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1 Introduction and main results

Let {X1,---,Xn} be a set of independent random variables, puy = EXp, 1 < k < N. Let
R = (Ry, -+ ,Rn) be arandom vector independent of Xy, .-, Xy, such that P(R =r) = 1/N!
for any permutation r = (r1,--- ,ry) of the numbers 1,---, N, and put S, = Z;‘Zl Xp;,1 <
n < N, that is for a sum of n random variables chosen without replacement from the set
{X1, -+, XN} with equal probabilities.

In the situation that Xy = ug,1 < k < N, are (nonrandom) real numbers, the sample sum
S, has been studied by a number of authors. The asymptotic normality was established by
Erdss and Rényi (1959) under quite general conditions. The rate in the Erdés and Rényi central
limit theorem was studied by Bikelis (1969) and later Hoglund (1978). An Edgeworth expansion
was obtained by Robinson (1978), Bickel and van Zwet (1978), Schneller (1989), Babu and Bai
(1996) and later Bloznelis (2000a, b). Extensions to U-statistics and, more generally, symmetric
statistics can be found in Nandi and Sen (1963), Zhao and Chen (1987, 1990), Kokic and Weber
(1990), Bloznelis and Gotze (2000, 2001) and Bloznelis (2003).

In contrast to rich investigations for the case Xy = ug,1 < k < N, are (nonrandom) real
numbers, there are only a few results concerned with the asymptotics of general S,, discussed in
this paper. von Bahr (1972) showed that the distribution of S, /v/VarS,, may be approximated
by a normal distribution under certain mild conditions. The rate of the normal approximation
has currently been established by Zhao, Wu and Wang (2004), in which the paper improved
essentially earlier work by von Bahr (1972). Along the lines of Zhao, Wu and Wang (2004),
this paper discusses Edgeworth expansions for the distribution of S, /v/VarS,,. Throughout the
paper, let

N

N N
1 2 1 j 1 J
M2 = o /}1 EXy EXy,  oj= kEI(EXk)ja Pi=w El:E(Xk)v

for j =1,2,3,4, and
p=n/N, g=1-—p, b=1-— pas.
Theorem 1. Suppose that oy =0 and Bs = 1. Then, for all1 <n < N,
sup ‘P(Sn/\/% <zx)-— Gn(x)‘
<C <A1n + (nq)_l) + 3 /ng log (ng) exp { — ngdn}, (1)
where C is an absolute constant,

B3 — 3py12 + 2p°a
Gn(z) = ®(z) — . 6\/%21)3/2 3(1),/,(5U)>

with ®(x) being a standard normal distribution,

N

> B(X) - pEXy),
k=1

b2 —1
Ay, = (nb)_1a4 + (nb°)
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and

N
i Eeith
N
k=1

)

‘ 1

oy = 1-— sup
S0b/(9L0)<[t|<16v/nb

where Lo = % Sow BIXk]? and &y is so small that 19262 + 2459 < 1 — cos(1/16).

Property (1)) improves essentially a result of Mirakhmedov (1983). The related result in Theorem
1 of Mirakhmedov (1983) depends on mazi<j< NEX,?. Note that it is frequently the case that
Nt Z]k,\[:l EX} is bounded, but max;<x<y EX; tends to co. Also note that Corollary 1 of
Mirakhmedov (1983) requires lim;_.oo| Ee®**| < e < 1. This condition is quite restrictive since
it takes away the most interesting case that the X are all degenerate.

When X, = pg, 1 < k < N, are (nonrandom) real numbers, it is readily seen that ap = 1, b = g,
_ _ _ 1 N 3
a3 =33 =712 = N Ek:l Hs

K

1
Ay + (ng)~! <3 (ng)™? N

i\

In this case, the property (1) reduces to

up | P(S,/ /g < 2) = G (@)

N
1
< C(ng)™t 5= Y i +3/ng log (ng) exp { —ngdn},
k=1

where Gy, = ®(x)+ 6p\;niq + SN | 13 ®"(x), which gives one of main results in Bloznelis (2000a,
b).

We next give a result complementary to Theorem[1. The result is better than Theorem [T under
certain conditions such as some of the X} ’s are non-degenerate random variables and ¢ is close
to 0.

Theorem 2. Suppose that oy =0 and Bs = 1. Then, for all1 <n < N,

sup | P(S,/Vnb < z) — Gp(z)| < CAgy+3vnlognexp{ —ndin}, (2)

where C is an absolute constant, Gy, (z), Lo and &y are defined as in Theorem!1, Ao, = (nb?)~1 B4
and

1 N
Oy = 1-— sup — ‘Ee’txk‘.
sob/(9L0)<lt1<16vm0 N 11

In the next section, we prove the main results. Throughout the paper we shall use C, Cy,Co, ...
to denote absolute constants whose value may differ at each occurrence. Also, I(A) denotes the
indicator function of a set A, §(A) denotes the number of elements in the set A, >, denotes
S ., and [], denotes []n_,. The symbol i will be used exclusively for /—1.
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2 Proofs of Theorems

Let pr = EX) and U(t) = FEexp{itS,/vnb}. Recall oy = 0 and 2 = 1. As in (4) of Zhao, Wu
and Wang (2004),

(1) = [Ba(p)]”" /le I I (3)
<m\/ng k

where B, (p) = v2mnqGn(p), Gn(p) = V2rClp™qN ", X} = X}, — pus, and

B _apy ippyt iqy itXf;}
pk(¢,t)—lep{ N M}+peXp{m+m :

The main idea of the proofs is outlined as follows. We first provide the expansions and the
basic properties for [[, Epi(t,t) in Lemmas [114. In Lemma 5, the idea in von Bahr (1972) is
extended to give an expansion of ¥(t) for the case n/N > 1/2. The proofs of Theorems/1 and
are finally completed by virtue of the classical Esseen’s smoothing lemma.

In the proofs of Lemmas [1H4, we assume that A, < 1/16 and ng > 256, where Ay, is defined
as in Theorem [1. Throughout this section, we also define,

- _ i3f(’(/)’t) —( 2 2)/
h(ip,t) = l;IEpk(dJ,t) and g(zp,t)_<1+W>e V)2,

where f(1,t) = Ap® + 3A19t2 + Aqt3, with

q—p 4 (1 —2pa2)\/pq

_ 2192
Ay = ’ = A_ﬁs 3py12 + 2pTas

Lemma 1. For |¢| < (ng)'/*/4 and |t| < Al_nl/4/4, we have
AW, 1) = g, 1) < ClA1n + (ng)7)(s" + s%) exp{~5?/3}, ()
where s* = 2 + 2.

Proof. Define a sequence of independent random vectors (Ug, Vi), 1 < k < N, by the conditional
distribution given X; as follows:

P(Uy, = —p//pa, Vi = —pu//pb| X3) = q,
P(Ux = q/v/pd, Vi = X}:/\/pb| X§) = p.

Let Wy = U + tVi. As in Lemma 1 of Zhao, Wu and Wang (2004), tedious but simple
calculations show that

EWy = 0, Y EW;=N@ +1), > EW} =N f(ut),
k k

> EW
k

IN

8> E(WUR +t'Vi) < 8N*(¥/(ng) +t*Ayy). (6)
k
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Furthermore, if we let B2 =Y, EWZ, Lin = > E]Wk\j/B,%, Jj = 3,4, then

Ly = (ZEW ) /B < Lav < 8((n) 7+ A, (7)

and whenever || < (ng)"/*/4 and |t| < A_1/4/4,

S = \/m < Lo 1/4[ (¢4/(nq) +t4A1n)] 1/4 1/4/2' (8)
Now, by recalling that W}, are independent r.v.s and noting that
h(h, t) = Bel e WilVN — pets T Wa/Bn

it follows from (7)-(8) and the classical result (see, for example, Theorem 8.6 in Bhattacharya
and Ranga Rao (1976)) that, for || < (ng)"/*/4 and |t| < Al_nl/4/47

i3

6vVN
A, 1) ( 6B3 ZEWk) -

w0~ (14 f<w,t>)e—82/2

< C(Lan + L3y)(s* + s%)e /3
< C[Ap, + (ng) 7 (s* + %) exp{—s?/3}.
This proves (5) and hence completes the proof of Lemma (1 O

Lemma 2. For || < (nq)'/*/4 and |t| < 1/4, we have

dh(y,t) dg(w,t)’
dt dt

< C(L+92) ((ng) ™+ Agy) e /4 (9)

Proof. We first show that if [¢| < (ng)'/*/4 and |t| < 1/4, then

AW = ’dh<w,t>+<t+ i df(w,t)>h(w7t)'

dt 6V N dt
< O +9¢" ((ng) ™ + Aw) (¥, )] (10)

To prove (10), define (U, Vi) and Wy, = Uy + tVi as in Lemma Recall that h(y,t) =
Eexp{iY_, Wi/V/N}. It is readily seen that

dh(,t)  ih(y,t)
i - UN %:INk, (11)

-1
where Iy, = [E exp{iWk/\/N}} E [Vk exp{iWk/\/N}} . Recall ng > 256. It follows from
(19) and (20) in Zhao, Wu and Wang (2004) that for 1| < (nq)"/*/4 and |t| < 1/4,

[E exp{iWk/\/ﬁ}] g 01N (? +t2EV2), (12)
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where |61| <1 and N~!(y?+t2EV}?) < 1/4. This, together with Taylor’s expansion of ', yields
that (recall EV}, = 0)

i

1
‘INk— \/NEVkW;H—ﬁEVkW,f
3 Y2+ 2EV2 [ 1 1
<" _F 3 k E —|EV,W2| ). 13
< e EIVallWel” + N \/N‘ VWil + 5 [ EVAWE| (13)

As in the proof of (6), for |t| < 1/4,

SCEVHIWHE < Cc+ W)Y EUE+ VY
k k

< COL+[P)N? [(ng) ' + A, (14)

> (W* + EV)| EVi Wi C(1+[¥[*)> 1+ EV2)(EU; + EV})
k k

C(L+[9P) Y 1+ EV)

k
C(L+ [YP)N?[(ng) ™" + Ay, (15)

IN

IN

IN

IN

S W+ EVAIEVWE < COL+9") Y (1+ EVY) (B + EU[*)
k k
C+4") Y ()21 + BV + EVil* + EVZEVA )
k

< O+ [N+ Y (14 BVE 4 VRER) ]
k

IN

< CO+ PN [(ng) ™" + An] (16)
where, in the proof of (16), we have used the estimates: |Vi|? <1+ V;* and
EVZE|Vi.]> < (EVAHYV?EVE < VNEV{.
Now (10) follows from (11), (13)-(16) and

Y EViW, =tN, > EViW; =NQ2Awt+ Ayt?) =
k k

LEAN AN (17)

N df(i,1)
3 dt

We next complete the proof of Lemma [2 by virtue of (10) and Lemmal[l. We first notice that,
by (6), for all ¢ and ¢,

1 1 1/2
F@tl < 5 2 EWP < N(ZEW,?ZEW,?)
k k k
< 3VN@? + )Y (Ar, + (ng)™H)Y2, (18)
and similarly by (17), for all ¢ and ¢,
df(i,t 3 B
(WD) DS mvamg) < VR + 272 (An g ) (19)
k
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It follows from (18) and Lemma [1] that for 1| < (ng)Y/*/4 and |t| < 1/4,

| (¢7 ) —(WH) /2| < C(Aln ( )_1>1/26_w2/4' (20)
Therefore, by noting
dg(i, 1) i f(¢ t) (W2 +t2)/2
=—t t) —
7 9(1, 1) GIN dt )

simple calculations show that

dh(i,t) dg(¥,1)
dt dt

IN

A(,t) + t[h(1, 1) — g, 1)]

df w, w2+t2)/2
h(
t 3 ﬁ‘ ‘ (¥, 1) |
< C(1+¢12)((nq) +A1n)€ ¢2/4,

where we have used (5), (10), (19) and (20). The proof of Lemma 2 is now complete. O
Lemma 3. Assume that [¢p| < (nq)'/*/4. Then,

h(i,8)] < CAppe W/, (21)
for A1_73/4/4 < |t] < (A*)71/16, where

A = N kP /Veb+ NV EBIXG — pul?/ (Vb
P P

Assume that (nq)'/*/4 < [¢| < w/nq. Then,

(W, )] < Clng)™, (22)

for all [t| < §o(A*)7L, where &y is so small that 19263 + 2469 < 1 — cos(1/16). If in addition
[t| < 1/4, then we also have

‘dh(iﬁ,t)

- ( < C(ng)™™ (23)

Proof. The proof of this lemma follows directly from an application of Lemmas 1-3 in Zhao,
Wu and Wang(2004). The choice of dp can be found in the proof of Lemma 2 in Zhao, Wu and
Wang(2004). We omit the details. 0

Lemma 4. Assume that n/N > 1/2 and Ay, < (nq)~'/25, where Agy, is defined as in Theorem
2. Then, for |t| < %\/ﬁb‘g/z/ﬁg,

|h(1,t)| < exp{—Ct*}, (24)

where Lo = + 3. E|Xg|® is defined as in Theorem|1.
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Proof. We only need to note that the condition Ag, < (ng)~!/25 implies that

1
Hgas < 5qﬁ1/2 <b= N ZVar(Xk) + qao,
k

that is, & >, Var(Xy) > (4/5)b. Then (24) is obtained by repeating the proof of Lemma 4 in
Zhao, Wu and Wang(2004). O

Lemma 5. Assume that n/N > 1/2 and Ag, < 1. Then, for |u| <
15 min {(n/B)4, $by/n/ Lo},

Bu3p3/2
’Eexp{iuSn/\/ﬁ}—exp{—bu2/2} 1+ 6/N Agy ’

< On~t By(u® + ut + u®b) exp{—0.3bu?}, (25)
where Lo = + > E|Xg|® is defined as in Theorem!1.
Proof. Write, for 1 <k < N,

fu(w) = Eexp{iuXy/v/n},  bp(u) = exp{u®/(2n)} fi(u) —
and Bj = ((—1)7*1/5) S0, bl.(u) for 1 < j < n. As in von Bahr (1972), we have

exp{u?/2} E exp{iuS,/v/n} = Z H Cn 0 i (26)

i;20, 1<j<n j=1

where

O = { (]X__:)/ <pr (?D) , T

0, r>n.

In view of (28) of Zhao, Wu and Wang (2004), for > 0, Cnnr <1, and for n > 4 and r < n,

CNmr>1—12/n. (27)

To prove by using (26), we need some preliminary results.

Write 35, = EXlz,j =2, 3,4. Recall that N—! > i Par = 1. We have that 34 > 1 and by Taylor’s
expansion, for |u| < %G(n/@;)l/‘*,

1 1 )
exp{u?/(2n)} =1+ %zﬂ + Wzﬁ + $u67 where [04] < 1/24,

i u? iud Osut
Si(u) =1+ Wi o2k = & 3/2ﬂ3k + =3Bk, where |65] <1/24.
1/4 1/2 3/4
Now, by noting that |u| < By < 1+ Bak, |Bak| < Byy,” < 1+ Bag and |Bax| < By < 1+ Bug,
we obtain that, for |u| < g5 (n/ﬂ )4,

br(w) = exp{u’®/(2n)} fi(u) -

U u? iud
Tt + *( — Bok) + 61173/2(31% — Bar) + Rk (u). (28)
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where |Ryx(u)| < (1 + Bax)u/n?. Furthermore, by noting that

Bt lul /v < (NB) Yl /v < 1/8
since n/N > 1/2 and |u| < E(n/@;)l/‘l, we have

2 3

U U
bp(u) = —;ui + m#k(l — Bak) + Rop(u), (29)
3 iu? 3
bp(u) = — a2 + Rsp(u), (30)
i) < 3(1/2)7 41+ Bu)u'/n?,  for j >4, (31)

where |Rog(u)] < 3(1 4 Bar)u?/n? and |Rsk(u)| < 4(1 + Bag)u'/n?®. Recalling that >, uy =
> (1= Bax) =0, it follows from (28)—(31) that, for |u| < %(n/@;)l/‘l,

-3
pBi=pY b(u) = — =5 + b6 su’ /n, (32)
2=
2 : 3
P = (9"/2) 300 = 550+ 5 one + . (33)
- 2.3
(p*/3) Zb = —Zg\/% az + OsBsut /n, (34)
P/ B;| <> b (u)| < 684ut(1/2)7 4 /n,  for j >4 (35)
k

where |0g] < 2, [07] < 3 and |fg| < 3. By virtue of (35), it is readily seen that, for |u| <
%(n/ﬁ4)l/4a

> 1P Bj| < 1284u/n, (36)

Noting that |as| + B3] + |y12] < 3L and recalling that Ay, = (nb?)718; < 1, it follows easily
from (32)-(34) and (36) that, for [u| < & min {(n/Bs)'/*, $by/n/Lo},

u3Lo U4ﬂ4
+ 010 —
Vn

1
= §pa2u2+911bu2, (37)

where |0g| < 3, [010] < 20 and [011| < 0.2. Also, if we let L(u) = Z?leij — pagu? /2, we have

n ‘ 1
Z’p]B]| = 5])0427124-99

iu3b3/2

VN

|L(u)] <0200 |L(u) + As| < 8Bt /n, (38)

where As is defined as in (4). As in the proof of (6), we may obtain

A2 = (N—l ZEV,S’)Q < NN EVZY EVi < NAy, < 1TNBy/(nb?).
k k k
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This together with (38) yields, for |u| < %G(n/@;)l/‘l,

/
L2(u) < [’Z‘j/bizm |+ ﬁ u?
< ubbBy/n + 128330 /n? < By(u* + uSb) /n. (39)

We are now ready to prove by using (26]). Rewrite as

exp{u?/2}E exp{iuS,/v/n} = I, + I + I, (40)

where

n=> 11 WC’MZ?W

:
(P Bj)"i

8 ini
I — H (p]Bj)

i;>0, 1<5<3

where the summation in the expression of I; is over all i; > 0, j =1,2,3 and ¢; > 0 for at least
one j =4,---,n. As in Mirakhmedov (1983), it follows from (36)-(37) that

exp{Z\p]B |}<exp{jé|pj3jl} - 1)

j=1

S B len S5}
j=4 J=1

Cn~1Bsu exp{pagu?/2 + 0.2bu?}.

|11

IN

IN

IN

As for I, it follows easily from (27) and (37) that

oot 3 PR ()

1;20, 1<5<3 j=1 7

oty IR

<
i;20, 1<5<3 j=1
3
< on-lexp{Z\prj|}Z(\ijj|+|pJBjP)
j=1 j=1
< Cn 134w 4 ut) exp{pagu®/2 + 0.20u?}.
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We next estimate 3. Recalling that b = 1 — pas and noting that I3 = ezg:lijj , we have
2 Budb3/2 2
Ise™ /2—(1+ A)e*b“ﬂ‘
3,,3p3/2
< embu?/2 ‘eL(“) —1—L(u ‘ + et/ ‘L w) — 22
< (v () - S
SC' 1B4(u _|_u6b) —0.3bu2’
where L(u) = Z?’:l P/ B; — pasu?/2 and we have used (38)-(39).
Combining (40) and all above facts for I1-I3, we obtain
r ) P2
Fexp{iuS, /v/n}t —exp{—bu“/2} | 1 + A
p{iuSn/v/n} — exp{—bu”/2} oun 2
3,,3p3/2 )
< exp{—u?/2Y(|I]| + | I +‘Ie*“2/2—<1+2u A)e*buﬁ‘
p{—u"/2}(| 11| + [I2]) + |13 N
< Ont By(u? + ut + ubb) exp{—0.3bu’},
which implies (25). The proof of Lemma 5 is now completed. a

After these preliminaries, we are now ready to prove the theorems.

Proof of Theorem[1. Without loss of generality, assume that ng > 256 and Ay, < 1/16. Write

1 =Aq, + (ng)~! and

33

A
gn(t) = (1 + 6\/5) exp{—t2/2},

where A, is defined as in Lemma, [1. We shall prove,
(1) if |t] < 1/4, then

[U(t) = gn()] < Ol T (41)
(ii) if || < 6o(A*)~L, where 8o and A* are defined as in Lemma (3, then
[W(t) = gn(t)| < CTTHA+ %)™/ + C (ng) ™%, (42)
(iii) if do(A*)~1 < |t| < T, then

W (t) = ga(t)] < CT e /4 4+ 3 /ng exp { — ngon}, (43)

where dy is defined as in Theorem 11

Note that |As] < v/ N/4 by Ay, < 1/16 and the last second inequality of (39). We have
m = sup, |G, (z)| < C(1+ N~Y2|A,]) < 2C. So, by virtue of (41)-(43) and Esseen’s smoothing
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lemma, simple calculations show that

P(S,/Vnb < z) — Gn(x)‘

t|<1/4 /4<|t|<T1 Ty <[t|<T |t|

< C(Am (ng)™") + 3/nq log(nq) exp { —ngdn},
where T1 = min{do(A*)~%, T}, which implies (1) and hence Theorem [1|
We next prove (41)-(43). Throughout the proof, we write s? = 12 + 2.
Consider first. Note that g,(t) = ﬁ 75 g(, t)dy. Tt is readily seen that
(W (t) — go(t)| < IIy + Iy + IT3 + 114,

where

I ! / B, 1) — g(t6, )] d,
[¥|<(ng)t/*/4

I = [By(p)]~
ITy = [B,(p)]~ |h(3, 1)] dip,
I3 = [Bn(p)]~

I<(
1
/(nq)1/4/4S|w|<7ff
I 1
1>(

!f(l/} O\ e
/|wnq>1/4/4< 6vVN ) o
II4—‘[Bn(p)]_1—(27T)1/2’/00 1+ 6\/%”)652/2@/}.

To estimate I1;,j = 1,2, 3,4, we first recall that, by (18), for all ¥ and ¢,
f@, 0] < 35*VN(Ar, + (ng)™)"? < VNS,
and by virtue of Stirling’s formula,
1 <V2m/Bu(p) <1+1/ng.
In view of (45) and (46), it is readily seen that

IIs+ 114 < C (ng) Y1 + ) /3.
By using (22), we have
I, < C(nq)_3.
As for ITy, if [t| < min{A/*/4,6(A*)~1}, Lemma 1 implies that
I < C (A + (ng) Y (1 + t8)e /4,

if Al_nl/4/4 < |t| < 6(A*)~L, then it follows from (21) and (45) that

\f(l/) 7§)| —s2/2
I < h(w, £)|di + d
' /QZJS(”Q)I/4/4| (w )| v /|w|§(nq)1/4/4< 6\/> ) v

< CApe 1011+ tPe /2 < O Appe /4

1413

(50)



Taking (47)-(50) into (44), we obtain the required (42).

Secondly we prove (41). Recall that g,(t) = ﬁ 25 g(, t)dy. As in (44), we have
AV _dgnt)| _ rp4rrn 110 + 100, (51)
dt dt
where
||<(nq) 1/4/4 dt dt
dh(y,t
(nq) 1/4/4<|1/;|<7r\/7 dt
115 = - LG ‘df L) ‘)6_52/2(1%
[412(na) 1/4/4 6\F G\ﬁ
- t”f 1/)7 t) _ g2
III:‘Bn 1/2(/ t—|—| ‘ e 2.
1= |[Ba(r)] o+ R Je Py
By (18)-(19) and (46), we have that for |t| < 1/4
I+ 111, < C(Ap+ (ng)™h). (52)
By (9), (23) and (46), we have that for |t| < 1/4
I+ 111, < C(A+ (ng)™h). (53)

Taking these estimates into (51), we obtain for || < 1/4,

d¥(x) B dgn(z)

< A -1

[w(0) ~ gu(t)] < I sup
jo]<1/4

which yields (41).

Finally we prove (43). We first notice that Ay, > 1/(16nb). Indeed, if ay < 1/4, then
2
A, > (N—1 > B(X) - puk>2) /(nb?) > (1 = 2pas)?/(nb?) > 1/(16nb),
and if ap > 1/4, then Ay, > (N71Y" 142)?/(nb) = a3/(nb) > 1/(16nb). This, together with the

fact that
A* < N 1 E Fl|X 3
- \/7’71)3/2 . | k‘ ’
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implies that if 6o(A*)™1 < |t| < T, then dob/(9Lo) < |t|/v/nb < 16v/nb and hence

< TT (1200 (1 - Beostu/ v + 30/ Vi) )

k

< exp {—quz (1 — Ecos(¢//ng + th/\/%)>}
k
< exp {—QNpq (1 - '(1/N)EZeXp{iﬂ)/\/@+ tik/\/%}D }
k

< exp {—QNpq (1 — '(1/]\7) ZEexp{ith/\/%}D }
k

< exp{—2ngdin}. (54)

1/2

We also note that A* < 2A/° and this together with (45) implies that, for do(A*)~! < |[¢| < T,

|f(’¢7t)| —s2/ -2/ —t2/
lgn ()] < /Oo (1+W>e 2dp < C(1+|t)P) e /2 < CApe™ /4 (55)

Combining and (55) and using the estimate (46), we obtain that, for do(A*)~t < |¢| < T,
WO -0 < Bu) [ (0] lonl0)
[ <my/ng
< CAlne_t2/4 + 3y/ngq exp{ — nqéN},
which yields (43). The proof of Theorem|1 is complete. O

Proof of Theorem 2. Without loss of generality, assume Ay, < 1. We first prove the property
(2) for n/N > 1/2 and Ag, < (nq)~1/25.

Write T* = (nb?)/6s, T = %2 min {(n/B4)Y/4, Lby/n/Lo} and Ty = & /nb*2/Ly. As in the
proof of Theorem [1, it follows from Esseen’s smoothlng lemma that

P(Su/Vh < 7) = Gu(a)|

U(t) — gn(t
/ / / W (t) g(>‘dt+0A2n
<y Jrr<p<ry  JTy<it<T 2]
= Aln =+ AQn + Agn + CAzn, say. (56)

IN

By virtue of Lemma simple calculations show that Ay, < CAs,. Recall Ay, < 17Ay,.
Applying Lemma 4 and similar arguments as in the proof of (50), we obtain that Ag, < C Ag,

and also fT; <|t]<T" |th(|t)| dt < CAsg,. Therefore, to prove (2), it remains to show that, for
Ty < < T

W < 3y exp{ —ndiv}. 67)
In fact, by using (3) in Zhao, Wu and Wang (2004), for ¢ > 0,

U(t) = Bexp{itSn/Vinb} = (V2rGu(p)) ™ / " e T (g + pett B ay,
. .
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where Gj,(p) = V2rC%p"gN~™. This, together with the fact that dob/(5L¢) < [t|/vnb < 16v/nb
whenever T5 < |t| < T, implies that

W) < V2r(Gulp) ] (a + plE/ V)
k

IN

V2r(Gulp)) " exp {p Y (1B - 1) )

k
S 3\/ﬁexp{_n61N}7

where we have used the inequality /7/2 < /ngGn(p) < 1 (see, for instance, Lemma 1 in
Hoglund(1978)). This proves (57) for ¢ > 0. If ¢ = 0, then N = n hence by the independence of
Xk7

W)l = [[IB] < exp {3 (1B - 1)} < exp{-ndin}.
k k

This implies that (57) still holds for ¢ = 0. We have now completed the proof of (57) and hence
(2) for n/N > 1/2 and Ag, < (nq)~1/25.

Note that 84 > 1, Ay, < 17Ag, and b > g > 1/2 if n/N < 1/2. We have that Ay, + (ng) ™t <
42 Ay, whenever n/N < 1/2 or Ag, > (ng)~!'/25. Based on this fact, by using a similar
argument to that above and that in the proof of Theorem [1, we may obtain (2) for n/N < 1/2

or Ao, > (ng)~1/25, as well. The details are omitted. The proof of Theorem [2]is now complete.
a
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