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Abstract

The frequencies X1, X2, . . . of an exchangeable Gibbs random partition Π of N = {1, 2, . . .}
(Gnedin and Pitman (2005)) are considered in their age-order, i.e. their size-biased order.
We study their dependence on the sequence i1, i2, . . . of least elements of the blocks of Π. In
particular, conditioning on 1 = i1 < i2 < . . ., a representation is shown to be

Xj = ξj−1

∞
∏

i=j

(1 − ξi) j = 1, 2, . . .

where {ξj : j = 1, 2, . . .} is a sequence of independent Beta random variables. Sequences with
such a product form are called neutral to the left. We show that the property of conditional
left-neutrality in fact characterizes the Gibbs family among all exchangeable partitions, and
leads to further interesting results on: (i) the conditional Mellin transform of Xk, given ik,

and (ii) the conditional distribution of the first k normalized frequencies, given
∑k

j=1
Xj and

ik; the latter turns out to be a mixture of Dirichlet distributions. Many of the mentioned
representations are extensions of Griffiths and Lessard (2005) results on Ewens’ partitions.
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1 Introduction.

A random partition of [n] = {1, . . . , n} is a random collection Πn = {Πn1, . . . ,ΠnKn} of disjoint
nonempty subsets of [n] whose union is [n]. The Kn classes of Πn, where Kn is a random integer
in [n], are conventionally ordered by their least elements 1 = i1 < i2 < . . . < iKn ≤ n. We call
{ij} the sequence of record indices of Πn, and define the age-ordered frequencies of Πn to be
the vector n = (n1, . . . , nk) such that nj is the cardinality of Πnj . Consistent Markov partitions
Π = (Π1,Π2, . . .) can be generated by a set of predictive distributions specifying, for each n,
how Πn+1 is likely to extend Πn, that is: given Πn, a conditional probability is assigned for the
integer (n+ 1) to join any particular class of Πn or to start a new class.

We consider a family of consistent random partitions studied by Gnedin and Pitman [14] which
can be defined by the following prediction rule: (i) set Π1 = ({1}); (ii) for each n ≥ 1, conditional
on Πn = (πn1, . . . , πnk), the probability that (n+ 1) starts a new class is

Vn+1,k+1

Vn,k
(1)

otherwise, if nj is the cardinality of πnj (j = 1, . . . , k), the probability that (n + 1) falls in the
j-th “old”class πnj is

nj − α

n− αk

(

1 −
Vn+1,k+1

Vn,k

)

, (2)

for some α ∈ (−∞, 1] and a sequence of coefficients V = (Vn,k : k ≤ n = 1, 2, . . .) satisfying the
recursion:

V1,1 = 1; Vn,k = (n− αk)Vn+1,k + Vn+1,k+1. (3)

Every partition Π of N so generated is called an exchangeable Gibbs partition with parameters
(α, V ) (EGP(α, V )), where exchangeable means that, for every n, the distribution of Πn is a
symmetric function of the vector n = (n1, . . . , nk) of its frequencies ([25]) (see section 2 below).
Actually, the whole family of EGPs, treated in [14] includes also the value α = −∞, for which
the definition (1)-(2) should be modified; this case will not be treated in the present paper.

A special subfamily of EGPs is Pitman’s two-parameter family, for which V is given by

V
(α,θ)
n,k =

∏k
j=1(θ + α(j − 1))

θ(n)
(4)

where either α ∈ [0, 1] and θ ≥ −α or α < 0 and θ = m|α| for some integer m. Here and in the
following sections, a(x) will denote the generalized increasing factorial i.e. a(x) = Γ(a+ x)/Γ(a),
where Γ(·) is the Gamma function.

Pitman’s family is characterized as the unique class of EGPs with V -coefficients of the form

Vn,k =
V ∗

k

cn

for some sequence of constants (cn) ([14], Corollary 4). If we let α = 0 in (4), we obtain the well
known Ewens’ partition for which:

V
(0,θ)
n,k =

θk

θ(n)
. (5)
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Ewens’ family arose in the context of Population Genetics to describe the properties of a popula-
tion of genes under the so-called infinitely-many-alleles model with parent-independent mutation
(see e.g. [32], [21]) and became a paradigm for the modern developments of a theory of exchange-
able random partitions ([1], [25], [11]).

For every fixed α, the set of all EGP(α, V ) forms a convex set; Gnedin and Pitman proved it and
gave a complete description of the extreme points ([14], Theorem 12). It turns out, in particular,
that for every α ≤ 0, the extreme set is given by partitions from Pitman’s two-parameter family.
For each α ∈ (0, 1), the extreme points are all partitions of the so-called Poisson-Kingman type
with parameters (α, s), s > 0, whose V -coefficients are given by:

Vn,k(s) = αksn/αGα(n− αk, s−1/α), (6)

with

Gα(q, t) :=
1

Γ(q)fα(t)

∫ t

0
fα(t− v)vq−1dv, (7)

where fα is an α-stable density ([29], Theorem 4.5). The partition induced by (6) has limit
frequencies (ranked in a decreasing order) equal in distribution to the jump-sizes of the process
(St/S1 : t ∈ [0, 1]), conditioned on S1 = s, where (St : t > 0) is a stable subordinator with
density fα. The parameter s has the interpretation as the (a.s.) limit of the ratio Kn/n

α as
n → ∞, where Kn is the number of classes in the partition Πn generated via Vn,k(s). Kn is
shown in [14] to play a central role in determining the extreme set of Vn,k for every α; the
distribution of Kn, for every n, turns out to be of the form

P(Kn = k) = Vn,k

[

n

k

]

α

. (8)

where
[n
k

]

α
are generalized Stirling numbers, defined as the coefficients of xn in

n!

αkk!
(1 − (1 − x)α)k

(see [14] and reference therein). As n → ∞, Kn behaves differently for different choices of the
parameter α: almost surely it will be finite for α < 0, Kn ∼ S log n for α = 0 and Kn ∼ Snα

for positive α, for some positive random variable S.

In this paper we want to study how the distribution of the limit age-ordered frequencies Xj =
limn→∞ nj/n (j = 1, 2, . . .) in an Exchangeable Gibbs partition depends on its record indices
i = (1 = i1 < i2 < . . .). To this purpose, we adopt a combinatorial approach proposed
by Griffiths and Lessard [15] to study the distribution of the age-ordered allele frequencies
X1,X2, . . . in a population corresponding to the so-called coalescent process with mutation (see
e.g. [32]), whose equilibrium distribution is given by Ewens’ partition (5), for some mutation
parameter θ > 0. In such a context, the record index ij has the interpretation as the number of
ancestral lineages surviving back in the past, just before the last gene of the j-th oldest type,
observed in the current generation, is lost by mutation.

Following Griffiths and Lessard’s steps we will (i) find, for every n, the distribution of the age
ordered frequencies n = (n1, . . . , nk), conditional on the record indices in = (1 = i1 < i2 < . . . <
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ik) of Πn, as well as the distribution of in; (ii) take their limits as n→ ∞; (iii) for m = 1, 2, . . . ,
describe the distribution of the m-th age-ordered frequency conditional on im alone. We will
follow such steps, respectively, in sections 3.1, 3.2, 4. In addition, we will derive in section 5
a representation for the distribution of the first k age-ordered frequencies, conditional on their
cumulative sum and on ik.

In our investigation of EGPs, the key result is relative to the step (ii), stated in Proposition 3.2,
where we find that, conditional on i = (1, i2, . . .), for every j = 1, 2, . . .,

Xj |i
d
= ξj−1

∞
∏

i=j

(1 − ξi), (9)

almost surely, for an independent sequence (ξ0, ξ1, . . .) ∈ [0, 1]∞ such that ξ0 ≡ 1 and ξm has
a Beta density with parameters (1 − α, im+1 − αm − 1) for each m ≥ 1. The representation
(9) does not depend on V . The parameter V affects only the distribution of the record indices
i = (i1, i2, . . .) which is a non-homogenous Markov chain, starting at i1 ≡ 1, with transition
probabilities

Pj(ij+1|ij) = (ij − αj)(ij+1−ij−1)

Vij+1,j+1

Vij ,j
, j ≥ 1. (10)

The representation (9)-(10) extends Griffiths and Lessard’s result on Ewens’ partitions ([15],
(29)), recovered just by letting α = 0.

In section 3.2 we stress the connection between the representation (9) and a wide class of random
discrete distributions, known in the literature of Bayesian nonparametric statistics as Neutral
to the Left (NTL) processes ([10], [5]) and use such a connection to show that the structure (9)
with independent {ξj} actually characterizes EGP’s among all exchangeable partitions of N.

The representation (9) is useful to find the moments of both Xj and
∑j

i=1Xi, conditional on
the j-th record index ij alone, as shown in section 4. In the same section a recursive formula is
found for the Mellin transform of both random quantities, in terms of the Mellin transform of
the size-biased pick X1.

Finally in section 5 we obtain an expression for the density of the first k age-ordered frequencies
X1, . . . ,Xk, conditional on

∑k
i=1Xi and ik, as a mixture of Dirichlet distributions on the

(k − 1)-dimensional simplex (k = 1, 2, . . .). Such a result leads to a self-contained proof for the
marginal distribution of ik, whose formula is closely related to Gnedin and Pitman’s result (8).

As a completion to our results, it should be noticed that a representation of the unconditional
distribution of the age-ordered frequencies of an EGP can be derived as a mixture of the age-
ordered distributions of their extreme points, which are known: for α ≤ 0, the extreme age-
ordered distribution is the celebrated two-parameter GEM distribution ([25],[26]), for which:

Xj = Bj

j−1
∏

i=1

(1 −Bj), j = 1, 2, . . . (11)

for a sequence (Bj : j = 1, 2, . . .) of independent Beta random variables with parameters,
respectively {(1 − α, θ + jα) : j = 1, 2, . . .}. Such a representation reflects a property of right-
neutrality, which in a sense is the inverse of (9), as it will be clear in section 3.2. When α is
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strictly positive, the structure of the age-ordered frequencies in the extreme points lose such a
simple structure. A description is available in [24].

We want to embed Griffiths and Lessard’s method in the general setting of Pitman’s theory of
exchangeable and partially exchangeable random partitions, for which our main reference is [25].
Pitman’s theory will be summarized in section 2 . The key role played by record indices in the
study of random partitions has been emphasized by several authors, among which Kerov [19],
Kerov and Tsilevich [20], and more recently by Gnedin [13], and Nacu [23], who showed that the
law of a partially exchangeable random partition is completely determined by that of its record
indices. We are indebted to an anonymous referee for signalling the last two references, whose
findings have an intrinsic connection with many formulae in our section 2.

2 Exchangeable and partially exchangeable random partitions.

We complete the introductory part with a short review of Pitman’s theory of exchangeable and
partially exchangeable random partitions, and stress the connection with the distribution of
their record indices. For more details we refer the reader to [25] and [29] and reference therein.
Let µ be a distribution on ∆ = {x = (x1, x2, . . .) ∈ [0, 1]∞ : |x| ≤ 1}, endowed with a Borel
sigma-field. Consider the function:

qµ(n1, . . . , nk) =

∫

∆





k
∏

j=1

p
nj−1
j





k−1
∏

1

(

1 −

j
∑

i=1

pi

)

µ(dp). (12)

The function qµ is called the partially exchangeable probability function (PEPF) of µ, and has
the interpretation as the probability distribution of a random partition Πn = (Πn1, . . . ,ΠnKn),
for which a sufficient statistic is given by its age-ordered frequencies, that is:

Pµ(Πn = (πn1, . . . , πnk)) = qµ(n1, . . . , nk)

for every partition (πn1, . . . , πnk) such that |πnj| = nj (j = 1, . . . , k ≤ n).

If qµ(n1, . . . , nk) is symmetric with respect to permutations of its arguments, it is called an
exchangeable partition probability function (EPPF), and the corresponding partition Πn an ex-
changeable random partition.

For exchangeable Gibbs partitions, the EPPF is, for α ∈ (−∞, 1],

qα,V (n1, . . . , nk) = Vn,k

k
∏

j=1

(1 − α)(nj−1), (13)

with (Vn,k) defined as in (3). This can be obtained by repeated application of (1)-(2)-(3).

A minimal sufficient statistic for an exchangeable Πn is given, because of the symmetry of its
EPPF, by its unordered frequencies (i.e. the count of how many frequencies in Πn are equal to
1, ..., to n), whose distribution is given by their (unordered) sampling formula:

µ̃(n) =

(

|n|

n

)

1
∏n

1 bi!
qµ(n), (14)
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where
(

|n|

n

)

=
|n|!

∏k
j=1 nj !

and bi is the number of nj’s in n equal to i (i = 1, . . . , n).

It is easy to see that for a Ewens’ partition (whose EPPF is (13) with α = 0 and V given by
(5)), formula (14) returns the celebrated Ewens’ sampling formula.

The distribution of the age-ordered frequencies

µ̄(n) =

(

|n|

n

)

a(n)qµ(n), (15)

differs from (14) only by a counting factor, where

a(n) =

k
∏

j=1

nj

n−
∑j−1

i=1 ni

(16)

is the distribution of the size-biased permutation of n.

If Π = (Πn) is a (partially) exchangeable partition with PEPF qµ, then the vector n−1(n1, n2, . . .)
of the relative frequencies, in age-order, of Πn, converges a.s. to a random point P =
(P1, P2, . . .) ∈ ∆ with distribution µ: thus the integrand in (12) has the interpretation as the
conditional PEPF of a partially exchangeable random partition, given its limit age-ordered fre-
quencies (p1, p2, . . .). If qµ is an EPPF, then the measure dµ is invariant under size-biased
permutation.

The notion of PEPF gives a generalized version of Hoppe’s urn scheme, i.e. a predictive dis-
tribution for (the age-ordered frequencies of) Πn+1, given (those of) Πn. In an urn of Hoppe’s
type there are colored balls and a black ball. Every time we draw a black ball, we return it in
the urn with a new ball of a new distinct color. Otherwise, we add in the urn a ball of the same
color as the ball just drawn.

Pitman’s extended urn scheme works as follows. Let q be a PEPF, and assume that initially
in the urn there is only the black ball. Label with j the j-th distinct color appearing in the
sample. After n ≥ 1 samples, suppose we have put in the urn n = (n1, . . . , nk) balls of colors
1, . . . , k, respectively, with colors labeled by their order of appearance. The probability that the
next ball is of color j is

P(n + ej|n) =
q(n + ej)

q(n)
I(j ≤ k) +



1 −
k
∑

j=1

q(n + ej)

q(n)



 I(j = k + 1), (17)

where ej = (δij : i = 1, . . . , k) and δxy is the Kronecker delta. The event (j = k + 1), in the last
term of the right-hand side of (17), corresponds to a new distinct color being added to the urn.

The predictive distribution of a Gibbs partition is obtained from its EPPF by substituting (13)
into (17):
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P(n + ej |n) =
nj − α

n− αk

(

1 −
Vn+1,k+1

Vn,k

)

I(j ≤ k) +
Vn+1,k+1

Vn,k
I(j = k + 1), (18)

which gives back our definition (1)-(2) of an EGP.

The use of an urn scheme of the form (1)-(2) in Population Genetics is due to Hoppe [16] in the
context of Ewens’ partitions (infinitely-many-alleles model), for which the connection between
order of appearance in a sample and age-order of alleles is shown by [8]. In [10] an extended
version of Hoppe’s approach is suggested for more complicated, still exchangeable population
models (where e.g. mutation can be recurrent). Outside Population Genetics, the use of (1)-(2)
for generating trees leading to Pitman’s two-parameter GEM frequencies, can be found in the
literature of random recursive trees (see e.g. [7]). Urn schemes of the form (17) are a most
natural tool to express one’s a priori opinions in a Bayesian statistical context, as pointed out
by [33] and [27]. Examples of recent applications of Exchangeable Gibbs partitions in Bayesian
nonparametric statistics are in [22], [17]. The connection between (not necessarily infinite) Gibbs
partitions and coagulation-fragmentation processes is explored by [3] (see also [2] and reference
therein).

2.1 Distribution of record indices in partially exchangeable partitions.

Let Π be a partially exchangeable random partition. Since, for every n, its collection of age-
ordered frequencies n = (n1, . . . , nk) is a sufficient statistic for Πn, all realizations πn with the
same n and the same record indices in = 1 < i2 < . . . < ik ≤ n must have equal probability.
To evaluate the joint probability of the pair (n, in), we only need to replace a(n) in (15) by an
appropriate counting factor. This is equal to the number of arrangements of n balls, labelled
from 1 to n, in k boxes with the constraint that exactly nj balls fall in the same box as the ball
ij . Such a number was shown by [15] to be equal to

(

|n|

n

)

a(n, in)

where
(

|n|

n

)

=
n!

∏k
j=1 nj!

and a(n, in) =

∏k
j=1

(Sj−ij
nj−1

)

(|n|
n

)

with Sj :=
∑j

i=1 ni. Thus, if Π = (Πn) is a partially exchangeable random partition with PEPF
qn, then the joint probability of age-ordered frequencies and record indices is

µ̄(n, in) =

(

|n|

n

)

a(n, in)qµ(n). (19)

The distribution of the record indices can be easily derived by marginalizing:

µ̄(in) =
∑

n∈B(in)

(

|n|

n

)

a(n, in)qµ(n). (20)

where

Bn(in) = {(n1, . . . , nk) :

k
∑

i=1

ni = n; Sj−1 ≥ ij − 1, j = 1, . . . , k}
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is the set of all possible n compatible with i. In [15] such a formula is derived for the particular
case of Ewens’ partitions. For general random partitions see also [23], section 2.

Notice that, for every n such that |n| = n,

a(n) =
∑

in∈C(n)

a(n, in) =
k
∏

j=1

nj

n−
∑j−1

i=1 ni

,

where
C(n) = {(1 < i2 < . . . < ik ≤ n) : k ≤ n, ij ≤ Sj−1 + 1}

is the set of all possible in compatible with n. Then the marginal distribution of the age-ordered
frequencies (15) is recovered by summing (19) over C(n).

This observation incidentally links a classical combinatorial result to partially exchangeable
random partitions.

Proposition 2.1. Let Π = (Πn) be a partially exchangeable partition with PEPF qµ.
(i) Given the frequencies n = (n1, . . . , nk) in age-order, the probability that the least elements of
the classes of Πn are in = (i1, . . . , ik), does not depend on qµ and is given by

P(in|n) =
1

n!

k
∏

j=1

(Sj − ij)!

(Sj−1 − ij + 1)!
(n− Sj−1). (21)

(ii) Let Wj = limn→∞ Sj/n. Conditional on {Wj : j = 1, 2, . . .}, the waiting times

Tj = ij − ij−1 − 1 (j = 2, 3, . . .)

are independent geometric random variables, each with parameter (1 −Wj−1), respectively.

Proof. Part (i) can be obtained by a manipulation of a standard result on uniform random
permutations of [n]. Part two can be proved by using a representation theorem due to Pitman
([25], Theorem 8). We prefer to give a direct proof of both parts to make clear their connection.
Simply notice that, for every n and i, the right-hand side of (21) is equal to a(n, in)/a(n). Then,
for every n,

∑

in

P(in|n) =
∑

in∈C(n)

a(n, in)

a(n)
= 1

and
∑

n

∑

C(n)

P(in|n)µ̄(n) = 1,

where µ̄(n) is as in (15), hence P(in|n) is a regular conditional probability and (i) is proved.
Now, consider the set

C[il,l](n) := {il < il+1 < . . . < ik ≤ n : ij ≤ Sj−1 + 1, j = l + 1, . . . , k}.

Also define, for j = 1, . . . , k − l + 1, n∗j := S∗
j − S∗

j−1 with S∗
j := Sj+l−1 − il + 1, and i∗j :=

ij+l−1 − il + 1. Then C[il,l](n) = C(n∗) so that, for a fixed l ≤ k, the conditional probability of
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i2, . . . , il, given n = (n1, . . . , nk), is

P(i2, . . . , il|n) =
1

n!

∑

C[il,l]
(n)

k
∏

j=1

(Sj − ij)!

(Sj−1 − ij + 1)!
(n− Sj−1)

=
(n− il)!

n!





l−1
∏

j=1

(Sj − ij)!

(Sj−1 − ij + 1)!
(n− Sj−1)





(n − Sl−1)

(Sl−1 − il + 1)!

×
∑

C(n∗)

a(n∗, i∗n∗)

a(n∗)
, (22)

where n∗ = n − il + 1. The sum in (22) is 1; multiply and divide the remaining part by
[Sl−1

l (Sl − il)!]/(Sl − 1)!. The probability can therefore be rewritten as

P(i2, . . . , il|n) =
(Sl − 1)[il−1]

(n− 1)[il−1]

(

Sl

n

)−(l−1) l
∏

j=1

(

1 −
Sj−1

n

)





Sl−1
l

(Sl − 1)!

l
∏

j=1

(Sj − ij)!

(Sj−1 − ij + 1)!



 ,

where a[r] = a(a− 1) · · · (a− r + 1) is the falling factorial. Now, define

(Wj : j = 1, 2, . . .) = lim
n→∞

(Sj/n : j = 1, 2, . . .);

then, for l fixed,

lim
n→∞

P(i2, . . . , il|n) = W il−l
l

l
∏

j=1

(1 −Wj−1)





l
∏

j=2

(

Wj−1

Wl

)ij−ij−1−1




=
l
∏

j=2

W
ij−ij−1−1
j−1 (1 −Wj−1),

which is the distribution of k− 1 independent geometric random variables, each with parameter
(1 −Wj), and the proof is complete.

By combining the definition (12) of PEPF and Proposition 2.1, one recovers an identity due to
Nacu ([23], (7)).

Corollary 2.1. ([23], Proposition 5) For every sequence 1 = i1 < i2 < . . . < ik + 1 = n, and
every point p = (p1, p2, . . .) ∈ ∆,

k−1
∏

j=1

w
ij+1−ij−1
j =

∑

B(i)

(

|n|

n

)

a(i,n)

k
∏

j=1

p
nj−1
j (23)

where wj =
∑j

i=1 pi (j = 1, 2, . . .).

Proof. Multiply both sizes by
∏k

1(1 − wj−1): by Proposition 2.1 and (12), formula (23) is just
the equality (20) with the choice dµ = δp.
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3 Age-ordered frequencies conditional on the record indices in

Exchangeable Gibbs partitions

3.1 Conditional distribution of sample frequencies.

From now on we will focus only on EGP(α, V ). We have seen that the conditional distribution
of the record indices, given the age-ordered frequencies of a partially exchangeable random
partition, is purely combinatorial as it does not depend on its PEPF. We will now find the
conditional distribution of the age-ordered frequencies n given the record indices, i.e. the step
(i) of the plan outlined in the introduction. We show that such a distribution does not depend
on the parameter V , which in fact affects only the marginal distribution of in, as explained in
the following Lemma.

Lemma 3.1. Let Π = (Πn) be an EGP(α, V ), for some α ∈ (−∞, 1) and V = (Vn,k : k ≤ n =
1, 2, . . .). For each n, the probability that the record indices in Πn are in = (i1, . . . , ik) is

µ̄α,V (in) = ψ−1
α,n(in)Vn,k. (24)

where

ψα,n(in) =
Γ(1 − α)

Γ(n− αk)

k
∏

2

Γ(ij − jα)

Γ(ij − jα− (1 − α))
. (25)

The sequence i1, i2, . . . forms a non-homogeneous Markov chain starting at i1 = 1 and with
transition probabilities given by

Pj(ij+1|ij) = (ij − αj)(ij+1−ij−1)

Vij+1,j+1

Vij ,j
, j ≥ 1. (26)

Proof. The proof can be carried out by using the urn scheme (18). For every n, let Kn be the
number of distinct colors which appeared before the n + 1-th ball was picked. From (18), the
sequence (Kn : n ≥ 1) starts from K1 = 1 and obeys, for every n, the prediction rule:

P(Kn+1 = kn+1|Kn = k) =

(

1 −
Vn+1,k+1

Vn,k

)

I(kn+1 = k) +
Vn+1,k+1

Vn,k
I(kn+1 = k + 1). (27)

By definition, Kn jumps at points 1 < i2 < . . ., due to the equivalence

{Kn+1 = Kn + 1|Kn = k} = {ik+1 = n+ 1}.

Thus, for every n, k ≤ n every sequence in = (1 = i1 < . . . < ik ≤ n) corresponds to a sequence
(k1, . . . , kn) such that kij = j, j = 1, . . . , k and km = km−1 ∀m ∈ [n] : m /∈ in. From (27),

µ̄α,V (in) =

k
∏

j=1

Vij ,j

Vij−1,j−1

∏

l /∈in

(l − 1 − kl−1α)
Vl,kl−1

Vl−1,kl−1

= Vn,k

∏

l /∈in

(l − 1 − kl−1α) . (28)
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The last product in (28) is equal to

∏

l /∈in

(l − kl−1α− 1) =
Γ(n− αk)

Γ(1 − α)

k
∏

j=2

Γ(ij − jα− (1 − α))

Γ(ij − jα)
.

= ψ−1
α,n(in). (29)

and this proves (24). The second part of the Lemma (i.e. the transition probabilities (26)) follow
immediately just by replacing, in (24), n with ik, for every k, to show that

µ̄α,V (iik) =

k−1
∏

j=1

Pj(ij+1|ij),

for Pj satisfying (26) for every j.

The distribution of the age-ordered frequencies in an EGP Πn, conditional on the record indices,
can be easily obtained from Lemma 3.1 and (19).

Proposition 3.1. Let Π = (Πn) be an EGP(α, V ), for some α ∈ (−∞, 1) and V = (Vn,k : k ≤
n = 1, 2, . . .). For each n, the conditional distribution of the sample frequencies n in age-order,
given the vector in of indices, is independent of V and is equal to

µ̄α(n|in) = ψα,n(in)





k
∏

j=1

(

Sj − ij
nj − 1

)

(1 − α)(nj−1)



 . (30)

Remark 3.1. Notice that, as α→ 0, formula (30) reduces to:

µ̄0(n|in) =

∏k
l=2(il − 1)

(n− 1)!

k
∏

j=1

(Sj − ij)!

(Sj−1 + ij − 1)!
.

This is known as the law of cycle partitions of a permutation given the minimal elements of
cycles, derived in the context of Ewens’ partitions in [15].

Proof. Recall that the probability of a pair (n, in) is given by

µ̄α,V (n, in) =

(

|n|

n

)

a(n, in)qα,V (n). (31)

Now it is easy to derive the conditional distribution of a configuration given a sequence in, as:
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µ̄α(n|in) =
µ̄α,V (n, in)

µ̄α,V (in)

=

(

|n|

n

)





∏k
j=1

(Sj−ij
nj−1

)

(1 − α)(nj−1)
(

|n|
n

)





Vn,k

µ̄α,V (i)

= ψα,n(in)





k
∏

j=1

(

Sj − ij
nj − 1

)

(1 − α)(nj−1)



 , (32)

and the proof is complete.

3.2 The distribution of the limit frequencies given the record indices.

We now have all elements to derive a representation for the limit relative frequencies in age-
order, conditional on the limit sequence of record indices i = (i1 < i2 < . . .) generated by an
EGP(α, V ).

Proposition 3.2. Let Π = (Πn)n≥1 be an Exchangeable Gibbs Partition with index α > −∞
for some V . Let i = (i1 < i2 < . . .) be its limit sequence of record indices and X1,X2, . . . be the
age-ordered limit frequencies as n→ ∞.

A regular conditional distribution of X1,X2, . . . given the record indices is given by

Xj
d
= ξj−1

∞
∏

m=j

(1 − ξm), j ≥ 1, (33)

a.s., where ξ0 ≡ 1 and, for j ≥ 1, ξj is a Beta random variable in [0, 1] with parameters
(1 − α, ij+1 − jα− 1).

Remark 3.2. Proposition 3.2 is a statement about a regular conditional distribution. The
question about the existence of a limit conditional distribution of X|i as a function of i = limn in
has different answer according to the choice of α, as a consequence of the limit behavior of Kn,
the number of blocks of an EGP Πn, as recalled in the introduction. For α < 0, i is almost surely
a finite sequence; for nonnegative α, the length k of i will be a.s. either k ∼ s log n (for α = 0)
or k ∼ snα (for α > 0), for some s ∈ [0,∞]. The infinite product representation (33) still holds
in any case if we adopt the convention ik ≡ ∞ for every k > K∞ where K∞ := limn→∞Kn.

Proof. The form (30) of the conditional density µα(n|in) implies

∑

|n|=n

k
∏

j=1

(

Sj − ij
nj − 1

)

(1 − α)(nj−1) = ψ−1
α,n(in). (34)
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For some r < k, let a2, . . . , ar be positive integers and set a1 = 0 and ar+1 = . . . = ak = 0.
Define i′n = (i′1, . . . , i

′
k) where

i′j = ij +

j
∑

1

ai (j = 1, . . . , k).

Now take the sum (34) with in replaced by i′n, and multiply it by ψα,n(in). We obtain

ψα,n(in)

ψα,n(i′n)
= E





k
∏

j=1

(Sj − i′j)!

(Sj − ij)!

(Sj−1 − ij + 1)!

(Sj−1 − i′j + 1)!



 (35)

where the expectation is taken with respect to µ̄α(·|in). The left hand side of (35) is

ψα,n(in)

ψα,n(i′n)
=

k
∏

j=2

[ij − jα − (1 − α)]
(
Pj

i=1 ai)

(ij − jα)
(
Pj

i=1 ai)

=

k−1
∏

j=1

E((1 − ξj)
Pj

i=1 ai), (36)

where ξ1, . . . , ξk−1 are independent Beta random variables, each with parameters (1 − α, ij+1 −
jα − 1).

Let bj =
∑j

i=1 ai. On the right hand side of (35), S0 = 0, Sk = n, so the product is equal to

k
∏

j=1

(

Sj−1

Sj

)bj





bj−1
∏

l=0





1 −
ij+l
Sj

1 −
ij−1+l
Sj−1







 (37)

Since aj = 0 for j = 1 and j > r, as k, n → ∞ the product inside square brackets converges to
1 so the limit of (37) is

r−1
∏

j=1

W
aj+1

j

where Wj = limn→∞ Sj/n. Hence from (35) it follows that in the limit

E





r−1
∏

j=1

W
aj

j



 =

∞
∏

j=2

E((1 − ξj)
Pj

i=1 ai)

which gives the limit distribution of the cumulative sums:

Wj
d
=

∞
∏

i=j

(1 − ξi), j = 1, 2, . . .
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But

Xj = Wj −Wj−1

d
=

∞
∏

i=j

(1 − ξj) −

∞
∏

i=j−1

(1 − ξj)

= ξj−1

∞
∏

i=j

(1 − ξi), j = 1, 2, . . .

and the proof is complete.

3.3 Conditional Gibbs frequencies, Neutral distributions and invariance un-

der size-biased permutation.

Proposition 3.2 says that, conditional on all the record indices i1, i2, . . ., the sequence of relative
increments of an EGP(α, V )

ξ =

(

X2

W2
,
X3

W3
, . . .

)

. (38)

is a sequence of independent coordinates. In fact, such a process can be interpreted as the
negative, time-reversed version of a so-called Beta-Stacy process, a particular class of random
discrete distributions, introduced in the context of Bayesian nonparametric statistics as a useful
tool to make inference for right-censored data (see [30], [31] for a modern account).
It is possible to show that such an independence property of the ξ sequence (conditional on the
indices) actually characterizes the family of EGP partitions. To make clear such a statement
we recall a concept of neutrality for random [0, 1]-valued sequences, introduced by Connor and
Mosimann [4] in 1962 and refined in 1974 by Doksum [6] in the context of nonparametric inference
and, more recently, by Walker and Muliere [31].

Definition 3.1. Let k be any fixed positive integer (non necessarily finite).

(i) Let P = (P1, P2, . . . , Pk) be a random point in [0, 1]k such that |P | =
∑k

i=1 Pi ≤ 1

and, for every j = 1, . . . , k − 1 denote Fj =
∑j

i=1 Pi. P is called a Neutral to the Right (NTR)
sequence if the vector (Bj : 1 ≤ j < k) of relative increments

Bj =
Pj

1 − Fj−1
j < k

is a sequence of independent random variables in [0, 1].
Let (α, β) be a point in [0,∞]k−1 (or in [0,∞]∞ if k = ∞). A NTR vector P such that |P | = 1
almost surely and, for every j < k, every increment Bj is a Beta (αj , βj), is called a Beta-Stacy
distribution with parameter (α, β).

(ii) A Neutral to the left (NTL) vector P = (P1, P2, . . . , Pk) is a vector such that P ∗ :=
(Pk, Pk−1, . . . , P1) is NTR.
A Left-Beta-Stacy distribution is a NTL vector P such that P ∗ is Beta-Stacy.
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A known result due to [26] is that the only class of exchangeable random partitions whose limit
age-ordered frequencies are (unconditionally) a NTR distribution, is Pitman’s two-parameter
family, i.e. the EGP(α, V ) with V -coefficients given by (4). In this case, the age-ordered fre-
quencies follow the so-called two-parameter GEM distribution, a special case of Beta-Stacy
distribution with each Bj being a Beta(1 − α, θ + jα) random variable.
The age-ordered frequencies of all other Gibbs partitions are not NTR; on the other side, Propo-
sition 3.2 shows that, conditional on the record indices i1, i2, . . ., and on Wk they are all NTL
distributions. For a fixed k set

Yj =
Xk−j+1

Wk
, 1 ≤ j ≤ k.

Then

1 − Fj =
Wk−j

Wk

and

ξk−j =
Yj

1 − Fj−1
. (39)

By construction, the sequence Y1, . . . , Yk is a Beta-Stacy sequence with parameters αk,j = 1−α
and βk,j = ik−j+1 − (k − j + 1)α − (1 − α) (j = 1, . . . , k). The property of (conditional)
left-neutrality is maintained as k → ∞ (just condition on WK∞

= 1 where K∞ = limn→∞Kn ).

The following proposition is a converse of Proposition 3.2.

Proposition 3.3. Let X = (X1,X2, . . .) ∈ ∆ be the age-ordered frequencies of an infinite
exchangeable random partition Π of N. Assume, conditionally on the record indices of Π, X is
a NTL sequence. Then Π is an exchangeable Gibbs partition for some parameters (α, V ).

Proof. The frequencies of an exchangeable random partition of N are in age-order if and only
if their distribution is invariant under size-biased permutation (ISBP, see [9], [26], [12]). To
prove the proposition, we combine two known results: the first is a characterization of ISBP
distributions; the second is a characterization of the Dirichlet distribution in terms of NTR
processes. We recall such results in two lemmas.

Lemma 3.2. Invariance under size-biased permutation ([26], Theorem 4). Let X be a random
point of [0, 1]∞ such that |X| = 1 almost surely with respect to a probability measure dµ. For
every k, let µk denote the distribution of X1, . . . ,Xk, and Gk the measure on [0, 1]k, absolutely
continuous with respect to µk with density

dGk

dµk
(x1, . . . , xk) =

k−1
∏

i=1

(1 −wj)

where wj =
∑j

i=1 xi, j = 1, 2, . . .
X is invariant under size-biased permutation if and only if Gk is symmetric with respect to
permutations of the coordinates in R

k.

1116



Let X be the frequencies of an exchangeable partition Π, and denote with Pµ the marginal law
of the record indices of Π. Consider the measure Gk of Lemma 3.2. By Proposition 2.1 (ii), for
every k

Gk(dx1 × · · · × dxk) = µk(dx1 × · · · × dxk)
k−1
∏

i=1

(1 − wj)

= µk(dx1 × · · · × dxk)P(i1 = 1, i2 = 2, . . . , ik = k |x1, . . . , xk)

= µk(dx1 × . . .× dxk|ik = k)Pµ(ik = k) (40)

An equivalent characterization of ISBP measure is:

Corollary 3.1. The law of X is invariant under size-biased permutation if and only if, for every
k, there is a version of the conditional distribution

µk(dx1 × . . .× dxk|ik = k)

which is invariant under permutations of coordinates in R
k.

The other result we recall is about Dirichlet distributions.

Lemma 3.3. Dirichlet and neutrality ([5], Theorem 7). Let P be a random k-dimensional
vector with positive components such that their sum equals 1. If P is NTR and Pk does not
depend on (1 − Pk)−1(P1, . . . , Pk−1). Then P has the Dirichlet distribution.

Now we have all elements to prove Proposition 3.3. Let µ(·|i1, i2 . . .) be the distribution of a NTL
vector X such that the distribution of ξj := Xj+1/Wj+1, (with Wj =

∑j
i=1Xi) has marginal law

γj for j = 1, 2, . . .. For every k, given i1, . . . , ik, the vector (X2/W2, . . . ,Xk/Wk) is conditionally
independent of Wk and

µk(dx1 × · · · × dxk|ik = k) =





k−1
∏

j=1

γj(dξj)



 ζk(dwk)

where ζk is the conditional law of Wk given ik = k.
For X to be ISBP, corollary 3.1 implies that the product

k−1
∏

j=1

γj(dξj)

must be a symmetric function of x1, . . . , xk. Then, for every k, the vector (X1/Wk, . . . ,Xk/Wk)
is both NTL and NTR, which implies in particular that Xk/Wk is independent of
W−1

k−1(X1, . . . ,Xk−1). Therefore, by Lemma 3.3 and symmetry, ( X1
Wk
, . . . , Xk

Wk
) is, conditionally

on Wk and {ik = k}, a symmetric Dirichlet distribution, with parameter, say, 1 − α > 0. By
(40), the EPPF corresponding to dµ is equal to

E





k
∏

j=1

X
nj−1
j (1 −Wj−1)



 = Pµ(ik = k)E





k
∏

j=1

X
nj−1
j |ik = k



 . (41)
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By the NTL assumption, we can write

k
∏

j=1

X
nj−1
j =

k
∏

j=2

(

Xj

Wj

)nj−1(Wj

Wk

)nj−1

W n−k
k ,

d
=





k
∏

j=2

ξ
nj+1−1
j (1 − ξj)

Sj−j



W n−k
k , (42)

where Sj =
∑j

i=1 ni (j = 1, . . . , k). The last equality is due to

k
∏

j=1

Wj

Wk
=

k−1
∏

j=1

(

Wj

Wj+1

)j

.

Now, set

Vn,k =
Pµ(ik = k)E(W n−k

k |ik = k)

[k(1 − α)](n−k)
.

Equality (42) implies

E





k
∏

j=1

X
nj−1
j (1 −Wj−1)



 = Pµ(ik = k)

∫





∫ k−1
∏

j=1

ξ
nj+1−1
j (1 − ξj)

Sj−jγj(ξj)dξj



wn−k
k ζk(wk)dwk

= Pµ(ik = k)E(W n−k
k |ik = k)

k−1
∏

j=1

(1 − α)(nj+1−1)[j(1 − α)](Sj−j)

[(j + 1)(1 − α)](Sj+1−(j+1))

= Vn,k

k
∏

j=1

(1 − α)(nj−1),

which completes the proof.

4 Age-ordered frequencies conditional on a single record index.

A representation for the Mellin transform of the m-th age-ordered cumulative frequencies Wm,
conditional on im alone (m = 1, 2, . . .) can be derived by using Proposition 3.2. We first point
out a characterization for the moments of Wm, stated in the following Lemma.

Lemma 4.1. Let X1,X2, . . . be the limit age-ordered frequencies generated by a Gibbs partition
with parameters α, V . For every m = 1, 2, . . . and nonnegative integer n

E(W n
m|im) = (im − αm)(n)

Vim+n,m

Vim,m
(43)

and

E(Xn
m|im) = (1 − α)(n)

Vim+n,m

Vim,m
. (44)
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Proof. Let Π be an EGP (α, V ) and denote Yj : j = 1, 2, . . . the sequence of indicators {0, 1}
such that Yj = 1 if j is a record index of Π. Then Y1 = 1 and, for every l,m ≤ l,

P(Yl+1 = 0 |

l
∑

i=1

Yi = m) = (l − αm)
Vl+1,m

Vl,m

= 1 − P(Yl+1 = 1 |
l
∑

i=1

Yi = m).

By proposition 2.1 and formula (13), given the cumulative frequencies W = W1,W2, . . .,

P(Yl+1 = 0|

l
∑

i=1

Yi = m,W ) = 1 − P(Yl+1 = 1 |

l
∑

i=1

Yi = m,W ) = Wm.

(see also [25], Theorem 6). Obviously this also implies that, conditional on W , the random
sequence Kl :=

∑l
i=1 Yi, (l = 1, 2, . . .) is Markov, so we can write, for every l,m

P(Yl+1 = 0 |Kl = m, Kl−1 = m−e,W ) = P(Yl+1 = 0 |Kl = m,W ) = Wm, e = 0, 1. (45)

Hence

E(Wm|im) = E [P(Yim+1 = 0 | Kim = m,Kim−1 = m− 1,W )]

= E [P(Yim+1 = 0 | Kim = m,W )]

= (im − αm)
Vim+1,m

Vim,m
, (46)

which proves the proposition for m = 1. The Markov property of Kn and (45) also lead, for
every m, to

E(W n
m|ij) = E [P(Yim+1 = . . . = Yn = 0 | Kim = m,Kim−1 = m− 1,W )]

=

n
∏

i=1

E [P(Yim+i = 0 | Kim+i−1 = m,W )]

= (im − αm)(n)
Vim+n,m

Vim,m
,

where the last equality is obtained as an n-fold iteration of (46).

The second part of the Lemma (formula (44)) follows from Proposition 3.2:

E(Xn
m|im) = E(ξn

m−1|im)E(W n
m|im)

=
(1 − α)(n)

(im − αm)(n)
E(W n

m|im)

which combined with (43) completes the proof.
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Given the coefficients {Vn,k}, analogous formulas to (43) and (44) can be obtained to describe
the conditional Mellin transforms of Wm and Xm (respectively), in terms of the Mellin transform
of the size-biased pick X1.

Proposition 4.1. Let X1,X2, . . . be the limit age-ordered frequencies generated by a Gibbs par-
tition with parameters α, V . For every m = 1, 2, . . . and φ ≥ 0

E(W φ
m|im) = (im − αm)(φ)

Vim,m[φ]

Vim,m
(47)

and

E(Xφ
m|im) = (1 − α)(φ)

Vim,m[φ]

Vim,m
, (48)

for a sequence of functions (Vn,k[·] : R → R; k, n = 1, 2, . . .), uniquely determined by Vn,k ≡
Vn,k[0], such that, for every φ ≥ 0,

V1,1[φ] =
E(Xφ

1 )

(1 − α) (φ)

; (49)

Vn,k[φ] = (n+ φ− αk)Vn+1,k[φ] + Vn+1,k+1[φ], n, k = 1, 2, . . . ; (50)

Vn,k[φ+ 1] = Vn+1,k[φ] n, k = 1, 2, . . . . (51)

Remark 4.1. To complete the representation given in Proposition 4.1, notice that, for every α,
the distribution of X1 (the so-called structural distribution) is known for the extreme points of
the Gibbs(α, V ) family.
In particular, for α ≤ 0 X1 has a Beta(1 − α, θ + α) density (θ > 0), where θ = m|α| for some
integer m when α < 0 (see e.g. [27]). In this case,

V1,1[φ](θ) =
1

(1 − α)(φ)

(

(1 − α)(φ)

(θ + 1)(φ)

)

=
1

(θ + 1)(φ)
.

When α > 0, we saw in the introduction that every extreme point in the Gibbs family is a
Poisson-Kingman (α, s) partition for some s > 0; in this case the density of X1 is

f1,α(x|s) =
αs−1(x)−α

Γ(1 − α)

fα((1 − x)s1/α)

fα(s1/α)
0 < x < 1,

for an α-stable density fα ([28], (57)), leading to

V1,1[φ](s) = αs
φ−1

α Gα(φ− α− 1, s−1/α)

where Gα is as in (7).
Thus, for every α, the structural distribution of a Gibbs(α, V ) partition, which defines V1,1[φ] in
(49), can be obtained as mixture of the corresponding extreme structural distributions.
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Proof. Note that, for φ = 0, 1, 2, . . ., the proposition holds by Lemma 4.1 with Vn,m[φ] ≡ Vn+φ,m.
For general φ ≥ 0 observe that, for every m,n ∈ N,

E(W φ+n−m
m |im = m) = E(W φ

m|im = n)E(W n−m
m |im = m). (52)

To see this, consider the random sequences Yn,Kn defined in the proof of Lemma 4.1. By (45),

E(W φ+n−m
m |im = m) = E

[

W φ
mP(Kn = m|Km = m,W ) | Km = m

]

= E

[

W φ
mP(Kn = m| W ) | Km = m

]

= E

[

W φ
m | Kn = m,Km = m

]

E [P(Kn = m| W ) | Km = m]

= E

[

W φ
m | Kn = m

]

E
[

W n−m
m | Km = m

]

= E

[

W φ
m | im = n

]

E
[

W n−m
m | Km = m

]

where the last two equalities follow from (45), the Markov property of Kn and the exchangeability
of the Y ′s.

From Lemma 4.1, we can rewrite (52) as

E(W φ
m|im = n) =

E(W φ+n−m
m |im = m)

[m(1 − α)](n−m)

Vm,m

Vn,m
. (53)

Now define
Mm(φ) = E(W φ

m|im = m), φ ≥ 0,m = 1, 2, . . . . (54)

and

Vn,m[φ] =
Vm,mMm(φ+ n−m)

[m(1 − α)](n+φ−m)
φ ≥ 0, n,m = 1, 2, . . . . (55)

Notice that, with such a definition, Lemma 1 implies that Vn,m[0] = Vn,m. Moreover, Vn,m[φ +
1] = Vn+1,m[φ] so (51) is satisfied; then (53) reads

E(W φ
m|im) = (im − αm)(φ)

Vim,m[φ]

Vim,m
, (56)

that is: (49),(47) and are satisfied.
Now it only remains to prove that such choice of Vn,m[φ] obeys the recursion (50) for every
n,m, φ. By the same arguments leading to (52),

Mm(φ) −Mm(φ+ 1) = E[W φ
m(1 −Wm)|Km = m]

= E

[

W φ
m

(

1 − P(Km+1 = m|W )
)

| Km = m
]

= E

[

W φ
m | Km+1 = m+ 1,Km = m

]

E [1 − P(Km+1 = m|W ) | Km = m]

= E

[

(1 − ξm)φ | im+1 = m+ 1
]

E

[

W φ
m+1 | Km+1 = m+ 1

] Vm+1,m+1

Vm,m
.(57)
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The last equality is a consequence of Proposition 3.2, for which, conditional on Km+1 = m + 1
(which is equivalent to {im+1 = m + 1}), Wm = (1 − ξm)Wm+1 for ξm (independent of Wm+1)
having a Beta(1 − α,m(1 − α)) distribution. Therefore (57) can be rewritten as

Mm(φ) −Mm(φ+ 1) =
[m(1 − α)](φ)

[(m + 1)(1 − α)](φ)
Mm+1(φ)

Vm+1,m+1

Vm,m
, (58)

and (50) follows from (58),(51), after some simple algebra, by comparing the definition (55) of
Vn,k[φ], and the recursion (3) for the V -coefficients of an EGP(α, V ). In particular, (58) shows
that the functions Vn,k[φ] are uniquely determined by V = (Vn,k).
The equality (48) can now be proved in the same way as the moment formula (44).

5 A representation for normalized age-ordered frequencies in an

exchangeable Gibbs partition.

In this section we provide a characterization of the density of the first k (normalized) age-ordered
frequencies, given ik and Wk, and an explicit formula for the marginal distribution of ik. We
give a direct proof, obtained by comparison of the unconditional distribution of X1, . . . ,Xk,
(k = 1, 2, . . .), in a general Gibbs partition, with its analogue in Pitman’s two-parameter model.
Such a comparison is naturally induced by proposition 3.2, which says that, conditional on
the record indices, the distribution of the age-ordered frequencies is the same for every Gibbs
partition. Remember that the limit (unconditional) age-ordered frequencies in such a family are
described by the two-parameter GEM distribution, for which

Xj
d
= Bj

j−1
∏

i=1

(1 −Bi)

for a sequence B1, B2, . . . of independent Beta random variables with parameters, respectively,
(1 − α, θ + jα) (see e.g. [27]).

Proposition 5.1. Let X1,X2, . . . be the age-ordered frequencies of a EGP(α, V ) and, for every
k let Wk =

∑k
i=1Xi.

(i) Conditional on Wk = w and on ik = k + i, the law of the vector X1, . . . ,Xk is

dµα,V (x1, . . . , xk|w, k+i) =
Vk+i,k

Vk+i−1,k−1
w−(k−1)

∑

m∈Nk−1:|m|=k+i−1

µ̄α,V (m)D(m−α)(
x1

w
, . . . ,

xk

w
)dx1, . . . , dxk−1

(59)
where: D(m−α) is the Dirichlet density with parameters (m1 − α, . . . ,mk−1 − α, 1 − α), and
µα,V (m) is the age-ordered sampling formula (15) with Gibbs’ EPPF qα,V as in (13):

µ̄α,V (m) =

(

(k + i− 1)!
∏k−1

j=1(mj)!(k + i− 1 −
∑j−1

i=1 mi)

)

Vk+i−1,k−1

k−1
∏

j=1

(1 − α)(mj−1).
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(ii) The marginal distribution of ik is

P(ik = k + i) = Vk+i,k
α−(k−1)

(k + i− 1)!

k−1
∑

j=0

(−1)j+k+i−1

j!(k − j − 1)!
(αj)[k+i−1], (60)

where a[n] = a(a− 1) · · · (a− n+ 1).

Remark 5.1. The density of ik can be expressed in terms of generalized Stirling numbers
[

n
k

]

α
,

defined as the coefficients of xn in

n!

αkk!
(1 − (1 − x)α)k

( [18],[14]). Formula (60) can be re-expressed as:

P(ik) = Vik ,k

[

ik − 1

k − 1

]

α

,

which makes clear the connection between the distribution of ik and the distribution of Kn recalled
in the introduction (formula (8)). In fact, (60) can be deduced simply from (8) by the Markov
property of the sequence Kn as

P(ik) = P(Kik = k | Kik−1 = k − 1) P(Kik−1 = k − 1)

=
Vik,k

Vik−1,k−1
Vik−1,k−1

[

ik − 1

k − 1

]

α

.

However here we give a self-contained proof in order to show how (60) is implied by proposition
3.2 through (59).

Proof. From (10), we know that

P (i2, . . . , ik) = Vik,k
Γ(i2 − α− 1) · · ·Γ(ik − α(k − 1) − 1)

Γ(1 − α)Γ(i2 − 2α) · · · Γ(ik−1 − (k − 1)α)
;

By proposition 3.2 and Lemma 4.1,

E(
k
∏

j=1

X
nj

j |i1, . . . , ik) = E





k−1
∏

j=1

ξ
nj+1

j (1 − ξj)
Sj

∞
∏

i=k

(1 − ξi)
n
∣

∣

∣
i1, . . . , ik





=

k−1
∏

j=1

(1 − α)(nj+1)(ij+1 − jα − 1)(Sj)

(ij+1 − (j + 1)α)(Sj+1)
E(

∞
∏

i=k

(1 − ξi)
n|ik)

=





k−1
∏

j=1

(1 − α)(nj+1)(ij+1 − jα− 1)(Sj )

(ij+1 − (j + 1)α)(Sj+1)





Γ(ik + n− αk)

Γ(ik − αk)

Vn+ik,k

Vik,k
,

(61)
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hence

E (

k
∏

j=1

X
nj

j |1 ≡ i1, i2, . . . , ik)P (i2, . . . , ik)

= (ik − αk)(n)Vn+ik,k

k−1
∏

j=1

(1 − α)nj+1Γ(ij+1 − jα− 1 + Sj)Γ(ij+1 − α(j + 1))

Γ(ij+1 − α(j + 1) + Sj+1)Γ(ij − αj)

=

k
∏

j=1

(1 − α)(nj )



Vik+n,k

k−1
∏

j=1

(ij − αj + Sj)(ij+1−ij−1)



 , (62)

where the last equality follows after multiplying and dividing all terms by (1 − α)n1 . Conse-
quently, a moment formula for general Gibbs partitions is of the form:

E(α,V )





k
∏

j=1

X
nj

j



 =
k
∏

j=1

(1 − α)(nj)

∑

1<i2<...<ik

c(1,i2) · · · c(ik−1,ik)Vn+ik,k. (63)

where, for 1 < j ≤ k − 1,
c(ij ,ij+1) = (ij − αj + Sj)(ij+1−ij−1).

For fixed ik denote
λik =

∑

1<i2<···<ik

c(i1,i2) · · · c(ik−1,ik).

Then (63) reads

E(α,V )





k
∏

j=1

X
nj

j



 =

k
∏

j=1

(1 − α)(nj)

∞
∑

i=k

λiVn+i,k. (64)

For Pitman’s two-parameter family, this becomes

E(α,θ)





k
∏

j=1

X
nj

j



 =

k
∏

j=1

(1 − α)(nj )

∞
∑

i=k

λi

∏k
j=1(θ + α(j − 1))

θ(n+i)
. (65)

The two-parameter GEM distribution implies that

E





k
∏

j=1

X
nj

j



 = E





k
∏

j=1

B
nj

j (1 −Bj)
n−Sj





=
k
∏

j=1

(1 − α)nj
(θ + jα)(n−Sj )

(θ + 1 + (j − 1)α)(n−Sj−1)

=
1

(θ)(n)

k
∏

j=1

(1 − α)(nj )(θ + α(j − 1))

(θ + α(j − 1) + n− Sj−1)
. (66)

therefore, from (65) we derive the identity:

k
∏

j=1

1

(θ + α(j − 1) + n− Sj−1)
=

∞
∑

i=k

λi

θ(n)

θ(n+i)
, θ > 0. (67)
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For θ > 0 replace θ by θ − n in (67), and denote n∗j = 1 − α+ nj . We now find an expansion of

the left-hand side of (67) in terms of products of the type
∏k

1(n∗j)(mj ), for m1, . . . ,mk ≥ 0. The
left-hand side of (67) is now

k
∏

j=1

1

(θ − n+ α(j − 1) + n− S∗
j−1)

=
k
∏

j=1

1

(θ + j − 1 + S∗
j−1)

=
k
∏

j=1

∫ 1

0
t
j−1+θ−1−S∗

j−1

j−1 dtj−1

=

∫





k−1
∏

j=1

tj





θ−1

(t1 · · · tk−1)−n∗

1(t2 · · · tk−1)−n∗

2 · · · t
−n∗

k−1

k−1

k−1
∏

j=1

tjj dt0 · · · dtk−1, (68)

where S∗
0 = 0 and S∗

j =
∑j

i=1 n
∗
j , j = 1, . . . , k − 1. Make the change of variable

uj = 1 −
k−1
∏

i=j

ti, j = 0, . . . , k − 1.

Then 0 < uk−1 < . . . < u0 < 1. The absolute value of the Jacobian is
∣

∣

∣

∣

du

dt

∣

∣

∣

∣

= (t1 · · · tk−1) × (t2 · · · tk−1) × tk−1 × 1

=

k−1
∏

j=1

tjj.

Thus (68) transforms to

∫

0<uk−1<...<u0<1
(1 − u0)θ−1

k−1
∏

j=1

(1 − u)−n∗

j du1 · · · duk−1du0.

Fix u0 and consider

∫

0<uk−1<...<u0

k−1
∏

j=1

(1 − u)mjdu1 · · · duk−1

= u
k−1+

Pk−1
i=1 mi

0

1

mj−1 + 1
·

1

mj−1 +mj−2 + 1
·

1

mj−1 + . . .+m1 + 1
.

The integral in (68) is thus

∑

m1,...,mk−1≥0

c(m)
∏k−1

j=1(1 − α)(mj )

k−1
∏

j=1

n∗j (mj )

∫ 1

0
(1 − u0)θ−1u

k−1+
Pk−1

i=1 mi

0 du0, (69)

where

c(m) =
k−1
∏

j=1

1

k − j +
∑k−1

i=j mi

k−1
∏

j=1

(1 − α)(mj )

mj!
. (70)
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Now consider the right-hand side of (67), again with θ replaced by θ − n:

∞
∑

i=0

λk+i

(k + i− 1)!

∫ 1

0
(1 − x)θ−1xi+k−1dx

and compare it with (69) to obtain a representation for the λi’s in (64):

λk+i

(k + i− 1)!
=

∑

m∈Nk
0 :|m|=i

c(m)

(1 − α)(mj )

k−1
∏

j=1

n∗j (mj)
, (71)

where N0 = N ∪ {0}. Recall that n∗j = 1 − α+ nj and consider the identity

(1 − α)(nj)n
∗
j (mj)

(1 − α)(mj )
= (1 − α+mj)(nj).

From (43) we also know that

Vn+k+i,k =
Vk+i,k

(k + i− αk)(n)
E(W n

k |ik = k + i).

Thus (64) and (71) imply that

E(α,V )





k
∏

j=1

X
nj

j



 =
∞
∑

i=0

(k + i− 1)!E(W n
k |ik = k + i)Vk+i,k

×
∑

m∈N
k−1
0 :|m|=i

c(m)

[

(1 − α)(nk)

∏k−1
j=1(1 − α+mj)(nj)

(k + i− αk)(n)

]

. (72)

Now, for every m ∈ N
k−1
0 such that |m| = i, define m′

j = mj + 1; then we can rewrite

(k + i− 1)!c(m)Vk+i,k =
Vk+i,k

Vk+i−1,k−1

(

(k + i− 1)!
∏k−1

j=1 m
′
j !(k + i− 1 −

∑j−1
l=1 m

′
j)

)

Vk+i−1,k−1

k−1
∏

j=1

(1 − α)(m′
j−1)

=
Vk+i,k

Vk+i−1,k−1
µα,V (m′).

Thus the right-hand side of (72) becomes

=

∞
∑

i=0

Vk+i,k

Vk+i−1,k−1

∑

m′∈Nk−1:|m′|=k+i−1

µα,V (m′)

[

(1 − α)(nk)

∏k−1
j=1(mj

′ − α)(nj)

(k + i− αk)(n)
E(W n

k |ik = k + i)

]

(73)
The term between square brackets is the n1, . . . , nk-th moment of k [0, 1]-valued random variables
Y1(m′), . . . , Yk(m′) such that

k
∑

i=1

Yi(m
′)

d
= (Wk|ik = k + i)
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and, conditional on
∑k

i=1 Yi(m
′), the distribution of

Y1(m′)
∑k

i=1 Yi(m′)
, . . . ,

Yk(m′)
∑k

i=1 Yi(m′)

is a Dirichlet distribution with parameters (m1
′−α, . . . ,mk−1

′−α, 1−α), therefore (73) completes
the proof of part (i).

To prove part (ii), we only have to notice that, from (73) it must follow that

∞
∑

i=0

Vk+i,k

Vk+i−1,k−1

∑

m′∈Nk−1:|m′|=k+i−1

µα,V (m′) = 1

hence a version of the marginal probability of ik is, for every k

P(ik = k + i) =
Vk+i,k

Vk+i−1,k−1

∑

m′∈Nk−1:|m′|=k+i−1

µα,V (m′). (74)

This can be also argued directly, simply by noting that, in an EGP(α, V ),
∑

m′∈Nk−1:|m′|=k+i−1

µα,V (m′) = P(ik−1 ≤ k + i− 1, ik > k + i− 1)

and that
Vk+i,k

Vk+i−1,k−1
= P(ik = k + i|ik−1 ≤ k + i− 1, ik > k + i− 1).

We want to find an expression for the inner sum of (74). If we reconsider the term c(m) as in
(70) (for m ∈ N

k−1
0 : |m| = i), we see that

∑

m∈N
k−1
0 :|m|=i

c(m)

is the coefficient of ζi in

1

(k − 1)!

[
∫ 1

0
(1 − uζ)α−1du

]k−1

=
1

(k − 1)!
(

1

ζα
)k−1[1 − (1 − ζ)α]k−1

= (ζα)−(k−1)
k−1
∑

j=0

(−1)k+i+j−1

j!(k − 1 − j)!
(1 − ζ)αj.

Thus

∑

m∈N
k−1
0 :|m|=i

c(m) =
α−(k−1)

(k + i− 1)!

k−1
∑

j=0

(−1)k+i+j−1

j!(k − 1 − j)!
(jα)[k+i−1]. (75)

Since
∑

m′∈Nk−1:|m′|=k+i−1

µα,V (m′) = (k + i− 1)! Vk+i−1,k−1

∑

m∈N
k−1
0 :|m|=i

c(m)

then part (ii) is proved by comparison of (75) with (74).
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de Saint-Flour XXXII - 2002, ed. J. Picard. MR2245368

1129

http://www.ams.org/mathscinet-getitem?mr=0758915
http://www.ams.org/mathscinet-getitem?mr=2060608
http://www.ams.org/mathscinet-getitem?mr=1015698
http://www.ams.org/mathscinet-getitem?mr=1374320
http://www.ams.org/mathscinet-getitem?mr=1374319
http://www.ams.org/mathscinet-getitem?mr=0633178
http://www.ams.org/mathscinet-getitem?mr=2238047
http://www.ams.org/mathscinet-getitem?mr=1156448
http://www.ams.org/mathscinet-getitem?mr=1337249
http://www.ams.org/mathscinet-getitem?mr=1387889
http://www.ams.org/mathscinet-getitem?mr=1481784
http://www.ams.org/mathscinet-getitem?mr=2004330
http://www.ams.org/mathscinet-getitem?mr=2245368


[30] S. Walker and P. Muliere. Beta-Stacy processes and a generalization of the Pólya-urn
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