem 4.2. Assume that the matrix M is invertible. Then the normalizing constant in (4.36) is equal

to (det M)−1, the normalized measure2 of the form (4.36) viewed as (N1 + . . .+ Nm)-point process is

2With normalized measure we mean that all weights add up to one. If all weights are non-negative, it is a probability

measure (this is the case for example for PushASEP with step initial conditions).
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determinantal, and the correlation kernel can be computed as follows

K(tn1
a1

, x1; tn2
a2

, x2) = −φ(t
n1
a1

,t
n2
a2
)(x1, x2) (4.42)

+

N1∑

k=1

n2∑

l=1

Ψ
n1,t

n1
a1

n1−k
(x1)[M

−1]k,l(φl ∗φ(t
l
c(l)

,t
n2
a2
)
)(x l−1

l
, x2).

In the case when the matrix M is upper triangular, there is a simpler way to write the kernel. Set

Φ
n,tn

a

n−k
(x) =

n∑

l=1

[M−1]k,l

�
φl ∗φ(t

l
c(l)

,tn
a )
�
(x l−1

l
, x) (4.43)

for all n= 1, . . . , N1 and k = 1, . . . , n. Then,
�
Φ

n,tn
a

n−k

	
k=1,...,n is the unique basis of the linear span of

n
(φ1 ∗φ(t

1
c(1)

,tn
a ))(x0

1, x), . . . , (φn ∗φ(t
n
c(n)

,tn
a ))(xn−1

n , x)
o

(4.44)

that is biorthogonal to {Ψn,tn
a

n−k
}:

∑

x∈ZΦn,tn
a

i
(x)Ψ

n,tn
a

j
(x) = δi, j , i, j = 0, . . . , n− 1. (4.45)

The correlation kernel can then be written as

K(tn1
a1

, x1; tn2
a2

, x2) = −φ(t
n1
a1

,t
n2
a2
)(x1, x2) +

n2∑

k=1

Ψ
n1,t

n1
a1

n1−k
(x1)Φ

n2,t
n2
a2

n2−k
(x2). (4.46)

Moreover, one has the identity

φ(t
n1
a1

,t
n2
a2
) ∗Φn2,t

n2
a2

n2−l
= Φ

n1,t
n1
a1

n1−l
(4.47)

for n1 ≥ n2 and a1 ≤ a2 for n1 = n2.

Proof of Theorem 4.2. The proof is similar to the one of Lemma 3.4 in [4], which is in its turn based

on the formalism of [8]. The only place where the argument changes substantially is the definition

of the matrix L, see [4], formula (3.32). We need to construct the matrix L in such a way that its

suitable minors reproduce, up to a common constant, the weights (4.36) of the measure. Then our

measure turns into a conditional L-ensemble in the terminology of [8].

The variables of interest live in the space Y = X(1) ∪ · · · ∪X(N1), with X(n) = X
(n)
0 ∪ · · · ∪X

(n)

c(n)
, where

X(n)a = Z is the space where the n variables at time tn
a live. Let us also denote I = {1, . . . , N1}. Then,

the matrix L written with the order given by the entries in the set of all variables X = I ∪Y becomes

L =




0 E0 0 E1 0 E2 0 · · · EN1−1 0

0 0 −T1 0 0 0 0 · · · 0 0

0 0 0 −W[1,2) 0 0 0 · · · 0 0

0 0 0 0 −T2 0 0 · · · 0 0

0 0 0 0 0 −W[2,3) 0 · · · 0 0

0 0 0 0 0 0 −T3 · · · 0 0
...

...
...

...
...

...
...

. . .
...

...

0 0 0 0 0 0 0 · · · −W[N1−1,N1)
0

0 0 0 0 0 0 0 · · · 0 −TN1

Ψ(N1) 0 0 0 0 0 0 · · · 0 0




(4.48)
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with the matrix blocks in L have the following entries:

[Ψ(N1)]x , j = Ψ
N1

N1− j
(x), x ∈ X

(N1)

0 , j ∈ I , (4.49)

[En]i,y =

(
φn+1(x

n
n+1, y), i = n+ 1, y ∈ X

(n+1)

c(n+1)
,

0, i ∈ I \ {n+ 1}, y ∈ X
(n+1)

c(n+1)
,

(4.50)

[W[n,n+1)]x ,y = φn+1(x , y), x ∈ X
(n)
0 , y ∈ X

(n+1)

c(n+1)
, (4.51)

and Tn is the matrix made of blocks

Tn =




Tn,1 0 0

0
.. . 0

0 0 Tn,c(n)


 , (4.52)

where

[Tn,a]x ,y = Ttn
a ,tn

a−1
(x , y), x ∈ X(n)a , y ∈ X

(n)
a−1. (4.53)

The rest of the proof is along the same lines as that of Lemma 3.4 in [4].

Although the argument gives a proof in the case when all variables xn
a(t

n
b
) vary over finite sets,

a simple limiting argument immediately extends the statement to any discrete sets, provided the

series that defines Mk,l are absolutely convergent, which is certainly true in our case.

A special case of Theorem 4.2 is Proposition 3.1 stated in Section 3, which we prove below.

Proof of Proposition 3.1. We first prove the statement in the case the jump rates are ordered, v1 >

v2 > . . . , and then use analytic continuation in v j ’s.

For v1 > v2 > . . . , the claim is a specialization of Theorem 4.2. The kernel depends only on the

actual times and particle numbers, therefore we might drop the label ai of t
ni
ai

. Equivalently, we

can use the notation (ni, t i) instead of t
ni
ai

, to go back to the natural notations of the model. For

PushASEP we have Ψ
N1

N1−l
(x) = FN1+1−l ,1(x − yl , 0,0) and

Tt j ,ti
(x , y) = F1,1(x − y, a(t j)− a(t i), b(t j)− b(t i)). (4.54)

First of all, we sum over the {xN1

k
(0), 1≤ k ≤ N1} variables, since we are not interested in the initial

conditions (being fixed). When applied to the Fk,l(x , a(t i), b(t i)), the time evolution Tt j ,ti
changes

it into Fk,l(x , a(t j), b(t j)),

∑

y∈ZTt j ,ti
(x , y)Fk,l(y, a(t i), b(t i)) = Fk,l(x , a(t j), b(t j)). (4.55)

This implies that Theorem 4.2 still holds but with t
N1

0
= t1 and

Ψ
N1

N1−l
(x) = FN1+1−l ,1(x − yl , a(t1), b(t1)). (4.56)

We have, see (4.69), that

(φk ∗ Fl ,N1+1−k)(x , a, b) = Fl ,N1+2−k(x , a, b). (4.57)
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Using (4.55) and (4.57) repeatedly one then gets

Ψ
n,tn

k

n−l
(x) = FN1+1−l ,N1+1−n(x − yl , a(tn

k), b(tn
k)) (4.58)

which can be rewritten as (3.4).

Next we show that the matrix M is upper triangular. Once again, (4.55) and (4.57) are applied

several times, leading to

Mk,l =
∑

y∈Z v
y

k
FN1+1−l ,N1+1−k(y − yl , a(tk

c(k)
), b(tk

c(k)
)). (4.59)

Set ak = a(tk
c(k)
) and bk = b(tk

c(k)
). Then,

Mk,l =
∑

y∈Z v
y

k

1

2πi

∮

Γ0

dzz y−yl−1eak/z+bkz
(1− vl+1z) · · · (1− vN1

z)

(1− vk+1z) · · · (1− vN1
z)

. (4.60)

(Note that we need the assumption vk > max{vl}l>k in order for this sum to converge.) We divide

the sum over y in two regions, {y ≥ 0} and {y < 0}. The sum over y ≥ 0 can be taken into the

integral provided that |vkz| < 1 and then we use
∑

y≥0(vkz)y = 1

1−vkz
. Similarly, the sum over y < 0

is taken into the integrals provided that |vkz| > 1 and one uses
∑

y≥0(vkz)y = − 1

1−vkz
. For k > l the

new term in the denominator, 1− vkz, is canceled so that this is not a pole and we can deform the

contours to be the same. Thus for k > l the net result is zero. This is not the case for k ≤ l, since in

that case the new pole at 1/vk does not have to vanish. The diagonal term is easy to compute, since

the pole at 1/vk is simple. Computing its residue we obtain Mk,k = v
yl+1

k
evk ak+bk/vk and

det M =

N1∏

k=1

v
yl+1

k
evk ak+bk/vk 6= 0. (4.61)

Next, we need to determine the space Vn where the orthogonalization has to be made. We have

(φk ∗φ(t
k
c(k)

,t1))(x k−1
k

, x) =
∑

y∈Z v
y

k

1

2πi

∮

Γ0

dzz y−x−1
eak/z+bkz

(1− vk+1z) · · · (1− vN1
z)

. (4.62)

Once again we divide the sum over {y ≥ 0}, {y < 0} and then deform the paths so that the

only remaining contribution is the residue at z = 1/vk, which is equal to const · v x
k

. Thus, Vn =

span(v x
1 , . . . , v x

n ), n= 1, . . . , N1.

Finally, we need an expression for the transition between two times, which is given by (4.37). Every

time that we convolute a φk with T , we get an extra factor 1/(1− vkz) in the integral. Therefore,

if t
n2
a2
≤ t

n1
a1

and n2 ≥ n1, then

φ(t
n1
a1

,t
n2
a2
)(x , y) =

1

2πi

∮

Γ0

dzzx−y−1
e(a(t

n1
a1
)−a(t

n2
a2
))/z e(b(t

n1
a1
)−b(t

n2
a2
))z

(1− vn1+1z) · · · (1− vn2
z)

, (4.63)

while φ(t
n1
a1

,t
n2
a2
)(x , y) = 0 otherwise.

Now let us do the analytic continuation.
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As all the functions Ψ
n,t

k
, see (3.4), can be estimated as

|Ψn,t

k
(x)| ≤ const · q|x |, x ∈ Z, (4.64)

for any q > 0 and v1, v2, . . . varying in a compact set, the weights (4.36) can be majorated by a

convergent series for v1, v2, . . . varying in a compact set. Further, the normalizing constant (det M)−1

is analytic as long as v j ’s are nonzero, see (4.61). Thus, the correlation functions of our measure are

analytic in v j ’s.

Set, for k = 0, . . . , n− 1,

fk(x) =
1

2πi

∮
dz z−x−1

(1− vn−kz)(1− vn−k+1z) · · · (1− vnz)
, (4.65)

where the integration contour includes the poles v−1
n−k

, . . . , v−1
n . Note that fk(x) is a linear combina-

tion of v x
n−k

, . . . , v x
n . Denote by G = [Gk,l]k,l=0,...,n−1

the Gram matrix

Gk,l =
∑

x∈Z fk(x)Ψ
n,t

l
(x). (4.66)

Then for v1 > v2 > . . . we have

Φ
n,t

k
(x) =

n−1∑

l=0

[G−1]k,l fl(x). (4.67)

Since the matrix M is triangular, G is also triangular. Its diagonal elements are easy to compute:

Gk,k = ea(t)vk+b(t)/vk v
yk+1

k
. Hence, (4.67) gives a formula for Φ’s that is analytic in v j ’s as long as

they stay away from zero. This implies that the corresponding expression for the correlation kernel

(3.3) is also analytic in v j ’s, and thus both sides of the determinantal formula for the correlation

functions can be analytically continued. Finally, it is not difficult to see that the functions (4.65)

span the space Vn given by (3.1), which implies the statement.

4.1 Some lemmas

In this subsection we state and prove the Lemmas used in the proof of Theorem 4.2.

Lemma 4.3. Let us define the function

ϕn(x , y) =

¨
v

y−x
n , y ≥ x ,

0, y < x .
(4.68)

Then the following recurrence relations holds

Fk,l+1(x , a, b) = (ϕN+1−l ∗ Fk,l)(x , a, b) (4.69)

and

Fk−1,l(x , a, b) = (ϕN+2−k ∗ Fk,l)(x , a, b). (4.70)

From (4.70) and ϕn(x , y) = ϕn(0, y − x) = ϕn(−y,−x) it follows

Fk−1,l(−x , a, b) =
∑

y∈Z Fk,l(−y, a, b)ϕN+2−k(y, x). (4.71)
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1(t i)
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2(t i)
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1
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D∗(t i)

eD(t i)

bD(t i) bD∗(t i)

Figure 4: A graphical representation of the summation domains that occurs in the next lemmas and

theorem. The bold lines passes through the border of the domains.

Proof of Lemma 4.3. We have

Fk,l(x , a, b) =
1

2πi

∮

Γ0

dzzx−1ebzea/z
(1− vNz) · · · (1− vN+2−kz)

(1− vNz) · · · (1− vN+2−lz)
. (4.72)

Then applying
∑

y≥x v
y−x

N+1−l
z y = zx/(1− vN+1−lz) (for |z| ≪ 1), we get that in the denominator we

have an extra factor, which corresponds to increasing l by one. Similarly, applying ϕN+2−k, the extra

factor in the denominator cancels the last one in the numerator, thus this is equivalent to decreasing

k by one.

We define the following domains, which will occurs several times in the following. A graphical

representation is in Figure 4. Let us denote the set of interlacing variables at time t i by

D(t i) = {xn
k
(t i), 1≤ n≤ Ni, 1≤ k ≤ n|xn+1

k
(t i)< xn

k
(t i)≤ xn+1

k+1
(t i)}. (4.73)

Then let
eD(t i) = {xn

k(t i) ∈ D(t i)|k ≥ 2}, bD(t i) = {xn
k(t i) ∈ D(t i)|n≤ Ni+1 − 1}, (4.74)

and

D∗(t i) = D(t i) \ {x
Ni

1 (t i)}, bD∗(t i) = D∗(t i) \ bD(t i). (4.75)

Lemma 4.4. We have the identity

det
h

Fk,l(x
Ni+1−l

1
(t i)− x

Ni+1−k

1
(t i−1), a, b)

i
1≤k,l≤Ni

= const
∑

eD(ti)

� Ni∏

n=2

det
�
ϕn(x

n−1
k
(t i), xn

l (t i))
�

1≤k,l≤n

�

× det
h

FNi+1−l ,1(x
Ni

k
(t i)− x l

1(t i−1), a, b)
i

1≤k,l≤Ni

(4.76)
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where we set ϕn(x
n−1
n , x) = 1.

Proof of Lemma 4.4. By changing the indices we get that l.h.s. of (4.76) is, up to a sign, equal to

det
h

FNi+1−l ,k(x
Ni+1−k

1
(t i)− x l

1(t i−1), a, b)
i

1≤k,l≤Ni

(4.77)

Using repeatedly the identity (4.69) we have

Fn,k(x , a, b) = (ϕNi+2−k ∗ · · · ∗ϕNi
∗ Fn,1)(x , a, b). (4.78)

Therefore,

(4.77) = det
h
(ϕNi+2−k ∗ · · · ∗ϕNi

∗ FNi+1−l ,1)(x
Ni+1−k

1 (t i)− x l
1(t i−1), a, b)

i
1≤i, j≤Ni

(4.79)

We write explicitly the convolution by introducing explicit summation variables as follows

(ϕNi+2−k ∗ · · · ∗ϕNi
∗ FNi+1−l ,1)(x

Ni+1−k

1
(t i)− x l

1(t i−1), a, b)

=
∑

x
Ni+1−k+n
n ,

1≤n≤k−1

� k−1∏

n=1

ϕNi+1−k+n(x
Ni−k+n
n (t i), x

Ni+1−k+n

n+1 (t i))
�

×FNi+1−l ,1(x
Ni

k
(t i)− x l

1(t i−1), a, b), (4.80)

where we used the fact that ϕm(x , y) = ϕm(x + c, y + c) for any c ∈ Z. By multi-linearity of the

determinant, we can take the sums and the factors ϕ’s out of the determinant with the result

(4.77) =
∑

xn
k
(ti),

2≤k≤n≤Ni

� Ni∏

n=2

n−1∏

k=1

ϕn(x
n−1
k
(t i), xn

k+1(t i))
�

× det
h

FNi+1−l ,1(x
Ni

j
(t i)− x l

1(t i−1), a, b)
i

1≤ j,l≤Ni

. (4.81)

The product of the ϕ’s is non-zero only if xn−1
k
(t i) ≤ xn

k+1
(t i). Applying Lemma 3.3 in [4] we can

further reduce the summation domain to eD(t i) without changing the result.

Finally, the product of the determinants of ϕ’s in the right-hand side of (4.76) is either 1 or 0

depending on whether the variables interlace (belongs to D(t i)) or not. This implies (4.76).

Lemma 4.5. We have the identity

∑

bD(ti )

� Ni+1∏

n=2

det
�
ϕn(x

n−1
k
(t i), xn

l (t i))
�

1≤k,l≤n

�

× det
h

FNi+1+1−l ,1(x
Ni+1

k
(t i+1)− x l

1(t i), a, b)
i

1≤k,l≤Ni+1

= det
h

F1,1(x
Ni+1

k
(t i+1)− x

Ni+1

l
(t i), a, b)

i
1≤k,l≤Ni+1

. (4.82)
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Proof of Lemma 4.5. By an analogue (essentially inverse) procedure as in the proof of Lemma 4.4,

we first get

(4.82) =
∑

xn
k
(ti),

2≤n≤Ni+1−1,
1≤k≤n

� Ni+1∏

n=2

n−1∏

k=1

ϕn(x
n−1
k
(t i), xn

k+1(t i))
�

× det
h

FNi+1+1−l ,1(x
Ni+1

k
(t i+1)− x l

1(t i), a, b)
i

1≤k,l≤Ni+1

. (4.83)

Now we insert by linearity the factor
∏Ni+1

n=l+1
ϕn(x

n−1
l
(t i), xn

l+1
(t i)) to terms FNi+1+1−l ,1(x

Ni+1

k
(t i+1)−

x l
1(t i), a, b) as well as the sum over the corresponding variables. The sums are carried out by using

(4.71), from which we get the r.h.s. of (4.82).

Lemma 4.6. Let us define

φn(x , y) = ϕn(x , y), φn(x
n−1
n , y) = v y

n . (4.84)

Then

v
xn

1
n det

�
ϕn(x

n−1
k

, xn
l )
�

1≤k,l≤n
= det

�
φn(x

n−1
k

, xn
l )
�

1≤k,l≤n
(4.85)

Proof of Lemma 4.6. It is a consequence of the fact that both determinants are zero if the variables

x
j

i
do not interlace and when they do, the matrices are upper-triangular with diagonal equal to zero

and with equal entries in the first n− 1 rows. The only difference is for the last row, where the

matrix in l.h.s. of (4.85) has entries 1 and r.h.s. of (4.85) has entries v
xn

l
n .

5 Asymptotic analysis

5.1 Flat initial conditions

To prove Theorem 2.2 we need the uniform convergence of the kernel in bounded sets as well as

bounds uniform in T . These results are provided in the following Propositions 5.1, 5.2, 5.3.

Let us define the rescaled and conjugate kernel by

K resc
T (u1, s1; u2, s2) = K((n1, t1), x1; (n2, t2), x2)T

1/3
et2(2L+R/2)2x2

et1(2L+R/2)2x1
(5.1)

where ni = n(ui), t i = t(ui), and

x i = [−2ni + v t i − si T
1/3]. (5.2)

Proposition 5.1 (Uniform convergence in a bounded set). Fix u1,u2, then for any fixed ℓ > 0, the

rescaled kernel K resc
T converges uniformly for (s1, s2) ∈ [−ℓ,ℓ]2 as

lim
T→∞

K resc
T (u1, s1; u2, s2) = S−1

v KA1
(S−1

h
u1,S−1

v s1; S−1
h

u2,S−1
v s2), (5.3)

with KA1
the kernel of the Airy1 process, see (2.25), and Sv,Sh are defined in (2.13).
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Proof of Proposition 5.1. First we consider the term coming from the second integral in (3.23),

namely

−T 1/3

2πi

∮

Γ1

dz
eRt1(1−z)+L t1/(1−z)

eRt2z+L t2/z

zn1+n2+x2

(1− z)n1+n2+x1+1

et2(2L+R/2)2x2

et1(2L+R/2)2x1
. (5.4)

Define the functions

H(z) = Rz+ L/z − (R/2− 2L) ln(z),

g0(z) = (π(θ) + θ)H(z),

g1(z,u) = −u(π′(θ) + 1)H(z) + u(1−π′(θ)) ln(z(1− z)),

g2(z,u, s) = u2π′′(θ)[H(z) + ln(z(1− z))] + s ln(z), (5.5)

from which we then set

f0(z) = g0(1− z)− g0(z),

f1(z) = g1(1− z,u1)− g1(z,u2)− g1(1/2,u1) + g1(1/2,u2),

f2(z) = g2(1− z,u1, s1)− g2(z,u2, s2)− g2(1/2,u1, s1) + g2(1/2,u2, s2),

f3(z) = − ln(1− z). (5.6)

With these notations we get

(5.4) =
−T 1/3

2πi

∮

Γ1

dzeT f0(z)+T2/3 f1(z)+T1/3 f2(z)+ f3(z). (5.7)

The function f0(z) has a double critical point at z = 1/2 and the contribution for large T will be

dominated by the one close z = 1/2. Thus we need to do series expansions around the critical point.

Computations leads to

f0(z) =
1

3
κ0(z − 1/2)3+ O ((z− 1/2)4),

f1(z) = −(u1 − u2)κ1(z − 1/2)2+O ((z− 1/2)3),

f2(z) = −2(s1+ s2)(z − 1/2)+ O ((z− 1/2)2),

f3(z) = ln(2) + O ((z− 1/2)) (5.8)

with

κ0 = 8(8L+R)(π(θ)+ θ), κ1 = (R+ 4L)(π′(θ) + 1) + 4(1−π′(θ)). (5.9)

First we choose Γ1 to be a steep descent path3 for f0(z). Important for the later analysis is that

the chosen steep descent path is, close to the critical point, the steepest descent one. We consider

Γ1 = γ ∨ γc ∨ γ̄, where γ = {1/2 + e−iπ/3ξ, 0 ≤ ξ ≤ 1/2}, γ̄ its image with respect to complex

conjugation, and γc = {1−1/2eiφ,π/3≤ φ ≤ 2π−π/3}. We also have f0(z) = SR(z)R(π(θ)+θ)+

SL(z)L(π(θ) + θ), with

SR(z) = 1− 2z +
1

2
ln(z/(1− z)), SL(z) =

1

1− z
−

1

z
− 2 ln(z/(1− z)). (5.10)

3For an integral I =
∫
γ

dzet f (z), we say that γ is a steep descent path if (1) Re( f (z)) is maximum at some z0 ∈ γ:

Re( f (z)) < Re( f (z0)) for z ∈ γ \ {z0}, and (2) Re( f (z)) is monotone along γ except at its maximum point z0 and, if γ is

closed, at a point z1 where the minimum of Re( f ) is reached.
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On γ, simple computations leads to

dRe(SR(z))

dξ
= −

8ξ2(1+ 2ξ2)

((1+ ξ2) + 2ξ2)((1− ξ)2 + 2ξ2)
,

dRe(SL(z))

dξ
= −

64ξ2((1+ 2ξ2)2− 12ξ4)

((1+ ξ2) + 2ξ2)2((1− ξ)2+ 2ξ2)2
(5.11)

which are both strictly less than 0 for ξ ∈ (0,1/2). Now consider the part of γc with φ ∈ [π/3,π].

Then

dRe(SR(z))

dφ
= −

4 sin(φ)(1− cos(φ))

5− 4 cos(φ)
,

dRe(SL(z))

dφ
= −

32 sin(φ)(1− cos(φ))(2− cos(φ))

(5− 4 cos(φ))2
(5.12)

which are both strictly less than 0 for φ ∈ [π/3,π). For the piece of γc with φ ∈ (π, 2π− π/3],
(5.12) is strictly positive, which is right since when φ increases we go closer to the critical point.

Therefore the chosen Γ1 is a steep descent path for f0(z).

Take any δ > 0 and set Γδ1 = {z ∈ Γ1||z − 1/2| ≤ δ}. Then, if in (5.7) we integrate only along

Γδ1 instead of integrating along Γ1, the error made is just of order O (e−cT ) for some c > 0 (more

exactly, c ∼ δ3 for δ small). Thus we now consider the integral on Γδ1 only. There, we can use the

above series expansions to obtain

−2T 1/3

2πi

∫

Γδ1

dze
1

3
κ0T(z−1/2)3+(u2−u1)κ1T2/3(z−1/2)2−2(s1+s2)(z−1/2)

×eO
�

T(z−1/2)4 ,T2/3(z−1/2)3 ,T1/3(z−1/2)2 ,(z−1/2)
�

. (5.13)

The difference between (5.13) and the same integral without the error term can be bounded by

applying |ex − 1| ≤ |x |e|x | to O (· · · ). Thus, this error term can be bounded by

2T 1/3

2π

∫

Γδ1

dz

���e
1

3
c0κ0T(z−1/2)3+(u2−u1)c1κ1T2/3(z−1/2)2−2c2(s1+s2)(z−1/2)

×O
�

T (z− 1/2)4, T 2/3(z − 1/2)3, T 1/3(z − 1/2)2, (z − 1/2)
���� (5.14)

for some c0, c1, c2 which can be taken as close to 1 as needed by setting δ small enough. Then, by

the change of variable T 1/3(z−1/2) = w one gets that this error term is of order O (T−1/3) (what is

needed is just c0 > 0).

It remains to consider the leading term, namely (5.13) without the error terms. By extending

the integral to infinity by continuing the two small straight segments forming Γδ1 , the error made

is of order O (e−cT ). Thus we obtained that (5.4) is, up to an error O (e−cT , T−1/3) uniform for

s1, s2 ∈ [−ℓ,ℓ]2, equal to

−2T 1/3

2πi

∫

γ∞

dze
1

3
κ0T(z−1/2)3+(u2−u1)κ1T2/3(z−1/2)2−2(s1+s2)(z−1/2), (5.15)
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where γ∞ is a path going from eiπ/3∞ to e−iπ/3∞. By the change of variable w = (κ0T )1/3(z−1/2),

we get

(5.15) =
−1

2πi

∫

γ∞

dw
2

κ
1/3
0

e
1

3
w3+(u2−u1)w

2κ1/κ
2/3
0 −2(s1+s2)w/κ

1/3
0 (5.16)

= S−1
v Ai

�
S−2

h
(u2 − u1)

2 + S−1
v (s1 + s2)

�

×e
2

3
S−3

h
(u2−u1)

3+S−1
v S−1

h
(u2−u1)(s1+s2)

with Sv and Sh defined in (2.13). Here we used the Airy function representation

−1

2πi

∫

γ∞

dvev3/3+av2+bv = Ai(a2 − b)exp(2a3/3− ab). (5.17)

To finish the proof, we need to consider the term coming from the first integral in (3.23), namely

−
T 1/3

2πi

∮

Γ0

dw
1

wx1−x2+1

�
w

1−w

�n2−n1

e(Rw+L/w)(t1−t2)
et2(2L+R/2)2x2

et1(2L+R/2)2x1
. (5.18)

This can be rewritten as

(5.18) =
−T 1/3

2πi

∮

Γ0

dw

w
eT2/3(p0(w)−p0(1/2))+T1/3(p1(w)−p1(1/2)) (5.19)

with

p0(w) = (u2− u1)(π
′(θ) + 1)H(w)− (u2 − u1)(1−π′(θ)) ln(w(1−w)),

p1(w) = −(u2
2− u2

1)
π′′(θ)

2
[H(w) + ln(w(1−w))]− (s2 − s1) ln(w), (5.20)

where H(w) is the function defined in (5.5). Remark that we need to do the analysis only for

u2 > u1. The function p0 has critical point at w = 1/2. The series expansions of p0 and p1 around

w = 1/2 are

p0(w) = p0(1/2)+κ1(u2 − u1)(w− 1/2)2+ O ((w − 1/2)3),

p1(w) = p1(1/2)+ 2(s1 − s2)(w− 1/2)+ O ((w − 1/2)2). (5.21)

We choose as path Γ0 = {12 eiφ ,φ ∈ (−π,π]}. This is a steep descent path for p0. In fact, for w ∈ Γ0,

Re(H(w)) = (R/2+ 2L) cos(φ) + (R/2− 2L) ln(2), (5.22)

Re(− ln(w(1−w))) = ln(2)− ln |1−w| = 2 ln(2)− 1

2
ln(5− 4 cos(φ)),

which are decreasing when cos(φ) decreases. Thus, we can integrate only on Γδ0 = {w ∈ Γ0||w −
1/2| ≤ δ} and, for a small δ, the error term is just of order O (e−cT2/3

) with c > 0 (c ∼ δ2 as δ≪ 1).

The integral over Γδ0 is then given by

−2T 1/3

2πi

∫

Γδ0

dweκ1(u2−u1)(w−1/2)2 T2/3+2(s1−s2)(w−1/2)T1/3

×eO ((w−1/2)3 T2/3,(w−1/2)2 T1/3 ,(w−1/2)). (5.23)
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As above, we use |ex−1| ≤ |x |e|x |, to control the difference between (5.23) and the same expression

without the error terms. By taking δ ≪ 1 and the change of variable w̃ = (w − 1/2)T 1/3, we get

that this difference is of order O (T−1/3) uniformly for s1, s2 in a bounded set. Once we have taken

away the error terms in (5.23), we extend the integral to 1/2± i∞. By this we make only an error

of order O (e−cT2/3

). The integration path can be deformed to 1/2+ iR without passing through any

poles, therefore by setting w = 1/2+ iyT−1/3 we get

−
1

π

∫R dye−κ1(u2−u1)y
2+2(s1−s2) = −

1
p
πκ1(u2 − u1)

exp

�
−
(s2 − s1)

2

κ1(u2 − u1)

�

= −
S−1

vÆ
4π(u2− u1)S

−1
h

exp

 
−
(s2 − s1)

2S−2
v

4(u2− u1)S
−1
h

!
. (5.24)

Since all the error terms in the series expansions are uniform for (s1, s2) ∈ [−ℓ,ℓ]2, the result of the

Proposition is proven.

Proposition 5.2 (Bound for the diffusion term of the kernel).

For any s1, s2 ∈R and u2 − u1 > 0 fixed, the bound
����
et2(2L+R/2)2x2

et1(2L+R/2)2x1

T 1/3

2πi

∮

Γ0

dw
1

wx1−x2+1

�
w

1−w

�n2−n1

e(Rw+L/w)(t1−t2)

����

≤ const e−|s1−s2| (5.25)

holds for T large enough and const independent of T . The const is uniform in s1, s2 but not in u2−u1.

Proof of Proposition 5.2. From the analysis in Proposition 5.1, we just need a bound for |s2− s1| ≥ ℓ,
ℓ > 0 fixed. We start with (5.19) but to obtain a decaying bound for large |s2 − s1| we consider

another path Γ0.

Consider an ǫ with 0< ǫ≪ 1 and set Γ0 = {w = ρeiφ ,φ ∈ [−π,π)}, with

ρ =





1

2
+
(s2−s1)T

−1/3

(u2−u1)κ1
, if |s2− s1| ≤ ǫT 1/3,

1

2
+ ǫ

(u2−u1)κ1
, if s2 − s1 ≥ ǫT 1/3,

1

2
− ǫ

(u2−u1)κ1
, if s2 − s1 ≤ −ǫT 1/3.

(5.26)

We have d

dφ
Re(w− 1

2
ln(w)) = −ρ sin(φ), d

dφ
Re(1/w+2 ln(w)) = − 4

ρ
sin(φ), and d

dφ
Re(− ln(w(1−

w))) = − ρ sin(φ)

1−2ρ cos(φ)+ρ2 . Thus Γ0 is a steep descent path for p0(w). Moreover, since on Γ0 we have

Re(ln(w)) = ln(ρ) is a constant, Γ0 is also a steep descent path for p0(w) plus the term of p1(w)

proportional to s2 − s1. Let, for a small δ > 0 fixed, Γδ0 = {w = ρeiφ ,φ ∈ (−δ,δ)}. Then

(5.19) = eT2/3(p0(ρ)−p0(1/2))+T1/3(p1(ρ)−p1(1/2)) (5.27)

×
�
O (e−cT2/3

) +
−T 1/3

2πi

∫

Γδ0

dw

w
eT2/3(p0(w)−p0(ρ))+T1/3(p1(w)−p1(ρ))

�

for some c > 0 (for small δ, c ∼ δ2). On Γδ0 the si-dependent term in Re(p1(w)− p1(ρ)) is equal to

zero and the rest is of order O (φ2). Therefore the last integral can be bounded by

T 1/3

2π

∫ δ

−δ

dφ

ρ
e
−1

2
T2/3(u2−u1)

�
(π′(θ )+1)(Rρ+L/ρ)+(1−π′(θ ))ρ/(1−ρ)2

�
φ2+O (T2/3φ4,T1/3φ2)

. (5.28)
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For δ small enough, and T large enough, the terms O (T 2/3φ4) and O (T 1/3φ2) are both controlled

by the first term in the exponential. Then, by the change of variable T 1/3φ =ψ one sees that r.h.s.

of (5.28) is bounded by a constant, uniformly in T .

What remains is therefore to bound the first term in the r.h.s. of (5.27). By the choice in (5.26) of

ρ, |ρ− 1/2| ≤ ǫ/((u2 − u1)κ1)≪ 1 for ǫ small enough which can be still chosen. Series expansion

for ρ close to 1/2 leads to

p0(ρ)− p0(1/2) = −2(s2− s1)(ρ− 1/2)T 1/3(1+O (ρ− 1/2))

+ κ1(u2 − u1)(ρ− 1/2)2T 2/3(1+ O (ρ− 1/2)). (5.29)

By (5.26) we obtain the bounds

p0(ρ)− p0(1/2) = −
(s2− s1)

2

(u2− u1)κ1

(1+ O (ǫ)), if |s2 − s1| ≤ ǫT 1/3, (5.30)

p0(ρ)− p0(1/2) = −
|s2− s1|ǫT 1/3

(u2 − u1)κ1

(1+ O (ǫ)), if |s2 − s1| ≥ ǫT 1/3.

Combining the above result we have

|(5.25)| ≤
h
O (e−cT2/3

) + O (1)
ih

e
− (s2−s1)

2

(u2−u1)κ1
(1+O (ǫ))

+ e
− |s2−s1|ǫT1/3

(u2−u1)κ1
(1+O (ǫ))i

. (5.31)

Thus by taking an ǫ small enough and then T large enough the bound (5.31) implies the statement

to be proven, since for any α > 0, there exists a Cα <∞ such that e−α(s2−s1)
2 ≤ Cαe−|s2−s1|.

Proposition 5.3 (Bound on the main term of the kernel).

Let u1,u2 be fixed. Then, for any (s1, s2) ∈ [−ℓ,∞)2, the bound
�����
−T 1/3

2πi

∮

Γ1

dz
eRt1(1−z)+L t1/(1−z)

eRt2z+L t2/z

zn1+n2+x2

(1− z)n1+n2+x1+1

et2(2L+R/2)2x2

et1(2L+R/2)2x1

�����

≤ const e−(s1+s2) (5.32)

holds for T large enough, where const is a constant independent of T .

Proof of Proposition 5.3. Let ℓ̃ be a constant independent from T , which can still be chosen large if

needed. For (s1, s2) ∈ [−ℓ, ℓ̃]2, the result is a consequence of the estimates in the proof of Propo-

sition 5.1. Therefore we can consider just (s1, s2) ∈ [−ℓ,∞)2 \ [−ℓ, ℓ̃]2. Introduce the notation

s̃i = (si + ℓ+ ℓ̃)T
−2/3, which then belongs to [ℓ̃T−2/3,∞).

The integral to be bounded is

−T 1/3

2πi

∮

Γ1

dzeT f0(z)+T2/3 f1(z)+T1/3 f2(z)+ f3(z) (5.33)

where f1(z) and f3(z) are given in (5.6), and f0(z) and f2(z) are just slight modifications of the

functions in (5.6), namely

f0(z) = (π(θ)+ θ)(H(1− z)−H(z)) + s̃1 ln(2(1− z))− s̃2 ln(2z),

f2(z) = g2(1− z,u1,−ℓ− ℓ̃)− g2(z,u2,−ℓ− ℓ̃) (5.34)

−g2(1/2,u1,−ℓ− ℓ̃) + g2(1/2,u2,−ℓ− ℓ̃).
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We put s̃1 and s̃2 in f0(z), because they are not restricted to be of order T−2/3 (as it was the case in

Proposition 5.1).

First we need to find a steep descent path for f0(z). We choose it as Γ1 = {1−ρeiφ ,φ ∈ [−π,π)}
with 0< ρ ≤ 1/2, chosen as follows,

ρ =

¨
1

2
− ((s̃1 + s̃2)/κ0)

1/2, s̃1 + s̃2 ≤ ǫ,
1

2
− (ǫ/κ0)

1/2, s̃1 + s̃2 ≥ ǫ,
(5.35)

for some small ǫ > 0 to be fixed later. Recall that the s̃i > 0.

To see that Γ1 is a steep descent path, we consider f0(z) term by term. First consider φ ∈ [0,π], the

case φ ∈ [−π, 0] is obtained by symmetry. The term proportional to R(π(θ) + θ) satisfies

d

dφ
Re(1− 2z + 1

2
ln(z/(1− z))) = −

ρ(3− 8ρ cos(φ) + 4ρ2) sin(φ)

1− 2ρ cos(φ) +ρ2
≤ 0 (5.36)

for all 0< ρ ≤ 1/2, with equality only at φ = 0,π. The term proportional to L(π(θ) + θ) satisfies

d

dφ
Re(1/(1− z)− 1/z − 2 ln(z/(1− z))) = −

((1− 2ρ cos(φ) + 2ρ2)2−ρ2) sin(φ)

(1− 2ρ cos(φ) +ρ2)2ρ
≤ 0 (5.37)

for all 0 < ρ ≤ 1/2, with equality only at φ = 0,π. Finally, Re(ln(1− z)) is constant on Γ1 and

−Re(ln(2z)) = − ln(2|z|) is strictly decreasing while moving on Γ1 with |φ| increasing.

For a small δ > 0, Γδ1 = {1−ρeiφ ,φ ∈ (−δ,δ)}. We also define

Q(ρ) = exp
�

Re
�

T f0(1−ρ) + T 2/3 f1(1−ρ)+ T 1/3 f2(1−ρ)
��

. (5.38)

Since Γ1 is a steep descent path of f0(z), the integral over Γ1 \ Γδ1 is bounded by

Q(ρ)O (e−cT ) (5.39)

for some c > 0 independent of T . The contribution of the integral over Γδ1 is bounded by

Q(ρ)

����
−T 1/3

2πi

∫

Γδ1

dzeT( f0(z)− f0(1−ρ))+T2/3( f1(z)− f1(1−ρ))+T1/3( f2(z)− f2(1−ρ))+ f3(z)

���� (5.40)

The series expansion around φ = 0 is

Re( f0(1−ρeiφ)− f0(1−ρ)) = −γ1φ
2(1+ O (φ)) (5.41)

with

γ1 =
s̃2ρ

2(1−ρ)2
+
(π(θ) + θ)(1− 2ρ)

(1−ρ)2

�
Rρ(3− 2ρ)

4
+

L(1−ρ+ 2ρ2)

3ρ(1−ρ)

�
, (5.42)

and

Re( f1(1−ρeiφ)− f1(1−ρ)) = γ2φ
2(1+ O (φ)), (5.43)

with

γ2 = (u2 − u1)κ1 + O (ρ− 1/2). (5.44)
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Finally, Re( f2(1− ρeiφ)− f2(1− ρ)) = O (φ2). Thus, by the change of variable z = 1− ρeiφ , the

above estimates, and by setting γ= γ1 + γ2T−1/3, we get

(5.40) = Q(ρ)
T 1/3ρ

2π(1−ρ)

∫ δ

−δ
dφe−γφ

2 T(1+O (φ))(1+O (T−1/3)). (5.45)

By choosing δ small enough (independent of T) and then T large enough, the factors with the error

terms can be replaced by 1/2, thus

(5.40)≤ Q(ρ)
T 1/3ρ

2π(1−ρ)

∫ δ

−δ
dφe−γφ

2 T/2 ≤ Q(ρ)
1

p
2πγT 1/3

. (5.46)

Remark that, the worse case is when γ becomes small, and this happens when ρ → 1/2, i.e., it is

the case of small values of s̃1 + s̃2. But even in this case, γ1T 1/3 ∼ (s1 + s2 + 2ℓ+ 2ℓ̃)1/2 ≥ (2ℓ̃)1/2.

Since γ2 is of order one, γT 1/3 = γ1T 1/3 + γ2 > 0 for ℓ̃ large enough. So, for by setting ℓ̃ large

enough, (5.40)≤ constQ(ρ). This estimate, combined with (5.39), implies that the Proposition will

be proven by showing that Q(ρ)≤ const e−(s1+s2). Since 1−ρ is close to 1/2, we can apply the series

expansion of fi around z = 1/2. The expansion of f1 is in (5.8), while the one of f2 is the same as

in (5.8) with s1 + s2 = −2ℓ− 2ℓ̃. Finally,

f0(z) =
1

3
κ0(z − 1/2)3(1+ O (z − 1/2)2)− (s̃1 + s̃2)(z− 1/2)(1+ O (z− 1/2)). (5.47)

First consider s̃1 + s̃2 ≤ ǫ. Then, with ρ chosen as in (5.35), we get

Q(ρ) = e
−2

3
T(s̃1+s̃2)

3/2κ
−1/2
0 T(1+O (pǫ))

e(u2−u1)κ1(s̃1+s̃2)T
2/3κ−1

0 (1+O (
p
ǫ))

×e−2(ℓ+ℓ̃)(s̃1+s̃2)κ
−1/2
0 T1/3(1+O (pǫ))

= e
−2

3
(s1+s2+2ℓ+2ℓ̃)3/2κ

−1/2
0 (1+O (pǫ))

e(u2−u1)κ1(s1+s2+2ℓ+2ℓ̃)κ−1
0 (1+O (

p
ǫ))

×e−2(ℓ+ℓ̃)(s1+s2+2ℓ+2ℓ̃)κ
−1/2
0 T−1/3(1+O (pǫ)). (5.48)

Recall that s1 + s2 + 2ℓ+ 2ℓ̃ ≥ 2ℓ̃≫ 1 for ℓ̃≫ 1. Therefore by choosing ℓ̃ large enough (depending

only on the coefficients κ0,κ1,u1,u2 which are however fixed), all the terms are controlled by the

first one, i.e.,

Q(ρ)≤ e
−1

3
(s1+s2+2ℓ+2ℓ̃)3/2κ

−1/2
0 ≤ e

−1

3
(s1+s2)

3/2κ
−1/2
0 . (5.49)

Since this decays more rapidly that exp(−(s1 + s2)), the Proposition holds for s̃1 + s̃2 ≤ ǫ.
The last case is s̃1 + s̃2 ≥ ǫ. In this case, with ρ chosen as in (5.35), we obtain

Q(ρ) = eTκ
−1/2
0 (1+O (pǫ))pǫ(ǫ/3−(s̃1+s̃2))e(u2−u1)κ1κ

−1
0 ǫT2/3(1+O (pǫ))

×e−4(ℓ+ℓ̃)κ
−1/2
0 ǫT1/3(1+O (pǫ)). (5.50)

But now, ǫ/3− (s̃1 + s̃2) ≤ −2

3
(s̃1 + s̃2), thus the first term in the exponential is, up to a positive

constant,−pǫT 1/3(s1+ s2+2ℓ+2ℓ̃), which dominates the second term ∼ ǫT 2/3 ≤ s1+ s2+2ℓ+2ℓ̃,

and it also dominates the third term. Therefore, for any choice of ǫ and ℓ̃ made before, we can take

T large enough such that

Q(ρ)≤ e−
1

3

p
ǫT1/3(s1+s2), (5.51)
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which ends the proof of the Proposition.

Proof of Theorem 2.2. The proof of Theorem 2.2 is the complete analogue of Theorem 2.5 in [3].

The results in Propositions 5.1,5.3,5.4, and 5.5 in [3] are replaced by the ones in Proposi-

tion 5.1, 5.2, 5.3. The strategy is to write the Fredholm series of the expression for finite T and,

by using the bounds in Propositions 5.2 and 5.3, see that it is bounded by a T -independent and

integrable function. Once this is proven, one can exchange the sums/integrals and the T →∞ limit

by the theorem of dominated convergence. For details, see Theorem 2.5 in [3].

5.2 Sketch of the result (2.23)

With the rescaling (2.9) and (2.19), the rescaled kernel writes

K resc(u1, s1; u2, s2) = K((n1, t1), x1; (n2, t2), x2)T
1/3. (5.52)

The main part of the kernel (the second term in (3.17)) writes

T 1/3

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
eT f0(w)+T2/3 f1(w;u1)+T1/3 f2(w;u1,s1)

eT f0(z)+T2/3 f1(z;u2)+T1/3 f2(z;u2 ,s2)

1

w(w − z)
(5.53)

with

f0(w) = (π(θ) + θ)
�

Rw + L

w

�
+ (π(θ)− θ) ln

�
1−w

w

�
−σ0 ln(w),

f1(w; ui) = −
�
(π′(θ) + 1)

�
Rw+ L

w

�
+ (π′(θ)− 1) ln

�
1−w

w

�
−σ1 ln(w)

�
ui ,

f2(w; ui , si) =
�

1

2
π′′(θ)

�
Rw + L

w
+ ln

�
1−w

w

��
−σ2

�
u2

i + si ln(w). (5.54)

The parameter µ is actually the position of the double critical point of f0(w). Series expansions

gives

f0(w) = f0(µ)−
κ0

3
(w−µ)3 +O ((w−µ)4),

f1(w; u1) = f1(µ; u1)− u1κ1(w −µ)2+ O ((w −µ)3), (5.55)

f2(w; u1, s1) = f2(µ; u1, s1)−
�
κ2

1u2
1

κ0

−
s1

µ

�
(w −µ)+ O ((w −µ)2).

The terms f1(µ; ui) and f2(µ; ui, si) cancel out by an appropriate conjugation of the kernel (5.53).

We denote by ≃ an equality up to conjugation. Thus, asymptotically, (5.53) goes to

T 1/3

µ(2πi)2

∮

Γ0

dw

∮

Γ1

dz

w − z

e−κ0(w−µ)3T/3−u1κ1(w−µ)2T2/3+T1/3(w−µ)(s1/µ−κ2
1u2

1/κ0)

e−κ0(z−µ)3 T/3−u2κ1(z−µ)2 T2/3+T1/3(z−µ)(s2/µ−κ2
1u2

2/κ0)
(5.56)

With the change of variable (w−µ)(κ0T )1/3 =W , (z −µ)(κ0T )1/3 = Z , we then obtain

(5.56) =
κ
−1/3
0

µ(2πi)2

∫
dW

∫
dZ

1

W − Z

e
1

3
Z3+u2Z2κ1/κ

2/3
0 −Z(s2/µ−κ2

1u2
2/κ0)/κ

1/3
0

e
1

3
W 3+u1W2κ1/κ

2/3
0 −W (s1/µ−κ2

1u2
1/κ0)/κ

1/3
0

. (5.57)
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Let us denote by S̃v = µκ
1/3
0

and S̃h = κ
−1
1
κ

2/3
0

the vertical and horizontal scaling. Then

(5.57) = S̃−1
v KA2

(S̃−1
h

u1, S̃−1
v s1; S̃−1

h
u2, S̃−1

v s2) (5.58)

where KA2
is the extended Airy kernel associated to the Airy2 process. An asymptotic analysis of

large deviations similar to Propositions 5.2 and 5.3 above would then lead to the result of (2.23).
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