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Abstract

Let {X1, · · · ,XN} be a set of N independent random variables, and let Sn be a sum of n
random variables chosen without replacement from the set {X1, · · · ,XN} with equal prob-
abilities. In this paper we give a one-term Edgeworth expansion of the remainder term for
the normal approximation of Sn under mild conditions.
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1 Introduction and main results

Let {X1, · · · , XN} be a set of independent random variables, µk = EXk, 1 ≤ k ≤ N . Let
R = (R1, · · · , RN ) be a random vector independent of X1, · · · , XN , such that P (R = r) = 1/N !
for any permutation r = (r1, · · · , rN ) of the numbers 1, · · · , N , and put Sn =

∑n
j=1 XRj , 1 ≤

n ≤ N , that is for a sum of n random variables chosen without replacement from the set
{X1, · · · , XN} with equal probabilities.

In the situation that Xk = µk, 1 ≤ k ≤ N , are (nonrandom) real numbers, the sample sum
Sn has been studied by a number of authors. The asymptotic normality was established by
Erdös and Rényi (1959) under quite general conditions. The rate in the Erdös and Rényi central
limit theorem was studied by Bikelis (1969) and later Höglund (1978). An Edgeworth expansion
was obtained by Robinson (1978), Bickel and van Zwet (1978), Schneller (1989), Babu and Bai
(1996) and later Bloznelis (2000a, b). Extensions to U -statistics and, more generally, symmetric
statistics can be found in Nandi and Sen (1963), Zhao and Chen (1987, 1990), Kokic and Weber
(1990), Bloznelis and Götze (2000, 2001) and Bloznelis (2003).

In contrast to rich investigations for the case Xk = µk, 1 ≤ k ≤ N , are (nonrandom) real
numbers, there are only a few results concerned with the asymptotics of general Sn discussed in
this paper. von Bahr (1972) showed that the distribution of Sn/

√
V arSn may be approximated

by a normal distribution under certain mild conditions. The rate of the normal approximation
has currently been established by Zhao, Wu and Wang (2004), in which the paper improved
essentially earlier work by von Bahr (1972). Along the lines of Zhao, Wu and Wang (2004),
this paper discusses Edgeworth expansions for the distribution of Sn/

√
V arSn. Throughout the

paper, let

γ12 =
1

N

N
∑

k=1

EXk EX2
k , αj =

1

N

N
∑

k=1

(EXk)
j , βj =

1

N

N
∑

k=1

E(Xj
k),

for j = 1, 2, 3, 4, and

p = n/N, q = 1 − p, b = 1 − pα2.

Theorem 1. Suppose that α1 = 0 and β2 = 1. Then, for all 1 ≤ n < N ,

sup
x

∣

∣

∣
P (Sn/

√
nb ≤ x) − Gn(x)

∣

∣

∣

≤ C
(

∆1n + (nq)−1
)

+ 3
√

nq log (nq) exp
{

− nq δN

}

, (1)

where C is an absolute constant,

Gn(x) = Φ(x) − β3 − 3pγ12 + 2p2α3

6
√

nb3/2
Φ′′′(x),

with Φ(x) being a standard normal distribution,

∆1n = (nb)−1α4 +
(nb2)−1

N

N
∑

k=1

E(Xk − pEXk)
4,
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and

δN = 1 − sup
δ0b/(9L0)≤|t|≤16

√
nb

∣

∣

∣

1

N

N
∑

k=1

EeitXk

∣

∣

∣
,

where L0 = 1
N

∑

k E|Xk|3 and δ0 is so small that 192δ2
0 + 24δ0 ≤ 1 − cos(1/16).

Property (1) improves essentially a result of Mirakhmedov (1983). The related result in Theorem
1 of Mirakhmedov (1983) depends on max1≤k≤NEX4

k . Note that it is frequently the case that

N−1
∑N

k=1 EX4
k is bounded, but max1≤k≤N EX4

k tends to ∞. Also note that Corollary 1 of
Mirakhmedov (1983) requires limt→∞|EeitXk | ≤ ǫ < 1. This condition is quite restrictive since
it takes away the most interesting case that the Xk are all degenerate.

When Xk = µk, 1 ≤ k ≤ N , are (nonrandom) real numbers, it is readily seen that α2 = 1, b = q,
α3 = β3 = γ12 = 1

N

∑N
k=1 µ3

k,

∆1N + (nq)−1 ≤ 3 (nq)−1 1

N

N
∑

k=1

µ4
k.

In this case, the property (1) reduces to

sup
x

|P (Sn/
√

nq ≤ x) − G1n(x)|

≤ C (nq)−1 1

N

N
∑

k=1

µ4
k + 3

√
nq log (nq) exp

{

− nq δN

}

,

where G1n = Φ(x)+ p−q
6
√

nq
1
N

∑N
k=1 µ3

k Φ′′′(x), which gives one of main results in Bloznelis (2000a,

b).

We next give a result complementary to Theorem 1. The result is better than Theorem 1 under
certain conditions such as some of the Xk’s are non-degenerate random variables and q is close
to 0.

Theorem 2. Suppose that α1 = 0 and β2 = 1. Then, for all 1 ≤ n ≤ N ,

sup
x

∣

∣

∣
P (Sn/

√
nb ≤ x) − Gn(x)

∣

∣

∣
≤ C ∆2n + 3

√
n log n exp

{

− n δ1N

}

, (2)

where C is an absolute constant, Gn(x), L0 and δ0 are defined as in Theorem 1, ∆2n = (nb2)−1 β4

and

δ1N = 1 − sup
δ0b/(9L0)≤|t|≤16

√
nb

1

N

N
∑

k=1

∣

∣EeitXk
∣

∣.

In the next section, we prove the main results. Throughout the paper we shall use C, C1, C2, ...
to denote absolute constants whose value may differ at each occurrence. Also, I(A) denotes the
indicator function of a set A, ♯(A) denotes the number of elements in the set A,

∑

k denotes
∑N

k=1, and
∏

k denotes
∏N

k=1. The symbol i will be used exclusively for
√
−1.
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2 Proofs of Theorems

Let µk = EXk and Ψ(t) = E exp{itSn/
√

nb}. Recall α1 = 0 and β2 = 1. As in (4) of Zhao, Wu
and Wang (2004),

Ψ(t) = [Bn(p)]−1
∫

|ψ|≤π
√

nq

∏

k

Eρk(ψ, t)dψ, (3)

where Bn(p) =
√

2πnqGn(p), Gn(p) =
√

2πCn
NpnqN−n, X∗

k = Xk − pµk and

ρk(ψ, t) = q exp

{

− ipψ√
nq

− ipµkt√
nb

}

+ p exp

{

iqψ√
nq

+
itX∗

k√
nb

}

.

The main idea of the proofs is outlined as follows. We first provide the expansions and the
basic properties for

∏

k Eρk(ψ, t) in Lemmas 1–4. In Lemma 5, the idea in von Bahr (1972) is
extended to give an expansion of Ψ(t) for the case n/N ≥ 1/2. The proofs of Theorems 1 and
2 are finally completed by virtue of the classical Esseen’s smoothing lemma.

In the proofs of Lemmas 1–4, we assume that ∆1n < 1/16 and nq > 256, where ∆1n is defined
as in Theorem 1. Throughout this section, we also define,

h(ψ, t) =
∏

k

Eρk(ψ, t) and g(ψ, t) =
(

1 +
i3f(ψ, t)

6
√

N

)

e−(ψ2+t2)/2,

where f(ψ, t) = A0ψ
3 + 3A1ψt2 + A2t

3, with

A0 =
q − p√

pq
, A1 =

(1 − 2pα2)
√

pq

pb
, A2 =

β3 − 3pγ12 + 2p2α3

p1/2b3/2
. (4)

Lemma 1. For |ψ| ≤ (nq)1/4/4 and |t| ≤ ∆
−1/4
1n /4, we have

|h(ψ, t) − g(ψ, t)| ≤ C[∆1n + (nq)−1](s4 + s8) exp{−s2/3}, (5)

where s2 = ψ2 + t2.

Proof. Define a sequence of independent random vectors (Uk, Vk), 1 ≤ k ≤ N , by the conditional
distribution given X∗

k as follows:

P (Uk = −p/
√

pq, Vk = −pµk/
√

pb |X∗
k) = q,

P (Uk = q/
√

pq, Vk = X∗
k/

√

pb |X∗
k) = p.

Let Wk = ψUk + tVk. As in Lemma 1 of Zhao, Wu and Wang (2004), tedious but simple
calculations show that

EWk = 0,
∑

k

EW 2
k = N(ψ2 + t2),

∑

k

EW 3
k = N f(ψ, t),

∑

k

EW 4
k ≤ 8

∑

k

E(ψ4U4
k + t4V 4

k ) ≤ 8N2(ψ4/(nq) + t4∆1n). (6)
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Furthermore, if we let B2
n =

∑

k EW 2
k , LjN =

∑

k E|Wk|j
/

Bj
n, j = 3, 4, then

L2
3N =

(

∑

k

E|Wk|3
)2

/B6
n ≤ L4N ≤ 8((nq)−1 + ∆1n), (7)

and whenever |ψ| ≤ (nq)1/4/4 and |t| ≤ ∆
−1/4
1n /4,

s :=
√

ψ2 + t2 ≤ L−1/4
4N

[

8(ψ4/(nq) + t4∆1n)
]1/4 ≤ L−1/4

4N /2. (8)

Now, by recalling that Wk are independent r.v.s and noting that

h(ψ, t) = Eei
P

k Wk/
√

N = Eei s
P

k Wk/Bn ,

it follows from (7)-(8) and the classical result (see, for example, Theorem 8.6 in Bhattacharya

and Ranga Rao (1976)) that, for |ψ| ≤ (nq)1/4/4 and |t| ≤ ∆
−1/4
1n /4,

∣

∣

∣

∣

h(ψ, t) −
(

1 +
i3

6
√

N
f(ψ, t)

)

e−s2/2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h(ψ, t) −
(

1 +
i3s3

6B3
n

∑

k

EW 3
k

)

e−s2/2

∣

∣

∣

∣

∣

≤ C(L4N + L2
3N )(s4 + s8)e−s2/3

≤ C[∆1n + (nq)−1](s4 + s8) exp{−s2/3}.

This proves (5) and hence completes the proof of Lemma 1. 2

Lemma 2. For |ψ| ≤ (nq)1/4/4 and |t| ≤ 1/4, we have

∣

∣

∣

d h(ψ, t)

dt
− d g(ψ, t)

dt

∣

∣

∣
≤ C(1 + ψ12)

(

(nq)−1 + ∆1n

)

e−ψ2/4. (9)

Proof. We first show that if |ψ| ≤ (nq)1/4/4 and |t| ≤ 1/4, then

Λ(ψ, t) :=

∣

∣

∣

∣

d h(ψ, t)

dt
+

(

t +
i

6
√

N

d f(ψ, t)

dt

)

h(ψ, t)

∣

∣

∣

∣

≤ C(1 + ψ4)
(

(nq)−1 + ∆1n

)

|h(ψ, t)| . (10)

To prove (10), define (Uk, Vk) and Wk = ψUk + tVk as in Lemma 1. Recall that h(ψ, t) =
E exp{i ∑

k Wk/
√

N}. It is readily seen that

d h(ψ, t)

dt
=

i h(ψ, t)√
N

∑

k

INk, (11)

where INk =
[

E exp{iWk/
√

N}
]−1

E
[

Vk exp{iWk/
√

N}
]

. Recall nq > 256. It follows from

(19) and (20) in Zhao, Wu and Wang (2004) that for |ψ| ≤ (nq)1/4/4 and |t| ≤ 1/4,

[

E exp{iWk/
√

N}
]−1

= 1 + θ1N
−1(ψ2 + t2EV 2

k ), (12)

1406



where |θ1| ≤ 1 and N−1(ψ2+t2EV 2
k ) ≤ 1/4. This, together with Taylor’s expansion of eix, yields

that (recall EVk = 0)
∣

∣

∣

∣

INk − i√
N

EVkWk +
1

2N
EVkW

2
k

∣

∣

∣

∣

≤ 3

N3/2
E|Vk||Wk|3 +

ψ2 + t2EV 2
k

N

(

1√
N

|EVkWk| +
1

2N
|EVkW

2
k |

)

. (13)

As in the proof of (6), for |t| ≤ 1/4,
∑

k

E|Vk||Wk|3 ≤ C(1 + |ψ|3)
∑

k

E(U4
k + V 4

k )

≤ C(1 + |ψ|3)N2
[

(nq)−1 + ∆1n

]

, (14)

∑

k

(ψ2 + EV 2
k )|EVkWk| ≤ C(1 + |ψ|3)

∑

k

(1 + EV 2
k )(EU2

k + EV 2
k )

≤ C(1 + |ψ|3)
∑

k

(1 + EV 4
k )

≤ C(1 + |ψ|3)N2[(nq)−1 + ∆1n], (15)

∑

k

(ψ2 + EV 2
k )|EVkW

2
k | ≤ C(1 + ψ4)

∑

k

(1 + EV 2
k )

(

E|Vk|3 + E|Uk|3
)

≤ C(1 + ψ4)
∑

k

(

(pq)−1/2(1 + EV 2
k ) + E|Vk|3 + EV 2

k E|Vk|3
)

≤ C(1 + ψ4)
[

N(pq)−1/2 +
∑

k

(

1 + EV 4
k +

√
NEV 4

k

) ]

≤ C(1 + ψ4)N5/2
[

(nq)−1 + ∆1n

]

, (16)

where, in the proof of (16), we have used the estimates: |Vk|3 ≤ 1 + V 4
k and

EV 2
k E|Vk|3 ≤ (EV 2

k )1/2 EV 4
k ≤

√
NEV 4

k .

Now (10) follows from (11), (13)-(16) and

∑

k

EVkWk = tN,
∑

k

EVkW
2
k = N(2A1ψt + A2 t2) =

N

3

d f(ψ, t)

dt
. (17)

We next complete the proof of Lemma 2 by virtue of (10) and Lemma 1. We first notice that,
by (6), for all ψ and t,

|f(ψ, t)| ≤ 1

N

∑

k

E|Wk|3 ≤ 1

N

(

∑

k

EW 2
k

∑

k

EW 4
k

)1/2

≤ 3
√

N(ψ2 + t2)3/2(∆1n + (nq)−1)1/2, (18)

and similarly by (17), for all ψ and t,

∣

∣

∣

d f(ψ, t)

dt

∣

∣

∣
≤ 3

N

∑

k

E|VkW
2
k | ≤ 9

√
N(ψ2 + t2)3/2(∆1n + (nq)−1)1/2. (19)
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It follows from (18) and Lemma 1 that for |ψ| ≤ (nq)1/4/4 and |t| ≤ 1/4,

|h(ψ, t) − e−(ψ2+t2)/2| ≤ C(∆1n + (nq)−1)1/2e−ψ2/4. (20)

Therefore, by noting

d g(ψ, t)

dt
= −tg(ψ, t) − i

6
√

N

d f(ψ, t)

dt
e−(ψ2+t2)/2,

simple calculations show that

∣

∣

∣

d h(ψ, t)

dt
− d g(ψ, t)

dt

∣

∣

∣
≤ Λ(ψ, t) + t|h(ψ, t) − g(ψ, t)|

+
1

6
√

N

∣

∣

∣

∣

d f(ψ, t)

dt

∣

∣

∣

∣

|h(ψ, t) − e−(ψ2+t2)/2|

≤ C(1 + ψ12)
(

(nq)−1 + ∆1n

)

e−ψ2/4,

where we have used (5), (10), (19) and (20). The proof of Lemma 2 is now complete. 2

Lemma 3. Assume that |ψ| ≤ (nq)1/4/4. Then,

|h(ψ, t)| ≤ C∆1ne−(ψ2+t2)/4, (21)

for ∆
−1/4
1n /4 ≤ |t| ≤ (∆∗)−1/16, where

∆∗ = N−1
∑

k

|µk|3/
√

nb + N−1
∑

k

E|Xk − pµk|3/(
√

nb3/2).

Assume that (nq)1/4/4 ≤ |ψ| ≤ π
√

nq. Then,

|h(ψ, t)| ≤ C(nq)−4, (22)

for all |t| ≤ δ0(∆
∗)−1, where δ0 is so small that 192δ2

0 + 24δ0 ≤ 1 − cos(1/16). If in addition

|t| ≤ 1/4, then we also have

∣

∣

∣

d h(ψ, t)

dt

∣

∣

∣
≤ C(nq)−4. (23)

Proof. The proof of this lemma follows directly from an application of Lemmas 1-3 in Zhao,
Wu and Wang(2004). The choice of δ0 can be found in the proof of Lemma 2 in Zhao, Wu and
Wang(2004). We omit the details. 2

Lemma 4. Assume that n/N ≥ 1/2 and ∆2n ≤ (nq)−1/25, where ∆2n is defined as in Theorem

2. Then, for |t| ≤ 1
15

√
nb3/2/L0,

|h(ψ, t)| ≤ exp{−Ct2}, (24)

where L0 = 1
N

∑

k E|Xk|3 is defined as in Theorem 1.
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Proof. We only need to note that the condition ∆2n ≤ (nq)−1/25 implies that

5qα2 ≤ 5qβ
1/2
4 ≤ b =

1

N

∑

k

Var(Xk) + qα2,

that is, 1
N

∑

k Var(Xk) ≥ (4/5) b. Then (24) is obtained by repeating the proof of Lemma 4 in
Zhao, Wu and Wang(2004). 2

Lemma 5. Assume that n/N ≥ 1/2 and ∆2n ≤ 1. Then, for |u| ≤
1
16 min

{

(n/β4)
1/4, 1

8b
√

n/L0

}

,

∣

∣

∣
E exp{iuSn/

√
n} − exp{−bu2/2}

(

1 +
i3u3b3/2

6
√

N
A2

)

∣

∣

∣

≤ Cn−1 β4(u
2 + u4 + u6b) exp{−0.3 b u2}, (25)

where L0 = 1
N

∑

k E|Xk|3 is defined as in Theorem 1.

Proof. Write, for 1 ≤ k ≤ N ,

fk(u) = E exp{iuXk/
√

n}, bk(u) = exp{u2/(2n)}fk(u) − 1

and Bj = ((−1)j+1/j)
∑N

k=1 bj
k(u) for 1 ≤ j ≤ n. As in von Bahr (1972), we have

exp{u2/2}E exp{iuSn/
√

n} =
∑

ij≥0, 1≤j≤n

n
∏

j=1

(pjBj)
ij

ij !
CN,n,

Pn
j=1

jij , (26)

where

CN,n,r =

{

(

N−r
n−r

)

/(

pr
(

N
n

)

)

, r ≤ n;

0, r > n.

In view of (28) of Zhao, Wu and Wang (2004), for r > 0, CN,n,r ≤ 1, and for n ≥ 4 and r ≤ n,

CN,n,r ≥ 1 − r2/n. (27)

To prove (25) by using (26), we need some preliminary results.

Write βjk = EXj
k, j = 2, 3, 4. Recall that N−1

∑

k β2k = 1. We have that β4 ≥ 1 and by Taylor’s
expansion, for |u| ≤ 1

16(n/β4)
1/4,

exp{u2/(2n)} = 1 +
1

2n
u2 +

1

8n2
u4 +

θ4

n3
u6, where |θ4| ≤ 1/24,

fk(u) = 1 +
iu√
n

µk − u2

2n
β2k − iu3

6n3/2
β3k +

θ5u
4

n2
β4k, where |θ5| ≤ 1/24.

Now, by noting that |µk| ≤ β
1/4
4k ≤ 1 + β4k, |β2k| ≤ β

1/2
4k ≤ 1 + β4k and |β3k| ≤ β

3/4
4k ≤ 1 + β4k,

we obtain that, for |u| ≤ 1
16(n/β4)

1/4,

bk(u) = exp{u2/(2n)}fk(u) − 1

=
iu√
n

µk +
u2

2n
(1 − β2k) +

iu3

6n3/2
(3µk − β3k) + R1k(u). (28)
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where |R1k(u)| ≤ (1 + β4k)u
4/n2. Furthermore, by noting that

β
1/4
4k |u|/

√
n ≤ (Nβ4)

1/4|u|/
√

n ≤ 1/8

since n/N ≥ 1/2 and |u| ≤ 1
16(n/β4)

1/4, we have

b2
k(u) = −u2

n
µ2

k +
iu3

n3/2
µk(1 − β2k) + R2k(u), (29)

b3
k(u) = − iu3

n3/2
µ3

k + R3k(u), (30)

|bj
k(u)| ≤ 3(1/2)j−4(1 + β4k)u

4/n2, for j ≥ 4, (31)

where |R2k(u)| ≤ 3(1 + β4k)u
4/n2 and |R3k(u)| ≤ 4(1 + β4k)u

4/n2. Recalling that
∑

k µk =
∑

k(1 − β2k) = 0, it follows from (28)–(31) that, for |u| ≤ 1
16(n/β4)

1/4,

pB1 = p
∑

k

bk(u) = − iu3

6
√

n
β3 + θ6β4u

4/n, (32)

p2B2 = (−p2/2)
∑

k

b2
k(u) =

u2p

2
α2 +

iu3p

2
√

n
γ12 + θ7β4u

4/n, (33)

p3B3 = (p3/3)
∑

k

b3
k(u) = − ip2u3

3
√

n
α3 + θ8β4u

4/n, (34)

|pjBj | ≤
∑

k

|bj
k(u)| ≤ 6β4u

4(1/2)j−4/n, for j ≥ 4. (35)

where |θ6| ≤ 2, |θ7| ≤ 3 and |θ8| ≤ 3. By virtue of (35), it is readily seen that, for |u| ≤
1
16(n/β4)

1/4,

n
∑

j=4

|pjBj | ≤ 12β4u
4/n, (36)

Noting that |α3| + |β3| + |γ12| ≤ 3L0 and recalling that ∆2n = (nb2)−1β4 ≤ 1, it follows easily
from (32)–(34) and (36) that, for |u| ≤ 1

16 min
{

(n/β4)
1/4, 1

8b
√

n/L0

}

,

n
∑

j=1

|pjBj | =
1

2
p α2 u2 + θ9

u3L0√
n

+ θ10
u4β4

n

=
1

2
p α2 u2 + θ11 b u2, (37)

where |θ9| ≤ 3, |θ10| ≤ 20 and |θ11| ≤ 0.2. Also, if we let L(u) =
∑3

j=1 pjBj − pα2u
2/2, we have

|L(u)| ≤ 0.2bu2,

∣

∣

∣

∣

∣

L(u) +
i u3b3/2

6
√

N
A2

∣

∣

∣

∣

∣

≤ 8β4u
4/n, (38)

where A2 is defined as in (4). As in the proof of (6), we may obtain

A2
2 =

(

N−1
∑

k

EV 3
k

)2
≤ N−2

∑

k

EV 2
k

∑

k

EV 4
k ≤ N∆1n ≤ 17Nβ4/(nb2).
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This together with (38) yields, for |u| ≤ 1
16(n/β4)

1/4,

L2(u) ≤
[ |u|3b3/2

6
√

N
|A2| +

8

n
β4u

4
]2

≤ u6bβ4/n + 128β2
4u8/n2 ≤ β4(u

4 + u6b)/n. (39)

We are now ready to prove (25) by using (26). Rewrite (26) as

exp{u2/2}E exp{iuSn/
√

n} = I1 + I2 + I3, (40)

where

I1 =
∑

n
∏

j=1

(pjBj)
ij

ij !
CN,n,

Pn
j=1

jij ,

I2 =
∑

ij≥0, 1≤j≤3

3
∏

j=1

(pjBj)
ij

ij !

(

CN,n,
P

3

j=1
jij

− 1
)

,

I3 =
∑

ij≥0, 1≤j≤3

3
∏

j=1

(pjBj)
ij

ij !
,

where the summation in the expression of I1 is over all ij ≥ 0, j = 1, 2, 3 and ij > 0 for at least
one j = 4, · · · , n. As in Mirakhmedov (1983), it follows from (36)-(37) that

|I1| ≤ exp
{

3
∑

j=1

|pjBj |
}(

exp
{

n
∑

j=4

|pjBj |
}

− 1
)

≤
n

∑

j=4

|pjBj | exp
{

n
∑

j=1

|pjBj |
}

≤ Cn−1β4u
4 exp{pα2u

2/2 + 0.2bu2}.

As for I2, it follows easily from (27) and (37) that

|I2| ≤ Cn−1
∑

ij≥0, 1≤j≤3

3
∏

j=1

|pjBj |ij
ij !

(

3
∑

j=1

jij

)2

≤ Cn−1
∑

ij≥0, 1≤j≤3

3
∏

j=1

i2j |pjBj |ij
ij !

≤ Cn−1 exp
{

3
∑

j=1

|pjBj |
}

3
∑

j=1

(

|pjBj | + |pjBj |2
)

≤ Cn−1β4(u
2 + u4) exp{pα2u

2/2 + 0.2bu2}.
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We next estimate I3. Recalling that b = 1 − pα2 and noting that I3 = e
P

3

j=1
pjBj , we have

∣

∣

∣
I3 e−u2/2 −

(

1 +
i3u3b3/2

6
√

N
A2

)

e−bu2/2
∣

∣

∣

≤ e−bu2/2
∣

∣

∣
eL(u) − 1 − L(u)

∣

∣

∣
+ e−bu2/2

∣

∣

∣
L(u) − i3u3b3/2

6
√

N
A2

∣

∣

∣

≤
[

(1/2)L2(u)e|L(u)| + 8β4u
4/n

]

e−bu2/2

≤ C n−1 β4(u
4 + u6b) e−0.3 bu2

,

where L(u) =
∑3

j=1 pjBj − pα2u
2/2 and we have used (38)-(39).

Combining (40) and all above facts for I1-I3, we obtain

∣

∣

∣

∣

∣

E exp{iuSn/
√

n} − exp{−bu2/2}
(

1 +
i3u3b3/2

6
√

N
A2

)∣

∣

∣

∣

∣

≤ exp{−u2/2}(|I1| + |I2|) +
∣

∣

∣
I3 e−u2/2 −

(

1 +
i3u3b3/2

6
√

N
A2

)

e−bu2/2
∣

∣

∣

≤ C n−1 β4(u
2 + u4 + u6b) exp{−0.3bu2},

which implies (25). The proof of Lemma 5 is now completed. 2

After these preliminaries, we are now ready to prove the theorems.

Proof of Theorem 1. Without loss of generality, assume that nq > 256 and ∆1n < 1/16. Write
T−1 = ∆1n + (nq)−1 and

gn(t) =
(

1 +
i3t3A2

6
√

N

)

exp{−t2/2},

where A2 is defined as in Lemma 1. We shall prove,

(i) if |t| ≤ 1/4, then

∣

∣Ψ(t) − gn(t)
∣

∣ ≤ C|t|T−1; (41)

(ii) if |t| ≤ δ0(∆
∗)−1, where δ0 and ∆∗ are defined as in Lemma 3, then

∣

∣Ψ(t) − gn(t)
∣

∣ ≤ C T−1(1 + t8)e−t2/4 + C (nq)−3; (42)

(iii) if δ0(∆
∗)−1 ≤ |t| ≤ T , then

∣

∣Ψ(t) − gn(t)
∣

∣ ≤ C T−1 e−t2/4 + 3
√

nq exp
{

− nq δN

}

, (43)

where δN is defined as in Theorem 1.

Note that |A2| ≤
√

N/4 by ∆1n ≤ 1/16 and the last second inequality of (39). We have
m ≡ supx |G′

n(x)| ≤ C(1 + N−1/2|A2|) ≤ 2C. So, by virtue of (41)-(43) and Esseen’s smoothing

1412



lemma, simple calculations show that

sup
x

∣

∣

∣
P (Sn/

√
nb ≤ x) − Gn(x)

∣

∣

∣

≤
(

∫

|t|≤1/4
+

∫

1/4≤|t|≤T1

+

∫

T1≤|t|≤T

|Ψ(t) − gn(t)|
|t| dt + CmT−1

≤ C (∆1n + (nq)−1) + 3
√

nq log(nq) exp
{

− nq δN

}

,

where T1 = min{δ0(∆
∗)−1, T}, which implies (1) and hence Theorem 1.

We next prove (41)-(43). Throughout the proof, we write s2 = ψ2 + t2.

Consider (42) first. Note that gn(t) = 1√
2π

∫ ∞
−∞ g(ψ, t)dψ. It is readily seen that

|Ψ(t) − gn(t)| ≤ II1 + II2 + II3 + II4, (44)

where

II1 = [Bn(p)]−1
∫

|ψ|≤(nq)1/4/4
|h(ψ, t) − g(ψ, t)| dψ,

II2 = [Bn(p)]−1
∫

(nq)1/4/4≤|ψ|≤π
√

nq
|h(ψ, t)| dψ,

II3 = [Bn(p)]−1
∫

|ψ|≥(nq)1/4/4

(

1 +
|f(ψ, t)|
6
√

N

)

e−s2/2dψ,

II4 =
∣

∣

∣
[Bn(p)]−1 − (2π)−1/2

∣

∣

∣

∫ ∞

−∞

(

1 +
|f(ψ, t)|
6
√

N

)

e−s2/2dψ.

To estimate IIj , j = 1, 2, 3, 4, we first recall that, by (18), for all ψ and t,

|f(ψ, t)| ≤ 3s3
√

N(∆1n + (nq)−1)1/2 ≤
√

Ns3, (45)

and by virtue of Stirling’s formula,

1 ≤
√

2π/Bn(p) ≤ 1 + 1/nq. (46)

In view of (45) and (46), it is readily seen that

II3 + II4 ≤ C (nq)−1(1 + t6)e−t2/3. (47)

By using (22), we have

II2 ≤ C (nq)−3. (48)

As for II1, if |t| ≤ min{∆−1/4
1n /4, δ(∆∗)−1}, Lemma 1 implies that

II1 ≤ C (∆1n + (nq)−1)(1 + t8)e−t2/4; (49)

if ∆
−1/4
1n /4 ≤ |t| ≤ δ(∆∗)−1, then it follows from (21) and (45) that

II1 ≤
∫

|ψ|≤(nq)1/4/4
|h(ψ, t)|dψ +

∫

|ψ|≤(nq)1/4/4

(

1 +
|f(ψ, t)|
6
√

N

)

e−s2/2dψ

≤ C ∆1ne−t2/4 + C1(1 + |t|3)e−t2/2 ≤ C ∆1ne−t2/4. (50)
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Taking (47)-(50) into (44), we obtain the required (42).

Secondly we prove (41). Recall that gn(t) = 1√
2π

∫ ∞
−∞ g(ψ, t)dψ. As in (44), we have

∣

∣

∣

∣

d Ψ(t)

dt
− dgn(t)

dt

∣

∣

∣

∣

≤ III1 + III2 + III3 + III4, (51)

where

III1 = [Bn(p)]−1
∫

|ψ|≤(nq)1/4/4

∣

∣

∣

∣

d h(ψ, t)

dt
− d g(ψ, t)

dt

∣

∣

∣

∣

dψ,

III2 = [Bn(p)]−1
∫

(nq)1/4/4≤|ψ|≤π
√

nq

∣

∣

∣

∣

d h(ψ, t)

dt

∣

∣

∣

∣

dψ,

III3 = [Bn(p)]−1
∫

|ψ|≥(nq)1/4/4

(

|t| + |t||f(ψ, t)|
6
√

N
+

1

6
√

N

∣

∣

∣

d f(ψ, t)

dt

∣

∣

∣

)

e−s2/2dψ,

III4 =
∣

∣

∣
[Bn(p)]−1 − (2π)−1/2

∣

∣

∣

∫ ∞

−∞

(

|t| + |t||f(ψ, t)|
6
√

N
+

1

6
√

N

∣

∣

∣

d f(ψ, t)

dt

∣

∣

∣

)

e−s2/2dψ.

By (18)-(19) and (46), we have that for |t| ≤ 1/4

III3 + III4 ≤ C(∆1n + (nq)−1). (52)

By (9), (23) and (46), we have that for |t| ≤ 1/4

III1 + III2 ≤ C(∆1n + (nq)−1). (53)

Taking these estimates into (51), we obtain for |t| ≤ 1/4,

∣

∣Ψ(t) − gn(t)
∣

∣ ≤ |t| sup
|x|≤1/4

∣

∣

∣

∣

d Ψ(x)

dx
− dgn(x)

dx

∣

∣

∣

∣

≤ C|t| (∆1n + (nq)−1),

which yields (41).

Finally we prove (43). We first notice that ∆1n ≥ 1/(16nb). Indeed, if α2 ≤ 1/4, then

∆1n ≥
(

N−1
∑

E(Xk − pµk)
2
)2

/(nb2) ≥ (1 − 2pα2)
2/(nb2) ≥ 1/(16nb),

and if α2 > 1/4, then ∆1n ≥ (N−1
∑

µ2
k)

2/(nb) = α2
2/(nb) ≥ 1/(16nb). This, together with the

fact that

∆∗ ≤ 9√
nb3/2

N−1
∑

k

E|Xk|3,
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implies that if δ0(∆
∗)−1 ≤ |t| ≤ T , then δ0b/(9L0) ≤ |t|/

√
nb ≤ 16

√
nb and hence

|h(ψ, t)|2 ≤
∏

k

(

1 − 2pq
(

1 − E cos(ψ/
√

nq + tXk/
√

nb)
)

)

≤ exp

{

−2pq
∑

k

(

1 − E cos(ψ/
√

nq + tXk/
√

nb)
)

}

≤ exp

{

−2Npq

(

1 −
∣

∣

∣

∣

(1/N)E
∑

k

exp{iψ/
√

nq + itXk/
√

nb}
∣

∣

∣

∣

)}

≤ exp

{

−2Npq

(

1 −
∣

∣

∣

∣

(1/N)
∑

k

E exp{itXk/
√

nb}
∣

∣

∣

∣

)}

≤ exp{−2nq δN}. (54)

We also note that ∆∗ ≤ 2∆
1/2
1n and this together with (45) implies that, for δ0(∆

∗)−1 ≤ |t| ≤ T ,

|gn(t)| ≤
∫ ∞

−∞

(

1 +
|f(ψ, t)|
6
√

N

)

e−s2/2dψ ≤ C(1 + |t|3) e−t2/2 ≤ C∆1ne−t2/4. (55)

Combining (54) and (55) and using the estimate (46), we obtain that, for δ0(∆
∗)−1 ≤ |t| ≤ T ,

∣

∣Ψ(t) − gn(t)
∣

∣ ≤ [Bn(p)]−1
∫

|ψ|≤π
√

nq
|h(ψ, t)| dψ + |gn(t)|

≤ C ∆1ne−t2/4 + 3
√

nq exp
{

− nq δN

}

,

which yields (43). The proof of Theorem 1 is complete. 2

Proof of Theorem 2. Without loss of generality, assume ∆2n ≤ 1. We first prove the property
(2) for n/N ≥ 1/2 and ∆2n ≤ (nq)−1/25.

Write T ∗ = (nb2)/β4, T ∗
1 = b1/2

16 min
{

(n/β4)
1/4, 1

8b
√

n/L0

}

and T ∗
2 = 1

15

√
nb3/2/L0. As in the

proof of Theorem 1, it follows from Esseen’s smoothing lemma that

sup
x

∣

∣

∣
P (Sn/

√
nb ≤ x) − Gn(x)

∣

∣

∣

≤
(

∫

|t|≤T ∗

1

+

∫

T ∗

1
≤|t|≤T ∗

2

+

∫

T ∗

2
≤|t|≤T ∗

|Ψ(t) − gn(t)|
|t| dt + C ∆2n

= Λ1n + Λ2n + Λ3n + C ∆2n, say. (56)

By virtue of Lemma 5, simple calculations show that Λ1n ≤ C ∆2n. Recall ∆1n ≤ 17 ∆2n.
Applying Lemma 4 and similar arguments as in the proof of (50), we obtain that Λ2n ≤ C ∆2n

and also
∫

T ∗

2
≤|t|≤T ∗

|gn(t)|
|t| dt ≤ C∆2n. Therefore, to prove (2), it remains to show that, for

T ∗
2 ≤ |t| ≤ T ∗,

|Ψ(t)| ≤ 3
√

n exp
{

− n δ1N}. (57)

In fact, by using (3) in Zhao, Wu and Wang (2004), for q > 0,

Ψ(t) = E exp{itSn/
√

nb} = (
√

2πGn(p))−1

∫ π

−π
e−inψ

∏

k

(

q + peiψ+itXj/
√

nb
)

dψ,
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where Gn(p) =
√

2πCn
NpnqN−n. This, together with the fact that δ0b/(5L0) ≤ |t|/

√
nb ≤ 16

√
nb

whenever T ∗
2 ≤ |t| ≤ T ∗, implies that

|Ψ(t)| ≤
√

2π(Gn(p))−1
∏

k

(

q + p|EeitXj/
√

nb|
)

≤
√

2π(Gn(p))−1 exp
{

p
∑

k

(

|EeitXj/
√

nb| − 1
)

}

≤ 3
√

n exp{−nδ1N},

where we have used the inequality
√

π/2 ≤ √
nqGn(p) < 1 (see, for instance, Lemma 1 in

Höglund(1978)). This proves (57) for q > 0. If q = 0, then N = n hence by the independence of
Xk,

|Ψ(t)| =
∏

k

|EeitXj/
√

nb| ≤ exp
{

∑

k

(

|EeitXj/
√

nb| − 1
)

}

≤ exp{−nδ1N}.

This implies that (57) still holds for q = 0. We have now completed the proof of (57) and hence
(2) for n/N ≥ 1/2 and ∆2n ≤ (nq)−1/25.

Note that β4 ≥ 1, ∆1n ≤ 17 ∆2n and b ≥ q ≥ 1/2 if n/N ≤ 1/2. We have that ∆1n + (nq)−1 ≤
42 ∆2n, whenever n/N ≤ 1/2 or ∆2n > (nq)−1/25. Based on this fact, by using a similar
argument to that above and that in the proof of Theorem 1, we may obtain (2) for n/N ≤ 1/2
or ∆2n > (nq)−1/25, as well. The details are omitted. The proof of Theorem 2 is now complete.
2
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